
Synthesis of Synchronous Elastic Architectures

Jordi Cortadella∗

Universitat Politècnica
de Catalunya

Barcelona, Spain

Mike Kishinevsky
Strategic CAD Lab, Intel Corp.

Hillsboro, OR, USA

Bill Grundmann
Strategic CAD Lab, Intel Corp.

Hillsboro, OR, USA

ABSTRACT
A simple protocol for latency-insensitive design is presented.
The main features of the protocol are the efficient imple-
mentation of elastic communication channels and the au-
tomatable design methodology. With this approach, fine-
granularity elasticity can be introduced at the level of func-
tional units (e.g. ALUs, memories). A formal specification
of the protocol is defined a nd a n e fficient s cheme f or the
implementation of elasticity that involves no datapath over-
head is presented. The opportunities this protocol opens for
microarchitectural design are discussed.

Categories and Subject Descriptors: B.5.2 [Register-
transfer-level implementation]: Design Aids.

General Terms: Design, Theory, Verification.

Keywords: Latency-insensitive design, latency-tolerance,
protocols, synthesis.

1. MOTIVATION
In current nanotechnologies, calculating the number of

cycles required for transmitting an event from a sender to a
receiver is a problem that often cannot be solved until the
final layout has been generated.

The main motivation of this work is illustrated by Fig. 1,
depicting a system with four functional units, each one de-
livering the result to a register (shadowed boxes). Fig. 1(a)
represents a cycle accurate specification o f t he s ystem (at
the RTL level or level higher than RTL) in which every
functional block has a 1-cycle delay.

Imagine that for scalability reasons, when migrating to
a new technology, the long wires C → A and D → B must
be pipelined and the unit C must be substituted by an-
other one (C′) with variable delay (e.g. 1 cycle for short
operands and 2 cycles for long operands). Similar transfor-
mations can be applied due to a different motivation - an
exploration of new micro-architectures, e.g. the variable de-

∗
This work has been partially supported by a grant from

Intel Corp., CICYT TIN2004-07925 and a Distinction for
Research by the Generalitat de Catalunya.

A B C D

A B DC’

(a)

(b)

Figure 1: Elasticization of a synchronous system.

lay unit can be used either for cycle time optimization or
for power optimization. The resulting microarchitecture is
depicted in Fig. 1(b). This type of migrations in the cur-
rent design practice requires drastic manual changes in the
control units and the data path to accommodate to the new
delays of the system.

In this paper, we propose a simple control scheme to trans-
form conventional synchronous systems into elastic, thus
tolerating in a natural way any variability in the compu-
tation and communication delays. The contributions of this
paper are inspired on the work by other authors in the
area of latency-insenstive (LI) design [3] and synchronous
interlocked pipelines [11]. They are also inspired on de-
synchronization [2, 9, 17], an approach to transform syn-
chronous specifications into asynchronous implementations.

1.1 Contributions
The main contribution of this work is the proposal of a

simple communication protocol that makes the system to-
tally elastic and that can be applied to any level of granu-
larity without any overhead in the datapath of the system.

Elastic systems show notorious benefits: they can be ob-
tained automatically from conventional high-level or RTL
specifications and guaranteed correct-by-construction, they
are tolerant to variations of computational and communica-
tion delays and their modularity enables a wide exploration
of different architectures trading-off power and delay.

With regard to previous work on latency-insensitve de-
sign, the contributions of this work are as follows:

(1) An abstract model of the protocol is defined. The
model is suitable for formal verification and for refinement
with the goal of exploring different implementations of elas-
tic channels and buffers. The conceptual implementation
of LI systems proposed in [4] and interlock pipelines in [11]
are particular solutions in this design space. To be more
precise, the protocol sketched in [3, 4] although at the first
glance may appear identical to ours is, in fact, significantly
more complex: while a state of our protocol is determined
by the current control values on the channel, their protocol
requires state information to remember the previous value of
the backpressure wire (stop). This (and other complicated

The final publication is available at ACM via
http://dx.doi.org/10.1145/1146909.1147077

V V V V

Data

sender

Data

Valid

Stop

En En En En

Stop

Valid

receiver

Figure 2: Unscalable elastic data transmission.

implementation choices) led to a complex control machine,
an overhead of 2-3x in the sequential elements of the data-
path compared to an ordinary flip-flop, and an extra cycle
of latency at every point where two or more information
channels merge at a single block or fork out of the block.

(2) An efficient latch-based implementation with no
datapath overhead and clock-gating for all latches that guar-
antees minimum activity. With regard to [11], complete
automation from RTL specifications is proposed and new
fork/join structures without combinational cycles are pre-
sented. While [11] considers pipeline stages only, we show
that any level of granularity (from single gates, to large
blocks) can be selected for converting to an elastic form.

(3) The proposed scheme can be applied to different
levels of granularity, i.e. in white-box (e.g. micropro-
cessor design) and black-box scenarios (SoC IPs). Contrary
to [3], systems can be made elastic without any delay
overhead, i.e. preserving the same sequential latency as
the original synchronous design.

2. A PROTOCOL FOR ELASTIC SYSTEMS
An elastic system is a collection of elastic modules and

elastic channels. Elastic channels have two control wires
implementing a handshake between the sender and the re-
ceiver. The wires are called valid, in the forward direction,
and stop, in the backward direction. The role of these wires
is similar to the one of the request/acknowledge wires in
asynchronous systems. Depending on the state of the con-
trol wires, a channel can carry valid or invalid data items,
that we will call tokens and bubbles, respectively.

For simplicity in the explanation, we will initially as-
sume that the elastic modules are combinational blocks and
latches. In section 4.2 we will show the generalization to
modules with fixed and variable sequential latencies.

In low granularity elastic designs, all flip-flops are replaced
by Elastic Buffers (EB). An EB can be implemented as a
pair of Elastic Half-Buffers, (EHB), in the same fashion as
flip-flops can be implemented as a pair of two transparent
latches with opposite polarity (master and slave).Thus, the
designer of an elastic system has the choice between using
edge-triggered or transparent latches.

Fig. 2 depicts an example of a naive elastic implementa-
tion for transmitting data between two units. Each register
has an associated valid bit (V) that keeps track of the va-
lidity of the stored data. The clock signal is not explicitly
shown and the enable signal (En) indicates when new data
is stored into the register. The chain of AND gates man-
ages the back-pressure generated by the receiver when it is
not able to accept data (Stop = 1). The scheme in Fig 2
is not scalable due to the long combinational path from the
receiver to the sender. When the pipeline is full, i.e. all V ’s
are at 1, the delay of the Stop chain becomes critical.

2.1 The SELF protocol

Valid

*

*

S
e
n
d
e
r

R
e
c
e
iv

e
r

Stop

Data

Valid

S
e
n
d
e
r

R
e
c
e
iv

e
r

Data

Valid

StopS
e
n
d
e
r

R
e
c
e
iv

e
r

Transfer (T) Idle (I) Retry (R)

Figure 3: The SELF protocol.

Cycle 0 1 2 3 4 5 6 7 8 9
Data ∗ A B B B C ∗ ∗ D D
Valid 0 1 1 1 1 1 0 0 1 1
Stop 0 0 1 1 0 0 0 1 1 0
SELF I T R R T T I I R T

LID τ T T τ T T τ τ τ T

Table 1: A trace committing the SELF protocol.

This section describes the protocol SELF (Synchronous
ELastic Flow), suitable for scalable fine-grain elastic com-
munication.

Data transfer is performed by using the control signals
Valid (V) and Stop (S) that determine three possible states
in the channel (see Fig. 3):

(T) Transfer, (V ∧ ¬S): the sender provides valid data
and the receiver accepts it.

(I) Idle, (¬V): the sender does not provide valid data.

(R) Retry, (V ∧S): the sender provides valid data but the
receiver does not accept it.

The sender has a persistent behavior when a Retry cycle is
produced: it maintains the valid data until the receiver is
able to read it. The language observed at a SELF channel can
be described by the following regular expression: (I∗R∗T)∗

The absence of a subtrace RI implies the persistency of
the behavior. Table 1 shows an example of a trace com-
mitting the SELF protocol and transmitting values ABCD.
When V = 0, the value at the data bus is irrelevant (cy-
cles 0, 6 and 7). The receiver can issue a Stop even when
the sender does not send valid data (cycle 7). In Retry the
sender persistently maintains the same valid data as in the
previous cycle during cycle 3, 4 and 9 1.

2.2 Specification of elastic buffers
Figure 4 shows the interface of an elastic buffer (EB) with

one input and one output channels. The extension to multi-
input/output channels will be discussed in Section 4.1.

There can be different architectures to implement an EB
trading-off area, delay and power consumption.

The abstract model for an EB is described in Fig. 5.
Briefly, an EB is modeled as an unbounded FIFO (possibly

1 [4], gives an incomplete description of an implementation
protocol. Assuming our recovery of that protocol is accu-
rate, its transfer condition is more complex than that of
SELF and requires more complex implementation with addi-
tional sequential buffers. Line LID of Table 1 shows that the
same sequence of values on the channel wires in [4] signifies
transfer of a different sequence of data: ABBCD, because a
token is transferred on the LID channel when V ∧ ¬(S ∧ S−),
where S− stands for the value of S at the previous cycle.
Stop pulses of length 1 are ignored here. B sent through the
channel during cycle 2 is assumed to be successfully trans-
mitted to the receiver.

O
u
tp

u
t

E
n
v
ir

o
n
m

e
n
t

In
p
u
t

E
n
v
ir

o
n
m

e
n
t

Din

Vin
Vout

Dout

SoutSin

Figure 4: Interface of an EB with one input and one
output channels.

...B

rd

i+1i

wr

i+k

State variables: B : array[0 . . .∞] of data; rd, wr : N; retry : B;
Initial state: wr ≥ rd = 0; retry = false;
Invariant: wr ≥ rd

Combinational behavior:

Vout =

8<: true if retry
false if rd = wr
∗ otherwise

Dout =

B[rd] if Vout

∗ otherwise
Sin = ∗

Sequential behavior:

rd+ =

rd + 1 if Vout ∧ ¬Sout

rd otherwise
retry+ = Vout ∧ Sout

wr+ =

wr + 1 if Vin ∧ ¬Sin

wr otherwise
B+[wr] = Din

Liveness properties (finite unbounded latencies):

Forward latency: G(rd 6= wr =⇒ F Vout)
Backward latency: G(¬Sout =⇒ F ¬Sin)

Figure 5: Abstract model for an EB.

with the initial content) that commits the SELF protocol at
the input and output channels. The notation X+ is used to
represent the next-state value of variable X. The symbol ’∗’
represents a non-deterministic value (don’t care).

B is an infinite array that stores the items written into the
buffer, but not sent to the output yet. The variables wr and
rd are the write and read indices, respectively. The value
k = wr − rd is the current number of items in the buffer.

The retry variable remembers whether a transfer was at-
tempted in the previous cycle. If retry is true, the same data
item as in the previous cycle is issued and Vout = true. If
the buffer does not contain any item (rd = wr), no transfer
can be performed (Vout = false). Finally, the value Vout = ∗
represents the non-deterministic behavior of a buffer with
finite, but unbounded delay: the items stored in the buffer
will eventually be transferred to the output after a finite un-
known delay. Sin can non-deterministically stop any data
transfer at the input channel. The behavior of the indices of
the array is modeled by the rd+ and wr+ equations. When
a data transfer is produced at the corresponding channel
(V ∧ ¬S), the value of the index is incremented.

Two liveness properties expressed in linear temporal
logic [15] ensure finite response time: (1) data from the EB
will eventually be sent to the output, and (2) a non-stop at
the output will eventually be propagated to the input.

2.3 Verification of EBs
The model in Fig. 5 has been used as specification to

check that every implementation presented in this paper is
a refinement of this model. The proofs have been performed
by using the features of refinement verification and data type
reductions offered by SMV [13].

We have also verified that the sequential composition of

two EBs is a refinement of an EB. This guarantees that EBs
with specific depths can be built by composing implementa-
tions of EBs that refine the model presented in this paper.

3. IMPLEMENTATION OF EBS

The implementation of an EB can be decomposed into
two parts: data-path and control. The former deals with
the data (Din and Dout) whereas the latter manages the
valid/stop handshakes and generates the enabling signals
for the latches in the datapath.

Two important parameters of an EB are the forward, Lf ,
and backward, Lb, latencies. The Lf is the latency of for-
ward propagation of the data and the Valid bit when the re-
ceiver is ready. The Lb is the backward latency for the stop
signals. According to the unbounded specification of Fig. 5,
Lf and Lb can be any value greater than zero (including
non-deterministic values). Lf = 0 and Lb = 0 would reduce
the EB to a channel. Having one of the latencies equal to 0 is
possible in parts of the design, but does not scale, due to the
long combinational delays and combinational cycles. How-
ever, for performance optimization and distributing the EBs
across long communication channels and reusing them as se-
quential wire repeaters, the following constraint should be
satisfied [3]: Lf = Lb = 1. When Lf and Lb are not zero,
combinational paths that propagate the valid/stop signals
can be restricted to neighboring stages. This avoids situa-
tions like the one shown in Fig. 2, with Lb = 0 and a long
combinational path for the stop signal.

The capacity of an EB defines the maximal number of data
items that can be simultaneously stored inside the buffer.
The following property holds:

Property 3.1. The capacity of an EB, C, must satisfy
the following constraint: C ≥ Lf + Lb

Therefore, for the case of interest (Lf = Lb = 1) the
minimal possible capacity is C = 2. Hence the data path of
an EB can be constructed with two storage cells and different
write/read policies, e.g. the different number of read and
write ports. Carloni in [4] uses a structure with two read
and write ports to implement his Relay Station that leads to
high area and delay overhead and complex control protocol.
Chelcea and Nowick [7] introduced an elastic FIFO that can
be used for communication between elastic modules.

We have derived different implementations of an EB based
on the number of ports and different control policies. In this
paper we focus on the most efficient structure in which writes
always occur to the first cell, and reads always done from
the second cell. We proved that this structure cannot be im-
plemented using single-edge flip-flops controlled by the same
frequency clock as used by the environment. Intuitively, this
is because such a structure would have a latency of two be-
tween the write operation through the input channel and
the read operation from the output channel. A mechanism
for double-pumping in one cycle is required. This can be
implemented by using two transparent latches of different
polarity, similar to a master-slave structure, but with the
independent enable signals for the two latches2. Alternative
(more expensive) structures, that are based on single-edge
flops, can be used for high-level and performance modeling,
formal verification and FPGA mapping of elastic designs.

Fig. 6 depicts the FSM specifications for the control of a
latch-based EB and the overall structure of the design. The

2Similar idea was used in different domains [2, 11,17]

...........
..........
..........
............

..........

.

..........

.
..

..........
..........
...........

...........
..........
..........
............

..........

.

..........

.
..

..........
..........
...........

...........
..........
..........
............

..........

.

..........

.
..

..........
..........
...........

Empty Half Full
.

..........................
..........................

.
...........................

..
..........
...........
............
............
...........
..........
..........

.
..........
...........
............
............
...........
..........

...
..............
............
.........
........
.........
.........

...........
.

............
..

.
............
..

...........
.
..........................

.........
........
.........
............
..............

q q

i i

j ��

�
Vr VrSl

V l Sr

Vl/EmEs VlSr/Em

V lSr Sr/Es

V lSr

VlSr/EmEs

L H

L

Dl

Vl
S l S r

Vr

Dr

Em Es

Control

Figure 6: Specification of the latch-based EB.

Vl

Sl

Em
Es

Vr

Sr

Vl

Sl

Em
Es

Vr

Sr

L

H L

H

(b)
LH

L H

L

(a)

Figure 7: Two implementations of an EB control.

transparent latches are shown with single boxes, labelled
with the phase of the clock, L (active low) or H (active
high). The control drives latches with enable signals. To
simplify the drawing the clock lines are not shown. The en-
able signals must be AND-ed with the corresponding clock
phase for a proper operation. An enable signal for transpar-
ent latches must be emitted on the opposite phase and be
stable during the active phase of the latch. Thus, the Es

signal for the slave latch is emitted on the L phase.
The FSM specification of a Fig. 6 is similar to the specifi-

cation of a 2-slot FIFO: in the Empty state no valid data is
captured in the data-path, in the Half-full state, an output
slave latch keeps valid data, in the Full state - both latches
keep valid data and the EB requests the sender to stop. With
proper encoding of this specification one can derive an imple-
mentation of the control shown in Fig. 7(a) with flip-flops
drawn as two back-to-back transparent latches. Splitting
flip-flops and retiming leads to a fully symmetric implemen-
tation shown in Fig. 7(b).

4. ADVANCED STRUCTURES

4.1 Join and fork
In general, EBs can have multiple input/output channels.

This can be supported by using elastic Fork and Join control
structures. Figure 8(a) shows an implementation of a Join.
The output valid signal is only asserted when both inputs
are valid. Otherwise, the incoming valid inputs are stopped.
This construction allows to compose multiple Joins together
in a tree-like structure.

Figure 8(b) depicts a lazy fork. The controller waits for
both receivers to be ready (S = 0) before sending the data3.
A more efficient structure shown in Fig. 8(c), the eager fork,
can send data to each receiver independently as soon as it
is ready to accept it. The two flip-flops are required to “re-
member” which output channels already received the data.
This structure offers performance advantages when the two
output channels have different backpressure.

It is important to realize that the connection of a lazy
fork with a join creates a combinational cycle in the control.
This situation may arise when an arbitrary netlist of combi-
national blocks without latches in between is elasticized. To
avoid this phenomenon, the eager fork can be used instead.
The reader can verify that the connection with the eager
fork does not produce combinational cycles.

3This implementation is identical to the one in [11].

V
r

S
r

V
l1

V
l2

S
l1

S
l2

(a) Join

V
r1

V
r2

S
r1

S
r2

V
l

S
l

(b) Lazy fork

V
r1

r1S

V
r2

S

1

1

V
l

S
l

(c) Eager fork

r2

Figure 8: Controllers for elastic Join and Forks.

VrVl

D
l D

r

S l
S r

[0−k]

go done

Variable Latency Unit

EBEB

ack

Figure 9: Control for variable-latency units.

4.2 Variable-latency units
Variable-latency units can be handled in a natural way

with the SELF protocol by using the control structure shown
in Fig. 9. A handshake with the datapath unit is required
to keep track of the completeness of the operation. This
can be done by means of three signals: go (start the opera-
tion), done (operation completed) and ack (the receiver has
accepted the data and a new operation can start). This is
a typical handshake for variable-latency units such as tele-
scopic units [1].

Since the bubble insertion preserves correctness of the be-
havior it is also possible to convert some units of the system
from fixed to variable latency. For instance, one could re-
place a 1-cycle ALU by a variable-latency ALU optimized for
the typical data case (e.g. short carry propagation). This
ALU calculating with latency 1 for the typical data mix,
and with latency 2 for the rare data mix, can lead to per-
formance improvement by designing the whole pipeline for
a faster clock cycle, and to area reduction by reducing the
number of logic gates per pipeline stage.

Under the control of some supervisor algorithm, variable
latency can also be used for temporal and gradual shut-
down/wake-up of computation units, trading-off power vs.
performance at different levels of granularity.

5. SYNTHESIS FLOW
The elasticization of a synchronous netlist can be totally

automated. We next present the steps to synthesize an elas-
tic netlist from a conventional synchronous netlist:

(1) The flip-flop-based registers in the data-path are trans-
formed into latch-based registers (master and slave) with
independent enable signals. This step is not required if the
netlist is already designed with latches.

(2) A control layer that generates the enable signals for the
latches of the datapath is built as follows:

• For every flip-flop (latch) in the original datapath, an
EB (EHB) controller is included in the control layer.
The implementation of the EB is shown in Fig. 7.

• For every block, a controller with a join (J) at the

J J F FVLEB EB EB EB

EB

EB

EB

go
done
ack

Din Dout

V/Sin V/SoutDA B C’

Enable signals Enable signals

DATAPATH

CLK

Figure 10: Control layer for the netlist in Fig. 1(b).

D3D1

V1S1 V3S3

Din Dout

Vout SoutVinSin

DP1 DP2 DP3

Cntrl1 Cntrl2 Cntrl3

Control

CLK

Figure 11: Hierarchical elasticization.

inputs and a fork (F) at the outputs is built. The
join or fork components can be omitted if the block
has only one input or one output, respectively. The
implementations of J and F are shown in Fig. 8.

• A variable latency controller (VL) must be inserted for
those components having variable latency (see Fig. 9).

• The connection of the controllers with the valid/stop
interfaces is done according to the connectivity of the
corresponding blocks in the datapath.

(3) Micro-architectural exploration can be performed by in-
serting/removing elastic buffers and using variable-latency
units. Thus, design points with different cycle times, area,
performance and power consumption can be explored.

An example of the resulting control layer for the netlist
in Fig. 1(b) is depicted in Fig. 10. The pairs of solid/dotted
wires represent the valid/stop bits of the channels. The sig-
nals go/done/ack in the datapath implement the handshake
protocol for the variable latency unit C′ using the controller
shown in Fig. 9. The pairs of signals going from the con-
trol layer to the data-path are the enable signals for the
master/slaves latches.

5.1 Hierarchical elasticization
Elasticization can be applied to any level of granularity by

considering that each arbitrary block in a netlist is an FSM
with variable delay. This can be done in a straighforward
manner and the details are omitted here for the lack of space.

Elasticization can also be applied hierarchically at multi-
ple levels. An elastic circuit can be considered as a conven-
tional synchronous circuit in which the control layer and the
datapath can be considered to be embedded in a higher-level
datapath. This is illustrated in Fig. 11, in which several
elasticized components (DP1, DP2 and DP3) are merged
together with their controllers. The V and S signals of the
controllers are now considered to be 1-bit data items in a
datapath. This datapath is further elasticized by adding the
bottom control layer. In this way, elasticization between dif-
ferent IP components of a system can be performed.

5.2 Correctness by construction
In Sect. 2, a formal model for the protocol and the EBs

has been presented. This model is an abstraction that can

Master Slave

tokenbubble

M S

PC IF/ID ID/EX MEM/WBEX/MEM

Figure 12: A concurrent model for elastic designs.

be used for compositional verification of complex systems to
guarantee correct system behavior. In particular, Fig. 1(b)
illustrated the insertion of empty EBs in a synchronous
netlist. The following property that guarantees soundness
of this transformation holds:

Property 5.1. The insertion of empty EBs in an elastic
design preserves flow equivalence.

Informally, flow equivalence [8] between two designs guar-
antees that for every output the order of valid data items is
the same4. An example on what flow equivalence means is
illustrated below.

Synchronous
behavior:

a1 a2 a3 a4 · · · ai · · ·
b1 b2 b3 b4 · · · bi · · ·

Elastic
behavior:

a1 ∗ a2 ∗ ∗ ∗ a3 ∗ a4 · · · ai · · ·
b1 ∗ ∗ b2 ∗ b3 b4 · · · bi · · ·

The synchronous behavior shows the trace of values ob-
served at two registers, a and b, at every cycle. After making
the design elastic, some don’t care values marked as invalid
may appear (denoted as ∗). However, the order of valid
data is preserved. It is important that the values at dif-
ferent registers may be shifted in time with respect to the
pure synchronous behavior without affecting the functional
correctness of the system, since any observer of both values
would synchronize the corresponding valid tokens.

While bubble insertion (empty EBs) is correct-by-
construction, token insertion (non-empty EBs) requires care
and partial re-design similar to the standard pipelining.

5.3 Performance evaluation
Performance evaluation is another important aspect in

system design. The behavior of elastic systems can be
modeled by using a subclass of Petri nets called marked
graphs [14], often used to model asynchronous systems. As
an example, Fig. 12 depicts the marked graph model corre-
sponding to the DLX abstraction shown in Fig. 14(a). Each
latch is modeled as a pair of complementary arcs in which
the location of the token indicates whether the latch con-
tains valid (token) or invalid (bubble) data. The transitions
of the marked graph represent the computations between
latches (a simple data transfer if the transition is between
a master and slave latch). Modeling systems with marked
graphs enables the use of an extensive set of tools for the
analytical performance analysis that can be effectively used
at the earliest stages of the design. The authors have imple-
mented computation of the effective cycle time for the SELF
systems based on the separation analysis method from [6].

4Other authors call this property latency equivalence [16].

A
D

D M
u
x

Instruction

memory

M
u
x

M
u
x

A
L

U

Zero?

Branch

taken

Register

file

Data

memory

Sign

extend

M
u
x

IR6..10

IR11..15

4

IR

IF/ID ID/EX EX/MEM MEM/WB

16 32

MEM/WB.IR

PC

Figure 13: The DLX pipeline.

H L H L H L H L H L H L

H L H L H L L H L H

(a)

(c)

(b)

H

L

LL H

PC IF/ID ID/EX EX/MEM MEM/WB

Figure 14: The control layer for the DLX pipelines.

6. A DESIGN EXAMPLE: THE DLX
We use the DLX pipeline [10] to illustrate how elastic-

ity can be used in microarchitectural design and to briefly
review the design flow (Figure 13). We have deliberately
chosen roughly the same example as used by [3] to better
illustrate the efficiency of our approach. It is assumed, for
simplicity, that delay slots are used for handling data haz-
ards and no forwarding is used. The shadowed boxes repre-
sent the registers that store the state of the microprocessor.
From the control point of view, the register file and the
memories can be considered as combinational units.

Figure 14(a) shows an abstraction of the pipeline in which
only the channels among units are shown. The boxes rep-
resent the registers composed of two latches. The diagram
is equivalent for the datapath and control layers. The join
and fork controllers must be used when one unit has more
than one input or output channel, respectively.

Figures 14(b) and 14(c) show a latch-based diagram of the
same pipeline after the insertion of “bubbles”. The shad-
owed latches are the ones initialized with valid data. This
example illustrates that the insertion of bubbles does not
affect the functionality of the system. Thus, the elastic ar-
chitecture is correct-by-construction with respect to insert-
ing empty EBs. This feature is even more interesting when
the bubbles are inserted dynamically - another option in the
micro-architectural optimization.

The criteria for bubble insertion can be different: break
long wires, cycle time reduction, power reduction, etc. Some
of these criteria have been studied in [5, 12].

7. CONCLUSIONS
A novel scheme for latency-insensitive design has been

presented. It combines the modularity of asynchronous de-
sign with the efficiency of synchronous implementations.

The little overhead introduced by the implementation
of the elastic buffers makes this scheme attractive for dif-

ferent levels of granularity and for exploring novel micro-
architectural solutions focusing on the typical instead of
the worst case. Additionally, the correct-by-construction
paradigm of this method enables its applicability at the lat-
est stages of the design, when accurate delay estimations of
data transfers have been performed, without any impact on
the functionality of the system.

8. REFERENCES
[1] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and

M. Poncino. Automatic synthesis of large telescopic units based
on near-minimum timed supersetting. IEEE Transactions on
Computers, 48(8):769–779, 1999.

[2] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin,
and C. Sotiriou. Handshake protocols for de-synchronization. In
Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 149–158. IEEE
Computer Society Press, Apr. 2004.

[3] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design, 20(9):1059–1076, Sept. 2001.

[4] L. Carloni and A. Sangiovanni-Vincentelli. Coping with latency
in SoC design. IEEE Micro, Special Issue on Systems on
Chip, 22(5):12, October 2002.

[5] L. Carloni and A. Sangiovanni-Vincentelli. Combining retiming
and recycling to optimize the performance of synchronous
circuits. In 16th Symp. on Integrated Circuits and System
Design (SBCCI), pages 47–52, Sept. 2003.

[6] S. Chakraborty. Polynomial-Time Techniques for
Approximate Timing Analysis of Asynchronous Systems. PhD
thesis, Stanford University, Aug. 1998.

[7] T. Chelcea and S. M. Nowick. Robust interfaces for
mixed-timing systems. IEEE Trans. Very Large Scale Integr.
Syst., 12(8):857–873, 2004.

[8] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for
system design. Journal of Circuits, Systems and Computers,
12(3):261–304, Apr. 2003.

[9] G. Hazari, M. Desai, A. Gupta, and S. Chakraborty. A novel
technique towards eliminating the global clock in VLSI circuits.
In Int. Conf. on VLSI Design, pages 565–570, Jan. 2004.

[10] J. Hennessy and D. Patterson. Computer Architecture: a
Quantitative Approach. Morgan Kaufmann Publisher Inc.,
1990.

[11] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E.
Schuster, E. G. Mercer, and C. J. Myers. Synchronous
interlocked pipelines. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
pages 3–12, Apr. 2002.

[12] R. Lu and C.-K. Koh. Performance optimization of latency
insensitive systems through buffer queue sizing of
communication channels. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 227–231, Nov. 2003.

[13] K. L. McMillan. Verification of infinite state systems by
compositional model checking. In CHARME, pages 219–234,
1999.

[14] T. Murata. Petri Nets: Properties, analysis and applications.
Proceedings of the IEEE, pages 541–580, Apr. 1989.

[15] A. Pnueli. The temporal logic of programs. In Proceedings of
the 18th IEEE Symposium on Foundations of Computer
Science, pages 46–57, 1977.

[16] S. Suhaib, D. Berner, D. Mathaikutty, J.-P. Talpin, and
S. Shukla. Presentation and formal verification of a family of
protocols for latency insensitive design. Technical Report
2005-02, FERMAT, Virginia Tech, 2005.

[17] V. Varshavsky and V. Marakhovsky. GALA (globally
asynchronous - locally arbitrary) design. In J. Cortadella,
A. Yakovlev, and G. Rozenberg, editors, Concurrency and
Hardware Design, volume 2549 of Lecture Notes in Computer
Science, pages 61–107. Springer-Verlag, 2002.

