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Abstract—Features extracted through transfer learning can be
used to exploit deep learning representations in contexts where
there are very few training samples, where there are limited
computational resources, or when the tuning of hyper-parameters
needed for training deep neural networks is unfeasible. In this
paper we propose a novel feature extraction embedding called
full-network embedding. This embedding is based on two main
points. First, the use of all layers in the network, integrating
activations from different levels of information and from different
types of layers (i.e., convolutional and fully connected). Second,
the contextualisation and leverage of information based on a
novel three-valued discretisation method. The former provides
extra information useful to extend the characterisation of data,
while the later reduces noise and regularises the embedding
space. Significantly, this also reduces the computational cost of
processing the resultant representations. The proposed method is
shown to outperform single layer embeddings on several image
classification tasks, while also being more robust to the choice of
the pre-trained model used as transfer source.

Index Terms—Transfer Learning, Feature Extraction, Embed-
ding Spaces

I. INTRODUCTION

Deep learning models, and particularly convolutional neural
networks (CNN), have become the standard approach for
tackling image processing tasks. The key to the success of
these methods lies in the rich representations deep models
build, which are generated after an exhaustive and compu-
tationally expensive learning process [1]. To generate deep
representations, deep learning models have strong training
requirements in terms of dataset size, computational power and
optimal hyper-parametrisation. For any domain or application
in which either of those factors is an issue, training a deep
model from scratch becomes unfeasible.
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Within deep learning, the field of transfer learning studies
how to extract and reuse pre-trained deep representations. This
approach has three main applications: improving the perfor-
mance of a network by initialising its training from a non-
random state [2]–[4], enabling the training of deep networks
for tasks of limited dataset size [5], [6], and exploiting deep
representations through alternative machine learning methods
[7]–[9]. The first two cases, where training a deep network
remains the end purpose of the transfer learning process, are
commonly known as transfer learning for fine-tuning, while
the third case, where the end purpose of the transfer learning
does not necessarily include training a deep net, is typically
referred as transfer learning for feature extraction.

Of the three limiting factors of training deep networks
(i.e., dataset size, computational cost, and optimal hyper-
parametrisation), transfer learning for fine-tuning partly solves
the first. Indeed, one can successfully train a CNN on a
dataset composed by roughly a few thousand instances using
a pre-trained model as starting point, and achieve state-of-the-
art-results. Unfortunately, fine-tuning a model still requires a
dataset size in the order of thousands, a significant amount
of computational resources, and lots of time and insight
to optimise the multiple hyper-parameters involved in the
process.

Transfer learning for feature extraction on the other hand
is based on processing a set of data instances through a
pre-trained neural network by doing a feed-forward pass,
extracting the neural activation values to generate a new data
representation which can then be used by another learning
mechanism. This is applicable to datasets of any size, as each
data instance is processed independently. It has a relatively
small computational cost, since there is no deep net training.
And finally, it requires no hyper-parameter optimisation or
tuning of any sort. Significantly, the applications of transfer
learning for feature extraction are limited only by the capa-
bilities of the methods that one can execute on top of the
generated deep representations, and addresses the needs of
many industrial applications where labelled data availability
is often scarce.



II. RELATED WORK

Transfer learning studies how to extract and reuse deep
representations learnt for a given task t0, to solve a different
task t1. Fine-tuning approaches require the t1 target dataset
to be composed by at least a few thousands instances, to
avoid overfitting during the fine-tuning process. To mitigate
this limitation, it has been proposed to reuse carefully selected
parts of the t0 dataset in the fine-tuning process alongside the
t1 (i.e., selective joint fine-tuning) [5], and also to use large
amounts of noisy web imagery alongside with clean curated
data [10]. In fine-tuning, choosing which layers of weights
from the t0 model should be transferred, and which should be
transferred and kept unchanged on the t1 training phase has a
large impact on performance. Extensive research on that regard
has shown that the optimal policy depends mostly on the
properties of both t0 and t1 [7], [11], [12]. This dependency,
together with the hyper-parameters inherent to deep network
training, defines a large search space to be explored by fine-
tuning solutions.

Given a pre-trained model for t0, instead of fine-tuning
a deep model, one may use alternative machine learning
methods for solving t1. For that purpose, one needs to
obtain a representation of t1 data instances as perceived by
the model trained for t0. This feature extraction process is
done through a forward pass of t1 data instances on the
pre-trained CNN model, which generates a data embedding
that can be fed to another machine learning method (e.g., a
Support Vector Machine, or SVM, for classification). In most
cases, the embedding is defined by capturing and storing the
activation values of a single layer close to the output [7]–
[9], [13]–[15]. The rest of layers (e.g., most convolutional
layers) are discarded because these ”are unlikely to contain a
richer semantic representation than the later features” [13]. So
far, this choice has been supported by comparisons between
single-layer embeddings, where high-level layers have been
shown to consistently outperform low-level layers [7], [8].
Nonetheless, this comparison is biased because convolutional
and fully connected layers have different properties (e.g.,
spatial information, output range and behaviour etc.), which
suggests that activations extracted from both kinds of layers
should be treated differently.

In contrast to single-layer performance comparisons, there
are works demonstrating the ability of features from all layers
to contribute to the characterisation of the data. In [16], an
embedding using activations from all layers (i.e., convolutional
and fully connected layers) is built. While fully connected
activations are extracted in a raw manner, convolutional ones
are extracted using cross-convolutional-layer pooling. This
technique consist of an special ROI pooling based on spatial
activations from the following layer. In the experiments re-
ported in [16], this makes multi-layer embeddings outperform
single-layer embeddings. In a different work [17], authors
study the ability of activations from all layers at characterising
data. For a given target class and a trained feature, three
disjoint behaviours are defined: the feature presence is relevant

for characterising the class, the feature absence is relevant for
characterising the class, the feature is irrelevant for the class.
Features relevant by presence generate an abnormally high
value for the class in the context of the dataset, while features
relevant by absence generate an abnormally low value for the
class in the same dataset context. Irrelevant features are the
rest.

Beyond the layers used to generate the embedding and
the characterisation of features extracted from those layers,
there are other parameters that can affect the feature extraction
process. Some of those are evaluated in [7], which includes
parameters related with the architecture and training of the
initial CNN (e.g., network depth and width, distribution of
training data, optimisation parameters), and parameters related
with transfer learning process (e.g., fine-tuning, spatial pooling
and dimensionality reduction). Among the most frequently
used transformations of deep embeddings is L2 normalisation
[7], [8], and unsupervised feature reduction (e.g., Principal
Component Analysis or PCA) [7]–[9]. The quality of the
resultant embedding is typically evaluated through the classi-
fication performance of an SVM, trained using the embedding
representations of the train set, and tested using the embedding
representations of the test set [7], [8]. Extracted features have
also been combined with more sophisticated computer vision
techniques, such as the constellation model [6] and Fisher
vectors [18], with significant success.

III. FULL-NETWORK EMBEDDING

Transfer learning for feature extraction is used to embed a
dataset t1 in the representation language learnt for a task t0.
To do so, one must forward pass each data instance of t1
through the model pre-trained on t0, capturing the internal
activations of the neurons composing the network. This is
the first step of our method, but unlike most of previous
contributions to feature extraction, we store the activation
values generated on every convolutional and fully connected
layer of the model to generate a full-network embedding.
Following subsections explain in detail the following steps
specific of our methodology. An end-to-end overview of the
proposed embedding generation is shown in Fig. 1.

A. Spatial Average Pooling

During a feed-forward pass, each convolutional layer filter
generates several activations for the given input as a result
of the convolution process. These activations correspond to
the application of the filter at the different possible locations
within the input, and their number depends on both filter
size and input size. In a feature extraction context, this larger
number of activations significantly increases the dimensional-
ity of the resulting embedding, which may often be counter-
productive. Specially as the spatial information provided by
the different activations may not be particularly relevant in
a transfer learning setting (i.e., one where the problem for
which the filters were learnt is not the same as the problem
where the filter is applied). Although complex solutions to
maintain most of the spatial information have been proposed



Fig. 1. Overview of the proposed out-of-the-box full-network embedding generation workflow.

[16] we use a more straight-forward solution by performing a
spatial average pooling on each convolutional filter, such that a
single value per filter is obtained by averaging all its spatially-
depending activations [7], [8]. After this pooling operation,
each feature in the embedding, from a single convolutional
filter, corresponds to the degree with which this filter is found
on average in the whole input, regardless of location. While
losing spatial information, this solution maintains most of
the embedding descriptive power, as all convolutional filters
remain represented. A spatial average pooling on the filters
of convolutional layers is the second step of our method.
The values resulting from the spatial pooling are concatenated
with the features from the fully connected layers into a single
vector, to generate a complete embedding. In the case of the
well-known VGG16 architecture [19] this embedding vector is
composed by 12,416 features.

B. Feature Standardisation

The features composing the embedding vector so far de-
scribed are obtained from neurons of different type (e.g.,
convolutional and fully connected layers) and location (i.e.,
from any layer depth). These differences account for large
variations in the corresponding feature activations (e.g., dis-
tribution, magnitude, etc.). Since our method considers an
heterogeneous set of features, a feature standardisation is
needed. Our proposed standardisation computes the z-values of
each feature, through the mean of train set activations and its
standard deviation. This process transforms each feature value
so that it indicates how separated the value is from the feature
mean in terms of positive/negative standard deviations. In other
words, the degree with which the feature value is atypically
high (if positive) or atypically low (if negative) in the context
of the t1 dataset. A similar type of feature normalisation is
used in deep network training (i.e., batch normalisation) [20],
but this is the first time this technique has been integrated in
a feature extraction process. As discussed in §II, most feature
extraction approaches apply an L2 norm by data instance,
thus normalising by data instance instead of by feature. As
shown in §IV, this approach provides competitive results, but
is not appropriate when using features coming from many
different layers. By using the z-values per feature, we use
activations across the dataset as reference for normalisation.

This balances each feature individually, which allows us to
successfully integrate all types of features in the embedding.
Significantly, this feature standardisation process generates a
context dependent embedding, as the representation of each
instance depends on the rest of instances being computed with
it. For an example, consider how the features relevant for
characterising a bird in a context of cars are different than
the ones relevant for characterising the same bird in a context
of other birds. Such a contextualised representation makes the
approach more versatile, as it is inherently customised for each
specific problem. After the feature standardisation, the final
step of the proposed pipeline is a feature discretisation, which
is described in §III-C.

C. Feature Discretisation

The embedding vectors we generate are composed of a large
number of features (e.g., 12,416 for the VGG16 architecture).
Exploring a representation space of such high-dimensionality
is problematic for most machine learning algorithms, as it can
lead to over-fitting and other issues related with the curse of
dimensionality. A common solution is to use dimensionality
reduction techniques like PCA [7], [14], [21]. We propose an
alternative approach, which keeps the same number of features
(and thus keeps the size and semantics of the representation
language defined by the embedding) but reduces their expres-
siveness similarly to the quantization methodology followed in
[21]. In detail, we discretise each standardised feature value
to represent either an atypically low value (-1), a typical value
(0), or an atypically high value (1). This discretisation is
done by mapping feature values to the {−1, 0, 1} domain by
defining two thresholds ft− and ft+.

To find consistent thresholds, we consider the work [17],
where a supervised statistical approach is used to evaluate
the importance of CNN features for characterisation. Given
a feature f and a class c, this work uses an empirical statistic
to measure the difference between activation values of f
for instances of c and activation values of f for the rest
of classes in the dataset. This allows them to quantify the
relevance of feature/class pairs for class characterisation. In
their work, authors categorise these pairs in three different sets:
characteristic by absence, uncharacteristic and characteristic
by presence.



We use these three sets to find our thresholds ft− and ft+,
by mapping the feature/class relevance of [17] to our corre-
sponding feature/image activations. We do so on the datasets
explored in [17]: mit67, flowers102 and cub200, by computing
the average values of the features belonging to each of the
three sets. Fig. 2 shows the three resulting distributions of
values for the mit67 dataset. Clearly, a strong correlation exists
between the supervised statistic feature relevance defined in
[17] and the standardised feature values generated by the
full-network embedding, as features in the characteristic by
absence set correspond to activations which are particularly
low, while features in the characteristic by presence set corre-
spond to activations which are particularly high. We obtain the
ft− and ft+ values through use of the Kolmogrov-Smirnov
statistic on these distributions, which provides the maximum
gap between two empirical distributions. Vertical dashed lines
of Fig. 2 indicate these optimal thresholds for the mit67
dataset, the rest are shown in Table I. To obtain a parameter
free methodology, and considering the stable behaviour of the
ft+ and ft− thresholds, we chose to set ft+ = 0.15 and
ft− = −0.25 in all our experiments. Thus, after the step of
feature standardisation, we discretise the values above 0.15 to
1, the values below −0.25 to −1, and the rest to 0.

This discretisation effectively reduces the amount of infor-
mation each single feature provides from a real number to
a three-valued one, which increases its generalisation capa-
bilities. The effect can be analogous to an extreme reduction
of the colour depth in an image, which results in a simpler,
drawing-like image, which is a less detailed but a more
generic representation of the original. The meaningfulness of
the resulting discretised image depends on the suitability of
the thresholds chosen between different colours. Similarly, the
meaningfulness of the embeddings here obtained depends on
the suitability of the thresholds chosen. The discover of a
unique set of threshold values suitable for all the different
datasets tested in §IV is a key point of our approach. This
feature discretisation is the last step of the full-network em-
bedding work-flow.

Fig. 2. For the mit67 dataset, distribution of average standardised feature
values for those features belonging to the sets identified in [17]. Vertical
dashed lines mark the ft− and ft+ thresholds separating the two pairs of
distributions as computed by the Kolmogrov-Smirnov statistic.

TABLE I
FEATURE VALUE THRESHOLDS ft+ AND ft− FOUND BY COMPUTING THE
KOLMOGROV-SMIRNOV STATISTIC OF THE DISTRIBUTIONS EXEMPLIFIED

IN FIG. 2.

Dataset ft+ ft−

mit67 0.14 -0.23
cub200 0.20 -0.24

flowers102 0.15 -0.24

IV. EXPERIMENTS

In this section we consider the application of the previ-
ously defined full-network embedding to image classification
problems. These experiments will allow us to understand the
potential relevance and role of convolutional features when
combined with fully connected features. We will also explore
how changing the pre-trained models used to generate the
embedding affects its performance for classification. This is
an important study for expanding the applicability of transfer
learning solutions to a wider range of domains.

A. Datasets

One of the goals of this paper is to identify a full-network
feature extraction methodology which provides competitive
results out-of-the-box. For that purpose, we evaluate the em-
bedding proposed in §III-C on a set of 9 datasets which define
different image classification challenges. The list includes
datasets of classic object categorisation, fine-grained categori-
sation, and scene and textures classification. The disparate
type of discriminative features needed to solve each of these
problems represents a challenge for any approach which tries
to solve them without any sort of tuning.

• The MIT Indoor Scene Recognition dataset [22]
(mit67) consists of different indoor scenes to be classi-
fied in 67 categories. Its main challenge resides in the
class dependence on global spatial properties and on the
relative presence of objects.

• The Caltech-UCSD Birds-200-2011 dataset [23]
(cub200) is a fine-grained dataset containing images of
200 different species of birds.

• The Oxford Flower dataset [24] (flowers102) is a fine-
grained dataset consisting of 102 flower categories. The
dataset contains only 20 samples per class for training.

• The Oxford-IIIT-Pet dataset [25] (cats-dogs) is a fine-
grained dataset covering 37 different breeds of cats and
dogs.

• The Stanford Dogs dataset [26] (sdogs) contains images
from the 120 breeds of dogs found in ImageNet. The
dataset is complicated by little inter-class variation, and
large intra-class and background variation.

• The Caltech 101 dataset [27] (caltech101) is a classical
dataset of 101 object categories containing clean images
with low level of occlusion.

• The Food-101 dataset [28] (food101) is a large dataset
of 101 food categories. Test labels are reliable but train
images are noisy (e.g., occasionally mislabeled).



TABLE II
PROPERTIES OF ALL CLASSIFICATION DATASETS COMPUTED

Dataset #Images #Classes #Images #Images #Images per class #Images per class #Images per class
(train) (test) (total) (train) (test)

mit67 6,700 67 5,360 1,340 100 77 - 83 17 - 23
cub200 11,788 200 5,994 5,794 41 - 60 29 - 30 12 - 30

flowers102 8,189 102 2,040 6,149 40 - 258 20 20 - 238
cats-dogs 7,349 37 3,680 3,669 184 - 200 93 - 100 88 - 100

sdogs 20,580 120 12,000 8,580 150 - 200 100 50 - 100
caltech101 9,146 101 3,060 2,995 31 - 800 30 1 - 50
food101 25,250 101 20,200 5,050 250 200 50
textures 5,640 47 3,760 1,880 120 80 40
wood 438 7 350 88 14 - 179 10 - 142 3 - 37

• The Describable Textures Dataset [29] (textures) is a
database of textures categorised according to a list of 47
terms inspired from human perception.

• The Oulu Knots dataset [30] (wood) contains knot images
from spruce wood, classified according to Nordic Stan-
dards. This dataset of industrial application is considered
to be challenging even for human experts.

Details for these datasets are provided in Table II. This
includes the train/test splits used in our experiments. In most
cases we follow the train/test splits as provided by the dataset
authors in order to obtain comparable results. A specific case
is caltech101 where, following the dataset authors instructions
[27], we randomly choose 30 training examples per class and
a maximum of 50 for test, and repeat this experiment 5 times.
The other particular case is the food101 dataset. Due to its
large size, we use only the provided test set for both training
and testing, using a stratified 5-fold cross validation. The same
stratified 5-fold cross validation approach is used for the wood
dataset, where no split is provided by the authors.

B. Experimental details

In this section we explain the details our experimental setup.
To evaluate the consistency of our method out-of-the-box,
we decide not to use additional data when available on the
dataset (e.g., image segmentation, regions of interest or other
metadata), or to perform any other type of problem specific
adaptation (e.g., tuning hyper-parameters). Notice most of
the methods we compare against use one or both of those
performance improving techniques.

As source model for the feature extraction process (our t0
tasks) we use the classical VGG16 CNN architecture [19] pre-
trained on the Places2 scene recognition dataset [31] for the
mit67 experiments, and the same VGG16 architecture pre-
trained on the ImageNet 2012 classification dataset [32] for
the rest. The motivation was to use a model pre-trained on a
source task which is relatively similar to the target task, as
this is the most optimistic deployment scenario.

With the generated embedding, a linear SVM is trained for
classification with the default hyperparameter C = 1, using
a one-vs-the-rest strategy. Standard data augmentation is used
in the SVM training, using 5 crops per sample (4 corners
+ central) with horizontal mirroring (total of 10 crops per

sample). At test time, all the 10 crops are classified, using
a voting strategy to decide the label of each data sample.

Beyond the comparison with the current state-of-the-art
(typically a thoroughly tuned model), we also compare our
approach with the most popular feature extraction solution. As
discussed in §II, an embedding is most frequently obtained by
extracting the activations of one fully connected layer close to
the output (fc6 or fc7 for the VGG16 model) and applying
a L2 normalisation per data instance [7], [8], [13]. We call
this our baseline method. The same pre-trained model used as
source for the full-network embedding is used for the baseline.
For both baselines (fc6 and fc7), the final embedding is
composed by 4,096 features. This is used to feed a SVM
classifier, following the exact same methodology previously
defined for both training and testing.

C. Results

The results of our classification experiments are shown
in Table III. Performance is measured with average per-
class classification accuracy. For each dataset we provide the
accuracy provided by the baselines, by our method, and by the
best method we found in the literature (i.e., the state-of-the-art
or SotA). For a proper interpretation of the performance gap
between the SotA methods and ours, we further indicate if the
SotA uses external data (beyond the t1 dataset and the t0
model) and if it performs fine-tuning.

Overall, our method outperforms the best baseline (fc6) by
2.2% accuracy on average. This indicates that the proposed
full-network embedding successfully integrates the represen-
tations generated at the various layers, boosting performance
in the process. The datasets where the baseline performs
similarly or slightly outperforms the full-network embedding
(cub200, cats-dogs and sdogs) are those where the target
task t1 overlaps with the source task t0 (e.g., ImageNet
2012). The largest difference happens for the sdogs, which
is explicitly a subset of ImageNet 2012. In this sort of pseudo
transfer learning problems, the fully connected layer used by
the baseline methods has been partly optimized to solve the t1
problem during the original CNN training phase. This explains
why the baselines based on the fully connected layers are
particularly competitive on these datasets. This pseudo transfer
learning problems are included in our experiments because
they define the most appropriate scenario for the baseline we



TABLE III
CLASSIFICATION RESULTS IN % OF AVERAGE PER-CLASS ACCURACY FOR THE BASELINES, FOR THE FULL-NETWORK EMBEDDING, AND FOR THE

CURRENT STATE-OF-THE-ART (SOTA). ED: SOTA USES EXTERNAL DATA, FT: SOTA PERFORMS FINE-TUNING OF THE NETWORK.

Dataset mit67 cub200 flowers102 cats-dogs sdogs caltech101 food101 textures wood
Baseline fc6 80.0 65.8 89.5 89.3 78.0 91.4±0.6 61.4±0.2 69.6 70.8±6.6
Baseline fc7 81.7 63.2 87.0 89.6 79.3 89.7±0.3 59.1±0.6 69.0 68.9 ±6.8
Full-network 83.6 65.5 93.3 89.2 78.8 91.4±0.6 67.0±0.7 73.0 74.1±6.9

SotA 86.9 92.3 97.0 91.6 90.3 93.4 77.4 75.5 -
[5] [10] [5] [6] [5] [33] [4] [18] -

ED 3 3 3 7 3 7 7 7 -
FT 3 3 3 3 3 3 3 7 -

could imagine. Even in this extremely adverse conditions for
the FNE, the maximum advantage for the baseline is only
0.5%. The average advantage of the FNE over the baseline in
the rest of experiments is 3.3%.

State-of-the-art performance is in most cases a few accuracy
points above the performance of the full-network embedding
(7.8% accuracy on average). These results are encouraging,
considering that our method uses no additional data, requires
no tuning of parameters and it is computationally cheap (e.g.,
it does not require deep network training). The dataset where
our full-network embedding is more clearly outperformed is
the cub200. In this dataset [10] achieve a remarkable state-of-
the-art performance by using lots of additional data (roughly
5 million additional images of birds) to train a deep network
from scratch, and then fine-tune the model using the cub200
dataset. In this case, the large gap in performance is caused
by the huge disparity in the amount of training data used. A
similar context happens in the evaluation of food101, where
[4] use the complete training set for fine-tuning, while we
only use a subset of the test set (see §IV-A for details). If
we consider the results for the other 6 datasets, the average
performance gap between the state-of-the-art and the full-
network embedding is 4.2% accuracy on average.

Among the methods which achieve the best performance
on at least one dataset, there is one which is not based on
fine tuning a deep network. The work of [18] obtains the
best results for the textures dataset by using a combination of
bag-of-visual-words, Fisher vectors and convolutional filters.
Authors demonstrate how this approach is particularly compet-
itive on texture based datasets. The full-network embedding,
while being more versatile, obtains an accuracy 2.5% lower
in this specific domain.

The wood dataset is designed to be particularly challenging,
even for human experts; according to the dataset authors the
global accuracy of an experienced human sorter is about 75-
85% [30], [34]. Currently, there are no reported results in av-
erage per-class accuracy for this dataset, so the corresponding
values in Table III are left blank. Consequently, the results
we report represent the current state-of-the-art to the best
of our knowledge (74.1%±6.9 in average per-class accuracy).
The best results previously reported in the literature for wood
correspond to [15], which are 94.3% in global accuracy.
However, the difference between average per-class accuracy
and global accuracy is particularly relevant in this dataset,

given the variance in images per class (from 3 to 37). To
evaluate the average per-class accuracy, we tried our best to
replicate the method of [15], which resulted in 71.0%±8.2

average per-class accuracy when doing a stratified 5-fold cross
validation; a performance similar to the one obtained by our
baseline method.

D. Study of Variants

In this section we consider removing and altering some of
the components of the full-network embedding to understand
their impact. First we remove feature discretisation, and eval-
uate the embeddings obtained after the feature standardisation
step (FS). Secondly, we consider a partial feature discretisation
which only maps values between ft+ and ft− to zero, and
evaluate an embedding which keeps the rest of the original
values ({−v, 0, v}). The purpose of this second experiment
is to study if the increase in performance provided by the
feature discretisation is caused by the noise reduction effect
of mapping frequent values to 0, or if it is caused by the space
simplification resultant of mapping all activations to only three
values.

As shown in Table IV, the full-network embedding out-
performs all the other variants, with the exceptions of flow-
ers102 and cats-dogs where FS is slightly more competitive
(+0.8% and +0.7% accuracy) and caltech101 where the best
is {−v, 0, v} by 0.5% accuracy . The noise reduction variant
(i.e., {−v, 0, v}) outperforms the FS variant in 5 out of 9
datasets. The main difference between both is that the former
sparsifies the embeddings by transforming typical values to
zeros, with few informative data being lost in the process. The
complete feature discretisation done by the full-network model
(i.e., {−1, 0, 1}) further boosts performance, outperforming
the {−v, 0, v} embedding on 7 of 9 datasets. This shows the
potential benefit of reducing the complexity of the embedding
space.

The feature discretisation also has the desirable effect of
reducing the training cost of the SVM applied on the resulting
embedding. Using the FS embedding as control (the slowest
of all variants), the {−v, 0, v} embedding trains the SVM
between 3 and 13 times faster depending on the dataset, while
the full-network embedding with its complete discretisation
trains between 10 and 50 times faster. Significantly, all three
embeddings are composed by 12,416 features. For comparison,
the baseline method, which uses shorter embeddings of 4,096
features, trains the SVM between 100 and 650 times faster



TABLE IV
MEAN PER-CLASS ACCURACY IN % OBTAINED BY THE FULL-NETWORK EMBEDDING, WHEN NOT PERFORMING FEATURE DISCRETISATION (FS), AND

WHEN ONLY DISCRETIZING THE VALUES BETWEEN THRESHOLDS ({−v, 0, v}).

Dataset mit67 cub200 flowers102 cats-dogs sdogs caltech101 food101 textures wood
FS 81.0 64.9 94.1 89.9 77.3 91.5 65.3 69.6 71.5

{−v, 0, v} 82.0 64.8 93.2 89.3 77.4 92.0 66.6 70.1 70.6
Full-network 83.6 65.5 93.3 89.2 78.8 91.5 67.0 73.0 74.1

TABLE V
CLASSIFICATION RESULTS IN % AVERAGE PER-CLASS ACCURACY OF THE BASELINE AND THE FULL-NETWORK EMBEDDING WHEN USING A NETWORK

PRE-TRAINED ON ImageNet 2012 FOR mit67 AND ON Places2 FOR THE REST.

Dataset mit67 cub200 flowers102 cats-dogs sdogs caltech101 food101 textures wood
Baseline fc7 72.2 23.6 73.3 38.7 24.7 72.0 40.5 55.8 65.3
Full-network 75.5 35.5 88.7 56.2 37.8 80.0 55.9 65.1 74.0

than the FS. For both the baseline and the full-network
embeddings, training the SVM takes a few minutes on a single
CPU.

A different variation we consider is to use an inappro-
priate task t0 as source for generating the baseline and
the full-network embeddings. This tests the robustness of
each embedding when using an ill-suited pre-trained model.
These experiments are particularly relevant for most real world
applications, where labeled data is limited, and the existence
of a pre-trained model similar to the target task is unlikely.

In our experiments we use the model pre-trained on Im-
ageNet 2012 for generating the mit67 embeddings, and the
model pre-trained on Places2 for the rest of datasets. This is
the opposite combination than the one used in §IV-C. Table V
shows that the full-network embedding is much more robust in
this context, with an average decrease in accuracy of 16.4%,
against a 24.6% decrease of the baseline. These results remark
the limitation of the baseline, caused by its own dependency on
late layer features. Finally, we also considered using different
network depths, a parameter also analysed in [7]. We repeated
the full-network experiments using the VGG19 architecture
instead of the VGG16, and found performance differences to
be minimal (maximum difference of 0.3%) and inconsistent.

V. CONCLUSIONS

In this paper we describe a feature extraction process which
leverages the information encoded in all the features of a deep
CNN. The full-network embedding extracts information from
all layers, introduces the use of feature standardisation and of a
novel feature discretisation methodology based on the work by
[17]. The former provides extended encoded visual informa-
tion of images through different levels of complexity, while the
latter provides context-dependent embeddings, which adapt the
representations to the problem at hand. Finally, the proposed
feature discretisation process reduces noise and regularises
the embedding space while keeping the size of the original
representation language.

The resultant full-network embedding is shown to outper-
form single-layer embeddings in several classification tasks. It
outperforms the best baseline by 2.2% accuracy on average,
even though 3 of the 9 datasets used for comparison are

strongly biased towards the baseline (since these are direct
subsets of the source task ImageNet 2012). In these 3 partic-
ularly unfavourable tests the advantage of the best baseline is
at most 0.5%, showcasing the competitiveness of the proposed
method under optimal transfer conditions for the baseline.

One of the most appealing properties of the full-network
embedding is its robustness to the use of ill-suited pre-trained
models in image classification. This is the most common
scenario in real-world settings, when there is rarely a large
dataset similar to the target task to pre-train with . When
a dissimilar source task is used to pre-train the model, the
difference with the baseline grows from 2.2% accuracy on
average to a remarkable 11.4%. On top of that, the full-
network embedding is parameter-free, capable of providing
results out-of-the-box.
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