
Latency/Wearout in a Flash-based Storage System
with Replication on Write

Rumyantsev, Ivashko, Chernov

Institute of Applied Mathematical Research, KRC of RAS

Petrozavodsk State University

Petrozavodsk, Russia

{ar0, ivashko, chernov}@krc.karelia.ru

Kositsyn, Shabaev, Ponomarev
Petrozavodsk State University

Petrozavodsk, Russia

kositsyn@psu.karelia.ru, ashabaev@petrsu.ru, vadim@cs.karelia.ru

Abstract—We investigate the influence of latency and wearout
of writing data on the efficiency of high-performance data storage
systems. Using a mathematical model, we propose the strategy
of redundant writing with cancelling long write operations. Pre-
sented numerical simulation results allow choosing the replication
level needed to achieve the trade-off between the latency and
wearout that provides desired reliability and efficiency.

I. INTRODUCTION

Life today is hardly possible without information technolo-
gies. They are used everywhere, from nuclear power stations
to text messaging between people. In many applications, high
speed information service is of critical importance. This can in-
clude intensive input-output of data, high peak load, etc. Exam-
ples are search engines like Yandex or Google, social networks,
file exchange networks, video on demand, etc. Such systems
are usually heavily loaded. They need special technologies, in
particular, for data storage. Data storage subsystems of high-
performance services must provide high data availability and
quick reading and writing. However, this implies using special
strategies of data duplication (replication).

Recently, since the development of the flash-based storage
systems, solid state drives (SSD) are widely used due to
higher efficiency and, in particular, sequential reading speed.
This property promotes the usage of SSD in high-performance
systems that possess intensive read and write data flows.
Replication of data among several data storage systems is able
to reduce the response time, provide data integrity in case of
failures, however suffering from higher wearout rate of SSD
devices. At that, it is necessary to obtain a replication strategy
that balances the response time reduction with the wearout.

The contribution of this paper is twofold. First, we adopt
a strategy of data replication and quorum of completed opera-
tions to reduce write latency. This strategy relies on SSD’s fea-
ture of cancelling a write operation in progress. The main idea
of such a strategy is to replicate the write operations in order to
accept the fastest ones and cancel, using the write cancellation
mechanism, the slower ones. This promises improvement of
the response time of the whole system. We further develop
the so-called multiserver Split-Merge model to obtain the
necessary analytical results for obtaining the configuration of a
system delivering minimal wearout. In particular, we state the
non-linear equation to obtain the minimal wearout of storage
devices for given system configuration, for the first time.

Second, we present results of numerical experiments to find
the balance between the acceptable latency and wearout rate.
As the experiments show, one can use the proposed technique
of redundant write with cancellation, provided a sufficient
amount of devices, to reduce latency, while the lifetime of
the devices is affected in a minor way. We focus on the
distributions of request duration with so-called heavy tails
which is related to the modern storage characteristics.

The structure of the paper is as follows. We state the
problem of replication and quorum strategy optimization in
section II. In section III we give the necessary information
about the SSD-devices. The related works are surveyed in
section IV. The mathematical model is developed in section V,
and the results of numerical experiments are presented. Finally,
in section VI we sum up the results and give a conclusion.

II. PROBLEM STATEMENT

In this paper, we propose a strategy that employs both
replication and the quorum technique. Replication is used to
provide the necessary efficiency: when a write request arrives,
the piece of data is written concurrently at several carriers.
The quorum approach is used as follows: the write request is
said to be completed, when the write operation is completed
at a certain number of carriers called the quorum, which is
not greater than the number of devices that received the write
request (the replication). Such information redundancy among
several carriers allows, besides data integrity, to obtain a higher
reading speed: during the read operations the data is read from
the quickest carrier, or pieces of data are read from a few
carriers in parallel.

Such approach is based on data storage redundancy and
redundancy of writing operations. Redundancy has its cost,
including the necessity to have a supply of carriers, higher
hardware wear and energy consumption, etc. Therefore, we
face a trade-off between the positive effect and the necessary
cost of using quorum and replication. In the paper we obtain
optimal configuration of replication and quorum by means of
mathematical modeling.

To analyze the effect of latency and wearout on the write
performance of an SSD-based storage system, we further
develop the multiserver Split-Merge-type model first proposed
in [1], where a study of latency reduction by means of
replication in Desktop Grid environment was performed. A
further study of the effects of tail distribution of service times

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200853532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and structure of the arrival process in Split-Merge model by
means of simulation was performed in [2]. In [3] a necessary
background on the order statistics of heavy-tailed service time
distributions and properties of linear (in replication parameter)
cost functions in the Split-Merge model was established. In
the present paper we further develop the Split-Merge model in
the context of high-performance SSD-based storage systems.

III. TECHNICAL DETAILS

Solid-state data-storage drives based on the flash technol-
ogy are quickly developing and, as permanent storage devices,
are an alternative to hard disk drives. Due to flash’s energy
efficiency, quick read access, compact sizes, resistance to
shocks and vibrations, relatively high reliability they are of
high interest as storage drives in servers and data-storage
systems.

Drawbacks of SSD, compared to HDD, include: higher
cost per 1Tb (though this difference is rapidly decreasing) and
relatively quick wearout of SSDs, up to complete failure of
the device.

The architecture of SSD (see fig. 1) includes the flash-
memory units, the embedded processor unit equipped by its
own RAM, and a set of controllers to provide interaction
between these components.

Fig. 1. General architecture of an SSD

Each SSD has special built-in software called the flash
translation layer (FTL). It is usually implemented as the inter-
nal software (firmware) launched by the SSD’s controller. This
controller transforms incoming read/write requests to the flash-
memory operations via the flash-controller. The host interface
connects the disk with the host via the interface connector,
e.g., SATA. Also, an SSD has a RAM buffer, which is used
for temporarily storing data and buffering write requests.

Data are permanently stored in the array of flash-memory
cells that are connected with the flash-controller via several
channels. Each flash-memory cell consists of a few crystals,
each of which has several matrices. Every matrix contains
more than one flash blocks. See, e.g., [4] for a more detailed
description of the SSD architecture.

Built-in memory and processor allow to create a queue
of read/write requests to SSD; a similar queue can exist also
outside the SSD.

Data stored in an SSD are accessed up to a page of a
fixed size; such pages can be considered as SSD blocks. The

difference is that a page can not be locally updated, only
rewritten completely after a complete clearing. A clearance
block consists of more than one (usually 64 or 128) consequent
memory pages; so, all contents of these pages must be copied
prior to erasing the block. This means a serious problem of
written volume increase for SSD.

To veil this behaviour, SSDs use flash transition layers
(FTL). FTL maps logical page numbers onto physical page
numbers, creating an illusion of local updates. Another impor-
tant function of the FTL is garbage collection. It is clearing
one or more blocks when there is a lack of free pages to serve
write requests or when the drive is idle. Usually a block with
the fewest number of up-to-date data on its pages is chosen
for garbage-collection, in order to minimize redundant writing
to the drive. Besides, as SSD support a limited number of
erase cycles, FTL levels out the wearout by distributing write
operations evenly along the blocks and, therefore, increases
the lifetime of the drive.

Besides, parallel serving of requests may be impossible if
two or more requests address the same flash chip. Sequential
service means latency, because otherwise the requests could be
fulfilled simultaneously. Reading can be 10 to 40 times faster
than writing, causing another source of latency [5].

As writing is subject to multiple factors that influence
the writing rate, it can vary significantly. See [5] for a more
detailed description of read-write characteristics of SSD.

The number of erases for each block is limited by a number
of erases from 10 thousand to 1 million; this restricts the
lifetime of SSD [6]. So, write operations must be optimized
in order to keep the drive running for a long time. Usually the
drive’s reliability is measured as the amount of information
that can be written without loss of the device’s capacity.

Also, there is an undesirable phenomenon called the write
amplification effect, when more information is actually written
compared to the amount requested to be written. It is typical
for flash memory and SSDs.

In this work we propose a replication strategy for write
requests for several parallel SSD. The request is fulfilled when
the given number (the quorum) of replicated write operations
are completed. Other operations, still not completed, are can-
celled. The possibility of cancelling running write operations
on SSD is described in [7].

IV. RELATED WORK

High-performance storage is a storage management system
especially designed for moving large files, large amounts of
data and process high I/O load around a network.

It is quite important to take into account drive-type specifics
when designing storage systems for high-performance hard-
ware, and this importance is increasing. Disk-oriented solu-
tions are not easily scalable and thus not always meet the
needs of large scale applications, e.g., the Web ones. Drive
capacity has been rapidly growing while progress in reducing
latency and increasing bandwidth is not so drastic.

For this reason, high IO-load storage systems are built
on DRAM. This storage type provides the best performance
for market solutions. For example, the authors of [8] propose

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 361 ----------------------------------------------------------------------------



the RAMClouds solution, which, according to the authors,
can provide durable and available storage with 100-1000x
the throughput of disk-based systems and 100–1000 times
lower access latency. However, DRAM storage suffers some
drawbacks, including high cost and energy consumption per
bit. From these points of view, the RAMClouds storage, as
admitted by the authors, can be 50–100 times worse compared
to a HHD-based storage. Besides, a DRAM storage system
demands more room in a datacentre compared to HDD or SSD
storage units, due to lower data density.

Quick development and expansion of SSD is a reason to
design SSD-based storage systems, or at least those where SSD
play an important role. Such storages can have different archi-
tectures, beginning from the all-flash storages made of SSD
only, up to hierarchical storages, where the SSG-subsystem
is between the quick DRAM-based cache and relatively slow
permanent HDD-based storage and is both a slow cache and
fast long-term storage.

One of the first solutions of this type was the high perfor-
mance hybrid storage system, called Hystor [9]. Hystor mon-
itors I/O access patterns at runtime and, therefore, is able to
reveal effectively those blocks that either threat long latencies
or are semantically critical (e.g., file system metadata). Such
blocks are then stored at SSD: this promises a significant gain
in performance. Also, Hystor serves as a write-back buffer
in order to improve the speed of write requests by applying
exceptionally high performance of writes in the state-of-the-art
SSDs,

The solution proposed in this paper can be possibly used
both in an all-flash storage and in high-performance caches of
hierarchical storages.

Increasing efficiency of the SSD layer or of the all-flash
storage under high IO-load is attracting attention of many
researchers. Different levels of the storage can be optimized.

Modern SSDs provide a high parallelizm inside a drive
(see details in [5]). SSD controllers are designed to exploit the
hardware parallelism as completely as possible. In particular,
some sub-requests can wait significantly longer than other,
if they are aimed at different flash chips, because queues at
chips are not necessarily the same, also loads are not always
balanced. A request is fulfilled only when all sub-requests are,
so some sub-requests need to wait idle. The authors of [5]
propose a new class of schedulers that are able to leverage such
sub-request disbalance and, thus, to shorten the response time.
The scheduler named Slacker is a slack-enabled re-ordering
scheduler; its design and implementation are presented in
the paper. Slacker is layered under the modern SSD request
scheduler; it estimates the slack of each incoming sub-request
to a flash chip and may place them ahead of existing sub-
requests with sufficient slack. This reduces the detrimental
impact on the response time. Slacker’s implementation is quite
simple and demands only slight additions to the hardware. The
authors have tested Slacker on 21 workloads with different
read-write characteristics, and show that Slacker provides
19.5%, 13%, and 14.5% improvement in response time; the
with average improvement is 12%, 6.5%, and 8.5%, for write-
intensive, read-intensive, and read-write balanced workloads,
respectively.

An attempt to increase the lifetime and performance of

secure memory is done in [10]. DeWrite is presented; it dedu-
plicates writes in-line and judiciously integrates deduplication
and encryption to deliver high performance. DeWrite is based
on existing metadata store and metadata cache of secure disks
and adds only deduplication logic into the memory controller,
achieving the low design complexity. Experiments show that
DeWrite eliminates 54% of writes, and speeds up memory
writes and reads by 4.2× and 3.1×, on average. Meanwhile,
DeWrite improves the IPC by 82% and reduces 40% of energy
consumption on average.

So, on-the-fly deduplication is able to improve SSD use
efficiency. However, deduplication does not grant a significant
effect on every load type. See [11] for a detailed survey of
research in the area of deduplication on SSD. In this work,
we propose an inverse approach: to use redundant writes for
higher performance of a group of SSD drives.

Flash possesses an interesting mechanism of cancelling
or suspending write operations. It can be used for building
different strategies of scheduling such operations in order to
increase the SSD performance.

Write and read latencies of a flash device are different,
with the former much higher than the latter. In NAND flash
memory, read requests are suspended to wait until the time-
consuming page program or block erase (P/E) operation is
completed. According to the preliminary results, P/E oper-
ations increase the read latency by two on average; obvi-
ously, this may spoil the total performance of the system.
In [12], the authors propose a low-overhead P/E suspension
scheme, basing on the internal mechanism of NAND flash
P/E algorithms. The P/E may be suspended to service pending
reads and then resumed. So reads have the top priority; the
approach is further extended by allowing writes to preempt
erase operations for decreasing the write latency. Results of
experiments are reported: a realistic SSD simulation model
that adopts multi-chip/channel and evaluate NAND flash as
storage materials of diverse performance was run to show
the near-to-optimal performance of read requests provided by
the proposed technique; the write latency is also significantly
reduced. on average, the reduction was 46.5% compared to the
RPS (Read Priority Scheduling); when using write-suspend-
erase, the write latency is reduced by 13.6% relative to FIFO.

Besides, higher write latency can be reduced using buffers.
However, write requests scheduled to a memory bank can
increase latency for subsequent read requests to the same
bank. Write requests are shown to increase the effective read
latency 2.3 times on average, causing significant performance
degradation, in [7], where the baseline flash system with read-
priority scheduling is studied. To overcome this degradation,
i.e., to reduce the read latency of flash devices under such
scenarios, the authors propose adaptive Write Cancellation
policies: processing of a scheduled write request can be
aborted if a read request arrives at the same bank within a
predetermined period of time. Also Write Pausing, which uses
the iterative write algorithms of an SSD to pause at the end
of each write iteration in order to service any pending reads
is proposed. For baseline systems, the proposed technique is
shown to remove 75% of the latency increase incurred by
read requests and improves overall system performance by
46% on average. Necessary hardware changes are negligible,
extensions in the SSD controller are rather simple.

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 362 ----------------------------------------------------------------------------



V. MATHEMATICAL MODEL

In what follows we use the term server to indicate a single
SSD serving write request received by n-server storage system.
Each such write request, called customer below, induces r
write operations to distinct SSDs (tasks). The number of tasks
per customer is known as the replication factor, r. To guarantee
consistency (and possibly to accelerate future read operations),
we require q of r tasks per customer to be successful, in this
case the system works with quorum q.

To keep analytical tractability, we make the following
model assumptions:

• task durations are independent and identically dis-
tributed (iid.) random variables with the (general)
distribution function F ;

• all r � n tasks of a customer are started simultane-
ously;

• right after successful termination of q � r tasks of
a customer, redundant r − q tasks are immediately
cancelled;

• customers are waiting in a single unbounded First-
Come-First-Served queue.

These assumptions allow to treat the model as the classical
�n/r�-server model with specific service time distributions.
More precisely, the service time of a customer is the q-th order
statistics of r iid. service times of tasks. Following [3], we
use the notation Sq:r to indicate the general service time of a
customer (for fixed q,r) distributed as Fq:r, where

Fq:r(x) =

r∑
i=q

(
r

i

)
F i(x)(1− F (x))r−i, (1)

(see, e.g., [13]).

Now we formally define the performance measures studied
further in the paper:

Latency l(q, r) := ED + ESq:r, where ED is the mean
stationary delay of a customer,

Wearout w(q, r) := rESq:r is related to the amount of
work (the volume of performed write) done per
customer.

It now follows from the well-known stability condition of
the multiserver model, that to guarantee l(q, r) < ∞, the
arrival intensity λ of customers must satisfy the following
inequality:

λ < λ∗(q, r) :=

⌊
n

rESq:r

⌋
=

⌊
n

w(q, r)

⌋
. (2)

Thus, λ∗(q, r) is the maximal throughput of the system for
given q, r. Note, also, that the maximal throughput is inversely
proportional to wearout.

A. Wearout Analysis

The wearout w(q, r) is a function of two parameters in
discrete parameter space 1 � q � r � n. Thus, numerical
methods can be used to study w(q, r) for relatively small
values of n. However, some analytical results simplify the

analysis and allow to gain deeper insight into the model
properties. Most of the results follow from the properties of
order statistics [14]. In particular, it can be shown [3] that

w(q, r) � w(q − 1, r), q > 1, (3)

w(q, r) � w(q − 1, r − 1), q, r > 1. (4)

That is, the wearout w(q, r) is non-decreasing with increasing
quorum q (for fixed replication r), as well as increasing quo-
rum q and replication r simultaneously. However, it remains
unclear how increasing the replication (for fixed quorum) infers
the wearout, which is related to the following equality [14]:

Fq:r(x) = Fq:r−1(x)+

(
r − 1

q − 1

)
F q(x)F

r−q
(x), q � 1, (5)

where F (x) := 1 − F (x) is the tail of the distribution. In
particular, this means that ESq:r � ESq:r−1, which motivates
the need to study w(q, r) as a function of r (for fixed q).

Due to properties (3)–(4), it is important to study the
function w(1, r), i.e., the wearout for fixed q = 1. The
following result proved in [15, Lemma 1] relates the properties
of w(1, r) and the so-called log-concavity/convexity of the
service time distribution:

Lemma 1. [15] If F (x) is log-concave (log-convex), then
w(1, r) is non-decreasing (non-increasing) in r.

The log-concavity [16], [17] is an important property
related to the well-known new-better-than-used (NBU) and
increasing failure rate (IFR) classes of distributions widely
used in reliability analysis. Uniform, normal, logistic, Weibull
(with shape � 1) distributions are log-concave, while Weibull
(with shape < 1) is log-convex, to name a few. Exponential
distribution is log-concave and log-convex simultaneously,
that induces independence of w(1, r) on r for exponentially-
distributed service time S. Indeed, it is easy to see that
w(1, r) = ES, since ES1:r = ES/r. However, there are
distributions that are neither log-concave, nor log-convex, and
in such a case numerical study is unavoidable. We also note
that the proof of Lemma 1 relies on (1) for q = 1, and can not
be generalized to arbitrary q > 1 easily. Moreover, internally it
assumes that F (x) is defined on [0,∞) which is not valid for
Pareto distribution (although formally Pareto is log-convex).
Thus, in what follows we study the w(q, r) for special classes
of distributions, focusing on the distributions with heavy tails.

The evidence of heavy tails in distributions of files stored
at the user/server level has been reported in many studies, see,
e.g., [18], [19], [20]. Such a class of distributions possesses
many properties that complicate the analysis or dramatically
infer the system performance [19]. In particular, a heavy-
tailed random variable may have large coefficient of variation,
which is mostly caused by the so-called mass-count disparity.
Intuitively this means that large number of smaller items
occupy only a small amount of storage, whereas the majority
is occupied by several largest items. To illustrate this, the
so-called mass-count disparity plot suggested in [18] can be
used. The mass-count disparity of system and user file sizes
distribution on a contemporary SSD storage is depicted in
Fig. 2. The so-called Pareto rule for this sample is 5/95, which
means that 95% of files totally occupy only 5% of the storage.
Thus, we perform the following analysis for the heavy-tailed

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 363 ----------------------------------------------------------------------------



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

File size

P
ro

ba
bi

lit
y

1K 100K 10M 1G

Count d.f.
Mass d.f.

5/95

Fig. 2. Mass-count disparity of the UNIX file sizes in a storage. The count d.f.
(e.c.d.f.) and mass d.f. (empirical integrated tail d.f.) vs. file size (logarithmic
scale). The joint ratio indicated by the arrow is 5/95 (5% of storage occupied by
95% of files)

class, focusing on widely adopted standard Pareto and Weibull
distributions.

Now we discuss the properties of w(q, r) for Pareto and
Weibull service time distributions. Recall the standard one-
parameter Pareto distribution function

P(S � X) = 1− x−α, x � 1.

It can be seen that ESk < ∞ for k < α, that is, Pareto-
distributed service times may have infinite moments (mean,
variance) for specific values of α. Moreover, it can be clearly
seen that the tail of Pareto distribution is log-convex [17];
however, the support of standard Pareto distribution is (1,∞),
and thus Lemma 1 is not applicable. At the same time, it can
be deduced that [3]

w(1, r) = r +
1

α
+

1

α(αr − 1)
, r > 1/α. (6)

In particular, (6) means that w(1, 1) may become large if α
is close to 1. Indeed, w(1, 1) = ES = α/(α − 1). Note that
a Pareto random variable with α < 2 has infinite variance.
At the same time, w(1, 2) < 2 + 2/α, since αr − 1 > 1 for
r � 2. That means that w(1, 2) can be significantly smaller
than w(1, 1). However, it can be seen that w(1, r) increases in
r for r > 2.

Moreover, it can be shown [3] that w(q, r) non-decreases
in r for r � r∗(q) defined as

r∗(q) :=

⌈
1 + q + αq − 2α +

√
(αq + q − 1)2 + 4q

2α

⌉
, (7)

and non-increases in r for r < r∗(q), thus r∗(q) attains
minimal wearout w(q, r∗(q)) for a given q. To illustrate these

2 4 6 8 10

5
10

20
50

10
0

20
0

Replication

W
ea

ro
ut

α = 1.3

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

● ● ●
●

●

●

●

●
● ● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

q=1

q=10

Fig. 3. w(q, r) vs. r for a given q = 1, . . . , 10 for Pareto distribution of

service times with α = 1 .3. Minimal wearout w(q, r∗(q)) are highlighted

with squares, where r∗(q) is defined in (7)

results, the dependence of w(q, r) on r for fixed q is depicted
in Fig. 3

Standard Weibull distribution is defined as follows:

P(S � X) = 1− e−xξ , ξ > 0.

It can be shown that Weibull distribution is log-concave for
ξ > 1 and log-convex for ξ < 1 [16], while it reduces to the
standard exponential distribution for ξ = 1. Thus, Lemma 1 is
applicable and w(1, r) is non-decreasing (non-increasing) in r
for ξ > 1 (ξ < 1).

However, the dependence of w(q, r) on r for general q
remains unclear. Note that for Weibull service time distribution

w(q, r) = r
r!

(r − q)!

Γ(ξ−1)

ξ

q−1∑
j=0

(−1)j
(r − q + 1 + j)−1−ξ−1

j!(q − 1− j)!
.

Straightforward analysis of the difference w(q, r)−w(q, r+1)
induces that w(q, r) is non-decreasing if the following sum is
non-negative:

φ(q, r) :=

q−1∑
j=0

(
q − 1

j

)[
r2

(r − q + 1 + j)1+ξ−1
−

− (r − 1)(r − q)

(r − q + j)1+ξ−1

]
.

and is non-increasing otherwise. As preliminary numerical
experiments show, for ξ > 1 (the heavy-tailed Weibull distri-
bution) and fixed q there exists a single solution of the equation
φ(q, x) = 0, such that r∗(q) = �x� delivers the minimal
wearout for a given q. We depict w(q, r) as a function of
r � 10 for fixed q � r on Fig. 4.

Finally, note that the expression φ(q, r) is slightly sim-
plified for ξ = 1, when the service times are exponentially

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 364 ----------------------------------------------------------------------------



2 4 6 8 10

5
10

15
20

Replication

W
ea

ro
ut

●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

●
● ● ● ●

●

●
● ● ●

●

●

●
●

●

●

●

●

●

●

q=1

ξ = 1.5

Fig. 4. w(q, r) vs. r for a given q = 1, . . . , 10 for Weibull distribution of
service times with ξ = 1.5. Minimal wearout w(q, r∗(q)) is highlighted with
squares, where r∗(q) is determined by the solution of the nonlinear equation
φ(q, x) = 0

2 4 6 8 10

0
5

10
15

20
25

30

Replication

W
ea

ro
ut

● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ●

●

●

●
● ● ● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

q=1

q=10
ξ = 1

Fig. 5. w(q, r) vs. r for a given q = 1 , . . . , 10 for exponential
distribution of service times. Note that the wearout is monotone non-
increasing in r

distributed; numerical experiments show that φ(q, r) < 0 for
all r � q > 1. However, we leave the rigorous analysis of
this phenomenon for future research. To conclude this section,
we illustrate the w(q, r) for exponentially distributed service
times in Fig. 5, where the independence of w(1, r) on r, as
well as non-increasing w(q, r) for q � 1, is clearly seen.

5 10 15

0.
5

1.
0

1.
5

2.
0

2.
5

Replication

La
te

nc
y

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●

●
●

● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

q=1

q=16ξ = 1.5

Fig. 6. l(q, r) vs. r for given q = 1 , . . . , 16 for Weibull distribution of
service times with ξ= 1 .5

B. Latency Analysis

Since the closed form expression is available only for less
interesting case of M/G/1-type system (some explicit results
for this case can be found in [3]), we use simulation to study
the dependence of latency l(q, r) on the parameters q, r. We
use the package queuecomputer for the R language to
simulate the multiserver system and obtain latency estimates.
We set n = 32 and vary 1 � q � r � 16 to obtain l(q, r).
We illustrate the results of simulation for Weibull service time
distribution with ξ = 1.5 and exponentially distributed inter-
arrival times, setting the arrival rate for each fixed r in such
a way that λESr:r = 0.5�n/r� to guarantee stability for the
largest q = r. It can be seen from Fig. 6 that the latency is
monotone with respect to r for a given q.

The results of experiments for Pareto distributed service
times with α = 1.5, ceteris paribus, exhibit a similar pattern.
Note, however, that the latency dramatically increases: this is
caused by huge variation of service times (Fig. 7).

To sum up the numerical observations, note that both
for Pareto and heavy-tailed Weibull distributions, the latency
decreases with r, whereas the wearout finally increases with r;
this leaves a possibility to obtain the necessary latency/wearout
tradeoff. At the same time, a conservative approach of mini-
mizing the wearout allows increasing the throughput λ∗(q, r),
possibly sacrificing the latency.

VI. CONCLUSION

In this paper we present a strategy of replicating write
requests in high-performance SSD-storage systems. The strat-
egy is based on a mathematical model of the M/G/1 multi-
server system and considers incoming request flow as Pareto
or Weibull distributed; this agrees with modern research of
internet services load. The proposed strategy allows choosing
an effective latency/wearout ratio to provide the necessary

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 365 ----------------------------------------------------------------------------



5 10 15

1
10

10
0

10
00

10
00

0

Replication

La
te

nc
y

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ● ●

●

●

●
●

●
● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ●

●

●

●

● ●
●

● ● ● ●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

q=1

q=16α = 1.5

Fig. 7. l(q, r) vs. r for given q = 1 , . . . , 16 for Pareto distribution of service
times with α= 1 .5; note the logarithmic scale for the latency

performance at the lowest cost. Simulation results illustrate the
advantages of the strategy. The future work is to implement
the strategy and testing it in real load conditions.

ACKNOWLEDGMENT

This work is supported by the Ministry of Education and
Science of Russian Federation [project no. 14.580.21.0009,
unique identifier RFMEFI58017X0009].

REFERENCES

[1] A. Rumyantsev and S. Chakravarthy, “Split-Merge Model of Workunit
Replication in Distributed Computing,” in Proceedings of the Third
International Conference BOINC:FAST 2017., 2017, vol. 1973, pp.
27–34.

[2] Chakravarthy Srinivas R. and Rumyantsev Alexander, “Efficient Redun-
dancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-
type Queues,” eng, vol. 8, no. 1, p. 17, 2018.

[3] Rumyantsev A., Chakravarthy S., Morozov E., Remnev S. (2018) Cost
and Effect of Replication and Quorum in Desktop Grid Computing. In:
Dudin A., Nazarov A., Moiseev A. (eds) Information Technologies and
Mathematical Modelling. Queueing Theory and Applications. ITMM
2018, WRQ 2018. Communications in Computer and Information
Science, vol 912. Springer, Cham.

[4] Cagdas Dirik and Bruce Jacob. 2009. The performance of PC
solid-state disks (SSDs) as a function of bandwidth, concurrency,
device architecture, and system organization. In Proceedings of
the 36th annual international symposium on Computer architec-
ture (ISCA ’09). ACM, New York, NY, USA, 279-289. DOI:
https://doi.org/10.1145/1555754.1555790

[5] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mahmut
T. Kandemir, Chita R. Das, and Myoungsoo Jung. 2017. Exploiting
Intra-Request Slack to Improve SSD Performance. SIGPLAN Not. 52, 4
(April 2017), 375-388. DOI: https://doi.org/10.1145/3093336.3037728

[6] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: a content-
aware flash translation layer enhancing the lifespan of flash memory
based solid state drives. In Proceedings of the 9th USENIX conference
on File and stroage technologies (FAST’11). USENIX Association,
Berkeley, CA, USA, 6-6.

[7] Qureshi, Moinuddin K., Michele M. Franceschini, and Luis A.
Lastras-Montano. “Improving Read Performance of Phase Change
Memories via Write Cancellation and Write Pausing”. HPCA
– 16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture, 1–11. Bangalore: IEEE, 2010.
https://doi.org/10.1109/HPCA.2010.5416645.

[8] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric
Stratmann, and Ryan Stutsman. 2010. The case for RAM-
Clouds: scalable high-performance storage entirely in DRAM.
SIGOPS Oper. Syst. Rev. 43, 4 (January 2010), 92-105. DOI:
https://doi.org/10.1145/1713254.1713276

[9] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2011. Hys-
tor: making the best use of solid state drives in high performance
storage systems. In Proceedings of the international conference on
Supercomputing (ICS ’11). ACM, New York, NY, USA, 22-32.
DOI=http://dx.doi.org/10.1145/1995896.1995902

[10] Zuo Pengfei, Hua Yu, Zhao Ming, Zhou Wen, Guo Yuncheng. (2018).
Improving the Performance and Endurance of Encrypted Non-Volatile
Main Memory through Deduplicating Writes. 442-454. 10.1109/MI-
CRO.2018.00043.

[11] Ilya A. Chernov, Evgeny Ivashko, Dmitry Kositsyn, Vadim Ponomarev,
Alexander Rumyantsev, Anton Shabaev. Flash-Based Storage Dedupli-
cation Techniques: A Survey// International Journal of Embedded and
Real-Time Communication Systems (IJERTCS), Volume 10, Issue 3.

[12] Wu Guanying, Huang Ping, He Xubin. (2014). Reducing SSD access
latency via NAND flash program and erase suspension. Journal of
Systems Architecture. 60. 10.1016/j.sysarc.2013.12.002.

[13] N. Balakrishnan, “Permanents, order statistics, outliers, and robust-
ness.,” Revista Matemática Complutense, vol. 20, no. 1, pp. 7–107,
2007.

[14] N. Balakrishnan and P. C. Joshi, “A note on order statistics from
Weibull distribution,” Scandinavian Actuarial Journal, vol. 1981, no.
2, pp. 121–122, Apr. 1981.

[15] G. Joshi, E. Soljanin, and G. Wornell, “Efficient Redundancy Tech-
niques for Latency Reduction in Cloud Systems,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems, vol.
2, no. 2, pp. 1–30, Apr. 2017.

[16] G. R. M. Borzadaran and H. A. M. Borzadaran, “Log-concavity
property for some well-known distributions,” Surveys in Mathematics
and its Applications, vol. 6 (2011), 203 – 219.

[17] M. Bagnoli and T. Bergstrom, “Log-concave probability and its appli-
cations,” Economic Theory, vol. 26, no. 2, pp. 445–469, Aug. 2005.

[18] D. G. Feitelson, Workload modeling for computer systems performance
evaluation. Cambridge University Press, 2015.

[19] M. Harchol-Balter, “The Effect of Heavy-Tailed Job Size Distributions
on Computer System Design,” in Proc. of ASA-IMS Conf. on Appli-
cations of Heavy Tailed Distributions in Economics, Engineering and
Statistics, 1999.

[20] Z. Shao and U. Madhow, “Scheduling heavy-tailed data traffic over the
wireless internet,” in Vehicular Technology Conference, 2002. Proceed-
ings. VTC 2002-Fall. 2002 IEEE 56th, 2002, vol. 2, pp. 1158–1162.

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 366 ----------------------------------------------------------------------------


