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Abstract

The main contribution of this paper is to provide best-possible approximability bounds

for assortment planning under a general choice model, where customer choices are modeled

through an arbitrary distribution over ranked lists of their preferred products, subsuming

most random utility choice models of interest. From a technical perspective, we show how to

relate this optimization problem to the computational task of detecting large independent

sets in graphs, allowing us to argue that general ranking preferences are extremely hard to ap-

proximate with respect to various problem parameters. These findings are complemented by

a number of approximation algorithms that attain essentially best-possible factors, proving

that our hardness results are tight up to lower-order terms. Surprisingly, our results imply

that a simple and widely studied policy, known as revenue-ordered assortments, achieves

the best possible performance guarantee with respect to the price parameters.
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1 Introduction

Assortment planning is paramount to revenue management in highly differentiated markets,

such as offline and online retail. The typical computational problem in this context is that of

identifying a selection of products that maximizes revenue (assuming no stock-out events) based

on previously-estimated random and heterogeneous customer preferences over the underlying

set of products. The extensive literature in economics, marketing, and operation management

proposes numerous approaches to modeling customer choice preferences, which are then used

for predicting the variations in market shares in response to how the product mix changes.

This paper is focused on studying the computational complexity of a very general prob-

lem formulation, where customer choices are modeled through an arbitrary distribution over

ranked preference lists. The incorporation of this choice model into revenue management set-

tings was first proposed by Mahajan and Van Ryzin (2001) and later on by Rusmevichientong

et al. (2006), with different objectives in mind. Specifically, Mahajan and Van Ryzin (2001)

considered a sequential model, where the objective is to compute an assortment that maxi-

mizes the expected revenue generated by a sequence of arriving customers. They established

basic structural properties, devised a sample-path gradient algorithm (converging to a local

optimum), and conducted an extensive numerical study. Rusmevichientong et al. (2006) aimed

at optimizing prices with respect to a sample of consumer data. They investigated sample-size

complexity, proved that the corresponding pricing problem is NP-complete, devised an efficient

heuristic algorithm, and tested this approach within a case study. Subsequently, the question of

model estimation from data was examined through various methodologies, including the robust

formulation of Farias et al. (2013), the column generation algorithm by van Ryzin and Vulcano

(2014), and the expectation-maximization method of van Ryzin and Vulcano (2017). This non-

parametric modeling approach, whose specifics are given in Section 1.3, subsumes most models

of practical interest as special cases. In particular, ranked preference lists are equivalent to a

general random utility model, in which a representative agent maximizes his random utility

function over a set of alternatives to derive his preferences.

In the context of assortment planning, these choice models are subject to a fundamen-

tal tradeoff between model expressiveness and computational tractability. Indeed, assortment

optimization was shown to be tractable under specific choice models proposed in the revenue

management literature, where various structural and probabilistic assumptions are made. Prob-

ably the most well-known settings that still admit polynomial-time solution methods are the

widespread multinomial-logit (MNL) model and variants of the nested-logit (NL) model. In

the specific context of ranking-based models, the work of Honhon et al. (2012) identifies classes

of simple combinatorial structures enabling polynomial-time algorithms. Since an exhaustive

survey of these results is beyond the scope of this paper, we refer the reader to the work of Ma-

hajan and Van Ryzin (2001), Talluri and Van Ryzin (2004), Blanchet et al. (2016), Davis et al.

(2014), and Li et al. (2015). The references therein provide an excellent overview of tractable

approaches in assortment optimization.

Despite an increasing stream of positive results for specific classes of instances, assortment

planning initiates computationally-hard problems in more general settings. This was formally

corroborated by several intractability results, such as that of Davis et al. (2014) and Gallego
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and Topaloglu (2014), who demonstrated that natural extensions of the NL model are NP-hard.

Under mixtures of logits, this problem is known to be strongly NP-hard even for two customer

classes, as shown by Bront et al. (2009) and Rusmevichientong et al. (2014). For ranking-based

models, while Honhon et al. (2015) developed practical pruning heuristics, their algorithms are

is still exponential in general settings. As a result, beyond attraction-based models with a single

customer class, the family of tractable choice models remains quite limited.

It is worth noting that the above-mentioned results merely state that the problems in ques-

tion cannot be solved to optimality in polynomial-time (unless P = NP), and in fact, very little

is known about hardness of approximation in this context. To our knowledge, the only result

in this spirit was given by Goyal et al. (2016), showing that under ranking preferences, the

capacitated assortment planning problem is NP-hard to approximate within factor better than

1− 1/e.

1.1 Our results

The main contribution of this paper is to provide best-possible inapproximability bounds for

assortment planning under ranking preferences and to reveal hidden connections to other funda-

mental branches of discrete optimization. From a technical perspective, we show how to relate

this model to the computational task of detecting large independent sets in graphs, allowing

us to argue that general ranking preferences are extremely hard to approximate with respect

to various problem parameters. These findings are complemented by a number of approxi-

mation algorithms that attain essentially best-possible performance guarantees with respect

to various parameters, such as the ratio between extremal prices and the maximum length of

any preference list. Our results provide a tight characterization (up to lower-order terms) of

the approximability of assortment planning under a general model specification, as we briefly

summarize next.

Hardness of approximation. By proposing a reduction from the maximum independent set

problem, we prove that assortment planning under ranking preferences is NP-hard to approx-

imate within factor O(n1−) for any fixed  > 0, where n stands for the number of products.

This is the first strong inapproximability bound for the ranking preferences model, which is sur-

prisingly established even in the uncapacitated setting. As previously mentioned, the hardness

result of Goyal et al. (2016) only proves a constant lower bound and makes use of an additional

capacity constraint. In fact, our O(n1−) bound holds even when all preference lists are derived

from a common permutation over the set of products, meaning that all customers rank their

alternatives consistently according to a unique order. Moreover, our reduction also gives an

inapproximability bound of O(log1−(Pmax/Pmin)), where Pmin and Pmax designate the minimal

and maximal prices, respectively. Finally, through a reduction from the Min-Buying pricing

problem, we establish APX-hardness even when there are only two distinct prices, with uniform

probability of customer arrivals. The specifics of these results are given in Section 2.

Approximation algorithms. On the positive side, we devise approximation algorithms

showing that the above-mentioned inapproximability bounds are best possible. By examin-
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ing revenue-ordered assortments, we propose an efficient algorithm that attains performance

guarantees of O(⌈log(Pmax/Pmin)⌉) and O(⌈log(1/λ̃)⌉), where λ̃ denotes the combined arrival

probability of all customers who have the highest price item on their list. In particular, when

all customer arrival probabilities are polynomially bounded away from 0, this bound translates

to a logarithmic approximation (for example, under a uniform distribution). Finally, we devise

a tight approximation algorithm in terms of the maximum length of any preference list. We

prove that an e∆-approximation can be obtained via randomly generated assortments under a

well-chosen distribution, where ∆ denotes the maximal size of any preference list. Consequently,

an immediate implication is that, when all preference lists are comprised of O(1) products, we

can approximate the optimal revenue within a constant factor. By derandomization, the re-

sulting algorithm asymptotically matches the O(∆1−) inapproximability bound hiding within

our reduction from the independent set problem. Additional details on these algorithms are

provided in Section 3.

1.2 Subsequent work

The techniques developed in this paper have spurred new complexity results for related assort-

ment planning problems. In particular, after communicating our reduction from the maximum

independent set problem to Antoine Désir, Vineet Goyal, and Jiawei Zhang, they observed that

ideas in this spirit provide tight inapproximability bounds for the mixture-of-MNL model (Désir

et al. 2014). The basic ideas behind our reduction have also been utilized by Feldman and

Topaloglu (2017) to prove strong inapproximability results for assortment optimization under

the MNL model with arbitrary consideration sets.

In addition, shortly after our work appeared online (Aouad et al. 2015), a working paper

of Berbeglia and Joret (2015) focused on the performance analysis of revenue-ordered assort-

ments. In comparison to the O(⌈log(Pmax/Pmin)⌉) approximation we provide in Section 3.1,

they were able to improve on the constant hiding within the O(·)-notation. However, unlike

our tight inapproximability bound (see Section 2.1), they prove only constant-factor hardness,

similar to the previously known result by Goyal et al. (2016). Their algorithmic results hold in

a broader setting that generalizes the class of random utility choice models. Indeed, the only

technical assumption required is the regularity axiom, stating that the probability of choosing

a specific product does not increase when the assortment is enlarged. It is worth noting that

the latter observation also holds for the analysis we develop in Section 3.1.

1.3 The ranking preferences model

We are given a collection of n items (or products), where the per-unit selling price of item i

is denoted by Pi. In addition, we model a population consisting of k customer types, one of

which arrives at random, such that customer j is assumed to arrive with probability λj . Each

customer type is defined by a preference list over the underlying set of products, according to

which purchasing decisions are made. For any customer j, the preference list Lj is a subset of

the products along with a linear order on these products. In other words, Lj can be viewed as a

vector of products, ordered from the most preferred to the least preferred item that a customer
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type is willing to purchase. For ease of notation, Lj will refer in the sequel to both the ranked

list and the corresponding subset of products, Lj ⊆ [n].

We define an assortment as a selection of products that is made available to customers. When

faced with the assortment S ⊆ [n], a customer type purchases the most preferred item in his list

that is made available by S. If none of these products is available, he leaves without purchasing

any item. Under this decision mechanism, we use Rj(S) to denote the revenue obtained should

customer type j arrive, for the assortment S. Conditional on the arrival of customer type j, the

resulting revenue is equal to the price of the product purchased according to Lj , or to 0 when

none of these products has been made available. The objective is to compute an assortment of

products whose expected revenue is maximized, i.e., to identify a subset S ⊆ [n] that maximizes

R(S) =

k

j=1

λj ·Rj(S) .

2 Hardness Results

2.1 Relation to maximum independent set

Our main inapproximability result proceeds from unraveling a well-hidden connection between

assortment planning and the maximum independent set problem (henceforth, Max-IS). To this

end, we begin by recalling how the latter problem is defined, and state known hardness of

approximation results due to H̊astad (1996).

An instance of Max-IS is defined by an undirected graph G = (V,E), where V is a set of

n vertices, and E is the set of edges. A subset of vertices U ⊆ V is said to be independent if

no pair of vertices in U is connected by an edge. The objective is to compute an independent

set of maximal cardinality. The most useful inapproximability result for our purposes is that

of H̊astad (1996), who proved that for any fixed  > 0, Max-IS cannot be approximated in

polynomial time within factor O(n1−) unless P = NP.

Theorem 2.1. Assortment planning under ranking preferences is NP-hard to approximate

within O(n1−), for any fixed  > 0.

Proof. In what follows, we describe an approximation-preserving reduction Φ that maps any

instance I of Max-IS, defined on an n-vertex graph, to an assortment planning instance Φ(I),
consisting of n products and n customers.

We begin by introducing some notation. Given a Max-IS instance I defined on an undirected

graph G = (V,E), let V = {v1, . . . , vn}, each vertex being designated by an arbitrary label vi.

For each vertex vi ∈ V , we use N−(i) to designate the indices of vi’s neighbors that are smaller

than i, namely,

N−(i) = {j ∈ [n] : (vi, vj) ∈ E and j < i} .

The assortment planning instance Φ(I) is defined as follows:

• For each vertex vi ∈ V , we introduce a product indexed by i, with price Pi = n2i/α, where

α = 1/
n

i=1 n
−2i.
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• Also, for each vertex vi ∈ V , there is a corresponding customer type whose preference list

is Li. This list consists of the products N−(i) ∪ {i}, and the preference order is set such

that i is the least preferable product. Any order between the remaining products N−(i)

works for our purposes, but to have a concrete definition, we assume that Li orders these

products by increasing indices (or equivalently, by increasing price).

• The probability (or arrival rate) of customer type i is λi = α/n2i. Note that, by definition

of α, these probabilities indeed sum to 1.

Based on the above-mentioned hardness results of H̊astad (1996), in order to establish our

inapproximability bound, it is sufficient to prove that Φ satisfies two properties:

1. For any independent set U ⊆ V in I there exists a corresponding assortment SU in Φ(I)
with R(SU ) ≥ |U |.

2. Reciprocally, given any assortment S in Φ(I), we can efficiently construct a corresponding

independent set US ⊆ V in I of size at least ⌊R(S)⌋.

Claim 2.2. For any independent set U ⊆ V , the assortment defined by SU = {i : vi ∈ U}
guarantees that R(SU ) ≥ |U | for the assortment planning instance Φ(I).

Proof. We begin by observing that for any vertex vi ∈ U , the only item made available by

SU within the preference list Li is product i. To see this, note that Li consists of the products

N−(i) ∪ {i}, and since U is an independent set, none of vi’s neighbors belongs in U , meaning

in particular that N−(i) ∩ SU = ∅. Therefore, conditional on the arrival of the customer

corresponding to list Li, the revenue obtained by the assortment SU is exactly Pi. Thus, we

can lower bound the expected revenue due to SU by

R(SU ) =

n

i=1

λi ·Ri(SU ) ≥


i∈SU

λi · Pi =


i∈SU

α

n2i
· n

2i

α
= |U | .

Claim 2.3. For any assortment S ⊆ [n], we can compute in polynomial time an independent

set US ⊆ V whose cardinality is at least ⌊R(S)⌋.

Proof. When faced with assortment S, the collection of customers can be partitioned into two

groups: Those who purchase their most expensive product, and those who do not. We let

US ⊆ [n] denote the former subset. By definition, for all i ∈ US , customer i purchases product

i, which is the most expensive one in Li. The contribution of this purchase to the expected

revenue is therefore λiPi = 1. On the other hand, the contribution of each customer i ∈ [n]\US

to the expected revenue is at most

λi · max
j∈N−(i)

Pj ≤ λi · Pi−1 =
α

n2i
· n

2(i−1)

α
=

1

n2
.

Consequently, the total contribution of the latter customers (of which there are at most n) to

the expected revenue is upper bounded by 1/n. This means that precisely ⌊R(S)⌋ customers

generate an expected revenue of 1, and therefore, |US |= ⌊R(S)⌋.
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We now claim that the vertex set {vi : i ∈ US} forms an independent set in G. Indeed,

if i < j are both in US and (vi, vj) ∈ E, then i ∈ N−(j) and vi is preferred over vj by the

preference list Lj . As a consequence, the contribution of customer j to the expected revenue is

strictly less than 1, contradicting the fact that j ∈ US .

Additional observations. It is worth noting that the maximum and minimum prices in our

reduction, denoted Pmax and Pmin respectively, satisfy

log


Pmax

Pmin


= log


n2n/α

n2/α


= O(n log n) .

Therefore, as an immediate corollary, we also obtain an inapproximability bound in terms of

Pmax and Pmin.

Corollary 2.4. Assortment planning under ranking preferences is NP-hard to approximate

within O(log1−(Pmax/Pmin)) for any fixed  > 0.

Finally, as pointed out during the construction of Li, our reduction does not require a specific

order within each preference list, as long as the most expensive product is the least desirable

one. As a result, the inapproximability bounds we have just established hold even when all

preference lists are derived from a common permutation over the set of products. That is,

customer types rank their alternatives consistently with respect to a single permutation.

2.2 Relation to the Min-Buying problem

In the previous reduction, we used distinct selling prices for products, as well as distinct arrival

probabilities for customer types. In fact, we constructed assortment planning instances wherein

both of these parameters have very large variability. Thus, motivated by practical choice spec-

ifications, an interesting question is whether the problem is rendered tractable under a small

number of distinct prices, possibly with uniform arrival probabilities.

We resolve this question by proving that, for some constant α > 0, assortment planning

is NP-hard to approximate within factor better than 1 + α even when there are only two

distinct selling prices, and preference lists occur according to a uniform distribution. It is

worth mentioning that, when all products have identical prices, the problem becomes trivial.

Specifically, by selecting all products in the assortment, we ensure that each preference list picks

its maximal price item.

Our proof relies on a hardness result obtained by Aggarwal et al. (2004) in the context of

multi-product pricing under the Min-Buying choice mode. We begin by formally introducing

the latter problem.

An instance of the (uniform) Min-Buying pricing problem can be described as follows. Given

a collection of n items, we assume there are k customer types, each of which arrives at random

with probability 1/k. For all j ∈ [k], customer type j is characterized by a subset of products

Sj ⊆ [n] she is willing to purchase and by a budget Bj . She buys the least expensive item in
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Sj that meets her budget constraint. The objective is to determine a pricing vector p ∈ Rn
+ to

maximize the expected revenue under a random customer arrival, i.e.,

max
p∈Rn

+

1

k

k

j=1

min {pi : i ∈ Sj and pi ≤ Bj} .

Aggarwal et al. (2004) proved that the Min-Buying problem is APX-hard even for instances

with only two distinct budget values. Thus, the two-budget case of Min-Buying is NP-hard to

approximate within 1 + α, for some constant α > 0.

Theorem 2.5. Assortment planning under ranking preferences is NP-hard to approximate

within 1 + α, for some constant α > 0, even with two distinct selling prices and with uni-

form customer arrival probabilities.

Proof. In what follows, we construct an efficiently-computable mapping Φ of each instance I
of the Min-Buying problem to an instance Φ(I) of the assortment planning problem satisfying

the next two claims:

1. OPT(Φ(I)) ≥ OPT(I).

2. Given any assortment for Φ(I), we can compute in polynomial time a pricing vector for

I whose expected revenue is at least as good.

These properties jointly imply that our reduction translates the APX-hardness result of Aggar-

wal et al. (2004) to the assortment planning problem, thus proving the desired claim.

We begin by noting that, without any loss in the expected revenue, any pricing vector of

the Min-Buying problem can be transformed into another vector such that the price of each

product is identical to the budget of at least one customer type. In other terms, we can restrict

the feasible pricing vectors to reside within B\, where B = {B∞, . . . ,B}.
Given an instance I of the Min-Buying problem, we define a corresponding assortment

planning instance Φ(I) as follows:

• The collection of products in Φ(I) is [n]× B, meaning that each combination of product

i ∈ [n] and price B ∈ B is represented by a distinct ‘copy’ product in Φ(I).

• There are k customer types with uniform arrival probabilities.

• For every customer j, the preference list Lj is derived from Sj by considering all copies of

products in Sj that meet the budget constraint Bj , namely,

Lj =

(i, B) ∈ [n]× B : 〉 ∈ S| and B ≤ B|


.

Here, the preference order in Lj is based on decreasing prices. That is, a less expensive

product is always preferred over a more expensive one; when there are ties (equal prices),

the relative ranking of products is set arbitrarily.

Proof of Claim 1. Let p ∈ Bn be a pricing vector in I. We build an assortment that generates

as much revenue in Φ(I) as the price vector p in I. The idea is to determine an assortment
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where each customer buys the same combination of price and product as in Φ(I). Specifically,
for each product i ∈ [n], we select in the assortment product (i, pi), i.e., the copy of i with price

pi, which is possible since pi ∈ B.
We now claim that this assortment generates as much revenue as the pricing vector p in the

Min-Buying instance. Indeed, in this assortment, each customer type j ∈ [k] chooses the least

expensive product that intersects his list Lj , noting that ties between products do not have any

impact since such products generate identical revenues. By construction of Lj , the purchase

price of customer j is thus equal to that of the least expensive product in Sj under pricing p,

assuming that the budget constraint is satisfied. We therefore get OPT(Φ(I)) ≥ OPT(I).

Proof of Claim 2. Reciprocally, let S be an assortment of the instance Φ(I). We prove that

S can be translated in polynomial time into a pricing vector whose revenue in the Min-Buying

instance is at least R(S). First, let us remark that although several of copies of the same

product i ∈ [n], with different prices, have been selected in S, all customers would only buy

the least expensive copy. Indeed, if product i belongs to Lj then any cheaper copy belongs to

Lj as well, and customer type j only picks the cheapest. Therefore, we can eliminate from S

all redundant copies that are not picked by any customer, and keep only one copy per product.

By considering the remaining items, the assortment defines a partial assignment of prices to

products: If the copy (i, B), of item i with price B, has been selected – we assign B as the price

in I, i.e., set pi = B.

On the other hand, for any product of which no copy has been selected, we set its price

to max(B). We observe that any customer type j in I, under pricing p, would purchase a

product whose price is larger than that of the product she purchases in Φ(I), when faced with

the assortment S. Indeed, if she purchases a product of price B in I, then, either there exists

(i, B) ∈ Lj∩S and customer j purchases a product of price lower than B in Φ(I), or B = max(B)
and this customer generates a lower revenue in Φ(I). This yields the desired result.

3 Approximation Algorithms

3.1 Approximation in terms of price ratio

In this section, we show that a natural algorithm, often used by practitioners and proposed in

related literature for various models, attains the best-possible approximation ratio up to lower

order terms under our general choice model. A revenue-ordered assortment consists in selecting

all products whose price is greater or equal to a given threshold (Talluri and Van Ryzin 2004,

Rusmevichientong et al. 2014). In what follows, we use Sp to designate the revenue-ordered

assortment corresponding to a minimum price of p, i.e., Sp = {i ∈ [n] : Pi ≥ p}. As the

next theorem shows, by limiting attention to such assortments and selecting the one with

largest expected revenue, we are able to match the inapproximability bound established in

Corollary 2.4.

Theorem 3.1. The optimal revenue-ordered assortment approximates the optimal expected rev-

enue within factor O(⌈ln(Pmax/Pmin)⌉).
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Proof. Without loss of generality, we may assume that empty preference lists have been dis-

carded, and that the remaining arrival probabilities sum up to 1. Indeed, this can be achieved

by renormalizing the distribution, which results in multiplying the expected revenue of any

assortment by the same constant.

Let OPT designate the expected revenue obtained by the optimal assortment. For each

customer j ∈ [k], we define a corresponding budget Bj as the highest price on his list, i.e.,

Bj = maxi∈Lj Pi. Without loss of generality, we can assume that customer indices are arranged

so that B1 ≥ · · · ≥ Bk. Finally, we define j∗ ∈ [k] to be the customer j for which Bj ·
j

r=1 λr

is maximized, picking j∗ arbitrarily, when the maximum value is attained by two or more

customers.

We proceed by considering the assortment SBj∗ , formed by all products whose price is

greater or equal to Bj∗ . Since B1 ≥ · · · ≥ Bk, any preference list in [j∗] contains at least one

product with a per-selling price of at least Bj∗ . As a result, any such preference list generates

a revenue greater or equal to Bj∗ when faced with the assortment SBj∗ , and therefore,

R(SBj∗ ) =

k

j=1

λj ·Rj(SBj∗ ) ≥ Bj∗ ·
j∗

r=1

λr . (1)

In order to relate this quantity to OPT, we define

u∗ = min




u ∈ [k] :

u

j=1

λj ≥
1

2
· Pmin

Pmax




 ,

noting that u∗ is well defined, since
k

j=1 λj = 1. By remarking that Bj corresponds to the

maximal revenue that can be extracted from each customer type j, we can upper bound the

optimal expected revenue by

OPT ≤
k

j=1

λj ·Bj ≤
u∗−1

j=1

λj ·Bj + λu∗ ·Bu∗ +

k

j=u∗+1

λj ·Bj . (2)

By definition of u∗, the first sum on the right is upper bounded by B1 · Pmin/(2Pmax) ≤
Pmin/2. For the middle term, Equation (1) implies in particular that λu∗ · Bu∗ ≤ R(SBj∗ ).

Finally, we can upper-bound the last sum as follows:

k

j=u∗+1

λj ·Bj =

k

j=u∗+1

λjj
r=1 λr

·

Bj ·

j

r=1

λr



≤
k

j=u∗+1

λjj
r=1 λr

·



Bj∗ ·
j∗

r=1

λr





≤
k

j=u∗+1

λjj
r=1 λr

· R(SBj∗ )

=

k

j=u∗+1

 j
r=1 λr

j−1
r=1 λr

1
j

r=1 λr

dx


· R(SBj∗ ) ,
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where the first inequality follows from the definition of j∗, and the second inequality is derived

from Equation (1). By the monotonicity of x → 1
x , we obtain:

k

j=u∗+1

λj ·Bj ≤
k

j=u∗+1

 j
r=1 λr

j−1
r=1 λr

1

x
dx


· R(SBj∗ )

=

 1

u∗
r=1 λr

1

x
dx


· R(SBj∗ )

≤
 1

1
2
· Pmin
Pmax

1

x
dx


· R(SBj∗ )

= ln


2 · Pmax

Pmin


· R(SBj∗ ) ,

where the second inequality follow from the definition of u∗.

As a result, we can now infer from inequality (2) that the assortment SBj∗ indeed approxi-

mates the optimal expected revenue within factor O(⌈ln(Pmax/Pmin)⌉), since

OPT ≤ Pmin

2
+


1 + ln


2 · Pmax

Pmin


· R(SBj∗ )

≤

3

2
+ ln


2 · Pmax

Pmin


· R(SBj∗ )

≤ 5

2
·

ln


Pmax

Pmin


· R(SBj∗ ) .

Here, the second inequality is obtained by observing that Pmin ≤ R(SBj∗ ), since by the choice

of j∗ and by our initial assumption that all empty lists have been eliminated, we have

R(SBj∗ ) ≥ Bj∗ ·
j∗

j=1

λj ≥ Bk ·
k

j=1

λj ≥ Pmin .

As a corollary, we prove that revenue-ordered assortment also achieve an approximation ratio

of O(⌈log(1/λ̃)⌉), where λ̃ denotes the combined arrival probability of all customers who have

the highest price item on their list. In particular, when all arrival probabilities are polynomially

bounded away from 0, i.e. Ω(1/poly(k)), this bound translates to an O(log k) approximation

(for example, under a uniform distribution).

Corollary 3.2. The assortment planning problem under ranking preferences can be approxi-

mated within factor O(⌈log(1/λ̃)⌉).

Proof. Proof. We prove that, when all products with price smaller than (λ̃/2) · Pmax are

eliminated, there is still an assortment that generates an expected revenue of at least OPT/2.

This transformation guarantees that all remaining prices are within factor 2/λ̃ of each other, in

which case the upper bound given in Theorem 3.1 becomes O(⌈log(1/λ̃)⌉).
Let S̄ designate the subset of products that have been eliminated, i.e., S̄ = {i ∈ [n] :

Pi ≤ (λ̃/2) · Pmax}. When we eliminate products from an assortment, the probability that a
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customer purchases each of the remaining products (and consequently, the expected revenue

from the remainder selection) can only increase. For this reason, it is sufficient to consider

the contribution of S̄ to the expected revenue of the optimal assortment, which can be upper

bounded by
k

j=1

λj ·Rj(S̄) ≤
k

j=1

λj ·
λ̃

2
· Pmax =

λ̃

2
· Pmax ≤ OPT

2
,

where the last inequality holds since OPT ≥ λ̃ · Pmax. Indeed, this is the expected revenue of

the assortment formed by stocking only the highest price product.

3.2 Approximation in terms of list length

A close inspection of our reduction from Max-IS (see Theorem 2.1) reveals that the maximal

size of any preference list was equivalent to the maximal degree ∆ in the original graph. As a

consequence, this inapproximability result gives an O(∆1−) hardness for assortment planning

with preference lists of size at most ∆. Since there are numerous algorithms for approximating

Max-IS in terms of ∆ (Karger et al. 1998, Alon and Kahale 1998, Halperin 2002), it is natural

to investigate whether improved approximation guarantees can be obtained in terms of the

maximum length of any list. In fact, the underlying assumption that each preference list is

comprised of relatively few products finds behavioral and empirical support, and subsumes

practical choice modeling specifications (Hauser et al. 2009).

In this setting, we analyze the expected revenue of random assortments arising from an ap-

propriate generative distribution. By derandomization, we obtain a polynomial-time algorithm

that is asymptotically tight, as asserted by the following theorem.

Theorem 3.3. The assortment planning problem under ranking preferences can be approxi-

mated within factor e∆, where ∆ is the maximal size of a preference list.

Proof. For any customer type j, let M(j) be the item with maximal price within the preference

list Lj . The optimal expected revenue is naturally bounded by

OPT ≤
k

j=1

λj · PM(j) .

We construct a random assortment SX through the following procedure: First, we independently

draw values for X1, . . . , Xn, which are n i.i.d. Bernoulli variables with probability of success

1/∆. Then, we pick each product to the assortment if and only if its corresponding variable is

successful, meaning that SX = {i ∈ [n] : Xi = 1}.
The important observation is that, for any preference list Lj , the probability that customer

type j would purchase product M(j) when faced with the assortment SX is at least

1

∆
·

1− 1

∆

|Lj |−1

≥ 1

∆
·

1− 1

∆

∆−1

≥ 1

e∆
,

where the last inequality holds since the function [x → (1 − 1/x)x−1] is monotone-decreasing

over (1,∞), and converges to 1/e. Indeed, this is precisely the probability that M(j) belongs to
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SX , and that all other products in Lj are unavailable. We conclude that the expected revenue

of SX is

EX




k

j=1

λj ·Rj(SX)



 =

k

j=1

λj · EX [Rj(SX)] ≥ 1

e∆
·

k

j=1

λj · PM(j) ≥
1

e∆
·OPT .

This algorithm can be derandomized through the method of conditional expectations (see,

for example, Chapter 16.1 in Alon and Spencer (2004)). Indeed, conditional on any partial

assortment, i.e., a sequence of fixed binary values for the variables X1, . . . , Xℓ, the expected

revenue can be computed exactly in polynomial time. Specifically, the independence between

the Bernoulli variables allows to compute the probability that each customer type picks a

given product in his list. By applying the method of conditional expectations iteratively over

ℓ = 1, . . . , n, we retrieve a deterministic assortment that approximates OPT within factor e∆.

4 Concluding Remarks

Cardinality constraints. From a technical point of view, the approximation algorithms we

propose in Section 3 make use of the freedom in picking assortments of any possible cardinality.

An interesting direction for future research is to investigate whether our algorithms can be

extended to the capacitated setting, where at most C distinct products can be stocked. Results

in this spirit have previously been attained for several tractable models (see, for instance,

Rusmevichientong et al. (2010), Davis et al. (2013)), although the computational difficulties

here appear to be of significantly different nature.

Specification of the choice model. A particularly desirable property of revenue-ordered

assortments is that an explicit description of the preference list distribution is not required,

as long as one has access to an efficient oracle for computing the expected revenue of any

given assortment. Therefore, the approximation guarantees we provide in Section 3.1 extend

to a broader class of random utility choice models, where the distribution over preference lists

potentially has a large support, such as Mixture of Multinomial Logits (Bront et al. 2009,

Méndez-Dı́az et al. 2010, Rusmevichientong et al. 2014, Désir et al. 2014, Feldman and Topaloglu

2015).

Uniform distribution. An interesting open question is that of determining the best approxi-

mation possible for uniform preference list distributions, i.e., when each customer type is picked

with equal probability. Such models are of practical importance, since in many applications, the

distribution probabilities are conditioned by the number of samples used to estimate the model

parameters. For this special case, one could try to narrow the gap between our APX-hardness

results, given in Theorem 2.5, and the O(log k) approximation that follows from Corollary 3.2.
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