AURIX TC277 Multicore Contention Model
Integration for Automotive Applications

Enrico Mezzetti*, Luca Barbina, Jaume Abella*, Stefania Bottal, Francisco J. Cazorla*
* Barcelona Supercomputing Center (BSC), Spain
f Magneti Marelli S.p.A., Italy

Abstract—Embedded systems industry needs reliable and tight
worst-case execution time (WCET) estimates for critical applica-
tions running on multicores, as a prerequisite to their adoption.
While industry already uses reliable tools for single-core WCET
estimation and several multicore contention models (MCMs) have
been proposed, their combination have not been shown to be
fully compatible with the automotive industrial practice yet.
This paper reduces this gap by presenting a framework for the
integration of MCMs into industrial WCET estimation practice.
We illustrate such integration for a Magneti Marelli powertrain
control unit on an Infineon AURIX TC277 multicore platform.

I. INTRODUCTION

Multicore microcontrollers, such as the Infineon AURIX
TC27x family [1], are increasingly adopted in the automotive
domain to respond to the high-performance needs of Automo-
tive Driving Assistance Systems (ADAS) and connected cars,
among others. Verification and validation (V&V) of automo-
tive systems against [SO26262 functional safety standard [2]
requires proving that the risk of failing to meet their timing
constraints for critical real-time tasks is residual. In the case
of multicores, contention effects on the access to hardware
shared resources cause that co-running tasks affect each others’
timing behavior, and hamper deriving tests scenarios in which
worst-case contention effects are properly captured.

Recently, several approaches have been proposed to cap-
ture contention effects in commercial off-the-shelf (COTS)
multicores by means of measurement-based approaches, thus
fitting automotive timing analysis practice. Those approaches,
that target multicores such as the NXP P4080 [3], [4], the
Cobham Gaisler LEON4 [5], and the Infineon AURIX TC27x
processor family [6], however, have not addressed in detail
their integration with real industrial use cases.

In this work, we tackle the challenge of integrating a
measurement-based multicore contention model (MCM) on an
industrial application as a vehicle to illustrate how integration
can be successfully achieved. In particular, we consider the
integration of the Infineon AURIX TC27x MCM [6] on
a powertrain automotive use case of Magneti Marelli. The
integration approach presented in this paper has allowed the
end user integrating the MCM on the engine control and trans-
mission control applications (part of the powertrain control
unit) on its premises, without external intervention. Results
show that tight and reliable contention bounds can be obtained
for AURIX TC277 platforms; and the quantitative evidence
obtained allows scheduling applications efficiently and going
through the certification process.

II. INTEGRATION APPROACH

Target Platform. The AURIX™ TC277 [1] (see Figure 1)
equips three TriCore™ cores: a low-power (1.6E) and two
high-performance cores (1.6P). All cores have their own
code scratchpad (PSPR), data scratchpad (DSPR), code cache
(ICache) and data cache (DCache for 1.6P and DRB for 1.6E).
Cores access the memory system through a crossbar (named
SRI). The memory system includes a SRAM device, interfaced
with the Local Memory Unit (LMU) and a FLASH device,

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

32K 384KB 1MB 1MB
RAM | |DFlash PFlash O PFlash 1 N
MU PMU Bridge | &
4 1 g
=]
SRI Cross Bar o
t1 t%t $ % g
=
PMIL DMI PMI DMI z
32KB | 16KB | 120KB 8KB 24KB 8KB 112KB 32B 2
PSPR [ICache | DSPR |DCache PSPR |ICache | DSPR DRB ’m
TriCore™ 1.6P TriCore™ 1.6E @
[TriCore™ 1.6P

Fig. 1. Block Diagram of the AURIX™ TC-27x

interfaced with the Program Memory Unit (PMU), which
includes 3 regions, one for data (DFlash) and two for code
(PFlashO and PFlashl). Segments in both the PMU and LMU
can be regarded as cacheable or uncacheable. Finally, applica-
tions are configured so that their data, stack and functions are
mapped explicitly to specific devices, either shared memories
or local scratchpads, together with their cacheability options.

Target MCM. MCMs builds on a timing estimate of the
execution time of the task (7,) in isolation (C}L‘“’l), i.e. without
contention, to derive a multicore estimate of 7,’s execution
time (C7"*¢). To that end, the MCMs bound the contention
Ta’s Tequests can suffer in the access to the hardware shared
resources, A" so that Cu¢ = Ol 4 Acont,

Let us assume a multicore with a single shared resource
that accepts a single type of request. Further assume a task
under analysis 7, and one contender task 7. In this simplified
scenario, and building on the time predictable round-robin
arbitration in the AURIX, the worst-case contention 7, can
cause on T, i.e. Agfﬁ, is shown in Equation 1, where ny is
the number of 7, requests to target shared resource and [is
the latency of those requests.

()]

In the more general (and complex) case, several resources
exist, accepting requests with different latencies. In the AU-
RIX, the target resource of each request is a configuration
dependent subset of (ram.dflash.pflashO,pflashl). Note that
since the crossbar supports parallel transactions on different
interfaces, contention may happen only between requests
targeting the same interface. Furthermore existing monitors
might not capture the exact access latencies and access count
to each of the shared resources in the AURIX. To capture
these complexities, we build on the ILP (Integer Linear
Programming) MCM presented in [6]. Furthermore, the model
in Equation 1 builds on two sets of parameters:

o Platform dependent parameters capture the worst con-
tention an access to a shared resource can suffer due to
other accesses to any shared resource (/). Those values
need to be derived just once for each platform, so they
are already available along with the MCM.

e Application dependent parameters capture application
characteristics — mostly related to the number of accesses
to each hardware shared resource (n,) — needed to
leverage the amount of contention that the application
can experience. Optionally, the model admits application
dependent parameters also for applications running si-
multaneously to leverage the actual maximum contention

n .
AT = min(ng,) x 1

Algorithm 1 Excerpt of the integration code framework

: start_profile_N();

: User code

: stop_profile();

: write_profile((word *) LOCAL_DSPR);
: signal(LOCAL_DSPR);

. wait(CPUO_DSPR);

QU AW~

that can be experienced with such contender rather than
the maximum contention against any contender.

Deriving application-dependent parameters requires the in-
strumentation of the application to collect information with
the Debug Support Unit (DSU). In particular, the events
monitored from the application are: CCNT (cycle count),
ICNT (instruction count), PCACHE_HIT (program cache
hit), PCACHE_MISS (program cache miss), DCACHE_HIT
(data cache hit), DCACHE_MISS_CLEAN (data cache miss
clean), DCACHE_MISS_DIRTY (data cache miss dirty),
PMEM_STALL (stall cycles for the program interface), and
DMEM_STALL (stall cycles for the data interface). Further

details can be found in the AURIX TC27x documentation.
Practical Integration Framework. The integration has
been performed with a flexible approach providing users with
a skeleton where they can embed the analyzed task, either
inlining the code or placing a function call. An excerpt of
this code is shown in Algorithm 1, and the location for the
integration of users’ code is line 2. Since the number of
events to be monitored (the 9 events described before) is
larger than the number of Performance Monitoring Counters
(PMCs) available (only 3), three rounds of measurements are
needed. This requires replacing N in line 1 by 1, 2 or 3 for
each measurement round so that the appropriate events are
monitored. The call in line 4 dumps PMC readings to a spe-
cific memory region, which are extracted automatically with
appropriate scripts. Hence, after the 3 sets of measurements,
events needed by the multicore contention model are available.
The contention model has been implemented as a Python
script to avoid portability issues. Its computational cost is
negligible (largely below 1 second). The Python script op-
erates the event counts to estimate the access counts to the
shared hardware resources, and how much contention could be
experienced (cycles). The script accepts either one input file
with the PMC readings of the task being analyzed or several
input files where the additional files include PMC readings for
contender tasks (those that would be run simultaneously in the
other cores). If only the first file is provided, the contention
model estimates execution time bounds valid regardless of the
software run on each other core. Instead, if files are provided
for contenders, then tighter bounds can be obtained, but they
are only valid if tasks running in the other cores are those
contenders, thus trading off between tightness and flexibility.

III. EVALUATION

We assess the proposed MCM against two functions ex-
tracted from the complete powertrain application. We did not
perform the evaluation on an end-to-end automotive task, as
it has been observed that the approach itself is particularly
efficient (and naturally applied) at the level of software units,
hence during unit-testing, rather than on run-time entities.

We selected two illustrative functions, 4 and F'g, run
them on a high-performance core, and assess the contention
they could experience due to tasks running in the other high-
performance core. The location where code and data are
mapped determines the memory they are mapped to and hence,
the potential contention in the system. The analyzed functions
characteristics are reported in Table L.

The same PMC collection process has been applied to
both functions under analysis. Raw numbers are reported

TABLE I
CHARACTERIZATION OF THE AUTOMOTIVE FUNCTIONS.

Code [Data Characterization

F4 | PSPR |DSPR Function is small enough to fit in the local
scratchpads (PSPR and DSPR). No activity is
expected on the cross-bar and model should
predict no contention

Function accesses the cross-bar for fetch-

F'p | PFlashO | DSPR

(Stack), ing code and data. Both code and data are
PFlash1 mapped to the PFlash, but on separate areas
(Constants) that are accessed from different interfaces.

in Table II. As expected, F'4 completely fits into the core
scratchpads and does not generate crossbar traffic (except for 7
DMEM_STALL cycles caused by the measurement protocol).
F'p instead fetches code and data from the Flash device and,
despite the good cache usage, uses the crossbar, which in turn
exposes F'p to inter-core contention.

TABLE 11
PMC READINGS FOR F'y AND F'g.

Fy
CCNT 16361 |PCACHE_MISS O[DCACHE_HIT 0
ICNT 17538|PMEM_STALL O[DCACHE_MISS_CLEAN| O
PCACHE_HIT 0|DMEM_STALL 7|DCACHE_MISS_DIRTY| O

Fp
CCNT 20969|PCACHE_MISS| 173|DCACHE_HIT 263
ICNT 23734|PMEM_STALL |[1380|DCACHE_MISS_CLEAN| 9
PCACHE_HIT| 9614|DMEM_STALL | 156|DCACHE_MISS_DIRTY| O

We feed the MCM with the PMC readings in Table II using
the framework described in Section II. Results show that F'4 is
insensitive to contention, as expected. Instead, the integration
of the MCM with F'p proves that its execution time can only
grow up by 7.2% (1,504 cycles) due to multicore contention in
the other high-performance core. Note that if execution time
growth was too high, the MCM would allow tightening it by
accounting for measurements from contenders.

Overall, the successful integration and evaluation of this
methodology shows that (1) no roadblock is foreseen to inte-
grate the methodology on industrial use cases; (2) multicore
contention bounds can be applied at unit testing, thus enabling
the application of the methodology in early design stages; (3)
the method and results obtained provide evidence needed for
certification; and (4) the application of this methodology can
be carried out by end users on their own, thus providing them
with independence to analyze their software.

ACKNOWLEDGEMENTS

The research leading to this work has received funding
from the European Union’s H2020 programme under grant
agreement No 644080 (SAFURE), by the Spanish Ministry
of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P and the HiPEAC Network of Excellence.
Jaume Abella and Enrico Mezzetti have been partially sup-
ported by MINECO under Ramon y Cajal and Juan de la
Cierva-Incorporacién postdoctoral fellowships number RYC-
2013-14717 and 1JCI-2016-27396 respectively.

REFERENCES

[1] http://www.ehitex.de/application-kits/infineon/2531/
aurix-application-kit-tc277-ttt, AURIX Application Kit TC277 TFT.

[2] International Organization for Standardization, ISO/DIS 26262. Road
Vehicles — Functional Safety, 2009.

[3] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in EDCC, 2012.

[4] J.Bin et al., “Studying co-running avionic real-time applications on multi-
core COTS architectures,” in ERTS?, 2014.

[5] E. Diaz et al., “MC2: Multicore and Cache Analysis via Deterministic
and Probabilistic Jitter Bounding,” in Ada-Europe 2017, 2017.

[6] , “Modelling multicore contention on the AURIX TC27x,” in DAC,

2018.

