
Identifying Requirements in Request for Proposals†

Andreas Falkner1, Cristina Palomares2, Xavier Franch2, Gottfried Schenner1, Pablo
Aznar2, Alexander Schoerghuber1

1 Siemens AG Österreich, Vienna, Austria
{andreas.a.falkner,gottfried.schenner, alexander.schoerghuber}@siemens.com

2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{cpalomares, franch, paznar}@essi.upc.edu

Abstract. [Context & motivation] Bidding processes are a usual requirement
elicitation instrument for large IT or infrastructure projects. An organization or
agency issues a Request for Proposal (RFP) and interested companies may submit
compliant offers. [Problem] Such RFPs comprise natural language documents
of several hundreds of pages with requirements of various kinds mixed with other
information. The analysis of that huge amount of information is very time con-
suming and cumbersome because bidding companies should not disregard any
requirement stated in the RFP. [Principal ideas/results] This research preview
paper presents a first version of a classification component, OpenReq Classifica-
tion Service (ORCS), which extracts requirements from RFP documents while
discarding irrelevant text. ORCS is based on the use of Naïve Bayes classifiers.
We have trained ORCS with 6 RFPs and then tested the component with 4 other
RFPs, all of them from the railway safety domain. [Contribution] ORCS paves
the way to improved productivity by reducing the manual effort needed to iden-
tify requirements from natural language RFPs.

Keywords: Requirements elicitation, Requirements identification, Request for
proposal, Bidding process, Classification.

1 Introduction

In a bidding process, an organization or public agency aims at procuring a technological
solution by specifying the requirements in a document called Request for Proposal
(RFP), which is written in natural language and can be several hundred pages long.
Based on this, companies present their bids that need to be compliant to the RFP. Last,
the requesting organization agency will select one of these bids (or a combination of
them) for developing the solution.

In spite of their technical nature, RFPs tend to mix text describing the requirements
with other text that is merely informative (“prose”) and thus is not relevant to the bidding
company for compliance evaluation. This characteristic forces the bidder to invest resources
to identify the real requirements, with the subsequent impact over productivity.

The goal of this paper is to present the first results on the use of a software compo-
nent, ORCS (OpenReq Classification Service), aimed at extracting requirements from

† The work presented in this paper has been conducted within the scope of the Horizon 2020
project OpenReq, which is supported by the European Union under the Grant Nr. 732463.

2

an RFP in an efficient and effective way. In this context, by “effective” we mean a
technique that does not miss any requirement (100% recall) and as a second priority,
filters as much prose as possible. As stated by D. Berry [1], there are different notions
of effectiveness, and the one above is justified because missing a requirement could
damage the organization bid.

The paper is organized as follows. A typical bidding process for large infrastructure
projects is introduced in Section 2. Section 3 presents the functionalities and internal
structure of ORCS, and Section 4 shows the results of the preliminary evaluation of ORCS
with real data (from Siemens). Finally, the paper is concluded in Section 5.

2 Bidding Processes for Large Infrastructure Projects

When an infrastructure provider such as Siemens decides to participate in a bid for a large
infrastructure project, several of its departments and stakeholders (project management,
finances, system development, etc.) must work together to find a good solution to cover
all requirements. Requirements are usually organized and edited using a commercial RE
tool such as IBM DOORS or POLARION REQUIREMENTS.

In a typical scenario (see Fig. 1), a bid project for the RFP is created within the com-
pany at the start of the process. A project team is set up with the bid project manager, the
requirements manager, and the relevant stakeholders necessary for assessing the RFP. In
the initial phase, the main workload is carried by the requirements manager. In the re-
quirements capturing phase, the requirements manager is responsible for screening the
RFP and for identifying all relevant and referenced external documents (e.g. international
standards). The documents are then imported into the requirements management (RM)
tool. The next step for the requirements manager is to analyse the imported documents
and distinguish between merely informative text sections and text which specifies rele-
vant requirements. This task is done for every entry in the RM tool. As there can be thou-
sand of entries to be processed by the requirements manager, this is an important issue for
improving the requirements management process. Consecutively, the identified require-
ments are assigned to the relevant stakeholder(s) which are responsible to evaluate them
according to different criteria such as risk, compliance, etc. At the end of the bid project,
a list of compliance (LOC) is compiled, which contains a statement about the compliance
of the bid, i.e. if and under what restrictions an offer can be submitted.

One of the potential bottlenecks of the process is the classification of the requirements
as it is currently manually done by the requirements manager. In the following we de-
scribe how to speed up this process.

3 Identifying Requirements with ORCS

ORCS is part of a larger recommendation system, OpenReq [2]. ORCS’ goal is to re-
commend a value to a requirement property that is binary (i.e., there are no more than
two values available for that property). ORCS tackles that task by providing an API for
a binary classifier. In the context of this paper, the property is isReq, and it represents
whether a piece of text is a real requirement or prose (not relevant for the RE process).

3

Fig. 1. A typical requirements management process for bid projects

Among all the different possibilities, we decided that ORCS would be implemented
as a supervised machine learning classifier. Taking into account that we want to dis-
cover the “correct” label of a text and that we have a labelled dataset from previous
projects, unsupervised learning techniques, which are useful for discovering how the
data in the model is structured, do not suit properly.

From all the available supervised machine learning algorithms for classification, we
are using Naïve Bayes (NB). NB is a probabilistic classifier based on applying the Bayes'
theorem with strong (naive) independence assumptions between the features. NB is a
good algorithm for working with text classification since, when dealing with text, it is
very common to treat each unique word as a feature, and since the vocabulary in RFP
comprises many thousands of words, this makes for a large number of features. The rela-
tive simplicity of the algorithm and the independent features assumption makes NB a
strong performer for classifying texts. As a consequence, NB needs less training time (and
therefore it is more scalable). In addition, NB needs less data for training than other super-
vised algorithms (such as Random Forest), which makes it good for classifying require-
ments in companies that do not have available hundred-thousands of requirements.

We built ORCS upon a component that already provides a NB classifier implemen-
tation, Mahout‡. It offers the basics for different machine learning tasks (e.g., classifi-
cation and clustering). Mahout currently has two NB implementations. The first is
standard Multinomial NB. The second is an implementation of Transformed Weight-
normalized Complement NB as introduced in [4], which extends the Multinomial NB that
performs particularly well on datasets with skewed classes (which is the case in RFP,
where most of the texts are real requirements; just a few pieces of text are non-relevant).

However, as most of the available implementations of classification algorithms, in-
stalling, configuring and using it is not an easy process, since deep knowledge of the
Mahout and how it works is needed (e.g., set up of environment paths, synchronization
of the calls made, etc.). Therefore, we added specific code on top of Mahout to ease its
integration and use by a final user.

Figure 2 shows the microservice-based internal architecture of ORCS. ORCS allows
to Train (MS1) a machine learning model with specific data (this data is basically a list
of pairs <text, property value>) and stores - using the Data Manager (MS5) - the train-
ing in a database (using as key the name of the requirement property and the name of

‡ https://mahout.apache.org/

4

the organization). Thus, when the recommendation for the value of a requirement prop-
erty is necessary, the user just calls the Classify (MS3) microservice passing the piece
of text that needs the recommendation, the name of the requirement property and the
name of the organization. Then, the data manager takes care of setting up the corre-
sponding machine learning model in the core of Mahout and returning the recommen-
dation. In addition, there are microservices to Update (MS2) a machine learning model
when new data (again tuples of the kind <text, property value>) is available and also to
Test (MS4) the classifier with a k-fold cross-validation passing the same kind of tuples as
in the last microservice and the number of tests to k. As ORCS is part of OpenReq, all the
data exchanged by the microservices is based on the ontology presented in [3].

Fig. 2. ORCS’ internal architecture

4 Preliminary Evaluation

For the evaluation of the requirements classifier, ten completed bid projects (RFPs)
were made available by the Viennese Siemens Mobility department. In total, they com-
prised 28,200 requirement candidates, all of which had been classified by business ex-
perts as either a real requirement (DEF) or a merely informative comment (Prose). A
example of requirement is "A balise group shall consist of between one and eight
balises", while an example of Prose is "The purpose of this document is to specify the
unified European Train Control System (ETCS) from a technical point of view". The
requirements' ID, text, and classification were extracted from the RM tool used at the
department and stored in 10 JSON files, one for each project. Six of these projects were
randomly chosen as training data set, including cross-validation, and disclosed to the
UPC team. These six projects were used by UPC to run a first evaluation of ORCS
using a 10-fold cross-validation test (Subsection 4.1). The remaining four projects were
kept secret and only used once for the final evaluation run by Siemens (reported in 4.2).

4.1 Evaluation Results during Training and Validation

For first testing the results of ORCS, we used a stratified 10-fold cross-validation,
which is a well-known technique to evaluate machine learning models. In this case, we
used as sample 6 projects which contained 17,556 requirement candidates. From these

5

candidates, 15,870 (90.4%) requirements were classified as DEF by experts. This
means that only 1686 (9.6%) were of type Prose. In the case of ORCS, having unbal-
anced class labels is not a problem (as explained in Section 3).

Table 1 shows the results of calling the ORCS’ Test microservice with k=10 and
this specific sample, defining the DEF label as the positive case. We are using as main
measures: recall (i.e., number of correct positive results divided by the number of all
relevant sample); and specificity (i.e., number of correct negative results divided by the
number of all relevant sample). As can be seen in Table 1, average recall is 85.06% and
average specificity is 72.04%, showing a good start point for the classifier.

Table 1. 10-fold cross-validation results

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Avge.

reqs 1734 1742 1689 1801 1788 1697 1792 1788 1719 1806 17556

TP 1335 1346 1280 1391 1372 1284 1389 1394 1327 1382 13500

FP 33 43 47 41 50 64 48 45 46 55 472

TN 133 110 127 131 119 124 129 118 101 122 1214

FN 233 243 235 238 247 225 226 231 245 247 2370

Recall 85,14% 84,71% 84,49% 85,39% 84,74% 85,09% 86,01% 85,78% 84,41% 84,84% 85,06%

Speci‐
ficity 80,12% 71,90% 72,99% 76,16% 70,41% 65,96% 72,88% 72,39% 68,71% 68,93% 72,04%

4.2 Evaluation Results on Non-Disclosed Test Data

The 4 projects used as test data set comprise 10,700 requirement candidates, 7,300 of
which were classified as real requirements by experts. As the resulting prevalence (i.e.,
occurrence of DEF in the whole set of requirement candidates) of 69% is considerably
lower than the prevalence of 84% in the training data set, we investigated and found
out that the prevalence in a subset of three projects is 83% (based on micro-averaging
[6]) whereas the fourth project shows a prevalence of only 16%. We consider this an
outlier which was caused by the fact that the experts rated whole sections of the RFP
as Prose because they contained information out of the scope of the bid project (e.g.,
because their contents was covered by another company in a bidding consortium). Such
constellations cannot be covered easily by text-only classification and we still need to
find a way how to deal with them properly.

We use standard metrics for binary classification considering DEF (i.e., classifica-
tion of a candidate as a real requirement) as the positive case: recall (true positive rate)
and specificity (true negative rate). Recall is most important for the business experts
because they want to avoid that some requirement is not detected as such, thus not being
checked for compliance during the bid process which may lead to (potentially high)
non-compliance costs (a business risk that must be avoided). Specificity is also im-
portant because unnecessary efforts arise if many comments are wrongly classified as
DEF: experts are invited to check compliance for them although this is not necessary.
We refrained from combining those two into a single metric (such as accuracy or F2-
metric) in order to give the stakeholders (business experts) the chance to weight the two
against each other. Presently, we show recall and specificity directly in a 2-dimensional
diagram because we found this easier to understand for Siemens’ users. If we later

6

switch to a hyper-parameter approach based on a threshold for classifying DEF, we will
use a standard ROC curve [5] (which uses fallout instead of specificity, its inverse).

First results are shown in Figure 3. The classifier performs bad on the outlier (only
19% specificity). However, the micro-average of the rest of the test data has a quite sim-
ilar performance as the micro-average of the training data (nearly the same recall, 6 per-
centage points smaller specificity). This indicates that the classifier is not overfitted to the
training data as long as the prevalence of the test data is similar to the training data.

Fig. 3. Evaluation results

5 Conclusions

In this paper, we present an approach of how identifying requirements in RFP in the
setup of Siemens by using ORCS, a component that provides an API for machine learn-
ing classification based on NB. In addition, we present preliminary results of testing
this component in Siemens. Although the results are good, they need to be improved,
especially the recall of component (and therefore the number of false negatives), since
we want to avoid that a real requirement is not detected as such, because in that case it
would not be evaluated during the bid process, which may lead to non-compliance costs
if the bid is won. To achieve this, we aim to improve ORCS in different aspects: NLP
preprocessing (mainly stop words removal and lemmatization) and the incorporation of
context in the classification process (e.g., the location of the text in the RFP so that we
can more precisely differentiate between relevant and irrelevant information).

References

1. Berry, D.M.: Evaluation of Tools for Hairy Requirements and Software Engineering Tasks.
REW’17.

2. Palomares, C., Franch, X., Fucci, D.: Personal Recommendations in Requirements Engi-
neering: The OpenReq Approach. REFSQ’17.

3. Quer, C. et al.: Reconciling Practice and Rigour in Building Domain Ontologies for Heter-
ogeneous Information Systems. Accepted at PoEM’18.

4. Rennie, J., et al.: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. ICML'03.
5. Brown, C.D., Davis, H.T.: Receiver Operating Characteristic Curves and Related Decision

Measures: A Tutorial. Chemometrics and Intelligent Laboratory Systems, 2006.
6. Yang, Y.: An Evaluation of Statistical Approaches to Text Categorization. Journal of Infor-

mation Retrieval, 1999.

