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Abstract—Multiple-Input Multiple Output (MIMO) is the key 
technology in most advanced wireless communication standarts 
like 3GPP Long Term Evolution (LTE) and IEEE 802.11n/ac/ad 
(Wi-Fi). The cost of MIMO improvements is increased 
computational complexity of the signal processing at both ends 
and, as a consequence, growing complexity of the hardware. We 
propose a new approach of implementation of traditional MMSE 
demodulator reducing computational complexity for massive 
MIMO systems. 

I. INTRODUCTION 
Nowadays MIMO systems is a key technology in radio 

communication standards such as LTE and Wi-Fi [1],[2],[11]. 
The use of MIMO technology in communication systems 
makes it possible to significantly increase the capacity [1], but 
involves the necessity of solving many problems of signal 
processing. 

Development of the MIMO technology is associated with 
appearance of large-size MIMO systems, which have still 
more advantages of the multi-array systems. However, 
increased number of antennas is also increasing the number of 
arithmetical operations necessary for the signal demodulation 
[1]. This paper suggests applying of the Strassen algorithm 
and the 3  method for decreasing of the computational 
complexity in obtaining of the estimate, which is optimal in 
terms of the mean square error criterion, of the vector of 
transmitted symbols at the receiver end [3],[4]. 

II. SYSTEM MODEL

Shown in Fig. 1 is an abstract model of the MIMO system, 
based on which different configurations of the system can be 
built. 

Fig. 1. MIMO structure 

Here M  is the number of antennas at the transmitter part, 
N  is the number of antennas at the receiver end. At the 
receiver end the signals from each of the transmitting antennas 

are emitted simultaneously and within one and the same 
frequency band. In the channel properly these signals are 
subject to the influence of the Rayleigh fading and the additive 
Gaussian white noise. Therefore, an additive aggregate of M  
transmitted signals arrives at each of N  receiving arrays. 

Mathematical model of the MIMO system has the 
following representation: 

y Hx , (1)

where y  is the vector of received complex counts with the 
dimensionality N , H  is the matrix of the telecommunication 
channel complex transmission coefficients with the 
dimensionality N M , x  is the vector  of transmitted 
informational symbols with the dimensionality M ,  is the 
complex random Gaussian noise vector in the 
telecommunication channel with the dimensionality N . 

In general mathematical terms, the process of 
demodulation at the receiver end is reduced to solving of the 
given system of equations (1). 

III. MIMO DEMODULATION

The problem of the received signal demodulation in the 
multi-array systems at the receiver end at the known matrix of 
the channel is one of the traditional aspects in the sphere of 
wireless telecommunication. The problem is in recovering of 
the transmitted signal at the receiver end from the received 
vector of counts at the known channel matrix and at known 
statistical characteristics of the noise. 

There exist a certain number of known demodulation 
techniques [1]. Each of them has its own advantages and 
disadvantages as compared to the other. Depending upon 
specific conditions and criteria at developing of the 
telecommunication system it is necessary to make a choice in 
favor of one of the algorithms. 

These algorithms allow computing the estimate of the 
vector of transmitted symbols at the receiver end. Let us 
consider these techniques. 

Three main techniques used for computing the estimate of 
transmitted symbols are the following: 

1) the ZF (Zero Forcing) method (sometimes it is called as
a decorrelator);
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2) the algorithm, which is optimal upon the MMSE
(Minimum Mean Square Error) criterion;

3) the ML (Maximum Likelihood) method.

The linear ZF method is the simplest of all the above 
methods. Using this method, the estimate is computed under 
the equation: 

1
ˆ H H

ZFx H H H y , (2)

where H  is operation of Hermitian transpose. 

According to (2) in order to compute the estimate, it is 
considered the matrix of the channel only, but availability of 
the noise is disregarded that results in decreasing of the 
resistance to noise. 

Using of the MMSE algorithm provides for better estimate 
computation results because availability of the noise is taken 
into consideration. The estimate obtained as the result of the 
algorithm operation is represented mathematically as follows: 

12ˆ 2H H
MMSEx H H 1 H y , (3) 

where 22  is the aggregate dispersion of the real and 
imaginary components of the Gaussian noise vector, 1  is the 
identity matrix with the dimensionality N N . 

The ML method possesses the best characteristics of 
resistance to noise [1]. The estimate obtained with the help of 
this method minimizes the square of the discrepancy norm: 

2ˆ arg min -ML M
x y Hx

x X
, (4)

where MX  is the discrete set of values of the M -
dimensional vector of x  complex informational symbols. The 
set X  is determined by the type of the modulation used in the 
system [1]. To find the minimum, according to (5), it is 
necessary to perform enumeration upon all the possible 
combinations of the vector of complex informational 
symbols x . 

The estimation obtained based on the ZF method, and the 
estimate ˆ MMSEx  which is optimal in terms of the minimum 
mean square error criterion, are the simplest in terms of 
computations among the above-mentioned ones, and, as the 
consequence thereof, they require less time for obtaining of 
the estimate, however, having lower resistance to noise as 
compared with the ML method. Implementation of the ML 
method requires execution of a great number of operations. 
The number of operations depends upon two parameters of the 
system – the number of transmitting arrays and the type of 
modulation used. For example, while using the modulation 
QAM-16 (Quadrature Amplitude Modulation) in the 
telecommunication system or QAM-64 (at the demodulation) 
it is required to compute the discrepancy 16N  or 64N  times 
correspondingly. Even in the case with a small number of 
arrays at the transmitter end, for example 8, the discrepancy 
would have to be computed 816 4294967296  times for 

QAM-16, and 281474976710656 times for QAM-64. It is 
worthy of note that the above computations have to be 
performed during the period of time, which is not exceeding 
the duration of one informational symbol. Therefore, the 
MMSE demodulation algorithm is the basic one due to low 
computational expenses as compared with the ML method; it 
also possesses a higher resistance to noise as compared with 
the ZF method. 

IV. MASSIVE MIMO
Development of wireless communication systems resulted 

in origination of large-size MIMO systems, or the so-called 
massive MIMO [5]. Their main difference from the existing 
multi-array systems is in availability of the antenna arrays, the 
number of arrays in which exceeds by several times the 
number of arrays in traditional systems [5]. Reference to the 
traditional ones may include those multi-array systems, the 
configuration of which is described in the most recent versions 
of the standards for the wireless data transmission systems that 
are IEEE 802.11a , IEEE 802.11ad and 4G LTE-A (Long 
Term Evolution Advanced): 8 antennas at the receiver end and 
8 antennas at the transmitter. One antenna array of a large-size 
MIMO system may contain one or several hundred antennas 
[5]. 

Massive MIMO systems have a number of advantages as 
compared with the traditional multi-array systems, of which 
the following can be designated as the basic advantages [5]: 

enhancement of the network capacity and reliability of
the network operation;
possibility of simultaneous servicing several dozens of
mobile terminals that is important under the conditions
of a limited frequency resource.

In this condition, an apparent drawback as compared with 
the traditional multi-array systems is in the fact that increasing 
of the number of arrays at the receiver and transmitter ends 
results in increasing of the channel matrix dimensionality, and, 
consequently, in increasing of the number of mathematical 
operations necessary for obtaining of the estimate at 
demodulation [6]. Therefore, with the increased number of 
arrays the computational complexity while obtaining the 
estimates ˆ ZFx  and ˆ MMSEx  is increasing, however, the 
advantage of a low complexity as compared with obtaining of 
the estimate ˆ MLx  is preserved. 

V. COMPUTATIONAL COMPLEXITY 
The mathematical algorithms can be classified in 

accordance with complexity of their execution [7]. 
Considering that the algorithm is composed of a sequence of 
strictly determined operations (commands) [7], the algorithms 
can be classified depending upon the number of operations 
required for obtaining of the result. The parameter, which is 
called the computational complexity, is often used for 
classification of the algorithms. The term is used for 
determining of the number of elementary arithmetical 
operations, which must be performed for obtaining the 
solution to a certain problem. 
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Let us consider in detail the computational complexity of 
obtaining the estimate of the vector of informational symbols 
using the MMSE demodulation algorithm (3). We shall regard 
the telecommunication systems, in which the number of arrays 
at the receiver end and the number of arrays at the transmitter 
end are equal; that is N M . 

We address to the equation (3) in order to obtain the 
estimate of MMSE. We shall separately consider all the 
operations used for obtaining the estimate upon the MMSE 
algorithm: 

1) Multiplication of the matrix with the dimensionality
N N by the matrix with the dimensionality N N ;

2) Multiplication of the matrix with the dimensionality
N N  by the vector-column with the dimensionality
N  (this operation has to be performed twice);

3) Summation of two matrices with the dimensionality
N N ;

4) Inversion of the matrix with the dimensionality N N .

The channel matrix H  and the vector of received counts 
y  contain complex numbers, therefore, the number of 
operations must be considered for the complex numbers. 

In accordance with (3) we can say that matrix HH H  is 
Hermitian matrix [8]. Let us introduce the following notations: 

00 01

10 01

h h
H

h h
, 00 10

01 11

H H

H
H

H

h h
h h

H . Consequently, the matrix 

product HH H  is equal to: 

00 00 10 10 00 01 10 11

01 00 11 10 01 01 11 11

H H H H
H

H H H H

h h h h h h h h
H H

h h h h h h h h
. (5) 

Because matrix HH  is Hermitian transpose of matrix H , 

it is true 01 00 11 10 00 01 10 11
H H H H H

h h h h h h h h .

As a result, it is no need to compute full matrix HH H  – 
we only need to compute elements of main diagonal and the 
elements below the main diagonal. The elements above the 
main diagonal is equal to the complex conjugate of the 
elements below the main diagonal [8]. 

The computational complexity of multiplication of the 
matrix with the dimensionality N N  by the self-adjoint 
matrix with the dimensionality N N  HH H  can be estimate 
as 2 22 2 1

MULT
N N N  operations of multiplications and 

2 2 1 1 2 1
ADD

N N N N N  operations of 
summation [9]: 

2 2

3 3 2

2 2 1 ...

2 2 1 1 2 1

2 2

TRMATCONJ MULT

ADD

MULT ADD

Z N N N N

N N N N N

N N N N

. (6) 

Inversion of the Hermitian matrix 22HH H 1  is 
suggested calculating with help of Frobenius method [10]. Let 
us introduce the following notation: 22HT H H 1 .
Matrix T  with the dimensionality N N  can be divided into 

4 matrices with the equal dimensionality 
2 2
N N  as following:

00 01

10 11

t t
T

t t
. (7)

As T  is the Hermitian matrix it is possible to say that 

00 00
Ht t , 01 10

Ht t , 01 10
Ht t  and 11 11

Ht t . Matrix T  will be 
equal to: 

00 01

01 11
H

t t
T

t t
. (8)

According to Frobenius method, inversion of matrix T  is: 
1 1 1 1 1 1

1 00 00 01 10 00 00 01
1 1 1

10 00

t t t G t t t t G
T

G t t G
, (9) 

where 1
11 10 00 01G t t t t  [10]. Therefore we can say that 

1 1
00 01 01 00

Ht t t t . We use the following designation 1
01 00
HW t t . 

Then we ca rewrite equation (9) as following: 

1 1 1
1 00

1 1

HHt W G W G WT
G W G

, (10) 

where 11 10
HG t t W . 

Therefore, for calculating inversion of the Hermitian 
matrix T  we need to perform following operations: 

2 inversion of matrix with the dimensionality

2 2
N N : 1

00t , 1G ; 

4 matrix products with the dimensionality
2 2
N N :

1
01 11
Ht t , 1G W , 1HW G W , 10

Ht W ;

2 summation of matrix with the dimensionality

2 2
N N : 11

00
HW G Wt , 11 10

Ht Wt . 

For operations of matrices inversion in (10) Frobenius 
method needs to be applied recursively. Complexity of 
inversion of the Hermitian matrix can be estimate as 

3 22 2
MULT

N N  operations of multiplications, 
3 22 4 2

ADD
N N N operations of summation and DIVN

operations of divisions [9]. 

We suppose, that operations of multiplications and 
operations of divisions have the same complexity. Therefore, 
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total complexity of inversion of the Hermitian matrix is equal 
to [9]: 

3 2

3 2

2 2

2 4 2

INVCONJ MULT

ADD

Z N N N N

N N N
. (11) 

Let us consider the number of elementary arithmetical 
operations required for calculating matrix-vector product 

1T v , where Hv H y . This operation can be represented as 
following: 

00 011 1

10 112 2

t tv q
t tv q

, (12) 

wherein 

1 00 1 01 2

2 10 1 11 2

v t q t q
v t q t q

. (13) 

Because T  is Hermitian matrix, the overall complexity of 
this operation is the following [9]: 

2 2

2 4 1

2 2 1

4 2 4 4

TRMATVECCONJ MULT

ADD

MULT ADD

Z N N N N

N N

N N N N

. (14) 

Complexity operation of multiplication of the matrix with 
the dimensionality N N  by the vector-column with the 
dimensionality N  can be estimate as: 

28 2TRMATVECZ N N N (15) 

The last operation of MMSE algorithm is summation of 
two matrices with the dimensionality N N . Because 1  is the 
identity matrix, complexity of this operation include 
multiplications of elements of main diagonal of matrix 1  by 
number 22  [9]: 

SUMMATZ N N . (16) 

Therefore, total number of operations necessary for 
obtaining of the MMSE estimate (3) we can calculate using 
equations (9), (11), (14), (15), (16): 

3 3 2

3 2 3 2

2 2 2

3 2

2 2

2 2 2 4
2 4 2 4 4 8
2 8 9 3

MMSE TRMATCONJ INVCONJ

TRMATVEC TRMATVECCONJ

SUMMAT

Z N Z N Z N

Z N Z N

Z N

N N N N
N N N N N
N N N N N N
N N N N N

. (17) 

Number of arithmetical operation required for obtaining 
estimate upon the MMSE algorithm (3) is provided in 
Table I. 

TABLE I. COMPUTATIONAL COMPLEXITY OF THE MMSE DEMODULATOR FOR 
DIFFERENT MIMO CONFIGURATIONS 

MIMO configuration, 
N N  

Number of required operations for obtaining of 
the MMSE estimate, MMSEZ N

2 2 92 

4 4 640 

8 8 4 640 

16 16 35 008 

32 32 271 232 

64 64 2 133 760 

128 128 16 924 160 

VI. NEW REALIZATION OF MMSE DEMODULATOR 
WITH REDUCED COMPUTATIONAL COMPLEXITY

We consider application of the Strassen algorithm and the 
3  method to the algorithm of obtaining of the MMSE 
estimate (3). To decrease the computational complexity in 
obtaining the MMSE estimate at the demodulator end for the 
massive MIMO systems without altering the characteristics of 
the algorithm, which is optimal in terms of the minimum mean 
square error criterion, it is suggested to jointly apply two 
methods, the Strassen algorithm and the 3  method. 

Both of the above methods are suggested for application to 
the operation of obtaining the product of square matrices 
consisting of complex transmission coefficients of the 
telecommunication channel, dimensionality of which is equal 
to the number of arrays at the receiver and the transmitter 
ends. In addition to the said operation, it is suggested to 
decrease using the 3  method the computational complexity 
of the operation of multiplication of the matrix by the vector. 
Also and matrix inversion are suggested to use for decrease 
computational complexity of inversion of the Hermitian 
matrix. 

To perform computation of matrix product it is suggested a 
simultaneous use of the Strassen algorithm and the 3  
method, as in Algorithm 1. 

Algorithm 1 New algorithm for obtaining matrix product 
Input: matrix H
Output: matrix product HH H  
1. Compute HH

2. Assign 00 01

10 01

h h
H

h h
, 00 10

01 11

H H

H
H

H

h h
h h

H

3. For 0,1, 1
2
Nj  compute 00 00

Hh h , 10 10
Hh h , 

001 1
Hh h , 11 11

Hh h  using 3M method as following: 

1[ 1]
1 00 00 00 00 1

jH H j
nF h h h h f

[ 1] [ 1]
2 10 10 10 10 2

H H j j
nF h h h h f
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[ 1] [ 1]
3 01 01 01 01 3

H H j j
nF h h h h f

1[ 1]
4 11 11 11 11 4

jH H j
nF h h h h f

where ;
2 2 2
N N Nn j  

4. Assign 00
Hh , 01h , 01

Hh , 11h  as following 

00 00 00
H H H

R I
ih h h

01 01 01R I
ih h h

01 01 01
H H H

R I
ih h h

11 11 11R Iih h h

where R  – values of real part complex of matrix,

I  – values of imaginary part complex of matrix

5. Compute 00 01
Hh h  and 10 11

Hh h  using 3M method as 
following:

00 01 00 01 00 01

00 00 01 01

00 01 00 01

H H H
R IR I

H H
R IR I

H H
R IR I

i

h h h h h h

h h h h

h h h h

10 11 10 11 10 11

10 10 11 11

10 11 10 11

H H H
R IR I

H H
R IR I

H H
R IR I

i

h h h h h h

h h h h

h h h h

where 

00 01
H

RR
h h , 00 01

H
II

h h ,

00 00 01 01
H H

R IR I
h h h h , 110 1

H
RR

h h , 

110 1
H

RR
h h , 110 1 1 110

H H
R IR I

h h h h  for 

32
2
N  compute using the Strassen algorithm; in case

if 32
2
N  compute traditionally

6. Assign
00 00 10 10 00 01 10 11

00 01 10 11 01 01 11 11

H H H H

H
HH H H H

h h h h h h h h
H H

h h h h h h h h
 

7. End

To decrease complexity of matrix inversion it is suggested 
to use Algorithm 2. 

Algorithm 2 New algorithm for obtaining matrix inversion 
Input: matrix T
Output: matrix product 1T

1. Assign 00 01

01 11
H

t t
T

t t

2. Compute 01
Ht  and using Frobenius method 1

00t
recursively

3. Assign 1
01 00
HW t t , 11 10

HG t t W

4. Compute 1
01 00
HW t t  using 3M method: 

1 1 1
01 11 01 11 01 11

1 1
01 01 11 11

1 1
01 11 01 11

H H H

R R I I

H H

R I R I

H H

R R I I

i

W t t t t t t

t t t t

t t t t

where 1
01 11
H

R R
t t , 1

01 11
H

I I
t t , 

1 1
01 01 11 11
H H

R I R I
t t t t  for 32

2
N  compute

using the Strassen algorithm; in case if 32
2
N

compute traditionally 
5. Compute HW
6. Assign 010 1 10R I

it tt , R IiW W W , 
H H H

R I
iW W W

7. Compute 10
Ht W  using 3M method as following: 

10 10 10

10 10

10 10

H H H
R IR I

H H
R I R I

H H
R IR I

i

t W t W t W

t t W W

t W t W

where 10
H

R R
t W , 10

H
I I

t W , 

10 10
H H

R I R I
t t W W

1 1
01 01 11 11
H H

R I R I
t t t t  for 32

2
N  compute

using the Strassen algorithm; in case if 32
2
N

compute traditionally 
8. Compute 11 10

HG t t W

9. Compute 1G  using Frobenius method recursively

10. Assign 1 1 1

R I
iG G G

11. Compute 1G W , 1HW G W  using 3M method as

following:
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1 1 1

1 1

1 1

R I R IR I

R IR I

R IR I

i

i

U U U G W G W G W

G G W W

G W G W

1H H H H
R IR I

H H
R IR I

H H
R IR I

i

W G W W U W U W U

W W U U

W U W U

where 1
RR

G W , 1
II

G W , 

1 1
R IR I

G G W W , H
RR

W U , 

H
II

W U , H H
R IR I

W W U U for 

32
2
N  compute using the Strassen algorithm; in case

if 32
2
N  compute traditionally

12. Compute 1 1
00

Ht W G W

13. Assign 
1 1 1

1 00

1 1

HHt W G W G WT
G W G

14. End
Last operation in equation (3) complexity of which is 

suggested to reduce is obtaining of matrix-vector product. 
New algorithm for this operation is listed below as Algorithm 
3. 

Algorithm 3 New algorithm for obtaining matrix-
vector product 
Input: matrix HH , vector y  
Output: matrix-vector product HH y

1. Assign H H H

R I
iH H H

2. Assign 
R Iiy y y

3. Compute HH y  using 3M method as
following:

H H H
R IR I

H H
R IR I

H H
R IR I

i

H y H y H y

H H y y

H y H y

4. End
New realization of MMSE demodulator consist in using 

Algorithm 1, Algorithm 2 and Algorithm 3 to equation (3) for 
obtaining the estimate ˆ MMSEx . 

Therefore, the number of arithmetical operations being 
required for obtaining the estimate ˆ MMSEx , optimal in terms of 

the mean square error criterion, for different antennas 
configuration is equal to the number provided in Table II. 

TABLE II. COMPUTATIONAL COMPLEXITY OF DEMODULATION IN MASSIVE 
MIMO SYSTEM 

MIMO 
configuration 

Number of required 
operations (multiplication 

and summation) 

Ratio between the 
number of operations 

while using the MMSE 
algorithm and new 

realization of MMSE 
algorithm 

Traditional 
MMSE 

New 
realization 

2 2 92 96 1,04

4 4 640 706 1,10

8 8 4 640 5 068 1,09 

16 16 35 008 26 808 0,77 

32 32 271 232 192 912 0,64 

64 64 2 133 760 1 204 320 0,56 

128 128 16 924 160 8 659 264 0,51 

VII.  CONCLUSION

Using of different methods of fast multiplication of the 
matrices allows decreasing the number of operations for 
execution of the algorithm without losing in the resistance to 
noise. The paper considers two methods for decreasing the 
computational complexity of the algorithms along with joint 
application of the above methods. 

As it was mentioned earlier for massive MIMO systems it 
is typical to have a large dimensionality of the matrix of 
complex transmission coefficients of the telecommunication 
channel, in particular, 32N . In addition, the Strassen 
algorithm possesses the highest efficiency at recursive 
application to the matrices of large dimensionality ( 40N ). 
And considering that the matrices contain complex elements, it 
is reasonable to apply the 3M method. Thus, it is substantiated 
the efficiency of application of those methods in order to 
simplify obtaining of the MMSE estimate. 

It is shown in the process of investigation that joint 
application of the Strassen algorithm and the 3M method is 
significantly decreasing the number of elementary operations 
required for obtaining of the estimate, which is optimal in 
terms of the minimum mean square error criterion. Obtaining 
of that estimate is necessary for the MMSE demodulation 
algorithm providing for better results in computation of the 
estimate as compared with the ZF algorithm, it also possesses 
a lower computational complexity as compared to the ML 
algorithm. 

Therefore, application of the Strassen algorithm and the 
3M method to the procedure of obtaining of the MMSE 
estimate allows decreasing a total number of the required 
elementary operations without losing in the resistance to noise 
and without altering the characteristics of the MMSE 
algorithm by 2 times for the matrices of complex transmission 
coefficients of the telecommunication channel with the large 
dimensionality (128 128 ), which can be found in the promise 
massive MIMO systems. 
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