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ABSTRACT

The antimicrobial and anti-adhesive activities of the cell-bound biosurfactants, 

produced by Lactobacillus pentosus (PEB), characterized as glycolipopeptide 

macromolecules, were evaluated against several microorganisms present in the skin 

microflora, envisaging its potential use as a “natural” ingredient in cosmetic and 

personal care formulations. Their performance was compared with another cell-bound 

biosurfactants also characterized as glycolipopeptides produced by Lactobacillus 

paracasei (PAB). At concentrations of 50 mg/mL, the PEB showed an important 

antimicrobial activity against Pseudomonas aeruginosa (85% when extracted with 

phosphate buffer (PB) and 100% when extracted with phosphate buffer saline (PBS)), 

Streptococcus agalactiae (100% for both extracts), Staphylococcus aureus (67% when 

extracted with PBS and 100% when extracted with PB), Escherichia coli (72% when 

extracted with PB and 89% when extracted with PBS), Streptococcus pyogenes (about 

85% for both extracts) and Candida albicans (around 70% for both extracts), 

comparable with that obtained for the PAB. However, at lower concentrations the PAB 

exhibited in general higher antimicrobial activities. Biosurfactants produced by both 

microorganisms also showed significant anti-adhesive properties against all the 

microorganisms under study, except for E. coli and C. albicans (less than 30%). 

Overall, these cell-bound biosurfactants could be used as potential antimicrobial and 

anti-adhesive agents in cosmetic and pharmaceutical formulations.

Keywords: Lactobacilli; antimicrobial; anti-adhesive.
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1. INTRODUCTION

Human skin is the largest tissue of the human body and is composed by resident, 

temporarily resident and transient microbial species, being the Gram-positive bacteria 

from the genera Propionibacterium, Staphylococcus, Micrococcus, Corynebacterium and 

Acinetobacter the main resident microorganisms [1]. Among the Staphylococcus, 

Staphylococcus aureus is a common transient specie, which causes skin infections, 

whereas Staphylococcus epidermidis is a resident bacteria of skin microflora that protects 

the human skin from certain types of infection [2].

The microflora generates inhibitory substances, namely bacteriocins, enzymes and low 

molecular weight inhibitors, which contribute to keep the balance of resident microbial 

populations, and prevent its colonization by pathogens [1]. Beauty and personal care 

products incorporate some anti-bacterial preservatives towards harmful microorganisms 

as triclosan, methylparaben or bronopol, among others. Although these anti-bacterial 

preservatives are currently used, there is a growing demand for cosmetics free of 

synthetic preservatives [3,4]. In this sense, biosurfactants from lactic acid bacteria 

(LAB), which are “Generally Recognized As Safe” (GRAS) by the American Food and 

Drug Administration (FDA), are natural compounds that exhibit antimicrobial activity 

and cleaning abilities that could therefore be used as an alternative to the chemically 

synthetized preservatives [5-8]; but also because at the same time they are non-toxic, 

biodegradable and environmentally friendly [9-11]. For instance, interesting results have 

been reported when using a rhamnolipid formulation (25% of biosurfactant and 75% of 

water) as an antimicrobial and surface-active agent in soak toothbrush holders, 

hairbrushes and infant plastic toys [12].

Synthetic surfactants can cause skin irritation and allergic reactions by interaction with 

proteins such as keratin (cytoskeletal proteins) or collagen and elastin (extracellular 

matrix proteins); also they promote the removal of lipids from the epidermal surface and 
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affect the living cells in the skin [13]. Contrarily, biosurfactants are composed of lipid 

and proteins that are compatible with the skin cells membrane [14,15]. 

The aim of the current study is to evaluate the antimicrobial and anti-adhesive activities 

of the cell-bound biosurfactants produced by Lactobacillus pentosus against skin 

pathogens, in comparison with the cell-bound biosurfactants produced by Lactobacillus 

paracasei both characterized as glycolipopeptide macromolecules. The corresponding 

biosurfactants were extracted using two different methodologies and both extracts were 

evaluated.

2. MATERIALS AND METHODS

2.1. Strains and standard culture conditions for biosurfactant production

L. pentosus CECT-4023T (ATCC-8041) was obtained from the Spanish Type Culture 

Collection (CECT) (Valencia, Spain), while L. paracasei was isolated from a Portuguese 

dairy industry [5]. 

Both strains were grown for 24 h in Petri dishes containing complete medium, so-named 

by its inventors (de Man, Rogosa and Sharpe), MRS Agar, at 31°C and 37°C, 

respectively. Inocula were prepared by solubilizing all cells from plates with 5 mL of 

culture media. Then, cells were incubated at 150 rpm, at the optimum temperature for 

each microorganism in 250 mL Erlenmeyer flasks containing the rest of culture media 

(100 mL as total volume). 

2.2. Production and extraction of the biosurfactants from Lactobacilli strains

The fermentation medium for L. pentosus contained 11 g/L of glucose and 18 g/L of 

xylose. This strain is a hetero-fermentative facultative lactic acid bacterium able to 

metabolize pentoses, whereas the fermentation medium for L. paracasei, a homo-

fermentative strain, was formulated with 33 g/L of glucose. Both media were 
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supplemented with 10 g/L of corn steep liquor and 10 g/L of yeast extract as nitrogen 

source, sterilized (121°C during 15 min) and used directly as fermentation media. 

The fermentations were carried out in a 2 L Applikon fermenter, at 200 rpm, with a 

working volume of 1.5 L, at 31°C, during 48 h for L. pentosus and at 37°C, during 24 h, 

for L. paracasei. The pH was adjusted to 6 for both strains.

Afterwards, the fermentation medium was centrifuged, the biomass was washed twice 

with distilled water and re-suspended in 250 mL of phosphate buffer saline (PBS) (10 

mM KH2PO4/K2HPO4 with 150 mM NaCl) or phosphate buffer (PB) (10 mM 

KH2PO4/K2HPO4 without salt). The biomass/liquid ratio used for the extraction was 6:1. 

The extraction with PBS was carried at room temperature (25°C) during 2 h at 150 rpm 

[16]; whereas the extraction with PB was established at 65°C during 1.5 h at 150 rpm 

according to a previous study [17]. The solutions containing the cell-bound 

biosurfactants were dialyzed against demineralized water at 4ºC in a Cellu-Sep© 

membrane (molecular weight cut-off 6000–8000 Dalton; Membrane Filtration Products, 

Inc., USA) for 48 h, and then the biosurfactants were lyophilized using a lyophilizer 

CHRIST® Alpha 1-4 LD plus (Germany). 

Four different cell-bound biosurfactant extracts were obtained depending on the 

Lactobacilli strain and the methodology used for their extraction, namely the 

biosurfactants produced by L. pentosus (PEB) extracted with PBS and PB; and the 

biosurfactants obtained from L. paracasei (PAB) extracted with PBS and PB.

2.3. Cell-bound biosurfactants characterization 

Different surfactant properties such as critical micellar concentration (CMC) and surface 

tension reduction (ST), as well as protein, carbohydrate and lipid contents of the cell-

bound biosurfactants were evaluated following the protocols established in previous 

works [18,19]. Therefore, total carbohydrate content in the biosurfactant extracts was 

determined by the phenol-sulfuric acid method using D-glucose as a standard [20]; total 
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protein content was calculated by multiplying the total nitrogen content of the 

biosurfactant extracts by a conversion factor of 6.25 [21] and lipid content was analyzed 

by Gas Chromatography coupled to a Mass Spectrometer (GC-MS-MS). 

The fatty acid methyl esters (FAMEs) separation was performed on a Model Scion 451 

GC (Bruker) equipped with a PTV 1019 universal capillary injector (1 μL of sample was 

injected using a splitless mode) and a DB-WAX column (30 m long, 0.25 mm i.d., 0.25 

μm film thickness) using an oven temperature gradient as follows: 50°C for 2 min, then 

raised to 220°C at a rate equal to 4 °C/min and then maintained for more 15 min. Helium 

was used as carrier gas at a constant flow rate of 1 mL/min. The temperature of both 

injector inlet and the transfer line of the detector was set at 240ºC.

The mass spectra were obtained using a mass-selective detector under electron impact 

ionization at a voltage of 70 eV and data were acquired over an m/z range 50-400. The 

software used to process the peak areas was MS Data Review (version 8.1).

FAMEs were identified using a mass spectra library supplied with the GC-MS-MS 

system and by comparison of retention times and mass spectra of a FAME standard mix 

(Supelco 37 Component FAME Mix: 10 mg/mL of the FAME reference standard mix in 

methylene chloride, Sigma-Aldrich) injected under the same conditions.

2.4. Strains and standard culture conditions for antimicrobial and anti-adhesive assays

The following strains, kindly provided by the Faculty of Pharmacy, University of Porto 

(Portugal), were used in the antimicrobial and anti-adhesive assays: Escherichia coli, 

Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, 

Streptococcus agalactiae, Streptococcus pyogenes and Candida albicans. These strains 

were grown overnight in Trypticase Soy Broth (TSB) medium at 37ºC in aerobic 

conditions. The composition of TSB medium was: 17 g/L casein peptone (pancreatic), 3 

g/L soya peptone (papain digest.), 5 g/L sodium chloride, 2.5 g/L di-potassium hydrogen 

phosphate and 2.5 g/L glucose.
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All strains were stored at -80ºC in appropriate medium supplemented with glycerol (20% 

(v/v)) until use. 

2.5. Antimicrobial assay

The antimicrobial activity of the biosurfactants from Lactobacillus strains against skin 

pathogens was determined according to the procedure described elsewhere [5]. Briefly, a 

micro-dilution method in 96-well flat-bottom plastic tissue culture plates (Orange 

Scientific, Belgium) was used. A 125 μL of sterile double strength growth TSB medium 

was placed in the well 1 of the microplate, together with 125 μL of biosurfactant solution 

at 100 mg/mL. Serially, 125 μL from well 1 was transferred to the subsequent wells, 

adding 125 μL of sterile single strength growth TSB medium. After the consecutive 

dilutions the biosurfactant concentration in the wells ranged between 50-0.10 mg/mL. 

Following, 2.5 μL of a pre-culture of the evaluated microorganism, grown overnight in 

TSB medium at 37°C and diluted to an optical density of 0.6, where added to each well, 

except well 11, that was used as negative control, containing only TSB medium (125 

μL). In addition, well 12 was used as positive control, containing only TBS medium (125 

μL) and the microorganism inoculum (2.5 μL).

The microplates were covered, incubated for 48 h at 37°C and the optical density of each 

well were measured at 600 nm in a microplate reader (Biotech Synergy HT). The growth 

inhibition percentages at different biosurfactant concentrations for each pathogen were 

calculated following Equation 1:

Equation (1)𝐺𝑟𝑜𝑤𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛𝑐(%) = [1 ‒
(𝑂𝐷𝑐)
(𝑂𝐷0)] 𝑥 100

where ODc represents the optical density of the well with a biosurfactant concentration c 

and OD0 is the optical density of the control well (without biosurfactant). Triplicate 

assays were performed at all biosurfactant concentrations for each strain.
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2.6. Anti-adhesive assay

The anti-adhesive activity of biosurfactants from Lactobacillus strains was tested against 

the same pathogens described in the antimicrobial assay. Wells of a sterile 96-well flat-

bottom plastic tissue culture plate were filled with 200 μL of crude biosurfactant solution 

in PBS or PB following the methodology reported elsewhere [5]. Several biosurfactant 

concentrations were tested ranging from 0.02 to 25 mg/mL. The plate was incubated for 

18 h at 4°C and subsequently washed twice with PBS or PB. Control wells contained 

only PBS or PB. A 200 μL aliquot of a washed bacterial suspension in PBS or PB, 

adjusted to an optical density of 0.6, was added to each well and incubated for 24 h at 

4°C. Unattached microorganisms were removed by washing the wells three times with 

PBS or PB; whereas the attached microorganisms were fixed with 200 μL of 99% 

methanol per well during 15 min, then the plates were emptied and left to dry. 

Afterwards, the plates were stained for 5 min with 200 μL of 2% crystal violet per well 

(used for Gram staining). The excess of stain was rinsed out by placing the plate under 

running tap water. Subsequently, the plates were air-dried, the dye bound to the adherent 

microorganisms was re-solubilized with 200 μL of 33% (v/v) glacial acetic acid per well 

and the optical density was measured at 595 nm. The microbial inhibition percentages at 

different biosurfactant concentrations for each microorganism were determined 

according to Equation 2:

Equation (2)𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛𝑐(%) = [1 ‒
(𝑂𝐷𝑐)
(𝑂𝐷0)] 𝑥 100

where ODc represents the optical density of the well with a biosurfactant concentration c 

and OD0 is the optical density of the control well (without biosurfactant). Triplicate 

assays were performed at all biosurfactant concentrations for each strain. 

3. RESULTS AND DISCUSSION

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480



9

Biosurfactants are promising macromolecules for cosmetic, pharmaceutical or 

biomedical uses [9,11,22]. They are biocompatible molecules that reduce the surface 

tension in aqueous solutions allowing the solubilization of hydrophobic active principles. 

Comparing to their chemical counterparts, the biosurfactants exhibit a number of 

advantages and specifically for applications that involve contact with the skin, they could 

be regarded as prebiotic ingredients, protecting the skin as they prevent the growth of 

pathogenic microorganisms and stimulate the establishment of a beneficial microflora. In 

this work, the antimicrobial and anti-adhesive capacity of two different cell-bound 

biosurfactants produced by two probiotic Lactobacilli strains was studied. Additionally, 

it is remarkable that more than 90% of the biosurfactant-related works about theses 

biological activities refer that biosurfactants are produced extracellularly and only a few 

report the use of cell-bound biosurfactants. However, some of the cell-bound 

biosurfactants that have been reported are produced by probiotic bacteria and therefore, 

are quite interesting as they can potentially exhibit prebiotic properties [9].

Table 1 shows the composition of the biosurfactants herein studied that were extracted 

from the cell membrane using two different approaches. The biosurfactants extracted 

with PBS were found to possess a higher content in lipids than those extracted with PB, 

whereas the content in carbohydrates was higher in the extracts obtained using PB. 

Additionally, a higher protein content was found in the biosurfactants produced by L. 

paracasei mainly when these were extracted with PB. Regarding the Lactobacilli strains, 

L. paracasei produced biosurfactants with a lower content of lipids than those produced 

by L. pentosus.

In addition, Figure 1 shows the GC-MS spectra of the L. pentosus and L. paracasei 

biosurfactants illustrating their fatty acid profile. The biosurfactants were composed by 

C15 (myristic acid), C16 (palmitic acid), C17 (palmitoleic acid) and C18 (stearic, oleic, 

linoleic and α-linoleic acids) fatty acid chains. A high percentage of C16 and C18 fatty 
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acids was observed, being the most abundant the palmitic acid (22.1-43.9%) and stearic 

acid (26.1-41.6%). Moreover, differences in the fatty acids content were observed 

depending on the Lactobacilli strain and the methodology used for their extraction. For 

instance, the PEB contained a higher percentage of oleic acid (25.2-28.6%) than the PAB 

(1.2-7.4%); whereas palmitoleic acid was only present in the biosurfactants obtained 

from L. paracasei. Moreover, the biosurfactants extracted with PBS contained a higher 

percentage of stearic and oleic acids and a lower content in palmitic acid than those 

extracted with PB. 

3.1. Antimicrobial activity

Figure 2 to Figure 4 show the antimicrobial activities of the four cell-bound 

biosurfactants evaluated against skin pathogenic: Gram-negative bacteria, Gram-positive 

bacteria and fungi, respectively. 

In order to discuss the antimicrobial activities of the biosurfactant extracts, only the 

concentrations that showed an antimicrobial activity higher than 50% will be considered. 

It is interesting to notice that at the highest concentration assayed (50 mg/mL), the cell-

bound PEB exhibited 100% growth inhibition against S. agalactiae and about 70% 

against C. albicans (Figure 3c and Figure 4, respectively). Regarding the extraction 

method used, it was found that the biosurfactant produced by L. pentosus extracted with 

PBS possessed a higher antimicrobial activity against the Gram-negative microorganisms 

E. coli (89%) (Figure 2a) and P. aeruginosa (100%) (Figure 2b) as compared to the one 

extracted with PB (72% and 85% respectively). Contrarily, the biosurfactants extracted 

with PB showed a higher antimicrobial activity against S. aureus (100%) (Figure 3a) 

and S. pyogenes (87%) (Figure 3d) as compared to the ones extracted with PBS (67% 

and 83%, respectively). In the case of S. agalactiae (Figure 3c) and C. albicans (Figure 

4) the antimicrobial activity was 100% and 71%, respectively, using PBS and PB 
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extraction methods; while for S. epidermidis (Figure 3b) the values were lower than 

50%.

Regarding the antimicrobial properties of the biosurfactants from L. paracasei at the 

highest concentration tested (50 mg/mL), it was observed the same antimicrobial activity 

against E. coli, P. aeruginosa, S. epidermidis, S. agalactiae, S. pyogenes and C. albicans 

(all 100%) by PAB extracted with PBS and PB; and only in the case of S. aureus the 

PAB extracted with PB exhibited 100% antimicrobial activity, whereas in PBS was 83%.   

On the other hand, at a lower biosurfactant concentration (25 mg/mL), PAB generally 

showed different antimicrobial activities depending on the extraction method. The effect 

observed on S. aureus was in accordance with that noticed using the biosurfactants from 

L. pentosus. Indeed, for this pathogenic microorganism a better antimicrobial activity 

was found for the extracts obtained with PB (Figure 3a). As well, similar antimicrobial 

performance was observed against S. epidermidis at 25 mg/mL using PB (Figure 3b). On 

the other hand, the use of PBS rendered a highest antimicrobial effect in comparison with 

the extract obtained with PB against S agalactiae (Figure 3c), S. pyogenes (Figure 3d) 

and C. albicans (Figure 4). However, in the case of E. coli it was found that the 

procedure used to extract the biosurfactants from L. paracasei did not affect its 

antimicrobial activity, contrarily to the extracts obtained from L. pentosus (Figure 2a).

Based on these results, it can be speculated that the antimicrobial activity of the 

biosurfactants depend on the strain used for its production, regardless of being from the 

same genus, and also depend on the methodology used for their extraction. 

Table 1S (see in the supplementary information) gathers information on the minimum 

doses of biosurfactants that led to antimicrobial activities higher than 50% or equal to 

100%. PEB, at concentrations of 25 mg/mL, were able to reduced 50% the growth of P. 

aeruginosa, S. agalactiae and S. pyogenes, whenever extracted with PBS; whereas on E. 

coli, S. aureus and C. albicans, 50% of growth inhibition was obtained at concentration 
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of 50 mg/mL. Moreover, at the same concentration (50 mg/mL) 100% antimicrobial 

inhibition against P. aeruginosa and S. agalactiae was found.

Regarding the biosurfactant from L. pentosus extracted with PB, it was found that a 

concentrations of 25 mg/mL could only reduce 50% the growth of P. aeruginosa and S. 

aureus; whereas using this extract, at the highest concentration (50 mg/mL), 100% 

inhibition was observed for S. aureus and S. agalactiae.

In general, the dose of PAB required to obtain 50% of growth inhibition, was lower than 

that needed for the PEB. At concentrations of 12.5 mg/mL, the PAB, reduced 50% the 

growth of E. coli, when extracted with PBS; and the growth of S. agalactiae, when 

extracted with PB. Additionally, 100% of growth reduction was observed for all the 

pathogenic strains, at doses of 50 mg/mL, except for S. aureus in the case of the 

biosurfactant from L. paracasei extracted with PBS. 

The antimicrobial activity of biosurfactants has sparked an increased interest in 

researchers and promoted additional efforts to further characterize these promising 

substances for biomedical, pharmaceutical, food or cosmetic applications. For instance, 

Sharma and Saharan [7] evaluated the antimicrobial ability of the glycolipid 

biosurfactant produced by Lactobacillus helveticus MRTL91 against E. coli (90%), P. 

aeruginosa (76%), S. aureus (92%) or S. epidermidis (98%) at 25 mg/mL, observing a 

higher antimicrobial activity against E. coli and against S. epidermidis in comparison 

with the data observed in the current work.

Additionally, Gudiña and collaborators [6] showed that the glycoprotein biosurfactant 

from Lactobacillus agilis CCUG31450 inhibited the growth of S. aureus (20%), P. 

aeruginosa (13.5%) and S. agalactiae (11%) at 5 mg/mL, however it did not present an 

antimicrobial activity against E. coli and C. albicans under the same conditions. These 

results are in good agreement with the current study showing similar inhibitory capacities 

at 5 mg/mL, for S. aureus, P. aeruginosa and S. agalactiae. Nevertheless, PAB and PEB 
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extracts at similar concentrations as the ones used by Gudiña et al. [6] (5 mg/mL), 

showed slightly antimicrobial inhibition (less than 25%) against E. coli and C. albicans.

Furthermore, the same authors studied the antimicrobial properties of the glycoprotein 

biosurfactant produced by L. paracasei when grown in MRS Lac medium (standard 

MRS medium where glucose was replaced by lactose) [5,23]. Gudiña and co-workers [5] 

found a complete growth inhibition of E. coli, S. agalactiae and S. pyogenes at 25 

mg/mL. Those growth inhibition values were slightly higher than those herein obtained 

using an extract produced by the same strain. However, it is important to notice that in 

the current work, a different biosurfactant was produced, namely a glycolipopeptide, as 

the strain was grown using glucose as carbon source, whereas Gudiña et al. [5] used 

lactose as carbon source. 

It is well known that a same strain can produce different biosurfactants depending on the 

carbon source and fermenting conditions used [19,24-26]. For example, Singh et al. [25] 

reported that Bacillus amylofaciens strain AR2 could produce different types of 

surfactins depending on the carbon source used. In fact, the strain produced lipopeptides 

as a mixture of surfactin, iturin and fengycin when the minimal salt medium was 

supplemented with dextrose, sucrose and glycerol; whereas using maltose, lactose and 

sorbitol as carbon sources only iturin was produced. 

Additionally, Shah et al. [27] evaluated different carbon sources (e.g. glucose, fructose, 

xylose, ribose, lactose, mannose, arabinose and galactose) for the production of 

sophorolipids and also studied their effect as antimicrobial agents. The authors suggested 

that the biosurfactant structures were different in the hydrophilic fraction (carbohydrate 

chain) but not in the hydrophobic side (fatty acid chain). The change on the carbon 

source led to different antibacterial activities. For instance, the sophorolipids produced 

when arabinose-containing medium was used were more effective against three of the 

four Gram-positive bacteria studied and against the Moraxella sp. (Gram-negative 
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bacteria) as compared to the sophorolipids obtained when using glucose-based medium. 

Also, the sophorolipids obtained from cultures grown on arabinose showed no inhibition 

of the growth of E. coli; whereas the most effective sophorolipids against Bacillus 

subtilis was the ones obtained using lactose-based medium.

3.2. Anti-adhesive activity

Figure 5 to Figure 7 illustrate the anti-adhesive properties of biosurfactants from L. 

pentosus and from L. paracasei at concentrations up to 25 mg/mL. Additionally, Table 

2S (see in the supplementary information) summarizes the lowest concentration of 

biosurfactant extracts required to obtain anti-adhesive percentages of 50% and 100%. 

Generally, the biosurfactants obtained from both Lactobacilli strains exhibited similar 

anti-adhesive activities. For instance, at 25 mg/mL, biosurfactants produced by L. 

pentosus and extracted with PBS or PB inhibited around 63%, 73% and 77% the highest 

adhesion of P. aeruginosa (Figure 5b), S. aureus (Figure 6a) and S. agalactiae (Figure 

6c), respectively. Moreover, it was found that the biosurfactant from L. pentosus 

extracted with PB led to higher anti-adhesive activity against S. epidermidis (57%) 

(Figure 6b) and S. pyogenes (69%) (Figure 6d) comparing to those extracted with PBS 

(38% and 52%, respectively).

On the other hand, biosurfactants from L. paracasei extracted with PBS showed a more 

pronounced anti-adhesive effect on all the Gram-positive pathogens tested (such as S. 

aureus, S. epidermidis, S. agalactiae and S. pyrogenes) (Figure 6a to Figure 6d), and 

against P. aeruginosa (Gram-negative) comparing to the biosurfactants extracted with 

PB (Figure 5b). Furthermore, PAB inhibited the highest adhesion against S. agalactiae 

around 81% and 70% depending if the biosurfactant extracts were extracted with PBS or 

PB, respectively (Figure 6c).
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Moreover, the inhibitory effect of all biosurfactant extracts (extracted with PBS and PB) 

on the adhesion of E. coli (Figure 5a) and C. albicans (Figure 7) was less than 30% at 

the highest concentration tested (25 mg/mL). 

The anti-adhesive activity of biosurfactants is a relevant feature if their use as coatings of 

biomedical materials is envisaged. Indeed, many studies suggest that biosurfactants play 

an important role avoiding biofilm formation on different surfaces such as silicone rubber 

[28-30], titanium surface [31], polystyrene plates [32], among others. Sharma and 

Saharan [7] found that L. helveticus MRTL91, at 25 mg/mL, considerably inhibited the 

adhesion of S. aureus (83%) and S. epidermidis (85%), although lower inhibitions were 

found for E. coli (50%), P. aeruginosa (49%) and C. albicans (data not provided). This 

poor inhibition obtained for E. coli and C. albicans was also found in the current study 

using the biosurfactant extracts obtained from L. pentosus and L. paracasei. However, 

the anti-adhesive capacities of the glycolipopeptide biosurfactants obtained from these 

strains against P. aeruginosa were slightly better (63% and 72%, respectively) in 

comparison with the glycolipid biosurfactant produced by L. helveticus.

Shokouhfard et al., [33] evaluated the anti-adhesive properties of a biosurfactant isolated 

from Lactobacillus acidophilus ATCC 4356 (biosurfactant composed by high protein 

content compared to other components such as polysaccharides and phosphates) on S. 

marcescens strains. The results showed good anti-adhesive activities, up to 60%, for the 

different types of S. marcescens tested using 2.5 mg/mL of biosurfactant extract.

Gudiña et al. [6] showed that the glycoprotein biosurfactant from L. agilis CCUG31450 

inhibited the adhesion of S. aureus around 60% at concentrations between 5 and 10 

mg/mL and around 50% at concentrations between 1 and 2.5 mg/mL. The same behavior 

was observed for the glycolipopeptide biosurfactants used in the current work at the same 

concentrations (an anti-adhesion average of 64%), except for the one produced by L. 
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paracasei, extracted with PB and grown in glucose-based medium, that exhibited slightly 

lower values (less than 50% at 6.25 mg/mL).

Madhu and Prapulla [34] evaluated a glycoprotein biosurfactant from Lactobacillus 

plantarum CFR 2194 that successfully inhibited the adhesion of S. aureus (67%) at 25 

mg/mL. It is important to notice that this inhibition was lower than the one herein 

obtained for glycolipopeptide biosurfactants from L. pentosus (76%) and L. paracasei 

(72%) both extracted with PBS.

In addition, Gudiña et al. [5] used 25 mg/mL of a glycoprotein biosurfactant from L. 

paracasei, grown on lactose and extracted with PBS, and found good anti-adhesive 

activities against S. aureus (72%), S. epidermidis (62%) and S. agalactiae (60%), 

whereas a poor activity was observed for P. aeruginosa (16.5%) and E. coli (12%). 

Using the same concentration as Gudiña and co-workers [5], the glycolipopeptide 

biosurfactants from L. paracasei grown on glucose-based medium, showed higher anti-

adhesive properties against S. agalactiae (70-81%), P. aeruginosa (57-72%) depending if 

the biosurfactant extracts were extracted with PB or PBS respectively, and E. coli (30% 

extracted with PBS and PB). In addition, in the case of S. aureus and S. epidermidis the 

results obtained in the current work (PAB in PBS) were similar to the anti-adhesive 

activity obtained by Gudiña et al. [5], being 72% and 55%, respectively. 

4. CONCLUSIONS

The cell-bound biosurfactants produced by L. pentosus, showed 100% of antimicrobial 

activity against P. aeruginosa (when extracted with PBS), S. aureus (when extracted 

with PB) and S. agalactiae (extracted with PBS or PB) at concentration of 50 mg/mL. In 

the case of cell-bound biosurfactants produced by L. paracasei using both extraction 

methods, 100% of growth inhibition was found for all pathogens evaluated, except for S. 

aureus when extracted in PBS (83%).
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Regarding the biosurfactants anti-adhesive activities, relevant values were obtained with 

all biosurfactant extracts evaluated against P. aeruginosa (between 57% for PAB 

extracted with PB to 72% for PAB extracted with PBS), S. aureus (between 60% for 

PAB extracted with PB to 76% for PEB extracted with PBS) and S. agalactiae (between 

70% for PAB extracted with PB to 81% for PAB extracted with PBS). However, for E. 

coli and C. albicans these values were lower than 30%.

Based on the results herein gathered, it can be speculated that small changes in the 

carbohydrates, lipids and proteins percentages, of the polymeric fraction of 

biosurfactants, can play an important role on their biological activities and accordingly 

on their applications in the cosmetic industry. 
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Figure 1. Fatty acids profile of the biosurfactants produced by Lactobacillus pentosus (a, b) and 

Lactobacillus paracasei (c, d) extracted using phosphate buffer saline (PBS) (a, c) and 

phosphate buffer (PB) (b, d) respectively. The numbers denote the major relative fatty 

acids in the biosurfactants extracts as follows: 1= myristic acid (methyl ester); 2= 

palmitic acid; 3= palmitoleic acid; 4= stearic acid, 5= oleic acid, 6= linoleic acid, 7= α-

linoleic acid. 
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Figure 2. Antimicrobial activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) against Gram-

negative microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  PEB 

in PBS;  PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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Figure 3. Antimicrobial activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) against Gram-

positive microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  PEB 

in PBS;  PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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Figure 3 (Continuation). Antimicrobial activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) 

against Gram-positive microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) 

respectively (  PEB in PBS;  PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± 

standard deviation.
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Figure 4. Antimicrobial activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) against fungi 

microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  PEB in PBS;  

PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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Figure 5. Anti-adhesive activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) against Gram-

negative microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  PEB 

in PBS;  PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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Figure 6. Anti-adhesive activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) against Gram-

positive microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  PEB in PBS; 

 PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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Figure 6 (Continuation). Anti-adhesive activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) 

against Gram-positive microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  

PEB in PBS;  PEB in PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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Figure 7. Anti-adhesive activity of the biosurfactants produced by Lactobacillus pentosus (PEB) and Lactobacillus paracasei (PAB) against fungi 

microorganisms. PEB and PAB were extracted using phosphate buffer saline (PBS) and phosphate buffer (PB) respectively (  PEB in PBS;  PEB in 

PB;  PAB in PBS;  PAB in PB). The results represent the average of triplicate experiments ± standard deviation.
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TABLE 1. Chemical composition and surfactant properties of the cell-bound biosurfactants produced by the Lactobacilli strains under study.

Cell-bound biosurfactant PEB in PBS PEB in PB PAB in PBS PAB in PB

CMC (mg/mL) 1.26±0.11 0.81±0.08 1.35±0.13 1.26±0.11

ST reduction (mN/m) 19.2±0.57 19.7±0.22 25.1±0.49 20.9±0.41

Protein content (%) 12.6±1.07 30.7±1.54 21.19±0.18 58.22±3.14

Carbohydrate content (%) 7.7±0.57 19.5±1.17 5.47±1.19 14.24±3.81

Lipid content (%) 50.5±2.27 41.8±2.51 24.40±1.15 13.66±1.22

PEB and PAB: biosurfactants produced by L. pentosus and L. paracasei and extracted using phosphate buffer saline (PBS) and phosphate 

buffer (PB) respectively.
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TABLE 1S. Biosurfactant concentration that led to 50% and 100% of growth inhibition between the values assayed. 

PEB in PBS PEB in PB

Microorganisms Dose to achieve 50% 
growth inhibition (mg/mL)

Dose to achieve 100% 
growth inhibition (mg/mL)

Dose to achieve 50% 
growth inhibition (mg/mL)

Dose to achieve 100% 
growth inhibition (mg/mL)

Gram-negative pathogens
E. coli 50 ND 50 ND
P. aeruginosa 25 50 25 ND
Gram-positive pathogens
S. aureus 50 ND 25 50
S. epidermidis ND ND ND ND
S. agalactiae 25 50 50 50
S. pyogenes 25 ND 50 ND
Fungi
C. albicans 50 ND 50 ND

PAB in PBS PAB in PB
Dose to achieve 50% 

growth inhibition (mg/mL)
Dose to achieve 100% 

growth inhibition (mg/mL)
Dose to achieve 50% 

growth inhibition (mg/mL)
Dose to achieve 100% 

growth inhibition (mg/mL)
Gram-negative pathogens
E. coli 12.5 50 25 50
P. aeruginosa 50 50 25 50
Gram-positive pathogens
S. aureus 50 ND 25 50
S. epidermidis 25 50 25 50
S. agalactiae 25 50 12.5 50
S. pyogenes 25 50 50 50
Fungi
C. albicans 25 50 50 50
ND: not inhibition at the concentrations assayed; PEB and PAB: biosurfactants produced by L. pentosus and L. paracasei and extracted using 
phosphate buffer saline (PBS) and phosphate buffer (PB) respectively.
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TABLE 2S. Biosurfactant concentration that gave 50% or 100% of anti-adhesive capacity between the values assayed. 

PEB in PBS PEB in PB

Microorganisms Dose to achieve 50% 
microbial inhibition (mg/mL)

Dose to achieve 100% 
microbial inhibition (mg/mL)

Dose to achieve 50% 
microbial inhibition (mg/mL)

Dose to achieve 100% growth 
inhibition (mg/mL)

Gram-negative pathogens
E. coli ND ND ND ND
P. aeruginosa 3.13 ND 3.13 ND
Gram-positive pathogens
S. aureus 3.13 ND 3.13 ND
S. epidermidis ND ND 6.25 ND
S. agalactiae 3.13 ND 6.25 ND
S. pyogenes 1.57 ND 3.13 ND
Fungi
C. albicans ND ND ND ND

PAB in PBS PAB in PB
Dose to achieve 50% 

microbial inhibition (mg/mL)
Dose to achieve 100% 

microbial inhibition (mg/mL)
Dose to achieve 50% 

microbial inhibition (mg/mL)
Dose to achieve 100% 

microbial inhibition (mg/mL)
Gram-negative pathogens
E. coli ND ND ND ND
P. aeruginosa 3.13 ND 6.25 ND
Gram-positive pathogens
S. aureus 3.13 ND 12.5 ND
S. epidermidis 12.5 ND 25 ND
S. agalactiae 3.13 ND 3.13 ND
S. pyogenes 6.25 ND ND ND
Fungi
C. albicans ND ND ND ND

ND: not inhibition at the concentrations assayed; PEB and PAB: biosurfactants produced by L. pentosus and L. paracasei and extracted using 
phosphate buffer saline (PBS) and phosphate buffer (PB) respectively.


