
echofs: A Scheduler-guided Temporary Filesystem
to leverage Node-local NVMs

Alberto Miranda, Ramon Nou
Barcelona Supercomputing Center (BSC)

alberto.miranda@bsc.es, ramon.nou@bsc.es

Toni Cortes
Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya
toni.cortes@bsc.es

Abstract—The growth in data-intensive scientific applications
poses strong demands on the HPC storage subsystem, as data
needs to be copied from compute nodes to I/O nodes and vice
versa for jobs to run. The emerging trend of adding denser,
NVM-based burst buffers to compute nodes, however, offers the
possibility of using these resources to build temporary filesystems
with specific I/O optimizations for a batch job. In this work, we
present echofs, a temporary filesystem that coordinates with the
job scheduler to preload a job’s input files into node-local burst
buffers. We present the results measured with NVM emulation,
and different FS backends with DAX/FUSE on a local node, to
show the benefits of our proposal and such coordination.

I. INTRODUCTION

Though current high-performance computer (HPC) systems
perform on the order of tens of hundreds of petaFLOPs, the
recent growth in scientific modeling, simulation and analytic
workloads poses strong demands on the I/O subsystem: even if
current systems can process the data quickly, HPC clusters still
need to load input data into the system and write intermediate
checkpoints and generated results out of it. I/O performance,
however, has struggled to keep up with computing perfor-
mance due to interfering concurrent applications, suboptimal
access patterns, and missing application interfaces [1].

To mitigate this, burst buffers have begun to be integrated
into the HPC storage architecture. A burst buffer is a piece of
fast storage hardware that is made available to a compute node,
either locally (node-local burst buffers) or remotely through
fast interconnection fabrics (remote/shared burst buffers). By
writing data to burst buffers, applications perceive that data
has been quickly saved to persistent storage, even if this
storage is not its ultimate destination. Also, upcoming non-
volatile memory (NVM) technologies such as Intel R© and
Micron R©’s 3DXPointTM provide significantly improved per-
formance over traditional storage media with the added benefit
of data persistence. As such, there is a growing interest in
combining fast conventional DRAM with the slower but denser
NVM [2], [3], [4], leveraging these hybrid memory layouts
to improve I/O. Nonetheless, the inclusion of burst buffers in
the storage architecture has not yet been well-studied nor have
any standard APIs been defined, which means that researchers
often need to spend time trying to find the best way to use
them in their applications.

This usage of burst buffers also has the issue that data
dependencies between jobs are not conveyed to the storage
stack: if Job A generates output data that is going to be

reused by Job B, there is no way for users to influence the job
scheduling process so that this data can be kept in the burst
buffers until Job B starts. Worse yet, given that in many HPC
systems data storage is separate from the main system,that
the I/O stack remains essentially a black box for today’s job
schedulers,Job A’s output data could be staged out to the
cluster’s centralized storage and, at some point in the near
future, staged back into a new set of compute nodes for Job B,
which might end up including some of the nodes allocated to
Job A. Thus, job schedulers could favor a better utilization of
HPC resources by having information about these workflows.

Moreover, new optimization opportunities appear if appli-
cations are able to convey their intended usage of data: for
instance, temporary files could be kept in the compute nodes’
burst buffers until the job completes, at which point they
could be safely deleted without having to stage them out to
centralized storage. Also, accesses to centralized storage could
be arranged to benefit overall I/O. Though this case-by-case
optimizations are not applicable to the general purpose filesys-
tems conventionally used in HPC systems such as GPFS [5],
they can be implemented in a short-lived filesystem linked to
the HPC job lifetime, that relies on the faster burst buffers
for storage and coordinates with the job scheduler and the
application to avoid common performance pitfalls.

In this work we present a user-level filesystem called echofs

that resides between applications and the cluster’s centralized
storage and leverages the local burst buffer hardware available
to compute nodes. The filesystem relies on the job scheduler
to convey any data dependencies of the upcoming batch
job, and then uses this information to preload/offload these
dependencies to/from each local node. Also, echofs offers
a POSIX interface and internally manages the accesses to
the different burst buffers available to a compute node (e.g.
SSDs or NVM), so that researchers and legacy applications
can transparently benefit from the technological advantages of
new hardware without dealing with its details.

II. ARCHITECTURE AND IMPLEMENTATION

The Echo Filesystem (echofs) is a temporary filesystem
layer that resides on compute nodes between applications and
the centralized parallel filesystem (PFS), and that lives for
as long as a batch job (or a series of related batch jobs)
needs it. This additional storage layer is added to the compute
nodes I/O stack with several objectives in mind: (1) to hide



the complexity of the different levels of storage that may be
available to an application running in a compute node (e.g.
NVM, SSDs, or HDDs) by aggregating them into a virtual
storage device with a single mount point; (2) to reduce the
contention of the PFS by serving application I/O from local
storage resources; (3) to provide a POSIX interface so that
applications can interact with (and benefit from) new storage
technologies with the usual APIs, without having to write new
code; (4) to coordinate with the job scheduler to capture the
data dependencies of submitted jobs, laod them into node-local
burst buffers and improve application-perceived I/O.

Thus, when a batch job is submitted, the job scheduler
determines the initial set of data dependencies,1 allocates a
set of compute nodes on the HPC cluster, constructs instances
of echofs across these nodes and communicates the captured
information to the filesystem using a specialized API. At this
point, the filesystem’s components running on the compute
nodes coordinate to prefetch all input data from the PFS. Once
the preload process completes, the batch job can be started and
the application can use the standard POSIX I/O functions to
access the data contained in the filesystem. Supporting the
POSIX I/O API allows legacy applications that cannot be
modified to benefit from newer storage technologies, without
having to deal with new interfaces or semantics. The POSIX
interface itself is implemented using the FUSE framework2,
so that legacy applications can run directly on echofs.

Any newly created files are written directly to the burst
buffers and are offloaded back to the PFS in a location
predefined by the user when the job completes. Note, however,
that this is done only if the user or the job scheduler explicitly
requested (tagged) these files to be persistent in the configura-
tion file. Moreover, files can also be tagged as reusable, which
effectively keeps them in the burst buffers to allow upcoming
jobs to reuse the generated data. This helps reduce some of
the I/O contention on the PFS, by eliminating the need to
persist any temporary files and/or checkpoints generated by
an application, at the expense of shifting the responsibility
of “tagging” output files to the scheduler/user. These usage
hints can be statically conveyed to echofs by either the job
scheduler or the application through a specialized API that
allows the preloading, offloading and tagging of path.

a) Metadata management: The management of POSIX
metadata operations in a PFS (such as open() or stat()) is
challenging and often relies on several metadata servers in
charge of keeping metadata consistent, providing file handles,
and giving/revoking rights to clients to update and cache file
information. Thus, since metadata operations are in the critical
path of many I/O operations, metadata servers often become
a serious bottleneck when concurrent requests from large
numbers of clients [6], [7] are received. Since echofs focuses
on serving I/Os to a single parallel application, which “tem-
porarily owns” a set of storage resources exclusively dedicated
to it, it has advantages w.r.t. general purpose PFSs: (1) since

1That is, the files that are going to be used by the application, the
information of which will have been provided by the user upon submission.

2https://github.com/libfuse/libfuse

its lifetime is limited, echofs needs to support only application
processes running in the context of the corresponding batch
job, which, when compared to the large number of clients
that a general purpose PFS needs to serve, reduces scalability
requirements considerably; (2) since the filesystem runs with
the uid and gid of its owner, and no other users are allowed to
access the mount point, permission validation only needs to be
enforced when importing input files into the echofs instance,
and thus is effectively removed from the I/O critical path.

Thus, when mounted, echofs creates a typical POSIX
directory-based namespace upon which it imports any input
data specified in the batch job script, at the locations defined
by the user. Given that the namespace does not need to outlive
the application, echofs stores metadata into a specialized in-
memory hash map in order to serve operations as fast as possi-
ble. Also, since permissions no longer need to be checked for
each operation, validation is removed from the path resolution
process, further reducing the latency of metadata operations.

b) Data management: In the prototype, NVM accesses
are managed using Intel’s PMDK Library 3 to create memory-
mapped files on top of a filesystem with DAX capabilities,
which allows for direct access to the hardware with byte
granularity. Using this library has the advantage that the same
interface can be used for NVM, SSDs and HDDs, as long as
the underlying filesystem supports mmap(). Since the PMDK
library is intended to work with memory-mapped files, echofs
relies on NVM segments that represent a contiguous range
of file data that is backed by a PMDK-mapped file. Thus,
when a file is preloaded into echofs, a new segment is created
and populated with the contents of its PFS counterpart. The
segment is then registered into a per-file segment tree which
allows resolving offsets in O(log n). When files need to grow
(or are created anew), new segments of a pre-configured
size are allocated and appended to the tree. This allows
files to grow as needed and also allows easily supporting
sparse files to reduce storage overhead. When the filesystem
is unmounted, the segments for persistent files are moved
and consolidated to the PFS. Segments for reusable files are
consolidated into a unified file so that they can be used by
future processes. Persistence of write operations is internally
managed by echofs by using the appropriate msync() and
drain() calls through PMDK.

c) SLURM integration: The echofs prototype relies on
a modified SLURM [8] implementation that allows users
to provide static data usage hints in their job submission
commands, so that it can later pass them to echofs when it is
mounted through its companion API. Moreover, applications
can also use the API if they are willing to provide dynamic
data usage hints while running, though it’s not mandatory.

III. EVALUATION

All tests were run on a cluster with 10 nodes interconnected
by a 1GbE link. Each node had a 4-core Intel R© Xeon R©
E5-2609v2 2.50GHz processor, 32GiB DRAM, and a 400GB

3https://pmem.io



Intel P3500 SSD. A Lustre 2.8 filesystem was deployed using
1 node for the Metadata Service (MDS), and 2 nodes as
Object Storage Targets (OSTs), with the aforementioned SSDs
as backend. The NVM hardware itself is emulated using a
DRAM backend, on top of which an ext4 filesystem with
DAX support is mounted. Some tests were also run with a
375 GB Intel OptaneTM SSD to get an insight on actual NVM
hardware performance. To measure performance, we use the
well-established IOR and MDTEST microbenchmarks.4

a) Metadata performance: We generate a metadata
workload for echofs using MDTEST and compare its perfor-
mance against the metadata subsystems of ext4 (both with a
local HDD and a local SSD) and Lustre. We instruct MDTEST
to create 2.000.000 files/directories in a single parent directory,
and run it with 1 and 4 processes. The mean results, with
10 repetitions, can be found in Table I. We observe that, as
expected, echofs shows overall better performance than its
counterparts, since it has been designed precisely to avoid
the metadata issues of shared filesystems such as Lustre,
and the latency of RAM-backed metadata should be better
than HDD/SSD-backed metadata. The only exception can be
observed with stat() operations. In this case, performance
is limited by the maximum number of operations per second
supported by FUSE. Though stat() scales nearly linearly
on HDDs, SSDs and Lustre, echofs needs 2x more context
switches than a kernel filesystem, due to FUSE’s architecture.

b) Data performance: We exercise echofs using the IOR
microbenchmark with different storage backends and with two
different FUSE versions: 2.9 and 3.0, patching the kernel to
increase the internal buffer size to 12MiB. We instruct IOR to
create a file/set of files of 1GiB inside a directory, respectively
performing shared/non-shared operations upon them using a
128KiB transfer size and 4 processes. Table II summarizes
the results for different storage devices compared against the
best-performant echofs results. As expected, echofs obtains
more performance than using traditional storage, as it uses
a memory-like technology, but is also more performant than
local SSDs. In the case of Optane, we observe how it surpasses
SSD’s speed but falls short w.r.t. performance using memory.

We found discrepancies between the echofs results when
using different DAX-enabled filesystems as data backends. On
Figure 1, we show an ECDF (Empirical Cumulative Distribu-
tion Function) of the bandwidth obtained with different DAX
filesystems (ramfs, ext3, ext4 and XFS) and FUSE versions.
XFS and ramfs showed good throughput, but we observed low
performance with ext4, the de facto filesystem used to test
NVM libraries. Note that the ECDF lines are mostly vertical,
which means that bandwidth is fairly stable in all runs.

c) Coordinated echofs stage-in/out vs. direct IOR in PFS:
To prove that using echofs can reduce the overall PFS I/O con-
tention, we ran a proof-of-concept experiment where 3 16GiB
files were created in Lustre, which were then sequentially
read and rewritten, concurrently, from 3 different nodes (see
Table III). Relying on the PFS, so that data always stays in-

4https://github.com/hpc/ior

NOSHARED SHARED

E
X

T
3

E
X

T
4

R
A

M
F

S
X

F
S

0 1000 2000 3000 0 1000 2000 3000

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

MiB/s

F
(B

W
 M

iB
/s

)

FUSE version

FUSE 2.9

FUSE 3.0

Operation

READ

WRITE

Fig. 1. Throughput using different FUSE versions and DAX filesystems

sync as is typically done in HPC clusters, required 835.5 sec-
onds to finish the experiment. Relying on echofs’ capabilities
to stage-in and stage-out automatically took ≈715.3 seconds
with concurrent stage-in phases (a 14.38% improvement), and
583.2 seconds with a simple SLURM heuristic to interleave
stage-in phases (a 30.19% improvement). Benefits were more
significant if data was reused: using 2 nodes and 2 2.5GiB files,
required ≈240.5 seconds to execute 10 iterations directly on
the PFS, and 71.8 seconds in echofs a 70.14% improvement.

IV. RELATED WORK

Using burst buffers to improve the I/O performance of
HPC applications was proposed in order to cope with the
forecasted explosion of data-centric computing in future ex-
ascale supercomputers [9]. Hence, several works have been
published exploring remote, shared burst buffers: the SCR
group is currently trying to strengthen the support for SCR by
developing a multi-level checkpointing scheme on top of burst
buffers [10]. DataDirect Networks is developing the Infinite
Memory Engine (IME) as a burst buffer layer that provides
real-time I/O for scientific and research applications [11].
BurstMem [12] extends and modifies Memcached to work on
burst buffers and provide a mechanism of coordinated data
shuffling and flushing to the PFS, while IBIO [13] explores
how burst buffers can be used to improve resiliency by test-
ing a wide range of checkpoint/restart strategies. Conversely,
TRIO [14] proposes an orchestration framework to efficiently
move large checkpointing datasets to the PFS with efficiently
utilized storage bandwidth and reduced job I/O time.

With regards to node-local burst buffers, PLFS offers sup-
port by relying on a global filesystem (e.g. Lustre) to manage
metalinks. It is able to deliver fast, scalable write performance
and is also able to achieve scalable read performance by
using the collective services of its delegators [15]. Similarly
to our proposal, BurstFS [16] proposes an ephemeral burst
buffer-based filesystem with the same lifetime as an HPC job.
BurstFS organizes the metadata on any data written to local
burst buffers into a distributed key-value store, and localizes



TABLE I
MDTEST RESULTS IN OPERATIONS PER SECOND

Create Dir Stat Dir Remove Dir Create File Stat File Remove File
HDD (1P) 1324 515 096 1913 1810 370 508 1810
HDD (4P) 1460 1 936 912 1716 2067 1 412 165 1751
SSD (1P) 10 744 524 500 23 534 19 572 368 323 25 944
SSD (4P) 11 409 1 821 136 22 514 21 508 1 382 580 29 174
Lustre (1P) 7184 463 454 15 712 9396 457 911 12 990
Lustre (4P) 9541 1 824 400 11 643 9894 1 819 549 10 651
echofs (1P) 30 675 37 746 34 445 20 258 35 778 30 658
echofs (4P) 27 731 84 315 32 294 22 047 81 646 30 257

TABLE II
IOR RESULTS (HDD, SSD, OPTANE AND BEST PERFORMANT ECHOFS OPTION)

SHARED NO SHARED
Read (MiB/s) Write (MiB/s) Read (MiB/s) Write (MiB/s)

Lustre (1GbE) 111.39 112.81 145.39 113.18
HDD 114.93 140.57 89.77 123.78
SSD 235.12 288.97 232.39 291.96
Optane 1035.39 616.43 752.72 733.74
FUSE 2.9 – ramfs 2835.24 807.37 3606.85 2710.27

TABLE III
STAGE-IN VS DIRECT PFS I/O RESULTS

Time to Improvement
completion

PFS I/O 3x16GiB 835.5 s —
Uncoordinated 3x16GiB 715.3 s 14.38%
Interleaved 3x16GiB 583.2 s 30.19%

PFS I/O 2x2.5GiBx10 its 240.5 s —
echofs+reuse I/O 2x2.5GiBx10 its 71.8 s 70.14%

reads and writes using co-located I/O delegation and server-
side read clustering. The main differences between echofs and
BurstFS is that echofs coordinates with the job scheduler and
that it offers an API for applications to convey usage hints.

V. CONCLUSIONS

In this paper, we propose a temporary filesystem called
echofs that leverages local burst buffers and an integration
with the batch job scheduler to preload data across all nodes
that participate in a parallel computation. The filesystem lives
as long as the batch job that spawned it requires, and hides the
complexity of the burst buffer management from applications,
which can access the data space using a POSIX interface.

Performance results show that, despite the limitations im-
posed by the current version of the FUSE library, combin-
ing the information provided by the job scheduler with the
performance advantage of NVM-based burst buffers allows
for interesting I/O performance gains and, more importantly,
for better-behaved I/O access patterns from the point of view
of the PFS, which leads to reduce overall I/O contention.
Thus, since filesystems are typically not informed about the
intent of parallel applications, we believe that there is value
in improving the communication channels between the HPC
infrastructure, the parallel applications, and the temporary
filesystem, which would allow for better I/O optimizations.

ACKNOWLEDGMENT
This work was partially supported by the Spanish Ministry of Science and Innovation

under the TIN2015–65316 grant, the Generalitat de Catalunya under contract 2014–
SGR–1051, as well as the European Union’s Horizon 2020 Research and Innovation
Programme, under Grant Agreement no. 671951 (NEXTGenIO). Source code available
at https://github.com/bsc-ssrg/echofs.

REFERENCES

[1] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, p. 8, 2011.

[2] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A high-performance storage array architecture
for next-generation, non-volatile memories,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2010, pp. 385–395.

[3] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory,” in Presented as part of the
11th USENIX Conference on File and Storage Technologies (FAST 13),
2013, pp. 73–80.

[4] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage
& recovery methods for non-volatile memory database systems,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015, pp. 707–722.

[5] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters.” in FAST, vol. 2, 2002, pp. 231–244.

[6] D. S. Roselli, J. R. Lorch, T. E. Anderson et al., “A comparison of file
system workloads.” in USENIX annual technical conference, general
track, 2000, pp. 41–54.

[7] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. Long, and
T. T. McLarty, “File system workload analysis for large scale scientific
computing applications,” in Proceedings of the 21st IEEE/12th NASA
Goddard Conference on Mass Storage Systems and Technologies, 2004,
pp. 139–152.

[8] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003, pp. 44–60.

[9] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in 012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2012, pp. 1–11.

[10] SCR, “SCR: Scalable Checkpoint/Restart for MPI.” [Online]. Available:
https://computation.llnl.gov/project/scr

[11] DDN, “Infinite Memory Engine.” [Online]. Available: https://www.ddn.
com/products/ime-flash-native-data-cache/

[12] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“BurstMem: A high-performance burst buffer system for scientific appli-
cations,” in Big Data (Big Data), 2014 IEEE International Conference
on. IEEE, 2014, pp. 71–79.

[13] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “A user-level infiniband-based file
system and checkpoint strategy for burst buffers,” in Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on. IEEE, 2014, pp. 21–30.

[14] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “TRIO: burst
buffer based I/O orchestration,” in 2015 IEEE International Conference
on Cluster Computing. IEEE, 2015, pp. 194–203.

[15] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and
J. Woodring, “Jitter-free co-processing on a prototype exascale storage
stack,” in 012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2012, pp. 1–5.

[16] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, p. 69.


