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ABSTRACT: 

We propose a simple yet efficient technique to leverage semantic segmentation model to extract and separate individual buildings in 

densely compacted areas using medium resolution satellite/UAV orthoimages. We adopted standard UNET architecture, additionally 

added batch normalization layer after every convolution, to label every pixel in the image. The result obtained is fed into proposed 

post-processing pipeline for separating connected binary blobs of buildings and converting it into GIS layer for further analysis as well 

as for generating 3D buildings. The proposed algorithm extracts building footprints from aerial images, transform semantic to instance 

map and convert it into GIS layers to generate 3D buildings. We integrated this method in Indshine’s cloud platform to speed up the 

process of digitization, generate automatic 3D models, and perform the geospatial analysis. Our network achieved ~70% Dice 

coefficient for the segmentation process. 

1. INTRODUCTION

One of the major challenges in the GIS industry is the extraction 

of urban feature objects like buildings, roads, trees, etc. from 

Satellite and UAV images. Moreover, feature extraction is never 

an end product of any study rather it acts as an intermediate data 

from which analyses are done, so there is a need for a mechanism 

or a platform which can provide/generate data on the fly at 

industrial standard formats. 

An increasing number of countries including developing 

countries are legalising UAVs and bringing supporting policies 

and regulations (Drone Laws By Country, 2018) for commercial 

use of drones. More tech companies like Planet Labs (Planet 

Labs, 2019), DJI (DJI, 2019) are enabling to capture such data 

very easily and safely. With the rise in the involvement of UAVs 

and Satellite data in construction (Drone Deploy, 2018), 

transportation (Indshine, 2019), and urban planning (Indshine, 

2019), there is an ever-increasing demand for feature extraction 

methods. Manual features extraction using traditional GIS 

techniques is very time consuming and prone to errors.  

Many pieces of research have focussed on segmentation using 

deep learning methods. xuran et.al. worked on Semantic 

segmentation using High-Resolution images and LIDAR data 

(Xuran Pan, 2018). Pascal et.al. used high-resolution images and 

OpenStreetMap data to segment images (Pascal Kaiser, 2017), 

number of competitions like ISPRS Semantic Labeling Contest 

(ISPRS, 2018) are also encouraging aerial image segmentation. 

Most of them focus only on semantic segmentation part instead 

of instance segmentation or vector generation. 

This paper’s objective is to combine powerful semantic 

segmentation algorithm with simple yet efficient image 

processing technique to generate instances, to fill gap between 

deep learning community and geospatial analyst community by 

proposing an automated pipeline to generate separated vector 

formats of connected binary blobs so that these can be used 

directly for advanced spatial analytics like calculating property 

taxes, estimating property loss during a disaster, verifying data 

for encroachment using land boundaries etc. 

A GIS or a geospatial analyst needs to have instance objects in 

the vector formats to do critical analysis. For example, classified 

vectors can provide useful insights like the number of features, 

length, area, the perimeter of features, height (if available) etc.  

Vectors can be stored easily in SQL databases to enable complex 

query analysis. Thus, we can say that producing only raster 

outputs, although very accurate, is not solving the real-world 

problems as it should be. That’s why we are focusing on 

providing value to the end user by proposing simple semantic to 

instance segmentation and converting it into vector formats. 

Many Deep Learning architectures like U-Net (Olaf 

Ronneberger, 2015), PSPNet (Hengshuang Zhao, 2017), 

DeepLabV3 (Liang-Chieh Chen, 2017) etc. are available for use. 

We used standard U-Net architecture in this paper with a slight 

addition of batch normalization layer after every convolution 

layer. However, our proposed method is independent of deep 

learning model architecture. To apply post-processing 

techniques, we went to the basics of image processing and used 

morphological operations to remove noises and used watershed 

segmentation to disjoint the connected blobs (Instances). 

2. METHODOLOGY

In this section, we will present how post-processing pipeline is 

used with deep learning to enhance the segmentation results. 

2.1 Semantic segmentation 

For semantic segmentation of building footprint from RGB 

images, we used U-Net architecture. We added an extra batch 

normalization layer after every convolution layer to avoid any 

activations to take extreme values, to reduce sensitivity towards 

initial weights initialization and reduce overfitting of the model. 
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(Ronneberger et al, 2015) describes all the details of architecture 

and used it for medical image segmentation. In the original U-

Net, Olaf used 512x512 image size in the network but here we 

have used 200x200 image size. Figure 2.1 describes the U-Net 

architecture. 

Figure 2.1: U-Net deep neural network architecture.  

Source: Olaf Ronneberger, 2015 

2.2 Training Procedures 

The input images and their segmentation (binary) images were 

used to train the network with the Adam optimizer (Kingma, 

2014). Since all the images were georeferenced, we used open 

source Gdal library (Contributors of GDAL/OGR, 2018) to pre-

process our data before feeding it to the neural network. Input 

images are of very large size, thus, they were divided into 

200x200 grids. Both inputs and labels were given the same 

transformation in order to avoid any misalignment. We used 300 

epochs and batch size of 16 while training and testing. We used 

Dice coefficient (Dice, 1945) as our loss function. Whole training 

was done on Ryzen 1700x, 32GB RAM CPU and GTX 1060 

6GB GPU. 

2.3 Training datasets 

For training dataset, we used aerial images in color band from 3 

sources. 

1. Inria aerial dataset, Structured Buildings  (Emmanuel

Maggiori, 2017)

2. Massachusetts building dataset, Structured Buildings

(Mnih, 2013)

3. Indshine’s UAV orthomosaic dataset of Maharashtra,

India region of about ~100 square km

Building in training dataset of Inria and Massachusetts are very 

structured and not densely built whereas in India buildings are 

unstructured, and the density of buildings is very high. So, the 

model trained only on datasets of the likes of Inria and 

Massachusetts will never work in conditions like India where 

density is high and buildings are convoluted.  

Structured buildings are those which are uniformly spaced. 

Unstructured buildings are referred to those buildings which are 

placed randomly and are built at very closed distances without 

following any pattern. 

Source of 

dataset 

Resolution/

GSD 

Type of dataset 

Inria Aerial 

dataset 

30 cm Satellite (Public) 

Massachusetts 

building dataset 

100 cm Satellite (Public) 

UAV’s 

orthomosaics 

50 cm UAV (Private) 

Table 2.1: Sources of dataset and GSD (Ground Sampling 

Distance) 

Type of dataset from UAV 

orthomosaics 

Number of Images 

(200x200) / Area 

Training 8000/ 80 sq. Km 

Testing 2000/ 20 sq. Km 

Table 2.2: Training and Testing dataset in case of Private 

orthomosaics 

2.4 Post-Processing 

Output obtained from U-Net is in binary format, where each pixel 

represents the building or background class. 

Since raster data of buildings is not of much use for geospatial 

analyst community, we followed a post-processing pipeline. Post-

processing takes raster as input and produces output in vector 

format after removing the noises and separating connected 

building vectors. 

2.5 Noise removal 

For noise removal, we used basic morphological operation on 

binary data. We first applied erosion followed by dilation 

followed by thresholding with respect to area. This removed 

small noises from our output as shown Figure 2.2 

Figure 2.2: Represents noise removal output 

2.6 Distance Transform 

To separate connected buildings, we assumed that 

connections/binary bridge in the joined binary blobs is less than 

the area of buildings itself. We used this fact and applied distance 

transformation (Jain, 1989) to binary image. Thus 

connection/binary bridge were assigned less weight as compared 

to buildings itself. See Figure 2.3 for illustration. 
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We thought of using thresholding to remove this connection, but 

this gave us very poor results. It was because distance transform 

assigns more weight to large blobs and less weight to smaller 

blobs and edge pixels. So, for large connected buildings, even the 

weight of connection/binary bridge was greater than that of small 

buildings weights itself. Thus, applying thresholding not only 

removed connections but also small buildings. Refer to Figure 2.4 

for distance transform output. 

Figure 2.3: Connection/binary bridge between buildings 

Figure 2.4: Distance transform output 

2.7 Local Maxima 

To overcome the problem described above, we used Local 

Maxima approach. Since connections are smaller than the 

buildings itself, finding local maxima ensured that it lies inside 

building area and not in the connection. This local maximum 

point acted as input source/sink to the watershed algorithm. 

2.8 Watershed Segmentation 

Watershed segmentation is quite popular for image segmentation. 

Local Maxima obtained acted here as sink point and negative of 

distance transform as cost map. This helped to separate connected 

binary blobs effectively. Each blob is given a unique index for 

further processing, shown in Figure 2.5. 

Figure 2.5: Watershed Segmentation output 

2.9 Vectorization, Smoothing and Minimum Bounding Box 

Estimation 

Raster obtained from the watershed segmentation is vectorized 

using gdal/ogr library (Contributors of GDAL/OGR, 2018). 

Spatial references and coordinate systems are preserved at every 

step and are transferred to vector file for correct overlaying. 

While converting from raster to vector, the output has a lot of 

vertices and noises. Vector is then simplified using Douglas-

Peucker algorithm (David Douglas, 1973). This helps to preserve 

the overall geometry of the shape while simplifying number of 

vertices. Basic attributes like area, perimeter and elevation of the 

buildings were automatically added. Finally, minimum bounding 

box was used and saved. Refer to Figure 2.6 to see the separated 

vector of closely connected buildings, polygon simplification. 

Figure 2.6: Red- Noisy vector, Blue- Simplified vector 

Green- Minimum Bounding Box 

3. CHALLENGES

The primary challenges that we faced while working on this 

problem were 

1. To make a single model for both structured and

unstructured building features

2. To separate densely compacted unstructured buildings

3. To make this method industry-ready and usable by

providing data in required formats via an online

platform

3.1 Our Approach 

3.1.1 To make a single model for both structured and  

unstructured building features: When we have very 

distinct datasets (here structured and unstructured), 

sequential training (training one after another) doesn’t 

help. This kind of training procedure will make the 

model forget features learned in step1. We trained a 

model of structured dataset and took it as a base model. 

Then we used unstructured building dataset and a part of 

the structured building dataset (let us call it Mixed 

dataset) as training images and started training. This 

approach helped us keep both types of building features. 

Refer to accuracy section in this document to see effect 

of mixed dataset learning. 
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3.1.2 To separate densely compacted unstructured 

buildings: We followed post-processing pipeline, as 

explained above, to separate densely compacted 

buildings. 

 

3.1.3 To make method industry ready and usable by  

providing data in required formats and via online 

platform: We integrated this algorithm to Indshine’s 

cloud platform (Indshine, 2018). It has got multiple 

organization’s user base where people often collaborate 

and do digitization, geospatial analysis, extract design 

information. All the vector data were overlaid over high-

resolution orthomosaic map.  

   

 

4. RESULTS 

We have tested our model both on the structured and unstructured 

datasets separately. Accuracy in structured dataset was slightly 

higher than unstructured dataset. Before training on the Mixed 

dataset, this model gave an accuracy of 43.75% whereas after 

training on the Mixed dataset, the we achieved an accuracy of 

69.62%, significantly much higher.  

  

Type of Training Dice Coefficient 
(%) 

Model untrained on mixed dataset 43.75 

Model trained on mixed dataset 69.62 

Table 1: Accuracy 

 

 

5. CONCLUSIONS  

5.1 Semantic to Instance Segmentation: Semantic to Instance 

segmentation can be made using simple post-processing pipeline. 

These are highly effective in the segmentation of structured 

building datasets or low to medium density buildings. For areas 

of very high-density buildings as in Figure 8.3 and 8.4, our model 

could identify large part of the building features as well as 

separate them with slightly lesser accuracy. However, it was very 

difficult to separate small buildings with large connecting areas.   

 

5.2 Common model for both structured and un-structured 

datasets: We could easily capture relatively distinct feature from 

a single model by using mixed dataset. We increased our 

accuracy by nearly 30% using mixed dataset. 

 

5.3 Ready to use GIS layers: Our model produces an output of 

simplified vector data. This is widely used by GIS analysts to 

perform spatial analysis. Few use cases are given below under the 

Use Cases section. Integrating such algorithms with a web 

platform can prove to be highly helpful for GIS community. In 

fact, generating vector data on the web platform will also allow 

us to automatically generate 3D models.  

 

6. USE CASES 

6.1      Faster/Automatic Digitization: By digitization, we mean 

the process of extracting the important features from a digital 

image, with all the features having geographic coordinates 

associated with it. This is an important technique for data input 

and storage in a GIS environment. However, the current process 

of manual digitization is extremely time-consuming and 

expensive where people, for example, draw polygons for each 

building or cluster of buildings, trees and roads. The number of 

buildings alone can be in the order of 100,000, and it becomes 

increasingly difficult for people to mark all those buildings one 

by one. Therefore, if the proposed algorithm is able to increase 

the productivity of the people involved in digitization by even 

30%, we can save a lot of time and resources as well as enable the 

industry to use the data further. In the first phase, this algorithm 

along with collaboration with Indshine’s cloud platform can be 

used in such a way that if the user clicks on any building, it will 

prompt the estimated footprint (in the form a polygon) of that 

building with all the vertices of the polygon representing the 

corners of the building. This way, the user can behave in a 

reactive instead of a proactive worker. 

 

6.2 Property Tax Estimation: Taxes serve as a major source 

of revenue for any Government, and the property tax is one of 

them. The municipality or the local government finds it difficult 

to estimate the amount of property taxes to be collected from a 

city without a proper system. Property tax depends on three major 

parameters namely property type (commercial or residential), 

area, and the number of floors in the property. We propose to 

estimate the area of the property using our algorithm, as well as 

the number of floors based on the elevation models of the 

building since elevation and number of floors are correlated. 

Thus, the government body, after ground survey for classifying 

into commercial and residential property, can use our models for 

the tax estimation, monitoring, and analysis. 

6.3 Disaster Impact Analysis: Use of satellites and UAVs are 

increasingly becoming popular for disaster response analysis. It 

is very crucial to get the disaster impact map in order to prioritize 

the rescue operations. Usually, it is very difficult and time-

consuming for a team to manually identify the condition of 

buildings and roads post-disaster. Hence, it becomes very crucial 

to create damage map accurately and immediately. Deep neural 

networks can help in this process by automatic detection of 

features like buildings and roads. Our algorithm can be used 

directly by the disaster response team to quickly extract all the 

buildings in that area pre-disaster and post-disaster. Thereafter, 

they can identify the specific regions of destruction by comparing 

between the pre-disaster and post-disaster images.  (Jigar Doshi, 

2018) from Facebook research and CrowdAI recently showed us 

a very useful technique to create Disaster Impact Index (DII) to 

estimate the disaster impact. 

7. LIMITATIONS 

Post-Processing not using RGB: One of the crucial limitations 

of this post processing pipeline is that we have not considered 

RGB data while separating connected buildings. We worked on 

the fact that connections are generally smaller than buildings 

itself. This assumption is sometimes not true when buildings are 

small and very dense. This is applicable for slums and this case 

illustrated in   Figure 7.1 and Figure 7.2. So here we are losing 

out an extra information 
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Figure 7.1 Ineffective separation of buildings due to large 

contact area 

 

 
 

Figure 7.2 Model fail to detect buildings here due to poor 

building textures 

 

8. VISUALIZATION OF RESULTS 

 
 

Figure 8.1 Dataset from Boston (Mnih, 2013) 

 

Structured building dataset taken from Satellite of Boston Area. 

Resolution of the image is 30cm   

 

 
 

Figure 8.2 Dataset from Maharashtra (Indshine, 2018) 

 

Unstructured building dataset taken from UAV of village in 

Maharashtra. Resolution of image is 50cm 

 

 
 

Figure 8.3 Dataset from Tanzania (Source: OpenAerialMaps) 

 

Figure 8.4 Dataset from Mumbai (Indshine, 2018) 

 

Unstructured building dataset taken from UAV near Mumbai 

slums region. Blue boundary is raw detection without post-

processing. Red boundary represents where polygon is divided 

into parts. 
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