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A B S T R A C T

Online tracking is the key enabling technology of modern online advertising. In the recently established model
of real-time bidding (RTB), the web pages tracked by ad platforms are shared with advertising agencies (also
called DSPs), which, in an auction-based system, may bid for user ad impressions. Since tracking data are no
longer confined to ad platforms, RTB poses serious risks to privacy, especially with regard to user profiling, a
practice that can be conducted at a very low cost by any DSP or related agency, as we reveal here. In this work,
we illustrate these privacy risks by examining a data set with the real ad-auctions of a DSP, and show that
for at least 55% of the users tracked by this agency, it paid nothing for their browsing data. To mitigate this
abuse, we propose a system that regulates the distribution of bid requests (containing user tracking data) to
potentially interested bidders, depending on their previous behavior. In our approach, an ad platform restricts
the sharing of tracking data by limiting the number of DSPs participating in each auction, thereby leaving
unchanged the current RTB architecture and protocols. However, doing so may have an evident impact on
the ad platform’s revenue. The proposed system is designed accordingly, to ensure the revenue is maximized
while the abuse by DSPs is prevented to a large degree. Experimental results seem to suggest that our system
is able to correct misbehaving DSPs, and consequently enhance user privacy.

1. Introduction

The growing access of people to information and communication
technologies is contributing to reach the so-called ‘‘big data era’’, where
the pervasiveness of data is a major input for increasingly personal-
ized and automated online services. One of such services is online
advertising, which aims at selecting and directing ads to the right
potential customers (personalization) at the right time (real-time), built
on multiple parameters, while users browse the Web (Smith, 2014a;
Real-time bidding protocol, 0000; Yuan et al., 2012).

This targeted advertising offers crucial benefits to several agents
on the Internet. To start, users receive ads tailored to their interests
and no longer static ads unrelated to their preferences; consequently,
behavioral targeting ensures conversion rates1 that double those of
untargeted ads (Beales, 2010). Furthermore, web sites have access to
an entire ecosystem to fund their operation through the money paid by
demand side platforms (DSPs), which are advertising agencies acting
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1 In online marketing terminology, conversion usually means the act of converting Web site visitors into paying customers.
2 When referring to the online advertising model in general, the terms ‘buyer’, DSP and ‘advertiser’ may be used interchangeably.

in representation of advertisers.2 Also, selling entities are given the
opportunity to promote their products over a ubiquitous structure with
global reach. The upshot is that most of the content users consume
online is supported by ad revenue.

One of the key enabling technologies that makes online advertising
so profitable is real-time bidding (RTB), which enables advertisers to
compete in real-time auctions to show their ads (Yuan et al., 2013).
It is implemented by a management entity called ad exchange. Ac-
cordingly, when a user visits a website, her impression is sold to the
advertiser (or corresponding DSP) that bids higher, in a matter of
milliseconds. Moreover, DSPs are sent bid request messages containing
user information (tracking data) to help them tailor ads to the user’s
preferences and decide the bidding strategy. In this way, the RTB aim is
twofold: offering users a personalized experience through targeted ads
and, thus, maximizing the profits of the whole advertising ecosystem.
Whereas the operation of RTB behind the scenes is pretty opaque and
complex for users (Mcdonald et al., 2009), it is quite transparent for

https://doi.org/10.1016/j.engappai.2019.03.013
Received 26 June 2018; Received in revised form 4 January 2019; Accepted 19 March 2019
Available online xxxx
0952-1976/© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.engappai.2019.03.013
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2019.03.013&domain=pdf
https://doi.org/10.1016/j.engappai.2019.03.013
mailto:jose.estrada@epn.edu.ec
mailto:javier.parra@urv.cat
mailto:ana.rodriguez@epn.edu.ec
mailto:jforne@entel.upc.edu
https://doi.org/10.1016/j.engappai.2019.03.013


J. Estrada-Jiménez, J. Parra-Arnau, A. Rodríguez-Hoyos et al. Engineering Applications of Artificial Intelligence 82 (2019) 13–29

the actors of the advertising ecosystem. For example, ad exchanges
provide DSPs with powerful management interfaces that offer very
detailed information about the market and even enable buyers to set
up their advertising strategies (e.g., by defining a targeting market).
Certainly, a lot of benefits arise for the advertising ecosystem from
the optimization capability offered by RTB in terms of automation,
personalization, profit and transparency.

Yet, despite its proven usefulness, the practices inherent to online
advertising and RTB may pose serious privacy risks for users (Estrada-
Jiménez et al., 2017). Most of these risks derive from the potential
misuse of the user data flowing through the advertising ecosystem. To
start, vast user data is mined at very high rates to implement real-time
personalization; hence, truly detailed profiles are built about millions
of people so fast and uncontrollably (Narayanan and Shmatikov, 2008)
that privacy protection is discouraged. Additionally, ad distribution
mechanisms based on auctioning user impressions might lead to char-
acterize users as more relevant (or more valuable economically) than
others, depending on their profiles (Olejnik et al., 2014); such a dif-
ferentiation may entail social sorting or discrimination (Speicher et al.,
2018), thus an even less private environment. Finally, online advertis-
ing builds on interactions among myriads of intermediary ad companies
that collect, use and share user data, significantly increasing the risk of
data misuse. Ironically, users have no control over how their data is
managed in this context.

RTB builds on sharing user data with DSPs to encourage competition
and ad personalization, but the unregulated distribution of such data
may give rise to concerns. With the aim of helping DSPs decide whether
to bid or not for a user impression, an ad exchange distributes to them
personal information of the user whose impression is being auctioned
(e.g., the URL being visited, the location of the user, or even a label
categorizing the user). Thus, not only does the winner DSP receives
this input, but also the rest of participating DSPs. This means that there
could be agencies maliciously collecting data without even paying for
it. We illustrate this risk in Section 3 where we unveil that a given DSP
would have paid nothing for at least 55% of the users it tracked in
a period of three months. This uncontrolled distribution of user data
prompts a non-negligible privacy concern since an increasing number
of advertising agencies are relying on RTB to daily reach billions of
potential Web customers (Hoelzel, 2015). Although the distribution
of personal data among a group of DSPs cannot be entirely stopped
without changing the current advertising business model, we report
that the potential abuse of these agencies can be tackled with minimum
tuning of said data distribution model.

Our proposal builds on regulating the distribution of personal data
from the ad exchange to DSPs when a user impression is auctioned.
Such regulation consists essentially in limiting the number of DSPs
invited to bid, that is lowering the entities to which user data is
leaked and, consequently, getting a more private environment. Accord-
ingly, DSPs or similar intermediaries showing a dishonest behavior
(e.g., never winning auctions) will be banned from participating in
future auctions, which may entail correcting such harmful behaviors.
At the same time, our approach strives to maximize the revenue of
the ad exchange, looking for a balance with a given privacy level.
The upshot is that some privacy can be reached without affecting
the business model of the online advertising ecosystem, by slightly
modifying the distribution of personal data among intermediary entities
such as DSPs. The resulting adjusting effect on the behavior of these
entities is relevant since privacy concerns in general do not directly
derive from the act of sharing data itself, but from the inappropriate
sharing of user information (Nissenbaum, 2009).

Unlike our approach, other proposals address this privacy issue
through more radical strategies. Research proposals have concentrated
on sophisticated mechanisms to anonymize or block the information
leaked to third-parties while trying to remain compatible with the cur-
rent ecosystem, but still requiring important modifications to its archi-
tecture and anyhow affecting its economy. On the other hand, commer-
cial solutions have primarily focused on blocking tracking mechanisms

at the cost of seriously damaging the Internet business model. However,
as concluded in Estrada-Jiménez et al. (2017), it seems very hard
to provide more privacy in the online advertising ecosystem without
somehow modifying the ad delivery model.

1.1. Related work

In general, the concerns regarding privacy arise from the inappro-
priate collection, use and sharing of user data (Nissenbaum, 2009). In
the context of online advertising, said misuse of user data is potentially
present in different moments in time. First, powerful tracking mecha-
nisms are employed by high-level advertising players to ‘‘follow’’ users
through the Web (Olejnik and Castelluccia, 0000; Eckersley, 2010;
Mayer and Mitchell, 2012). These tracking mechanisms include cookie
matching and fingerprinting. When users navigate a website serving
ads, third-party interactions from the browser disclose user data to said
players, which aggregate and store this information (collection). Then,
they process this user data (use) and further distribute it (sharing) to
enable personalization for users and to guide the targeting strategy of
advertisers.

Within this framework, external control over the flow of data
could only be enforced before the collection step, i.e., when the web
browser leaks data in third-party interactions. Further adjustments
require changing online advertising structures. This is why most of
the functional solutions to protect privacy in this domain build on
managing (essentially detecting and blocking) third-party connections
from the user side. These are local approaches, commonly implemented
as web browser extensions, that provide users with tracking blocking
capabilities. The most popular ad blocker is AdBlock Plus (Adblock
Plus, 2015), but other similar tools exist that also provide trans-
parency and user personalization (Parra-Arnau et al., 2016; Sánchez
and Viejo, 2018; Achara et al., 2016). In this line, other initiatives
propose blocking strategies implemented in brokers (Backes et al.,
2012; Guha et al., 2011; Privoxy.org, 2016) that act as local proxies
to filter the interactions performed between a group of local users and
advertising entities on the Web. Historically, these approaches have
detected third-party tracking through static blocking lists that have
become extremely long and hard to manage (Easylist, 2016), but recent
proposals have improved such detection by using machine-learning
techniques (Papadopoulos et al., 2018).

However, ad blockers and anti-trackers suffer from controversial
shortcomings. First, its extended use is seriously threatening the busi-
ness model of the whole Internet. Also, though radical and apparently
infallible, ad blocking would have been circumvented by tracking
companies by exploiting web sockets (Bashir et al., 2018). Namely, ad
blockers might not be as effective as expected.

Looking for more advertising-friendly solutions to preserve privacy,
multiple initiatives have emerged from the academic world. Those
mostly suggest integrating the active participation of users so they
can decide how to manage their data. Some of these works (Backes
et al., 2012) propose incorporating trusted third-parties to intermediate
the communication between users and advertising players to encrypt
or obfuscate user data. Several other approaches present advertising
architectures where the exploitation and sharing of data is moved to the
user premises, i.e., to the user’s browser or a local application (Guha
et al., 2011; Toubiana et al., 2010; Fredrikson and Livshits, 2010). This
enables users to control how their data is processed and how and when
it is shared to third-parties. Two very recent research works (Helsloot
et al., 2018, 2017) present protocols to exploit personal data while auc-
tioning user impressions without revealing any personal preferences (in
clear text) to advertising parties. As some of the previous approaches,
these protocols require that user information be processed locally in the
browser, and that a trusted third-party assist in performing operations
over encrypted user data.

Other more revolutionary proposals even suggest adapting the
advertising model to allow users to be rewarded for ceding their
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data (Parra-Arnau, 2017; Brave, 2016) or to enable advertising players
to charge users for not tracking them (Mozilla, 0000). Sadly, all
this related academic research require modifying the current online
advertising model, either in the way user data is exploited or in the
mechanism to obtain (economic) value from it. These are important
changes that would significantly impact the utility of the user infor-
mation received by ad platforms, thus negatively affecting their huge
revenues. As a consequence, there might not be incentives for the
advertising market to adopt them in the short-medium term.

With blocking solutions that are critically tampering with the econ-
omy of the Web (Shiller et al., 2017) and academic approaches that are
not feasible in the short term, it seems that we need to look beyond to
get real privacy. Reaching effective strategies implies starting to disrupt
the core of the ecosystem in order to address the moments when user
data is processed and shared. Some steps in that line are already taking
place thanks to strict privacy regulation recently promulgated (GDPR,
0000) in Europe that is motivating companies to cooperate in favor of
the privacy of users. Interestingly, the mere application of transparency
initiatives has already allowed to unveil further privacy risks within
advertising platforms (Faizullabhoy and Korolova, 2018; Venkatadri
et al., 2018).

1.2. Main requirements of the system

In this subsection we include the main requirements around which
our proposal revolves, in order to guide the approaches we do next.

• Simple implementation. To encourage its implementation in prac-
tice, we promote a solution that does not require modifying
significantly the architecture of the online advertising ecosystem.
This would imply a low adoption cost, unlike other academic
approaches that propose rebuilding the current model to protect
privacy.

• Constructive technique. Looking for an alternative to the arms race
started by ad blockers, which is threatening the economy of the
Web, we require a mechanism aimed to balance the tradeoff
between user privacy and advertising utility (commonly in terms
on money). This would limit the level of attainable privacy, but
would open the door to further tangible mechanisms to address
privacy concerns in this opaque environment.

• Self-regulatory. In line with a constructive approach, we uphold
a system that allows misbehaving entities to correct their prac-
tices against privacy, under the penalty of dynamic punishment.
Namely, we require a solution that promotes appropriate prac-
tices towards user data to relieve privacy concerns.

Interestingly, the compliance with these three main requirements
when designing our system will derive in additional aspects that may
go in favor of user privacy.

1.3. Contribution and plan of this paper

In this work, we illustrate the potential misuse of RTB with real
data from a publicly available data set. We analyze the data of more
than 64 millions of ad-auctions and interactions between a DSP and an
ad exchange, to quantify the extent to which a DSP may collect user
tracking data without paying for them. To the best of our knowledge,
this is the first study reporting quantitative evidences on the misuse of
RTB.

Since no preventive mechanism is currently put in place by Google’s
DoubleClick and AppNexus (the most relevant RTB systems), we hy-
pothesize that such tracking and profiling practices may be rather
common. To address this state of affairs, our second contribution is a
system that aims to regulate the distribution of user data to third parties
during the auctions for ad-impressions, i.e., to whom send the requests
for each ad-space bidding.

The proposed solution is designed to strike a balance between the
average number of DSPs invited to bid and the revenue of the ad exchange
holding the auctions. Limiting the number of DSPs receiving user pro-
files naturally offer better privacy protection, especially since potential
dishonest DSPs will hardly receive user sensitive information under
such context. As a consequence, an ad exchange might be motivated to
suppress the bid requests to abusing DSPs, but this would have an impact
on its revenue. We formulate the problem of choosing a bid-request
distribution as a multi-objective optimization problem that takes into
account both aspects, i.e., the number of DSPs invited to bid and RTB
profits.

We measure the extent to which user data is disseminated as the
average number of DSPs receiving tracking data. Accordingly, for a
desired data distribution strategy, our solution recommends, probabilis-
tically and in real time, to which DSPs the ad exchange should send
a bid request for any given ad impression, in order to maximize the
instant revenue. Evidently, with the aim of preventing abuses and thus
supporting privacy, the fewer DSPs receive personal data the better.
Experimental results show that our system seems to be able to tackle
misbehaving DSPs.

The remainder of this work is organized as follows. Section 2
provides the necessary background in online advertising. Then, Sec-
tion 3 analyzes the potential abuses and privacy risks we face in this
context. Section 4 presents the theoretical analysis of our regulating
approach. In Section 5, we evaluate our technique. Section 6 includes
a relevant discussion about important topics of our approach and
some general incentives to adopt it. Finally, conclusions are drawn
in Section 7.

2. Background in online advertising platforms

This section addresses the main concepts involved in the current
online advertising ecosystem, in particular with regard to its main
players, the interactions among them, and supporting technologies.
This knowledge shall provide the reader with the necessary depth to
grasp the technical contributions of this work.

2.1. The online advertising landscape

Generally, advertising is conceived as a form of communication
aimed at persuading users to buy a product. Even a relative success
in such an ambitious (and commercial) objective have led to generate
lots of money, so much money that advertising is said to be supporting
the existing Internet free access model now (Gayomali, 2014). Due
to structure limitations, traditional advertising consisted in massively
flooding media with generic ads. Though such massiveness brought
interesting revenues, it turned annoying for customers (Rejón-Guardia
and Martínez-López, 2014) and caused rejection due to the lack of
usability that provoked on web sites. On the other hand, with the
rise of the Internet, more granularity became available with regard to
user data. Thus, modern (online) advertising has developed a much
greater capability of reaching potential customers on an individual
basis. For this, recommendation and personalized information systems
are being exploited to tailor advertising campaigns to the interests of
Web users (Kardan and Hooman, 2013). Then, users are not flooded in
their browsers with uninteresting ad content, yet, within ad platforms,
a wealth of user information fuels a targeted and optimized strategy.

This optimization is focused on the revenue of the ad distribution
system whose core is an auction technology, called real-time bidding
(RTB) that allows to assign ad spaces to the highest bidder (Yuan et al.,
2013). Along with the use of other technologies, this usually derives
in showing ads to the right person and at the right time. Also in this
context, more accountability, transparency and effectiveness (Evans,
2009) are provided since ad companies are encouraged to agree on
prices that directly match the effort undertaken by the seller with
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Fig. 1. Main components of the online advertising ecosystem.

the benefits received by the buyer (Yuan et al., 2012). Sadly, said
accountability and transparency are by no means offered to end users.

Going a little deeper on the structure, the online advertising land-
scape is triggered by advertisers, who create the demand, and publish-
ers, who generate the supply. Websites have become the publishers by
excellence since the content they offer attracts people whose interests
can be revealed from intrinsic interactions with the Web. Beyond
these fundamental entities in the advertising logic, modern online
advertising management has incorporated intermediate entities that
help advertisers and publishers navigate the web topology in order to
connect them together (Evans, 2009). Such intermediaries are respon-
sible for providing interactive and automatic ad serving that is able
to accurately target the intended audience. Said targeting strategy has
directly influenced the ad-personalization accuracy, but also the level
of transparency (for advertising players) of the process whereby ads
are delivered. Of course, outsourcing user data and interactions from
publishers and advertisers is required to achieve these goals.

2.2. Online advertising players

As suggested in Section 2.1, the modern online advertising infras-
tructure builds on three main components. As illustrated in Fig. 1, these
components are advertisers, publishers and ad platforms (the set of
intermediate entities managing the interactions among the former two).
Internet browsing triggers such interactions and user data enables ad
targeting; however, users are not given any active role in this context,
by default. Yet, a change on their behavior with regard to advertising
may significantly impact on the current advertising business model.

Advertisers are entities willing to pay for displaying ads on some
spaces of websites (publishers) in order to promote a product to poten-
tial customers (Yuan et al., 2012; IAB, 2015). Advertisers and publish-
ers are commonly engaged through intermediate platforms, as shown in
Fig. 1, to make their interactions more efficient. This efficiency derives
in the capability of advertisers to target ads to their intended audiences.

A publisher is an entity, such as CNN or The New York Times,
which provides online content (e.g., newspapers, search engines, blogs,
etc.), usually through web pages. Since such content draws the atten-
tion of users, advertisers pay publishers to be assigned a space in a
website, where they can show ads to a given audience.

Ad platforms represent the marketplace where the demand (from
advertisers) and the supply (from publishers) of online advertising
services are matched (Yuan et al., 2012) (see Fig. 2). They are built of
agents (intermediaries) with very specialized roles. On the one hand,
they offer interfaces for advertisers and publishers to outsource some
of their interactions. On the other hand, they optimize the ad serving
process in terms of revenue, flexibility and transparency. Corresponding
entities to offer these services have emerged to now give rise to ad
platforms.

Ad networks emerged to aggregate ad inventory bought from pub-
lishers (ad spaces) in order to resell it to advertisers (OpenX, 2010). By
piling ad spaces, ad networks were pioneers in supporting advertisers

Fig. 2. Disaggregated ad platform scheme and interactions between players.

to reach more selective audiences. Ad networks have evolved into more
complex structures, called ad exchanges, though some still operate as
they were conceived originally.

Ad exchanges sell their aggregated inventory of ad spaces by means
of auctions. They keep consolidating ad spaces from publishers but offer
advertisers and publishers more effective and transparent mechanisms
to serve ads (Yuan et al., 2012; Mayer and Mitchell, 2012). First, ad
exchanges place ads based on automated auctions where advertisers
(or those in their representation) ‘‘decide’’ how much to pay for an ad
space. The winning bidder is the advertiser that ends up displaying the
ad. Secondly, during the auction, ad exchanges share with advertisers
‘‘contextual’’ information about the user who generates the impression
they bid for. Such information helps advertisers decide whether to bid
for an ad space and how much to bid for it. The auction is held just after
a user requests content from a website partnering with the ad exchange.
The whole process may take a few tenths of a second. Theoretically,
this yields greater efficiency since the ad-delivery process is distributed
among the different components of the ad platform (Smith, 2014b).
Part of the aggregation strategy of ad exchanges consists in combining
multiple ad networks together. This way, advertisers and publishers
are relieved from dealing with so many intermediaries. In practice, ad
exchanges do not deal directly with advertisers, but with demand side
platforms which act in the name of advertisers.

Demand side platforms (DSPs) are entities that work for adver-
tisers, i.e., for the actors generating the demand of ad services. DSPs
work on behalf of advertisers, in front of the ad exchange, and help
advertisers choose audiences and adequate media to display their ads.
By aggregating demand, DSPs are capable of boosting selectiveness and
effectiveness for advertisers (Yuan et al., 2012; Mayer and Mitchell,
2012). With the increasing complexity of the advertising ecosystem,
advertisers have lost some fine control over ad placement done through
DSPs. Consequently, other agents have appeared on the demand side to
serve advertisers. We talk, e.g., about trading desks, which give adver-
tisers tools to manage their campaigns more closely and to optimize
their strategy according to their needs. Trading desks commonly take
advantage of the services provided by various DSPs.

Supply side platforms (SSPs) are entities that work on behalf of
publishers, the actors that supply ad spaces to advertisers. SSPs offer
publishers an optimized strategy to manage their advertising inventory.

Finally, there are other players in this ecosystem operating on top of
demand, supply and ad exchange platforms, which is the case, e.g., of
data aggregators and data exchanges. They collect user data to sell it
to demand and supply-side platforms to help them make their targeting
decisions.

2.3. RTB: the auction technology behind online advertising

When a user visits a Web site with an ad space served through
RTB (Yuan et al., 2013), an HTTP request is submitted to the ad
exchange, which subsequently sends ‘‘bid requests’’ to potential par-
ticipants. We note that the number and type of participants involved
may vary on a per-auction basis, at the ad exchange’s discretion. Within
the bid request, the ad exchange generally includes the following data:
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Fig. 3. Interactions among an ad exchange and associated DSPs.

the URL of the page being visited by the user; the topic category of
the page; the user’s IP address or parts of it; and other information
related to their Web browser (Real-time bidding protocol - processing
the request, 0000; Yan et al., 2009; Olejnik et al., 2014). Accompanying
this information, Google’s ad exchange incorporates a bidder specific
user ID, which implies that different bidders are given different IDs for
a same user. Other RTB-based ad exchanges, alternatively, include their
own user’s cookies.

Upon receiving the bid request, the bidder may identify the user
within its own database through the cookie or identifier. This is pro-
vided that the cookie-matching protocol has been executed previously
for this user. Thanks to such cookie or identifier, the bidder can track
them across those Web pages in which it is invited to bid (Ghosh et al.,
2015). From those tracked pages, the bidder can therefore build a
profile, maybe complementing tracking and other personal data it may
have about the user (Google, Cookie, 2016).

The bid price is then set on the basis of the bidder’s targeting
objectives, that is, whether it aims to target users visiting certain
site categories, browsing from a given location, and/or having some
specific profile. To evaluate if the ad-impression meets such objectives,
the bidder relies on the aforementioned profile and the information
included in the bid request. If interested, the bidder submits a price
to the ad exchange, which finally, in a last step, allows the winning
bidder to deliver the ad to the user. The winning bidder is evidently
the highest bidder, but the price paid is the second-highest bid in
the auction (Google, Ad exchange, 2018); these so called second-price
auctions look after preventing underbidding and overbidding. It is
worth stressing that all this process of gathering user data, ad bidding
and delivering is conducted in just tens of milliseconds.

3. Data aggregation-driven privacy risks in online advertising

This section examines in depth the potential abuse and privacy risk
object of this paper. We emphasize that these issues derive from the
capability of DSPs to track and profile users almost effortlessly and at
very low cost. More specifically, user privacy in RTB systems is at risk as
a result of: (1) user information is shared with third parties by default;
(2) this information is not only delivered to the winner of an auction
but also to other entities, and (3) there is an apparent lack of control
over the abuse of potential malicious listeners.

Some guidelines are stated by the ad exchange (e.g., Google Dou-
bleClick) regarding the use of auction data. Yet there are not known
mechanisms to control such abuse from certain DSPs. Next, to illustrate
the aforementioned privacy risk, we analyze a publicly available data
set containing bid information of a Chinese DSP.

Table 1
Information, items carried in bid requests, here matched to the potential privacy
risks derived from their open distribution and aggregation. A user ID is a string that
unambiguously identify a user in a given system, e.g., within the ad exchange’s domain.
An IP address or part of it may be used by DSPs as an identifying parameter and to infer
the user’s location. Device or browser fingerprints are also carried within bid requests to
serve as powerful identifying parameters built on the specific characteristics of a user
entity. Bid requests also transport user behavioral data such as labels describing the
user’s preferences or the category of the site visited. Furthermore, the URL or domain
of this site is communicated. Finally, a minimum bidding price is usually included in
bid requests as a reference for the auctions.

Identification Learning
of moving
patterns

Cross
device
tracking

Microtar-
geting

Habits
tracking

Outlier
detection

User ID ×
IP address ×
User location × × ×
Device
fingerprint

× × ×

Web browser
fingerprint

× × ×

Time stamp ×
User
languages

× ×

User labels × ×
URL ×
Content
labels

×

Minimum bid
price

× ×

3.1. Bid requests: the tokens leaking personal data

As explained in Section 2, a bid request not only serves to invite
DSPs to participate in the auction of a user’s impression. A bid request
includes a variety of user data in order to provide DSPs with the
necessary feedback to decide whether to bid or not for said impression.
Then, the interested DSPs send their bids to the ad exchange in order for
an auction to be held. Evidently, the success of personalized advertising
tightly depends on the granularity and volume of the information
shared with DSPs. Sadly, user privacy decreases to the same extent that
personalization improves. As an approach to evidence this privacy risk,
we here portray the critical information available about the user and
included in bid requests. Fig. 3 depicts the aforementioned interactions
among an ad exchange and DSPs. Considering that these interactions
are carried out for every single user impression, it illustrates the wealth
of personal information flowing to potential participants in the bidding
process.

Dozens of fields and subfields carry information concerning the
context in which a user impression is held (Google, Real-time, 2017).
As described previously, users play a leading role in this context. Thus,
much of the information carried to fuel the RTB process characterizes
them and, particularly, their behavior. First, a bid request may include
a user’s ID that DSPs may use to individuate them and match previously
acquired information with the data included in bid requests. A user ID
may be a string that unambiguously identify a user in a given system
but not in real life, e.g., within the ad exchange’s domain. Furthermore,
the user’s IP address (or part of it) is included in bid requests mostly to
help DSPs infer location information to execute geographically targeted
campaigns. IP addresses can also be used as user identifiers, especially
now that IPv6 is providing an almost unlimited addressing space.

Additionally, device and web browser fingerprint data may be con-
tained in a bid request, as powerful attributes to better identify users.
A fingerprint is a set of attribute values that characterize an entity
to the point that could individuate it unequivocally. For example, a
fingerprint of a network device might be composed by its operating
system’s name, its version, the list of applications installed and the list
of open ports of the device.

Information about the users’ online behavior may also be included in
the bid requests sent to DSPs, e.g., in the form of a list of (user profile)
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Table 2
Parameters describing the iPinYou data set. This includes, e.g., the number of bid log
records, unique users involved, or the number of Chinese cities reached.

Bid log records 64.746.749
Logs of won bid requests 19.495.976
Unique users 21.264.865
Data attributes in bid logs 24
Ad exchanges 3
Regions 35
Cities 362
User profile tags 44

tags or categories. These categories reveal the preferences of the user
whose impression is auctioned, thus are crucial for DSPs when deciding
whether to bid or not. Similar tags depicting the content of the website
visited by the user might also be delivered to DSPs along with its URL or
domain. Finally, a time stamp indicating the date and time of the user’s
visit, and a reference bidding price to inform the minimum value to bid
may be provided by bid requests.

Several privacy risks may derive from this personal information,
especially when distributed among several intermediate entities such as
DSPs, in a position to aggregate and process said information. To start,
although user IDs do not identify a user in real life, a combination of
the remaining attributes may inequivocally individuate a user (a few
demographic attributes have such an identification power Sweeney,
2002). Users’ location information could lead an attacker to learn
moving patterns of users to then reveal even further details about
their daily activities (Mathai et al., 2015). Device and web browser
fingerprints may complement this attack by enabling cross device track-
ing (Brookman et al., 2017). Not only could users and their activities
be geographically tracked using data in bid requests, but also their
preferences are learned and may reveal sensitive information (Hill,
2012). In fact, pricing information is already a critical aspect that
directly discloses the relative importance of a user. Table 1 maps some
of these information items to the potential privacy risks derived from
their open distribution and aggregation.

3.2. The iPinYou data set

To illustrate the potential misuse of RTB systems and its real impact
on user privacy, we analyze a data set that includes bid information
released by a well-known Chinese DSP called iPinYou.

The iPinYou data set (Zhang et al., 2014) contains logs of the ad
auctions where this DSP has participated. These logs basically carry
three types of information for each auction: (1) user data sent by the ad
exchange to the DSP in order for the latter to prepare a bid response,
(2) the price paid when it wins the auction, and (3) information on
whether the user made a click or a conversion as a response from
the ad displayed. User data include some of the parameters described
in Section 2.1, e.g., an ID of the user that generated the auction, a
timestamp, their browser fingerprint (user-agent), their IP address (its
first 3 bytes), their location (region and city), the domain and URL
visited, and some user tags representing the categories of interest of
the user. Additional information involves the ad exchange that held
an auction and the price paid by a DSP (not necessarily iPinYou) to
won it. The values of some of these attributes, e.g., IP address, URL
and domain visited, are anonymized to preserve the privacy of users. It
is important to note that this data set contains information related to
the bids in which iPinYou participated, excluding the auctions where
iPinYou decided not to bid.

This data set was released in 2013 for an open contest on RTB ad
pricing. For the purpose of our analysis, we use the version processed by
Zhang et al. in Zhang et al. (2014). We aggregate the data from seasons
2 and 3 of the competition (data from season 1 has different fields than
the rest) and we examine the data of almost 65 million bid requests sent
to this DSP. We find that these bid requests belong to about 21 million

unique users. In Table 2 we summarize the most relevant figures of
the data set at hand. In order to facilitate the processing of this data,
we used a sample of bid requests corresponding to the users having 70
or more log records in the whole data set, yielding almost 6 thousand
users with more than 8 thousand log records.

3.3. Privacy risks and abusing context

User privacy risk starts from the capability of an ad exchange to
identify the user whose impression is being auctioned. The user ID
attribute included in bid requests and thus sent to DSPs inequivocally
identifies a user within that context. In fact, if this identifier is already
known by a DSP, they could match even more information about
the user. In addition, recall, e.g., that a few combined demographic
attributes may be very identifiable. Consequently, other attributes such
as the user’s IP address and the device fingerprint (Eckersley, 2010)
might make this risk worse. Namely, although not real-life identifiers,
user IDs, when combined with other bid request fields of information,
might significantly facilitate the work of a privacy adversary in its bid
for individuating a victim.

Public IP addresses could by themselves be very identifiable, too.
For this reason, only the first three octets are commonly revealed in bid
requests, but it is still evident when the address changes. The uniform
change of a user’s IP address through the day, if a user is tracked across
different geographical areas, might unveil movement patterns, which
is sensitive information with regard to user privacy (del Prado Cortez
and Frignal, 2014). With respect to this, within the iPinYou data set,
we found that a great portion of users (about thirty percent) were
associated with three or more different IP addresses.

In addition to IP addresses, other attributes with rare attribute
values may help adversaries single out users in real life, even more
when analyzed in combination with other attributes. For example,
people using Linux operating systems and non standard web browsers
(e.g., Opera) could excel so much to become easily identifiable outliers.
To have an idea of this, in the iPinYou data set, we found only 206 bid
requests (out of millions) including user information coupled with the
combination of Linux operating system and the Opera browser.

This process of associating a user’s unique identity with their in-
teractions enables tracking. Then, working in real time, tracking allows
advertising entities to ‘‘recognize’’ users during their impressions and
ultimately display a personalized ad. However, tracking also enables
these entities to join personal information to build individual user
profiles (profiling). As in other personalization contexts, such tracking
and profiling capabilities are supported by the processing of personal
information. Nevertheless, within advertising platforms, personal infor-
mation flows freely, constantly, and abundantly from the ad exchange
to DSPs. Thus, a sort of oversending of personal data to third parties
might be supporting misuse and worsening privacy risks.

The last statement implies that DSPs essentially do not pay for the
user information they receive in bid requests, but for the auctions they
win on behalf of advertisers. In practice, upon the reception of bid
requests (invitations to participate in auctions), a DSP pays just for the
auctions it wins, while it receives user data in the rest of bid requests
‘‘for free’’. Clearly, DSPs may take advantage of the ad exchange’s
tracking resources at a very low cost. This fact is evidenced in Fig. 4,
where we depict the amount of users whose information has been paid
by the iPinYou DSP. To illustrate the amount of information potentially
collected for free, we can see in this figure that, for about 55% of
the users, this DSP has not paid for any of their bids. From this we can
infer the potential abuse of a third party and the exacerbated risk for
the privacy of users if multiple DSPs exhibit a behavior not oriented
to participate in auctions, but to take advantage of the large amount
of user data distributed by an ad exchange. We would like to stress,
however, that this percentage of users tracked for free might be just a
lower bound: the released data set does not include the auctions where
iPinYou did not bid, but from which it could have received numerous
user data costing nothing.
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Fig. 4. Percentage of users whose information has been paid by the iPinYou DSP. For
about 55% of the users, none of the bid requests triggered from their impressions were
paid by the DSP, i.e., the DSP did not pay anything for the auctions held for 55% of
the users.

Fig. 5. Amount of users tracked by the most popular domains in the iPinYou data set.

In an attempt to prevent this abuse, ad exchanges clearly prohibit
DSPs to use the information in bid requests when a corresponding
auction has not been won (Google, Google, 2017). It is also not allowed
to use this information for applications other than the ones related
to online advertising. However, enforcing such use is hard when the
information has already been distributed to third parties; and when,
due to an increasingly complex advertising ecosystem, more and more
entities are included to outsource specific functions in the demand side
(e.g., trading desks).

Data aggregation performed by intermediate entities brings another
privacy jeopardy in online platforms. Not only ad exchanges, the core
of ad distribution, but also DSPs and even publishers are in a position to
concentrate user data (Estrada-Jiménez et al., 2017). As expected, in the
iPinYou data set, user tracking is concentrated in Google’s DoubleClick
ad exchange. Furthermore, we found that more than fifty percent of the
users in the iPinYou data set would be tracked by only two publishers,
probably related to the most popular websites in China (Fig. 5). In other
words, having recognized at least 2063 publishers in this data set, less
than 0.1% of them concentrates the tracking of more than 50% of the
involved users. Powerful tracking capabilities are then held in very few
hands.

Fig. 6. Interface for advertisers to select an audience for a campaign in Facebook. Its
very granular options allow a great power to microtarget users.

Not only the easiness and openness of data collection is threatening
the privacy of Internet users, but also the level of detail of the data.
The granularity of the user data held by these entities has given rise to
powerful capabilities of microtargeting. These capabilities have derived
in tools to select audiences that may enable even advertisers to target
groups of users with great precision (Korolova, 2010). In Fig. 6, we
show an interface offered by a social network and a DSP to choose an
audience for better ad targeting.

Finally, due to the pervasiveness of online advertising, it is not
hard to comprehend its wide reach in the population. The idea that
the advertising ecosystem might be collecting information related to
large masses of people is reflected in the iPinYou data set. More
precisely, based on the user ID and region attributes of the records
from this data set, we observed that large portions of the population
of important Chinese regions would have been tracked. For example,
this DSP (iPinYou) would have information of more that 5% of the
population in regions such as Beijing, Guangdong, and Shanghai (see
Fig. 7). Considering that, in this case, most of the user data must be
‘‘ceded’’ as input to DSPs for their bidding decisions, gathering such
bulks of information seems a very good deal for them. However, this
is not good news for the privacy of users, who are probably being
observed en masse.

19



J. Estrada-Jiménez, J. Parra-Arnau, A. Rodríguez-Hoyos et al. Engineering Applications of Artificial Intelligence 82 (2019) 13–29

Fig. 7. Population tracked by online advertising entities along different regions of China, as observed in the iPinYou data set.

4. A system for the controlled distribution of bid requests (in RTB)

We propose a system that aims to reduce the oversending of per-
sonal data to DSPs, thus ultimately providing some privacy to users
in RTB systems. This is done by regulating the distribution of bid
requests among intermediary entities such as DSPs or trading desks.
Conceptually, this objective could be reached, to a certain extent, by
reducing the number of DSPs to which bid requests are sent, thus
lowering the instances where user data is aggregated. Naturally, from
a practical perspective, our solution is conceived to be implemented
within the ad exchange infrastructure since it is the entity in charge of
sending bid requests to DSPs when a potential ad impression arises.
The proposed system determines, in real time and adaptively, the
specific participants of a given ad-space auction, at the cost of some
processing overhead at the ad exchange and a potential reduction in
revenue incurred by a smaller number of participants in auctions. Being
revenue the raison d’être of ad exchanges, a trade-off will arise with data
distribution control, but with an adequate balance, we shall show that
reasonable guarantees can be provided while keeping relatively high
profits.

Unlike many of the privacy techniques proposed in the literature for
online advertising, a change in the distribution model of bid requests
does not entail an important modification of the advertising ecosystem.

4.1. Adversary model

Our technique builds upon the principle of a selective distribu-
tion of bid-request information (containing user sensitive data) among
potentially interested DSPs. Consistently with this principle, we as-
sume an adversary model in which the bid requests sent by an ad
exchange are passively observed and maliciously aggregated by a group
of intermediary entities.

We must stress that this adversary model assumes that privacy risk
comes from the exploitation of user profiles built from the aggregation
of user data. Namely, the user data in a single bid request would not
entail a significant privacy risk since by itself reveals only a snapshot of
the preferences, behavior and demographics of a user at a certain point
in time. However, the more user data is aggregated the richer are the
resulting profiles, and the higher is the corresponding privacy risk.

As argued in Section 3, RTB-based ecosystems still provide fertile
ground for privacy abuse. One of the reasons is the relative ease
with which user data can be collected by intermediate and authorized
entities such as DSPs and other smaller subsidiary entities (e.g. trading
desks). Especially the latter, sometimes being really small companies,
are becoming capable of tracking users at a very low cost (or none)
and without deploying an important infrastructure. Thus, a privacy gap
arises when they are given easy access to an ever-growing universe of
aggregated personal data. We propose a system to bridge this gap by
penalizing said kind of tracking when it violates the norms established
by ad exchanges.

Table 3
Behaviors of DSPs, with regard to their participation in bid auctions, that may go
against ad exchanges policies and also in favor of the violation of users’ privacy.

Behavior Description

Silent A DSP not participating in auctions, and thus not answering
bid requests, may be misusing the RTB infrastructure by
collecting and exploiting the user data carried in these
messages. Ad exchanges recognize said risk when forbidding
DSPs using the data for which they have not paid in their
policies (Google, Google, 2017). Although this also gives
rise to privacy concerns, no further control is made.

Loser A DSP that looses too many auctions is also suspicious of
abusing the RTB infrastructure against privacy. Bidding to
lose is possible since bid requests sent to DSPs include
information about the minimum price of the user impression
auctioned. Just by bidding below the minimum would enable
DSPs or related entities to receive user data for free.

Stingy A DSP bidding too low might be looking for receiving user
data when no pricing information is received in bid requests,
thus trying to inappropriately exploit the RTB logic in
detriment of privacy.

As a note, abusing of such tracking is against the terms of use
of the main ad exchanges, which forbid DSPs taking advantage of
data for which they have not paid. For example, according to Google
DoubleClick Ad Exchange (AdX) Buyer Program Guidelines (Google,
Google, 2017), some of the policies that buyers must adhere to are
listed next:

• Buyers and any third party to which they provide access to the
ad exchange must adhere to the policies.

• The inventory purchased cannot be sold to another sales channel.
• Bid data cannot be used for purposes different from buying on the

ad exchange.
• Unless a buyer wins a given impression, it must not use bid data

for that impression to create user lists or profile users.

In brief, neither DSPs nor outsourced entities such as trading desks
are allowed to exploit bid data coming from an ad exchange, unless
they have paid for such data after winning a given auction. Some of the
behaviors that might go against ad exchange’s policies are described in
Table 3.

4.2. Bid request distribution model

As noted in Section 2, the visit of a user to a website that holds
an ad space generates a so-called ad impression. Then, an ad exchange
auctions said impression among all the available DSPs. To support the
bidding decision of DSPs, the ad exchange distributes among them bid
requests containing some user data.

We propose reducing the number of DSPs to which a bid request is
sent, in order to penalize misbehaving DSPs and to promote privacy.
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Fig. 8. A depiction of the bid request distribution model we propose for the ad
exchange. We model said distribution as the random draw of 𝑑 Bernoulli trials
(represented with 𝑑 Bernoulli r.v.’s: 𝑋1 ,… , 𝑋𝑑 ), being 𝑑 the number of DSPs available.
Each r.v. characterizes an experiment with a boolean-valued outcome and a success
probability 𝑝𝑖.

To model the distribution of bid requests, we rely on the Bernoulli
distribution that characterizes a discrete probability distribution of a
random variable whose value is true with probability 𝑝 and false with
probability 1 − 𝑝. This is the same behavior of the outcome of sending
bid requests to DSPs; they will receive requests if behaving well or will
not receive bid requests (penalized) if being dishonest. Accordingly,
being 𝑑 the number of DSPs available in a given moment, we model the
distribution of bid requests among them as the execution of 𝑑 Bernoulli
trials (or experiments).

These trials can be represented as 𝑑 independent, identically dis-
tributed Bernoulli random variables (r.v.’s) 𝑋1,… , 𝑋𝑑 , each of which
characterizes an experiment with a boolean-valued outcome and a
success probability 𝑝𝑖, with 0 ≤ 𝑝𝑖 ≤ 1. Therefore, when auctioning
a user impression, the ad exchange shall send a bid request to DSP𝑖
with probability 𝑝𝑖 and shall not do it with probability 1 − 𝑝𝑖. A given
ad exchange’s distribution strategy will be defined as the tuple 𝑝 =
(𝑝1,… , 𝑝𝑑 ) of the probabilities of sending a bid request to each of the 𝑑
available DSPs. In Fig. 8, we depict this distribution model for a given
user impression.

As introduced previously, to control misbehaving DSPs, we propose
bounding the number of DSPs that receive a bid request from the ad
exchange. Intuitively, the less the number of receiving DSPs, the higher
the level of user privacy. To do it, we introduce a data distribution
control parameter defined as the average number of DSPs that will
receive a bid request, 𝛼, with 0 ≤ 𝛼 ≤ 𝑑. Namely, in our system, the
number of recipient DSPs is bounded to the value of 𝛼. Clearly, the
number of invited DSPs, being a sum of independent Bernoulli trials,
follows a Poisson binomial distribution with mean ∑

𝑖 𝑝𝑖. Consequently,
our measure of privacy, the average number of participating DSPs, can
be computed straightforwardly as 𝛼 =

∑

𝑖 𝑝𝑖.

4.3. A system to balance the number of DSPs invited and ad revenue

Section 4.1 described the adversary model we tackle in this work. In
particular, we mentioned that DSPs might go against the policies of the
corresponding ad exchange by exploiting a uncontrolled distribution of
bid requests. Nevertheless, implementing these policies is by no means
a simple task because ad exchanges have no control over the internal
dynamics of buyers’ data infrastructures. In any case, they do have
the capability to regulate how bid requests are distributed to buyers.
Then, it is by shaping such distribution of user data, according to the
behavior of DSPs, that we propose to bound the amount of information
(bid requests) sent to DSPs, with the ultimate aim of enhancing privacy.

Intuitively, a distribution strategy that restricts the recipients of bid
requests will reduce the revenue of an ad exchange. Accordingly, we

Fig. 9. Methodology implemented to assess our bid request distribution strategy. This
flowchart also illustrates how our system integrates to the ad exchange’s auctioning
system as described in Section 4.3 (the blocks in blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

define a metric of said revenue, in a given auction, as the product of
three variables 𝜔𝑖, 𝜇𝑖 and 𝑝𝑖, for 𝑖 = 1,… , 𝑑. Note that maximizing
this measure of revenue would imply maximizing the real revenue,
according to the distribution model proposed in this work. Both 𝜔𝑖 and
𝜇𝑖 are system parameters taking values in R and could be interpreted
as reputation metrics of a DSP 𝑖. A DSP that behaves according to
the ad exchange’s rules will generate a reasonable revenue and thus
will have a better reputation than other DSPs that break the rules. For
each DSP 𝑖, we define the winning rate 𝜔𝑖 as the rate of won bids with
respect to the number of bid requests received up to a given instant.
Weighting by winning rate enables our model to discourage a potential
misuse of the bid request distribution model in online advertising. A
DSP that almost always loses is probably just ‘‘listening’’ for user data
to tamper with their privacy, thus deceitfully exploiting the online
advertising ecosystem. In our proposal, the economical contribution of
a DSP winning only a few auctions, even bidding high, will be weighted
by its poor wining rate in order to counteract its behavior against
privacy.

In addition, we define 𝜇𝑖 as the average money spent by a DSP up
to a given instant, that is, the amount of money paid for the won bids
divided by the number of bid requests received (we call it average money
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spent). Next, for the sake of simplicity, we shall refer to the product of
𝜔𝑖 and 𝜇𝑖 as 𝑟𝑖. For the sake of clarity, please refer to Table 4 to find
the notation used in this analysis.

We shall denote by 𝑝 the strategy of distributing bid requests where
𝑝𝑖, already defined in Section 4.2, could be seen as the percentage of
traffic sent to DSP 𝑖. Evidently, the higher the winning rate 𝜔𝑖 and
the average money spent of a DSP𝑖, 𝜇𝑖, the more likely it is to win
an auction (thus having a higher ‘‘reputation’’). Naturally interested in
reaching the maximum possible revenue, an ad exchange will try to
send a bid request to the DSPs with the highest product 𝑟𝑖. However,
for DSPs with low 𝑟𝑖 (i.e., showing bad behavior), in order not to
completely eliminate their opportunity to participate in auctions, we
will impose a tolerance parameter, i.e., a lower bound on 𝑝𝑖, denoted
by 𝑝min > 0. Thus, with 𝑝min ≤ 𝑝𝑖, we try to guarantee, for said DSPs,
the chance to improve their behavior (reputation) in the future.

According to the justifications in Section 4.2, in our approach we
use the parameter 𝛼 to bound the number of DSPs invited to bid (invi-
tation rate) and that will receive information from the ad exchange.
Put another way, 𝛼 could also be interpreted as a measure of the
suppression of bid requests to DSPs. Consistently with this bound, we
define a revenue-invitation rate function

(𝛼) = max
𝑝

𝑝min≤𝑝𝑖≤1
∑𝑑
𝑖=1 𝑝𝑖=𝛼

∑

𝑝𝑖𝜔𝑖𝜇𝑖, (1)

which characterizes the optimal trade-off between revenue  and the
number of DSPs invited to bid 𝛼. From this expression, we aim at
finding an optimal strategy of bid request distribution 𝑝∗, that satisfies
an average participating DSPs 𝛼 while maximizing the resulting ad
exchange’s revenue . Note that this expression establishes a strict
restriction (it must be fulfilled) regarding the limit of DSPs that will
receive invitations by the ad exchange (𝛼), while its revenue is maxi-
mized in a best-effort sense. We would like to stress that the priority
in our definition is given to meet this bound, i.e., to prevent abuse and
mitigate the privacy risk.

Although we propose modulating (or restricting) the distribution of
bid requests to DSPs such that more privacy is provided to users, this
does not necessarily imply that ad exchanges lose control over user
data. In fact, our approach would leave unchanged the internal logic
within ad exchanges for the sake of simplicity and applicability; this
includes how user data is collected and processed by ad exchanges.
Our proposal focuses rather on the flow of user information from ad
exchanges to DSPs, since unnecessary interactions threatening privacy
may arise in such data sharing context.

Having presented the main parameters and indicators of our system,
we summarize in the next list of steps the actions that the ad exchange
must perform to integrate our approach to the auctioning system. Also
Fig. 9 illustrates this integration and later on is used to describe the
evaluation methodology of our bid request distribution strategy.

Step 1: Set the design parameters of the system: a bid request dis-
tribution (privacy) parameter 𝛼 and a tolerance parameter
𝑝min.

Step 2: For each 𝑑 DSPs, compute and update their variable behavior
(reputation) indicators based on their win rate and money
spent (𝜔𝑖, 𝜇𝑖).

Step 3: Find an optimal distribution strategy of bid requests 𝑝∗ =
(𝑝∗1 ,… , 𝑝∗𝑑 ) that balance a measure of privacy with revenue.

Step 4: Send bid requests (invitations) only to the 𝛼 DSPs showing the
best behavior indicators.

Step 5: Receive bid responses and auction the user impression.

Table 4
Description of the main variables used in our notation.

Symbol Description

𝑑 Number of DSPs available in our scenario
𝑝 Tuple representing the ad exchange’s distribution strategy. Its

elements are the probabilities of sending a bid request to
each DSP

𝛼 Average number of DSPs that will receive a bid request, i.e.,
the average number of DSPs to be invited to the auctions

𝜔𝑖 Rate of won bids with respect to the number of bid requests
received by a DSP i up to a given instant

𝜇𝑖 Average money spent by the 𝑖th DSP up to a given instant
𝑟𝑖 The product of 𝜔𝑖𝜇𝑖
𝑝min Lower bound on 𝑝𝑖 that guarantees an opportunity to

participate in auctions for all DSPs
(𝛼) Function modeling the revenue of an ad exchange as a

function of the privacy parameter 𝛼

4.4. Optimal strategy for the distribution of bid requests

In this section, we shall analyze the revenue-invitation rate func-
tion (1) defined in Section 4.3, and present a closed-form solution, al-
beit piecewise, to the maximization problem. We shall suppose, without
loss of generality, that

𝑟1 ≥ ⋯ ≥ 𝑟𝑑 . (2)

Also, for 𝑘 = 1,… , 𝑑, we define a sequence of thresholds 𝛼𝑘 as
𝑘(1 − 𝑝min) − 𝑑 𝑝min.

Lemma 1. For any 𝑘 = 1,… , 𝑑 and any 𝛼 ∈ [𝛼𝑘−1, 𝛼𝑘], the solution to (1)
is the distribution strategy

𝑝∗𝑗 =

⎧

⎪

⎨

⎪

⎩

1 , 𝑗 = 1,… , 𝑘 − 1
𝛼 − 𝑝min(𝑑 − 𝑘) − (𝑘 − 1) , 𝑗 = 𝑘
𝑝min , 𝑗 = 𝑘 + 1,… , 𝑑

(3)

and the corresponding maximum revenue yields

∗(𝛼) = 𝑟𝑘𝛼 − 𝑟𝑘𝑝min(𝑑 − 𝑘)

−𝑟𝑘(𝑘 − 1) +
𝑘−1
∑

𝑗=1
𝑟𝑗 + 𝑝min

𝑑
∑

𝑗=𝑘+1
𝑟𝑗 . (4)

Proof. The existence and uniqueness of the solution is a consequence
of the fact that we maximize a continuous function over a compact set.

From the assumption (2), it follows intuitively that for an 𝛼 < 1
the solution consists in sending a bid request to the first DSP, i.e., to
the DSP having the maximum product 𝜔𝑖𝜇𝑖. However, the condition
𝑝 ⩾ 𝑝min ensures the resource, 𝛼, must be distributed across all other
DSPs, so that all participants can have a chance to receive a bid. The
amount of 𝛼 to be distributed is clearly 𝑑𝑝min and hence the remainder
𝛼′ = 𝛼 − 𝑑𝑝min is the resource to be assigned among the 𝑑 DSPs.
Therefore, 𝑝min ⩽ 𝛼

𝑑 ⩽ 1.
Following the same intuitive principle described above, we proceed

to examine the distribution strategy of the remaining 𝛼′. Note that,
below, all the expressions in terms of 𝛼′ can be recast in terms of 𝛼′ on
account of 𝛼 = 𝛼′+𝑝min. For notational convenience, define 𝑝′ = 𝑝−𝑝min.

Case 1. 0 ≤ 𝛼′ ≤ 1 − 𝑝min.
Observe that, in this case, any feasible 𝑝′ = (𝑝′1,… , 𝑝′𝑑 ) satisfies

𝑝′1𝑟1 +⋯ + 𝑝′𝑑𝑟𝑑 ≤ (𝑝′1 +⋯ + 𝑝′𝑑 )𝑟1 = 𝛼′𝑟1,

which implies that the optimal distribution strategy consists in assign-
ing the whole 𝛼′ to the first DSP, that is 𝑝∗1 = 𝛼′ and 𝑝∗𝑖 = 0 for 𝑖 ≠ 1.
More compactly,

𝑝∗ = (𝛼 − (𝑑 − 1)𝑝min, 𝑝min,… , 𝑝min),
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Fig. 10. Conceptual plot of the revenue-invitation rate function. (𝛼) is a nondecreas-
ing function defined piecewise. From the labeling assumption (2), the slopes of (𝛼)
(𝜔𝑘𝜇𝑘) decrease as 𝛼 grows.

by virtue of ∑ 𝑝∗𝑖 = 𝛼 = 𝑑𝑝min + 𝛼′.

Case 2. 1 − 𝑝min < 𝛼′ ≤ 2(1 − 𝑝min).
This case follows in an exactly analogous manner as the previous

case and leads to the optimal strategy

𝑝∗ = (1, 𝛼 − (𝑑 − 2)𝑝min, 𝑝min,… , 𝑝min).

Case 𝑘. (𝑘 − 1)(1 − 𝑝min) < 𝛼′ ≤ 𝑘(1 − 𝑝min).
By generalizing our analysis for the 𝑘th case, written in terms of 𝛼

as (𝑘−1)(1−𝑝min)+𝑑 𝑝min < 𝛼 ≤ 𝑘(1−𝑝min)+𝑑 𝑝min, it is straightforward
to check that the optimal distribution strategy is

𝑝∗ = (1, 1,… , 𝛼 − (𝑑 − 𝑘)𝑝min, 𝑝min,… , 𝑝min).

Simple algebraic manipulation leads to expression given in the lemma.
The derivation of the maximum revenue follows immediately from the
optimal strategy as ∗(𝛼) =

∑𝑑
𝑗=1 𝑝

∗
𝑗 𝑟𝑗 . □

The optimal bid request distribution strategy in Lemma 1 is in-
terpreted as follows. Given the first condition of our problem (1),
∑𝑑

𝑖=1 𝑝𝑖 = 𝛼, the average number of DSPs 𝛼 to which requests will be
sent, has to be distributed among the 𝑑 available DSPs. According to (3)
in Lemma 1, the first 𝑘 − 1 DSPs (the ones bidding more and winning
more auctions) are by default sent a bid request; the probability of
sending them the request is 1. The last 𝑑 − 𝑘 DSPs (the ones bidding
less and winning less auctions), however, are sent a bid request with
a minimum probability 𝑝min according to the first condition of our
revenue-invitation rate function (1). Finally, the 𝑘th DSP is sent a bid
request with the remaining probability 𝛼 − 𝑝min(𝑑 − 𝑘) − (𝑘 − 1). This
strategy can be easily explained as a resource allocation problem where
𝛼 (the ‘‘resource to be distributed’’) is shared among DSPs according to
their good behavior, with the aim of satisfying a given bound 𝛼.

Next, we proceed to analyze very briefly some properties of the
revenue-invitation rate function (4). It is immediate to check the func-
tion is piece-wise linear with slopes 𝜔𝑘𝜇𝑘. Given that this product will
never be negative, neither will be the slope of (𝛼) and, consequently,
it is easy to see that (𝛼) is nondecreasing. We cannot characterize
(𝛼) as increasing because there is the possibility that 𝜔𝑘𝜇𝑘 is zero.
Under the same reasoning, it is immediate to check the monotonicity of
this function. Also, from Lemma 1, it is routine to verify the continuity
of  on the interval 𝛼 ∈ [1, 𝑑]. To show the convexity of (𝛼), note
again that for each 𝑘 and 𝛼 ∈ (𝛼𝑘−1, 𝛼𝑘], the optimal tradeoff function
has slope 𝑟𝑘 (or 𝑤𝑘𝑢𝑘). From the labeling assumption (2), it follows
immediately that (𝛼) is defined by the decreasing sequence of positive
slopes 𝑟1,… , 𝑟𝑑 (or 𝑤1𝑢1,… , 𝑤𝑑𝑢𝑑) and therefore is concave. Fig. 10
conceptually illustrates these properties and the results of Lemma 1.

Fig. 11. Number of bid requests (invitations to DSPs) sent per auction for our
experiment, with 𝛼 = 8.

From the plot in Fig. 10 we can observe that the behavior of the
DSPs (graphically depicted through the slopes 𝑟𝑘) determines that the
losses in revenue of the ad exchange could be rather low. Namely, the
higher the slope 𝑟𝑘 (i.e., the better the behavior) of the first DSPs, the
faster (𝛼) approaches the ideal revenue max. This would entail a
more controlled and potentially private bid request distribution (since
fewer DSPs would be involved) while not significantly impacting the
revenues of the advertising ecosystem. The notation used in this work
is summarized in Table 4.

5. Experimental evaluation

Next, we empirically evaluate the solution proposed in Section 4.
We describe our experimental methodology and outline the scenario
simulated to reproduce the bidding process performed by an ad ex-
change and a set of DSPs. This allows us to investigate the effect of
modifying the bid request distribution model with the aim to enhance
user privacy. Our analysis also contemplates measuring said impact in
the revenue of the ad exchange.

Since our proposal is to reduce the potential ad buyers to which
user data flows, an impact is expected on the revenue obtained by the
online advertising ecosystem from these bidders. In particular, given
the importance of the advertising business model for the operation of
the Internet, we need to show that our proposal does not significantly
affect said business model. Accordingly, when applying our strategy,
we expect a reduction on the revenue for the ad exchange. However,
supported by the optimization approach described in Section 4.3, we
also need to verify that this loss in income is acceptable in light of the
benefits of a more privacy-respectful system.3 Furthermore, we shall
also verify if, as a result of our multicast solution, the misuse of RTB
systems by some DSPs can be effectively addressed.

5.1. Experimental methodology

The proposed solution affects the interaction among an ad exchange
and associated DSPs. Recall from Section 2 that DSPs act on behalf of
advertisers and thus as bidders (buyers) in the auctions organized by an
ad exchange. In order to invite DSPs to participate in a given auction
and to provide them with the necessary feedback, the ad exchange
distributes bid requests among them, including detailed data about the
user whose impression (and corresponding ad space) shall be auctioned.
This distribution of user data is adjusted in our approach with the

3 As commented in Section 1 a great portion of users use ad blockers
for privacy reasons. If the proposed system meets the requirements of these
privacy-aware users for some 𝛼, the loss in revenue due to our multicast
strategy (instead of the current broadcast approach) may be more than
compensated by the gains of these non-blocking users.
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Fig. 12. Rate of won bids for different DSPs behaviors in our experiment. We use 𝛼 = 8 and 𝜆 = 0.05.

Fig. 13. Average money spent according to different DSPs behaviors in our experiment. We use 𝛼 = 8 and 𝜆 = 0.05.

Fig. 14. Revenue obtained by the system for different values of 𝛼. For these experiments we use 𝜆 = 0.05 and a set of 20 DSPs so we make 𝛼 vary from 1 to 20. Experiments are
made following two different random distributions when generating the bid requests: (a) uniform and (b) Gaussian.

objective of preventing dishonest behaviors of data collection and thus
trying to preserve privacy.

To validate our mechanism, we configure an auctioning scenario
that reproduces this behavior, through a Matlab simulation. In this

scenario, considering a distribution control parameter 𝛼, an ad ex-
change enables a number of DSPs to participate in each auction, while
optimizing its revenue. The main elements of this setup are depicted
below.
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In our experimental methodology, we simulate real-time auctions
in which a variety of DSP types may bid. In order to deploy a more
realistic setup, we consider three types of DSPs according to the more
likely value of their bids: DSPs bidding high, low, and average. For each
auction, the bids from every DSP are randomly sampled from a range
of values reflecting these behaviors. For our experiments, such bids are
generated following both uniform and Gaussian distributions.

After bids are generated probabilistically at every time instant, an
ad exchange instance holds an auction and determines the winner DSP
(the one with the highest bid). In line with our privacy proposal, for
every auction, not all available DSPs are ‘‘invited’’ (i.e., not all DSPs are
sent bid requests), but a number of them, according to the parameter
𝛼. Thus, the corresponding activation of DSPs to participate in every
auction is enabled by the optimized distribution strategy defined in (3).
The strategy depends on two parameters specific to the historical
operation (behavior) of each DSP (winning bid rate, and average money
spent) and on the privacy parameter 𝛼 defined by design. Consistently,
said parameters of each DSP are calculated before an auction to be
used as a kind of reputation metric that fuels the private bid request
distribution strategy. Fig. 9 depicts this methodology implemented
through a simulation using Matlab R2017a.

After simulating one thousand auctions, we compute the total rev-
enue of the ad exchange by summing all the money effectively spent
by the bidders that won at every time instant.

To evaluate if our approach is feasible, we need to examine to
which extent it may impact the ad exchange’s revenue, which turns
to reflect the revenue of the whole advertising ecosystem. Recall that
online advertising is said to be supporting the current Internet free
business model. Thus, at least for now, this kind of solutions should
not significantly tamper with the current ad distribution model since it
could negatively affect the economy of online advertising platforms.

5.2. Results

We set up a scenario with twenty DSPs: seven bidding high, seven
bidding low, and six bidding between high and low (an average value).
Then we simulate an ad exchange instance holding a thousand auctions.
Our distribution control strategy is enforced with 𝑝min = 0.05 and
with 𝛼 = 8. That is to say, to prevent abuses and preserve privacy,
bid requests are distributed among eight DSPs in average (those with
better behavior) and not among the twenty available. Furthermore, a
minimum of 5% of bid requests are distributed among these eight DSPs
in order to guarantee all them will participate at some point.

In Fig. 11 we represent the number of DSPs, out of the 20 available,
that participate in each auction of our experiments. As expected, this
histogram confirms that the number of DSPs participating per auction
is 8 in average (the value of 𝛼).

Then, we also use Figs. 12 and 13 to characterize the participating
DSPs in terms of the rate of won auctions (𝜔) and the average money
spent (𝜇), respectively. These parameters are measured at every auc-
tion, with respect to all the previous auctions. We depict the values to
describe the behavior of three DSPs, one from each category. Evidently,
these figures show how DSPs with a more desired behavior (bidding
higher or spending more) present better indicators 𝜔 and 𝜇.

Additionally, we assess the effects of our mechanism on the revenue
of the ad exchange. For this, we perform a set of experiments using
different values for the parameter 𝛼, from 1 to 20 (i.e., we simulated
a round of 1000 auctions for each value of 𝛼). As 𝛼 represents the
average number of DSPs to which bid requests are sent from the ad
exchange, the results from our experiments reveal the impact of the
value of this parameter on the total revenue obtained. This impact is
illustrated in Fig. 14, for the two different strategies for generating
bid requests (uniform and Gaussian distributions). First, note how the
revenue increases with the value of 𝛼, consistently with the tradeoff
commented in Section 4 and depicted in the conceptual plot in Fig. 10.
In addition, when 𝛼 = 20, the maximum revenue is reached because,

in practice, no control mechanism is applied when all the available
DSPs are activated to receive bid requests. Remarkably enough, the
revenue when 𝛼 = 8 and onwards is pretty close to the revenue when
𝛼 = 20. Actually, in those cases, revenue is less than 1% lower than the
maximum obtained when our strategy is not applied. The importance
of this result lies in that the bid request distribution control enables cer-
tain privacy guarantees that can be enforced while having a very small
impact on the ad exchange’s economic benefit. The results observed in
these experiments, however, are certainly tied to the specific behaviors
assumed for the DSPs. As a matter of fact, our theoretical analysis of
the trade-off between revenue and data distribution control found that
(𝛼) depends on the sequence of slopes 𝜔𝑖 𝜇𝑖. The higher the slopes of
the first DSPs (sorted according to (2)), the fewer the average number of
DSPs needed to obtain revenues close to max. On the extreme, the case
𝜔𝑖𝜇𝑖 = 𝜔𝑗𝜇𝑗 for all 𝑖, 𝑗 = 1,… , 𝑑 yields a straight line, which represents
the worst scenario in terms of ad revenue.

Finally, we are interested in seeing how our parameter 𝛼 is capable
of regulating the behavior of DSPs. For this, we conduct an experiment
with a setup of 3 DSPs, each behaving differently (bidding high, low
and average). We simulate a thousand auctions and apply our privacy
mechanisms for different values of 𝛼, from 1 to 3. We measure the rate
𝑟 of won auctions with respect to the requests (invitations) received by
each DSP from the ad exchange. This rate could be interpreted as a
measure of the goodness of the behavior of DSPs as stated in Section 4.
A DSP bidding higher will win more bids and spend more money.
Accordingly, the higher the rate of won bids, the more desirable is the
behavior of a DSP. Conversely, 𝑟 could also be seen as a measure of the
abuse committed by a DSP against the privacy of a user, since a low
rate of won auctions (low 𝑟) would entail a DSP receiving user data
information without paying for it.

The results of this experiments are illustrated in Figs. 15 and 16,
where we depict the evolution of the rate of won auctions of different
types of DSPs. Respectively, we plot the results obtained from using two
different strategies to generate bid requests (uniform and Gaussian) for
each type of DSP. First note that, in this context, 𝛼 = 20 represents the
case where the ad exchange sends bid requests to all available DSPs,
so there is no control strategy applied. In this case, we see that DSPs
bidding low have low rates of won auctions, which would imply that
they are taking advantage of the advertising system. However, if we
analyze the value of this rate as 𝛼 decreases, we observe that the rate 𝑟
increases for each type of DSP, which suggests a successful adjustment
of the behavior of DSPs. In general, thus, it makes sense to maximize
the benefits of the ad exchange subject to a restriction by distribution
control (privacy) since the rates of won bids shall improve for small 𝛼.

6. Discussion

The big picture of privacy in the online advertising ecosystem

The ‘‘hyperconnection’’ of people to the Internet is making them
widely traceable by the providers of third-party applications that enable
the collection of personal data. Among such providers we find online
advertising platforms, which might be building a mass surveillance
structure due to several reasons. First, the presence of advertising
online is so massive that both the tracking of users and the collection of
their data are real-time and ongoing processes. Namely, personal data
is continuously leaked to the advertising infrastructure as users browse
the Web.

Besides, in this same direction, we have verified that the reach of ad-
vertising entities is pretty wide. It is a fact that advertisements ‘‘follow
us’’ wherever we surf the Internet. As a consequence, user information
is regularly processed in bulk and indiscriminately, always in the name
of greater personalization. Furthermore, the user information ceded to
third parties during ad auctions is extremely granular. This facilitates
identification of users, e.g., by using identifying attributes (such as IP
addresses) or combining them to build a fingerprint. Due to granularity,
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Fig. 15. Evolution of the rate of won auctions for different values of 𝛼 (from 1 to 20 in steps of 0.5) and 𝜆 = 0.05. We consider 20 DSPs with different behaviors (bidding high,
average and low). For each value of 𝛼, we repeat the experiment 20 times. The results are depicted averaged in (a) for each type of DSP. In (b), we illustrate results of percentiles
3 (using ‘+’), 50 (using ‘*’) and 97 (using ‘□’). For these experiments, bid requests for the different types of DSPs are generated using a uniform distribution.

Fig. 16. Evolution of the rate of won auctions for different values of 𝛼 (from 1 to 20 in steps of 0.5) and 𝜆 = 0.05. We consider 20 DSPs with different behaviors (bidding high,
average and low). For each value of 𝛼, we repeat the experiment 20 times. The results are depicted averaged in (a) for each type of DSP. In (b), we illustrate results of percentiles
3 (using ‘+’), 50 (using ‘*’) and 97 (using ‘□’). For these experiments, bid requests for the different types of DSPs are generated using a Gaussian distribution.

26



J. Estrada-Jiménez, J. Parra-Arnau, A. Rodríguez-Hoyos et al. Engineering Applications of Artificial Intelligence 82 (2019) 13–29

not only identification is feasible, but also other privacy attacks derived
from the type of information released. For instance, variations in loca-
tion data along with IP address changes could unveil user movement
patterns. Also, information about sites visited may reveal the interests
and behavior of users. Finally, these practices of ubiquitous tracking
and aggregation of granular user information is largely concentrated in
entities over which little control is enforced. Sadly, this concentration
of the power of surveillance is not only affecting the privacy of many
users but it is turning advertising entities into dangerous means of
massive manipulation, as exemplified in Collins (2017).

This scenario, which is less and less encouraging for privacy, is made
worse by the lack of transparency in the sharing of user information
among the participating entities. Hence, users are unaware of the
complex dynamics behind the advertising ecosystem and the particular
privacy risks they are facing online. And so forth, partly motivated by
some creepy perceptions regarding online behavioral advertising (Ur
et al., 2012), people are increasingly using ad blockers. Whilst emerged
to undermine abusive tracking from advertisers, ad blockers bear an
interesting concept in giving users a more active role in the advertis-
ing ecosystem. This role might consist in providing users with more
transparency and radical control over ads. However, very little can
be really done if abusive behaviors that exacerbate privacy risks are
ignored within the core of advertising platforms.

The privacy risk derived from user data sharing

One of the abusive behaviors that threat privacy in the online
advertising ecosystem involves the malicious collection of bid requests
by DSPs and related third parties who, violating the terms of service
defined by ad exchanges, may be participating in auctions without any
interest in winning. This is possible due to the oversending (broadcast-
ing) of bid requests including personal data to DSPs, which is motivated
by the need for an ad exchange to maximize profit.

Regulating bid request distribution as a mechanism to preserve privacy

Our contribution to address this issue consists in enabling some
control over a crucial part of the advertising ecosystem: the bid request
distribution model to DSPs and similar intermediaries. In this line, our
experimental results show that reducing the number of DSPs recipients
in online advertising through regulating such distribution may virtually
cause no losses in revenue for the ad exchange. Particularly, the higher
the value of the parameter 𝑟𝑖 (product of the rate of won bids and
average money spent) for the DSPs with better behavior, the less DSPs
need to be contacted to reach the maximum revenue; thus, personal
information would be shared among less third parties. Consequently,
based on this control strategy, DSPs are encouraged to correct their
behavior since, otherwise, their chances of participating and winning
in ad auctions fall significantly. Despite the small losses in revenue,
we state that win/win outcomes are reached for the interests of ad
exchanges (revenue) and end users (privacy) since actively regulating the
behavior of third parties regarding user privacy could significantly discour-
age harmful attitudes of users towards online advertising (e.g., massively
using ad blockers).

Unlike other approaches to preserve privacy in online advertising,
which contemplate significant modifications in the ecosystem, a great
added value is provided by ours since it entails a minimum change
in the bid request distribution strategy, while leaving the main online
advertising infrastructure untouched, albeit personal information is still
ceded to third parties. This should be a great incentive for ad exchanges
to adopt this kind of mechanisms in order to regulate the behavior of
associated agencies and to take additional steps to protect the privacy
of end users.

Interestingly, our approach could be extended to complement trans-
parency and control enabled in the user side through an interface,
e.g., the one offered by an ad blocker plugin such as Adblock Plus. First,

an ad exchange implementing our bid request distribution model might
provide users (through this user interface) with the value of 𝛼, i.e., the
number of entities with which their personal data has been shared
(transparency). Furthermore, as a privacy mechanism, the browser
plugin could enable users to configure a maximum number of entities
with which to share their data (informed decision). Accordingly, if the
user data results to be shared with more entities in average, the plugin
would block the corresponding ads (control).

In the same line of reducing the potential adversaries to protect
privacy, an improvement of our approach could be targeted auctioning.
This would consist in partitioning our optimization problem to be
solved on a per-market basis, i.e., auctioning a user impression only
among the DSPs subscribed to a given targeting market. Said otherwise,
the specific targets of a DSP at a moment in time could serve as another
reputation parameter when the ad exchange auctions a user impression.

Appealing to a change in the bid request distribution model, in the
core of the advertising ecosystem, entails a big step towards enforcing
privacy in this context; more if the impact of such strategy can be
minimized. As depicted in the previous paragraph, although bringing
some controlled loss in revenue, our proposal may suggest a paradigm
shift with a multiplicative effect for the benefit of user privacy. Not
only is activated a technology for ad exchanges to support privacy
regulation, but part of the control can be given to users. And further,
this approach could serve to alleviate the harmful tensions between
advertising systems and users provoked by serious concerns regarding
privacy.

Privacy protection with our system

The extent to which our mechanism could protect privacy may
also be subject to discussion. Whereas the level of privacy provided
by some mechanisms could be quantitatively measured under certain
assumptions, whether the given protection is sufficient or not is pretty
relative. This is because, in general, the level of privacy provided by any
protection mechanism depends on the context, and in our case, it is de-
fined by the requirements set in Section 4.1, the adversary model from
Section 1.2, and the strategy proposed in Section 4.2. In this specific
framework, our solution could provide great privacy by enabling an ad
exchange to strongly support privacy without significantly affecting the
revenue of the system. However, the ultimate level of privacy provided
would depend on the particular strategy adopted by the ad exchange
(either, e.g., aggressive, capping a lot the participation of DSPs; or
moderate, not restricting it significantly).

Beyond this limited scenario, other players might still disclose user
information, e.g., first parties (publishers), ISPs, data brokers, etc. How-
ever, the scope of action of ad exchanges is by far greater. Since DSPs
may illegitimately benefit from such capabilities, extremely reducing
the amount of DSPs participating in auctions, e.g., to a dozen, would
improve privacy to a similar extent.

In any case, ours is a first approach to dealing with privacy issues in
this particular context where user data may be inappropriately shared
to dishonest DSPs. Interestingly enough, future work might concentrate
on giving users further control capabilities focused on modulating the
privacy parameter introduced in this work. Thus, if provided with some
background information, users themselves would be able to choose the
privacy level they feel comfortable with.

Incentives to adopt regulated data distribution

Unlike most proposals to protect privacy in the online advertising
ecosystem, ours aims to encourage advertising players (mainly ad
exchanges) to adopt it for the benefit of users and ad platforms. In this
subsection, we describe the main incentives that these entities would
have to implement the mechanism presented in this paper.
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• Privacy regulations require more and more control from data
controllers and processors over user data collection, use, and dis-
tribution (GDPR, 0000). Furthermore, the heavy fines for neglect-
ing user privacy are pushing these entities to adopt protection
mechanisms, especially when they manage user data at a massive
scale (Solon, 2018). Since the contribution of our work aims at
the more private distribution of user data at a relatively low cost,
we think that ad exchanges would be strongly motivated to adopt
it.

• Not only regulation is urging the advertising ecosystem to en-
dorse privacy protection initiatives, the current ad blocker arms
race (Iqbal et al., 2017) is empowering users to protect them-
selves through radical mechanisms that might be affecting the
economic health of the advertising players. In such a conflictive
environment, it seems reasonable for these actors, especially those
in the core network, to start to give in to the users’ legitimate
expectations of privacy. Otherwise, the war would grow fiercer,
seriously affecting not only the online advertising business model
but that of the entire Internet.

• The implementation of the distribution mechanism we propose
would not involve significant changes to the online advertising
ecosystem. The ad exchange would only have to incorporate
a module to distribute bid requests among the ‘‘best behaved’’
bidders for a given context (privacy parameter, targeting market,
etc.). The rest of entities would remain unchanged.

• Even though our approach does not tamper with the current
online advertising model, it might generate a regulation effect
over DSPs. That is, in order to avoid penalization, DSPs would
not adhere to dishonest practices when participating in auctions.
Interestingly, this value-added service could further improve the
system’s revenues.

• As it has already happened with other privacy-enhancing initia-
tives (e.g., Facebook’s ad preferences), ours opens the door to the
implementation of further transparency and control mechanisms
for users. Our mechanism would encourage those ad exchanges
committed to respect user privacy to create interfaces for users
to examine or even modulate the privacy parameter we are
introducing in our work.

• Beyond its technical implications, ad exchanges would be highly
encouraged to implement our proposal in order to compensate
users for the opacity behind which the exploitation of their data
has been hiding. The scandals surrounding the abuse of user
information undermine daily the reputation of the advertising
ecosystem and hence the trust of end users, the ultimate owners
of data (the main input of the online advertising ecosystem).
Upon realizing that specific controls are being implemented to
protect their privacy, their concerns could be alleviated, since
their main concern is not the sharing of information itself, but the
inappropriate sharing of their information (Nissenbaum, 2009).
Consequently, users themselves could even decide not to block
the tracking of privacy-compliant ad exchanges, which is a further
incentive for the latter to adopt our mechanism.

7. Conclusions

Undoubtedly, the main privacy concerns regarding online adver-
tising come from the great capability of third parties to aggregate
user data. Due to the inherent opacity of this ecosystem, the most
known approaches to face such concerns build on radical ad blocking
solutions. By entirely blocking ads and partly stopping the leakage of
data from the user side, these radical approaches are threatening the
current economic model of the Web. On the other hand, with the aim
of balancing the trade-off between revenue and the number of invited
DSPs (looking for more user privacy), we propose to modify part of the
ad delivery model. Our technique arises as a strategy of bid request
suppression where interactions carrying user data can be reduced, by

design, to offer more privacy, while slightly affecting the revenue of the
system. More specifically, we come up with a controlled distribution
of bid requests among DSPs in order to reduce the amount of user
data shared with said third parties. Nevertheless, our approach comes
at the expense of revenue loss incurred by lowering the number of
participants within ad auctions. Since this technique would be applied
directly in the core of ad platforms, more overwhelming and less
harmful results could be obtained.

Part of our contribution lies on an analysis of the privacy risks
involved in the massive aggregation of data performed by some online
advertising entities. In this line, we strive to characterize the personal
information leaked in bidding interactions and some of the derived
critical jeopardies. We concentrate on bid request messages that are
used to invite DSPs to participate in ad auctions and that carry very
granular information about the user online behavior. Thus, using a
publicly available data set belonging to a famous Chinese DSP, we un-
veil the potential capability of advertising intermediaries to do massive
surveillance even at a very low cost. Accordingly, we also highlight
the power given to advertisers to microtarget users with a very fine
precision.

Our main contribution is a mathematical approach to tackle the
aforementioned problem of distributing bid requests to less DSPs, while
minimally affecting the revenue of the system. We formulate and solve
an optimization problem that seeks to maximize the revenue while
bounding the participation of DSPs. Thus privacy is enforced through
balancing this revenue-invitation rate trade-off.

As a result of our theoretical analysis, we present a close-form solu-
tion for the bid request distribution strategy and a revenue-invitation
rate function characterizing the optimal trade-off curve. From this
analysis, we find an interesting opportunity to cap the number of
DSPs that receive bid requests while maintaining a reasonable revenue.
From simulations performed over an auctioning scenario, we confirm
that the revenue of the system indeed increases with the number of
DSPs participating in each auction. However, we find that even when
drastically reducing this number (thus, increasing privacy of users) an
important portion of revenue may still be preserved. Also, it turns
out useful to maximize revenue subject to a restriction that supports
privacy when handing out bid requests, because it leads DSPs to behave
better (e.g., increasing their rate of won bids), driven by a penalization
on abusing the system (e.g., when bidding too low).

Certainly, much remains to be done with regard to privacy in the
context of online advertising, especially while balancing said privacy
protection efforts with the economic model that holds the free ac-
cess to Internet today. For this, the ad delivery model itself must
be rethinked because its components can implement privacy more
effectively, in particular, concerning powerful privacy techniques such
as data minimization and transparency for users.
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