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ABSTRACT 

In Chapter I, the various attempts by different authors, to 

determine the parity of K-mesons and its coupling constants, are 

surveyed. The details of the investigation carried out by the 

author and his conclusions are given. Two types of dispersion 

relations were used: (1) Matthew-Salary type which is not sensitive 

to low energy data but weighs the high energy region; (2) Igi type 

which is sensitive to low energy K1°  p data but considerably convergent 

in the high energy region. With Igi type dispersion relation, two 

possible cases were investigated: (i) where the rep total cross-

section was constant in the low energy region; (ii) where it varied 

in a linear way within the experimental error. 

In Chapter II, a dispersion technique suggested by Feldman, 

Matthews and Salami, is used to derive the static equations for pion-

hyperon scattering and it is shown that the inclusion of the RN 

channel does not change the conclusions on the J = 3/2, I = 1 p-wave, 

J{-3f resonance, given by Amati, Stanghellini and Vitale and by Capps. 

In Chapter III, assuming that the isotropy of KN scattering in 

I = 1 is due to the cancellation of p-wave contributions coming from 

the hyperon cuts and the two-pion cut, the KN scattering in I = 1 

state and in I = 0, S, P1/2' 2) P,/2 states is investigated. .4tIa1itative 

agreement with the present experimental situation is obtained. Using 

crossing symmetry, the two-pion contribution in RN scattering is also 

considered. 
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In Chapter IV, the recently discovered Y* (myT,41385 MeV, 

2 'N015 MeV) is assumed to be a 3 t I = I bound system, and an 

effective range theory for RN scattering in I = I state is formulated. 

With a large effective range for I = 1 state and a zero effective 

range for I = 0 state, parameters which fit the present low energy 

K p scattering data and gyve constructive Coulomb nuclear interference 

are found. These parameters indicate that the real part of the 

scattering length in I = 0 state (i.e. a) is small. This smallness 

of ao can be explained by Dostulating the existence of a RN I = 0 

bound state lying below the 	'fl threshold. Also a rit- resonance 

(I = 0) just below the RN threshold 	= 90°) is expected. 



I. THE PARITY OF K-MESONS 

AND DISPERSION RELATIONS  

I.1 Introduction 

It was pointed out by a number of authors
1,2,3 that the forward 

scattering dispersion relations for the K-meson nucleon scattering 

may offer a powerful means to determine the parity of K-meson rela-

tive to the hyperons and the nucleon, and also the strength of the 

s-meson interactions. The first numerical attempt in this direction, 

using the experimental data was made by Matthews and Salam
1. They 

found that, for ep potential repulsive, an attractive K-p potential 

implies pseudescalar K-mesons (A and 5:parities assumed positive) 
and a repulsive PACp potential implies scalar K-mesons. In both 

cases, the coupling constants obtained by them were of the order of 

unity. The main sources of error in their evaluation came from (i) 

lack of experimental information on total cross-sections of Kpand 

Kipscattering; (ii) the contribution from the unphysical continuiftm, 

and (iii) the behaviour of d ab near threshold. Conclusion similar 

to that of Hatthews-Salam was reached by Igi
4, who used a subtracted 

form of dispersion relation. He found that if Kp interaction is 

repulsive, then (-coupling is scalar and is of the order of unity. 

If, on the other hand, K-p interaction is attractive, the coupling 

could be either scalar or pseudoscalar, depending on the energy 

dependence of the el) scattering cross-section at low energies. In 
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this case, for scalar K-meson, the coupling constant is n►_l while for 

p.S K-meson the coupling constant is ~4. 

The dispersion relation used by Matthews and Salam is not very 

sensitive to low energy data, but slowly convergent in the high 

energy region, while that used by Igi is very sensitive to low energy 

lep data, but much more convergent in the high energy region. This 

consideration, together with the fact that by early 1959, experimen-

tal results both in the low energy region5'6  and in the high energy 

region7have increased considerably, prompted the author8  to re-

examine the question of the K-meson parity determination using the 

new data and the dispersion relation of Matthews-Salam and of Igi. 

The details of his calculation and results will be presented in the 

following sections. 

Several other authors have also attempted to determine the 

parity of K-mesons and the K-meson coupling constants from forward 

scattering dispersion relations using different forms. Gaizenati 

and Vitale9 used two dispersion relations in subtracted form, con-

sidering them as independent relations, for the study of the depend-

ence of the real part of Kp scattering amplitude at zero energy on 

the values of the coupling constants. Their results, when compared 

with the existing experimental information, strongly indicate that 

the K-meson is pseudoscalar with respect to both the /\and the Z. 

hyperon, and that the sign of D..(6.1) at low energy is positive, 
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giving therefore constructive Coulomb interference in the Kp elastic 

scattering. The magnitude of the coupling constant obtained by them 

is of the order of 5. Amatil°  has derived an effective range formula 

from the forward scattering dispersion relation for ep scattering, 

which does not contain the experimentally uncertain zero energy K 

proton scattering amplitude. ge finds that the low energy dependence 

of 1-+  indicates equal A and 5:parities with opposite K parity 

(4 .p.s.). Selleri11  has used the effective range formulation of 

Amati without the restrictive assumption of constant 6-1-  and adopting 

for the scattering amplitude in the unphysical region the solutions 

given by Dalitz and Tuan12. He finds that the experimental evidence 

• ' of weak energy dependence of 6-4.  indicates a p.s.K-meson (p.s. at 

least with respect to one of the hyperons). Karplus, Kerth and 

Kycia13  have also used the Dalitz-Tuan K-p scattering parameters and 

the then existing data to study the K-meson hyperon coupling terms 

occurring in the dispersion reactions. They concluded that the exper-

imental data was not sufficiently accurate for any definite conclusion 

on K-meson parity. Sugano and Komatsuzawa
14, using Igi's form of 

dispersion relation for the charge exchange scattering en -4 K°p and 

for the ordinary elastic scattering ep -4 ep, inferred that P 	is 

odd and s1 2 	
while PK2:is undetermined and g 2 

The major difficulties which arise in the application of K-meson 

dispersion relations are (i) contribution from the high energy region, 
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(ii) sensitivity on the low energy dependence of K+p cross-section or 

on the experimentally uncertain sign of Kp scattering length, and 

(iii) the contribution from the unphysical region. Using perturba-

tion theory Tuan15 has estimated the contribution of the unphysical 

region. On the basis of their scattering length solution for K-p 

scattering, Dalitz and Tuan12 have pointed out that the contribution 

from the unphysical region in the dispersion relation used by Gobel 

and by :Matthews and Salam may be considerable, so that the conclu-

sion(1)  that the parity of K-meson can be deduced from the sign of 

K-p potential is no longer clearly established. Dalitz and Tuan also 

indicated that the possibility of a resonance in the unphysical region 

may mean a very large contribution from this region than so far con-

sidered. The discovery of a /0116  resonance at an energy 50 MeV 

below K N threshold seems to indicate such a Dalitz-Tuan resonance
17. 

Nogami
18 

very recently has used the dispersion theoretic analysis, 

assuming that the situation implied by Dalitz-Tuan (a-) solution to 

be correct. He finds that no definite conclusion can be reached, 

though it is very likely that PKA  , the KA parity relative to N, is 

odd and Py...x  is even and hence P 
	

is odd. 

From this survey, the only conclusion we can draw is that our 

present status of knowledge does not provide us with an unambiguous 

answer to the question of ]-meson parity on the basis of dispersion 

relations. 
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1.2 Dispersion Relation For K-meson-Nucleon Scattering  

Investigation of the analytic structure of K-meson nucleon 

dispersion theory, from the viewroint of rigorous proof19,20  has 

shown that even for the case of forward scattering, a completely 

adequate proof is not possible, unless certain physically unrealistic 

inequalities are satisfied for the masses of the particles involved. 

However, as a tool for the analysis of experimental data, dispersion 

relations have served useful purposes in pion-nucleon scattering21  , 

before rigorous proof was given22. With this sPirit, formal deriva-

tion of K-N relativistic dispersion relations, following conventional 

carried out by Sakurai
26  , by Amati and Vitale method23-25,  has been 

and by Igi3. 

Writing the forward 

divide it into dispersive  

+ „ 
amplitude for KI-p scattering as T- (w), 

part D+(w) and absorptive part A+(w), 

we 

T+(w) = D+(w) + i E(w) A+(w) 
	

(IA) 

where w is the K-meson lab. energy and €(w) in the sign function., 

E (Iv) = 1 for w> 0 

--1 

Putting T(1)(w) = 1/4  fT - (w) + T + 	D(1)(w) 

T(2)(w) 	1/4  [T -- T 	D 	(w) 
(2) (w) 

have simple behaviour when w 	- w; D
(1) 

functions whereas D(2)(w) and A(1)  (w) are odd. Hence, the following 

dispersion relations can be written: 

for w <0 

+ iew)A(1)(w)t  (I.2) 

+ iE(w)A(2)(w)7  (1.3) 

and A(2)  are even 
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oc 
1/2  p) - (w) + D + (w) = 1 dw' 

 2w' 1/2  EA - (w9 + A + 6101, 
--__ 	 (IA) 

p .0c 
1/2  [D - (w) - D + 60] = 2w 	dw'  1/2  [A - (w') - A + (w' ii (1.5) 

it 

	

	wl2 - w2  
0 

When the convergence of the integrals(4) and (5) are not 

guaranteed, we may increase the power in the denominators in the foll- 

owing way: 

1/2 ID 	+ Di. (4 	 Dikq 

- - 	6.41.-N.  "‘ 	icrw,  w,  V2. Eh-. (V4 + Ai  6/4.1 
j 	(wa—wal)(4.'-- wit) 0 

y [ (w) —D,H3 41-4  \ 1/2. [D(vi) Dttfq 
kWKI 

6#42..A3 	Pk .64 ". Ay (441:1 

(1.6) 

(1.7) 

   

where WK is an arbitrary energy larger than mic.  

The contribution to the amplitudes A+(w) from the energy region 

0 <w <m,1. consists of two parts: one discrete part coming from the 

h., 	'bound states' and another continuous part coming from the 

'unphysical region' wivil 	mK  where 

whir = (11/4  +It 	- N2 -  K2 
2N 	 (1.8) 

(The particle symbols have been used to denote their masses). The 

unphysical region occurs because of the possibility of A +1 and 

intermediate states with thresholds below RN threshold. The 

position of the discrete states are given by 
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w = y2 
 - N

2 
 - K

2 	

(y =All ) 
	

(I.9) 
2N 

For the region of integration extending from mIc  to oc.., we have 

the ontical theorem 

4r+ (w) = 4IT A + (w) 	 (1.10) 
k 

where k is the lab. momentum of the K-meson and dr+ is the total 

cross-section for K -p scattering 

Substitution of (1.10) in (1.4) and (1.5) leads to 

air 

1 id," ji,..6,L1 

ir 	Woe/ 

a 	 irjL4)  

14̂ 11 v4"Tr  'Mit  
/ dm' 

ii  w-w 	w•-.w (1.12) 

I)+ (Y) = 4 1 d 	r 	4;6m) 17 	 6(01 
wcw 	 Ve 

   

  

w'+‘,4 

  

   

(1.11) 
w+to 

The first integrals are already exnressed by experi:Viltally measurable 

quantities. The second integrals represent the bound state contri-

butions and can be expressed in terms of renormalized coupling con-

stants. For the third integrals, one has to make some sort of 

approximation 

When the convergence is not good, equation (1.6) and (1.7) can be 

a lied We may then obtain dispersion relation of the type PP 	- 

4(14-i4+
IC
)D4-(!jk) 	 11/4  

00 

(.,4)  L • 
•••• 4110. 	 (4.1p—wiciv 

0,v4 	lim  &iitvilyv4.0,4)(1.13) 

+(wl-w;tylw"  
(w4-wist)(vs4w) 
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The bound state contributions can be written down using the 

conventional second order perturbation theory and interpreting the 

coupling constants as the renormalized coupling constants
28. 

If pl  and p2  are the initial and final 4-momenta of the nucleon 

and ql  and q2  those of the k-meson, then the Born amplitude is given 

by 

T (K1-1) k+= U0,0 oC 	,erit 	isel—N 4: A 	19 
s 	41r 	S -A2. 	WIT " 

-(Pi q1)2  

q2)  

S-tiL-1<-4 	 S -441  
214 	I- t4 

S - le" 	411 	/?* x  gb< 

(1.14) 

where the plus (or minus) sign is to be taken if the interation is 

scalar (or pseudoscalar) i.e. if pky  = + 1 tor -1). 

The imaginary part of the corn amplitude is obtained by giving 

s a small positive imaginary nart and taking the limit when this goes 

to zero. Ye then find that the discrete contribution to A from 
ON • 

the I:, A bound states to be 
	 , N  
z 	T 	47)- 

) 

a a" 

(I.15a) 
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The K-meson energy in the laboratory system is related with s by 

w = s -N2  - K2 

2N 

changing the variable from s to w, we get, 

aal A ..(4 	[4.E. 	±. E] (.; IT i) 6,st 

A- ii\-1 	±21,] 	6 &qv. w) 
(I.15b) 

where w has been given before (equation 9). 

Using equation (I.15b), we find that the bound state terms to 

the dispersion relations - (1.11), (1.12) and (1.15) are respectively 

+.N .z I. 	I 	ttsi A 	
(!li'Tc) 2.N 	+ 	

(2_14-irs) ÷ 2.H 	v410— 1,  4 

Vh.ttsi±E  (9:1-,#) 	N t A  (!„.1i(  
2 	

) 	
(I.16a) 

14 	W1 	4--iF 	Wcw 
(I.16b) 

(1.1.6c) 
where the +ve sign corresponds to Pky  = +1 i.e. NKy interaction scalar 

and the -ve sign to P. = -1 i.e. NKy interaction pseudoscalar (P y  

denotes the relative Parity of K-meson and. hyperon, the parity of 

nucleon being considered positive). 
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4 Igi has put the bound state term (I.16c) in the following approximate 

form 

	 I i4e) 
2N 	4-11  -11  “ti" 

• -------(eix)1 
2.1,1 	)4A+ ti 	4-if 	(1.16d) 

neglecting terms of the order w (here, the -ye sign corresponds to 

to scalar and the +ve sign to pseudoscalar interaction). 

Matthews and Salem1 used the dispersion relation obtained by 

subtracting (11) from (12) while Igi4 used the relation (13) at K-N 

threshold. 
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1.3 Analysis Of Experimental Results  

Before considering any experimental numbers, we first introduce 

some parameters which will be used in our analysis. 

We define an amplitude T which is related with the S-matrix in 

the following way 

/ 	3" Sfi  = Sfi  + 	(4)-  6(10 	q 	P
1 	

q 't 	
111 	4 V/ Tn.  

PoP'ogocli o mN 

where W is the total energy in the c.m. system. The diffefential 

cross-section in c.m. is related with the amplitude T by 

d 6 i  = kf  Tf 2  where k., kf 
 are the initial and final 

d 1-1 	relative momentum. 

For energy near threshold Tfi 
is the s-wave scattering aalnli-

tude. In the case of elastic scattering, 

T = 	1 	where k is the relative momentum in c.m. and 

k cAN - ik 
	

6 is the phaseshift. 

For K+p scattering, there is no inelastic process, so that the 

phase shift is real. We now define the s-wave scattering length for 

K+p elastic scattering by 

k cote = _+ 1 where the positive or the negative sign is to be taken — 
a 

according as the potential is attractive or repulsivel. In the former 

case, the phase shift is positive while in the latter it is negative. 

The amplitude M of MS is related with T+  by 

= 411 W T+  = 4 n W 	1  
(pc  = c.m. momentum)

FJ 
	(I.17a) 

1  
N 	+ - -if a 
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so that near the threshold 

ReM+ = + 411IV a 	 (I.17b) 

For Kp scattering, we have competing inelastic processes. The 

s-wave elastic cross-section in c.m. system is related with the for-

ward scattering amplitude by 

= T11 	 ke 11) (I.18) 

Using the optical theorem, we have, 

We now get 

(Pe  tiy-=  (4714 2 
	

(N /*--T) 	(1.19) 
It is worth noting that the amplitude used by Igi is related to 

that of MS by 

D- + iA± = Mt Equations (17) and (19) gives for w = 1 (we use the 

unit c = = K = 1, the unit of length being A = 0.4 x 1013  cm) 
K 

D+(1) = N + 1 (+ a), D-(1) = N + 1 (+ b ) 	(I.20) 

N 

 

N 

where the parameter 'b' is defined by 

+ b = + rel &Tit  
4f We 

The dispersion relation used by Matthews and Cialam is obtained 
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by subtracting (11) from (12) at threshold. This can now be written 

T P 6- -sag CrsetA K 	WI-11 
— —)1  

ch(w)HI 	"1 + Eel s] K 	Ws-1-K 	(1.21) Y,a 
Here 6 — se is the elastic plus charge exchange scattering and 

(BS) denotes the 'bound state' terms. 

In calculating the integrals in MS dispersion relation, we have 

taken d' c  to be constant throughout at a value 15 mb; 	(= Sc+ ab ) s  

has also been taken by us to be constant at a value 40 mb from 120 MeV 

K-meson energy to 2 tjnel/K-meson K.E.7. In the region 0 - 120 MeV 

K.E. the elastic scattering contribution has been evaluated graphically 

using the combined emulsion and bubble chamber data
5
. The charge 

exchange scattering has been taken by us to be one-fifth of the elastic 

scattering. The contribution due to absorption in the 0- 120 MeV 

K.E. region as well as in the unphysical region (wor - mk) has been 

evaluated assuming a constant value 7 of 1116:13. 

The MS dispersion relation can now be written in the following 

form : 

1.• 	

‘S.;"(W 

r1/ 1+ 

5 

I-6  k 1,--- — —I-- 4 W- r 	
*4
' — ----- cIVII(T.22) 

( .16H 	Wri 	4-1 	vii-1 
+ [BP 5) 

611  
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where t = 120 and we have taken K+p potential as repulsive. We take 

mk 

6i = 4,5 mb5. 
41r 

Inserting the calculated values term by term we get 

(t 1.68) + o.86 = 0.72 - 0.14 + 1.37 - 0.73 + 	(1.23) 

If we now take the positive sign corresponding to Kp potential 

attractive, we get 

[IS] = 1.32 	(K-meson pseudoscalar) 	 (1.24) 

and taking the negative sign, corresponding to Kp potential repulsive, 

[3'5) = -2.04 	(E.-meson scalar) 	 (1.25) 

Igi's dispersion relation at threshold has been used by us and 

for this Purpose, w is put equal to 1 + h and then the limit When h 

is negligible compared to 1 is taken. The first Len in Igi's formula 

becomes 

- (1) - D+  (l)] + 1/2  ce D+  
awi) 1  = © 	 (1.26) 

where W1  = K-meson K.3. in lab. 

From equation (19) 6+  = ReM+ 1  for the case of ep scattering)  
-Tn- ) 

/)_D 
m 

a3 	a w w 	= 
 

+ 1 	- Fop + 1 
(1.27) 

Assuming that 6-sc is a constant, we now write Igi's dispersion 

relation at threshold in the following form: 
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It  t 
d-st.vil'Ivi. 

ii,41.70 , 	 ie(v411-11) 
+ 1,13:16";bavi 4./6—G1w' I, ati 	-, 

	

2, i ‘ 	, , - . ...................„ .....J...7 ....../... 

	

rid? QpitY9 	k (4  t vi) j 11 14 4+t 
Inserting values term by term , we have 

[(+1.68) + 0.86 + 0.16 = 0.66 	-9.38 + 10.27 - 2.10 + 16.77 

.2F 	(1.29) 

(-gib) ±a +.\ . 2M _ 	Mb _ 1 	45-  'GI ws  
,— i(  oc 

( 
I.  rvitt+i 	tip+i 1?-1+-tqw-v9 

Itt 	
............_ 	 

{ (1.28) 

11 2  + 4  mp  
N + 1 
p 

If we take the positive sign, we get 

p 

4  7477-1 .2F = 1.67 	 (I.30) 

which corresponds to pseudoscalar K-meson. 

On the other hand, if we take the negative sign, we get 

4 M + 1 .2F =-1.68 
p 

which corresponds to scalar K-meson. 

(1.31) 

If now, instead of taking 67 constant, a linear variation of 

it with energy of the form 0-  (w9 = m (w' - 	+ 6(w) is considered 

in the energy range 1 to 1 + t and then a constant value 6+(wi) = 

e (1 + t) up to infinity, we shall have 

CD+ = 	M 	a3 1 + M 	a 
= 0 

	

Np 
	

m   

8 11 a J. tio+1 
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and 	6-1-(w9dw,  

k'(w' - w) 
m log 1 + rt/(2 + t)) 1/2 	1/4  

*nit (2 + ti =  
1- p(2 + t)) 2  

- 6-+ (1 + t) 	(1.32) 

Kaplon has reported a K+p cross-section equal to (13.5 - 2.8) 

mb in the energy range (20 - 100) MeV. The maximum value of 'm' 

permitted within this experimental error is obtained by '.aking 

6". 	15.5 - 2.8 at 20 MeV K.E. and e t  = 13.5 + 2.8 at 100 Mev K.E: 

This value of m comes out to be 21.61. Using this value we shall now 

get, instead of equation(plpe following equation, term by term: 

(± 1.68) + 0.68 - 2.57 = 0.66 [!•9.66 + 10.27 -110 	4,16.77) 

+M 	+ 1 .2F . 	(1.33) 
P. 

If we take the positive sign, corresponding to K-p potential 

attractive, then 

N 
4 M  ----2-- .2F =-3.17 p + 1 

If the negative sign is taken, corresponding to K-p potential 

repulsive, then 

4 	Mp 	.2F = -6.52 

(I.34a) 

(I.34b) 

 

p + 1 

  

Therefore, we find that K-meson comes out scalar irrespective 

of the sign of the K-p potential. 
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1.4 Conclusion 

Our conclusion is that the Matthews-Salam dispersion relation 

gives a pseudoscalar or scalar K-meson according to Kp potential 

attractive or repulsive. However, the experimental data of ]urrowes 

et al do not indicate that the contribution in the dispersion relation 

due to the energy region beyond 517k, where the integrals have been 

cut off, will be negligible. Igi's dispersion relation also gives a 

pseudoscalar or scalar K-meson, if 6*  is taken to be constant in the 

low energy region and the Kp potential is considered attractive or 

repulsive respectively. However, within the limit of the present 

data on K+p scattering, we can have K-meson scalar, irrespective of 

the sign of Kp potential, if we take a linear variation of 0-+ with 

energy. We have calculated the coupling constants from equations 

(24), (25) and (30), (31). Taking r
k = g 	k' 

our result is 
10NNZ  

g2 = 7.26 710 -'s.  Matthews-Salam 
Lar 	0.78 S. 

g2  = 4.60 p.s. 	
Igi'(constante) 

4T 	0.32 S. 

The above conclusions were reached by assuming 

relative parity even and by using the high energy data of Burrowes 

et al and the low energy dat','. reported at the CERN conference
5
. The 

assumption of same parity for A and I is, at present, a very quest-

ionable one. The high energy data have considerably increased now and 

cross-sections up to 8 BeVic are available. resides, for the low 
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energy z;p  scattering, we shall nut forward an effective range theory 

in Chapter IV. 7,re, therefore, felt that it would be worthwhile to 

re-examine the question of parity determination. We have used our 

theory to evaluate the dispersion integrals in the unphysical region 

and in the low energy region and the new data for the high energy 

region. The details are given in appendix 1. 
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II. PION-HYPERON SCATTERING 

Feldman, Matthews and Salam29 suggested that we may write down 

a dispersion relation for the quantity B1+ (T1  +)
-1 ' where T1- + is the 

amplitude for J = 1 ± scattering and B1  + is the corresponding Born 

amplitude. Now, unitarity gives Im (Te)-i  = -k on the right hand 
1/2_ physical cut (S = 1 + 2ik'T k 1/2 ). So if the approximation of 

neglecting the left hand cut can be made, then, we have the dispersion 

relation 

-1 	w - w" 	(w') k'dw,  
X31+ (w) Re (Te(w)) 	= 1 	p  p  

-Tr 	(w' — w)(w' — w ) 	(II.1) 

where w is the pole of the Born term and a subtraction has been made 
Il 

at this point. The reason for normalizing at the Born pole is that 

for w near 	the amplitude T1  +(w) can be taken to be equal to the 

Born amplitude. The integral term in equation (II.1) indicates how 

the contribution from the right hand physical cut (or the unitarity 

cut) is taken into account. 

Using equation (II.1) FMB reproduced very sif,aply the Chew-

Mandelstam30 result on --f-Tc scattering and the Chew-Low equation for 
the (3,3) amplitude in 	N scattering. 

In deriving the static equations for 11- Y scattering, we shall 

take into account the 1-A mass difference and we shall find that 

B1  +(w) breaks ur into two OIMPthree terms, the poles of which are 

II.1 Introduction 



- 22 - 

different. Equation (II.1) then has to be extended. To this end, 

we proceed in the following way. 

Let us suppose, B1+(w) = B1
1+(w) + B 1+(w) where B1 

1+(w) has 

the pole at w = w and B2 +(w) at w = w2. First of all, we notice 1 	1- 
that equation (II.1) essentially means we have written down a 

Cauchy integral for BST-1-  1 with a contour which runs above and 
w - w E  

below the right hand cut. Of course, we have neglected the contri- 

butions from he left hand cuts. Let us now write down Cauchy inte- 

grals for the quantities 

B1(w)T
-1(w) 	C1(w) and B2(w)T

-1(w) - C2(w2 ) 	where C1 (w1 ) and 

W - wl 
	 w w2 

C2(w2) are arbitrary normalization constants. Then we have, 

BI1(w)T-1 (w)  = C1(w1) 	(w - w1) 	1(W)Im T-1(wOdwl 

 

 

li 
- w) (w'- w1) 

 

(11.2) 

B2(w)T-3(w)= C2(w2) + (w - w2) 	w')Im T-1(10)dw' 

  

iF 
	

(w' - w) (w' 	w1) 
	

(11.3) 

We add equations (II.2) and (II.3). Taking w1  = w2 and comparing 

with (II.1) we find 

C1(w1) + C2(w2) = 1 	 (II.4) 

If the poles w
1 
and w are near each other we can take WeaboVe 

normalization to be valid and this, at onee, leads to 



ri 	

(w' - w) (w' 
	

'1)  

(w - w2) 

 

')Im Tl+ (w') dw' 

   

(w' - w) (w' 	'2)  

or B1-  + (w) Re T-1+ (w) = 1 - (w - w1) 1- 

tt 

iF 

) kl dw' 

- w)(w' 	wl) 

B +(Iv') kl dw' 1- 

(w' 	w)(w,  -w2) 
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B1  4T 1+ = 1 + (w, - 	B1  + (W)Im T
-1+ (w') dw' - 1- 	w - 	1- 

(I1.5) 

(11.6) 

In the next section, we shall firstcbrive the pion-hyperon 

static,equations exactly in the Chew-L9w form, neglecting the 1: 

mass difference and using equation (II.1). Then we shall derive the 

static equations using equation (II.6), where we shall take into 

account the L- A mass difference. 
Amati, Stanghellini and Vitale

32 have studied the low energy 

pion-hyperon scattering using a field theoretic model which takes 

into account the E - A mass difference and the possible inequality 

of 	E7rand Mr coupling constants. This model consists of a fixed 

Y which can appear either as 2:or I , interacting with the T and 

the K-meson fields, treated in the one meson alDproximation. Using 

our equation (II.6), we shall see that we can reproduce their 

results very simply. This technique of ASV is similar to that 

developed by Bosco, 177,111111 and Stanghellini'' which leads to the 
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same results as the Chew and Low34 formttlism for the pion-nucleon 

scattering. Relativistic, fixed momentem transfer dispersion 

relations for pion-hyperon scattering have been derived by Capps and 

Nauenberg35. They have also written down the p-wave static equations 

in the Chew-Low form with somewhat different approximations. 

Resonances in the pion-hyperon system, in the Chew-Low approximation, 

have also been investigated by Nauenberg
36
. 

Experimentally, a pion-hyperon resonance has been discovered 

by Alston et all6  in I = 1 state. Amati, Stanghellini and Vitale
37 

put forward the attractive idea that this resonance is possibly the 

analog of (3,3) 	14 resonance, expected on the bagis of global 

symmetry. Using their static model, they calculated. the position 

of this resonance for I = 1 and I = 2 states of the pion-hyperon 

system. ASV, in their calcul.ation, disregard the K N channel which 

is coupled with the -fry channels. The reason for this is that 

threshold for the process Y +11 -- K + N is of the same order as the 

one for two-pion production and the two-pion production is neglected 

in their model in the spirit of one meson approximation. However, 

from the study of low energy K p scattering, Dalitz and Tuan
38 have 

remarked that the R N interactions are quite strong. 7e, therefore, 

felt it worthwhile to investigate the effect of the strongly coupled 

R N channel on the position of this I = I resonance39. The details 

of our calculations are given in section 11.4. 
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Following ASV, we have assumed the parity of Zand t‘ to be the 

same. There is not any clear experimental justification of this. 

On the other hand, Nambu and Sakurai
40 have cited arguments which 

indicate 11 and Ahave opposite parities. Also, if the above resonance 

is the analog of (3,3) 11N resonance, it should have spin 3 . Though 

the experimental spin determination is not conclusive now, yet there 

i is indication that the spin may be N.
41  This has prompted Duimio 

and Uolters42  to study the consequences of the hypothesis of opposite 

parities of E and A , using the same approach of ASV. They obtain 

two resonances for the state vectors 

171>p  + 

and 
	

it> t iin\>s  1.11'1). 
which correspond to I = 1, J = andparity + and - respectively 

( A-parity is assumed to be +1). No VA resonance is obtained in 

I = 1 and J = 3 — state. If the observed resonance is associated with 2 

the second state vector given above, then they predict another 

resonance occurring at an energy w 	2.5, corresPonding to the first. 

The FM0 technique adopted by us has also been used by Wall, Fulton 

and Feldman4.3 to investigate the observed. A4 resonance, assuming odd 

E-A parity but no 2:41 difference. They find that there can 

exist a resonance in the I = 1 and J = 1/4  state andthey can fit all the 

known data to a reasonable set of renormalized coupling constants. 
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Also, they find it impossible to fit the resonance data, if K N 

channel is completely ignored. This is contrary tc our case ( 2:-I\ 

even parity), where R N channel seems to have very little effect. 
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11.2 (a) Pion-Hyperon Static Equations  

We neglect the 2:-/\ mass difference and considdr orthogonal 

combinations of 	+ 	 and 11+A 
	states which diagonalize the 

Born amplitude. In op-pease if the Born amplitude is diagonalized, 

then c'(; BT-1) is diagonalized, so that T = B/C' is also diagonalized. 

These combinations are 
sj. 

19 (41+12 
r A [11 ^I)1+f  11,11- 

Ifs 	 
2.+22-)Th[ 	

Oa
T. IA 1.1-  -1-4T- ir,lt 

t 
The Born approximation for the scattering in these two states are 

given by 	

+-f.A24 
2- 

73 s 	3 14 	 (11.7) 

Using equation (1) we now get 

Aty tk cot $.( 	y..1  (11.8) 

(12.  1) where '4  
q 	4- 	4" ti=1". 

7 

ir  1412(4 	
In 21 4- i 3 

••••. 	..omble +o'r 	S 

r 3 
We find that for Di =V, 1:4  is positive, so that we can expect a 

44 
resonance at w = 1. This has already been pointed out by Capps 

Va  

For 0 = s, 1:1  is -ve and there does not occur any resonance. 

Putting f = 	, we find that the scattering in the state 
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'r  corresponds to the (3,3) pion-nucleon scattering and the 

resonance is just the analog of the (3,3) pion-nucleon resonance
45,46. 

However, it is worth noting that its appearance does not depend on 

the assumption of global symmetry47. The scattering in the state 

I's corresponds to (1,3) pion-nucleon amplitude. We shall now 
obtain the (3,1) and (1,1) aiiplitude for 1.4.- Y scattering. 

Assuming fli.= 	= 	, the (3,1) and (1,1) ir- Y states are 

given by45 

\lilt 4-41  17.3'1 	1/1 A,1":- 

YSI 	riFb1A,1-  +12-  11E,1-.1 
we again get, 

z3  cot 	w 
where Oft •=.• 

2. 4..)- 

3 

— 3 	2  

As,  

(11.9) 

and 1(4 is given by the same expression as before. 0 = 	corres- 

ponds to (3,1) aliplitude and pt = 	to (1,1) amplitude. 



103dw' 	- )  
- 2 .4) 2  (w t 	w) 	iF 

 

1-(w - 24) 2f2  I + 
w) 
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11.2 (b) Pion-Hyperon Static Equations  

We shall now take into account the E- A mass difference and 

shall derive the static equations)  using our dispersion theoretic 

technique39. We shall arrive at the same equations obtained by 

Amati, Stanghellini andVitale32 using their field theoretical model. 

Since ASV discuss their results in terms of the K-matrix , so 

we introduce it also in our discussion. The K-matrix in our case is 

K = 1j6  (ReT-1)-1  

k1  C 	Bk -1 	1/2 	 ( II .10) = 

where C = B ReT-1 

Let us first consider 

= 0, J= 3 —' 1 	1 2 

In this case the Born approximation is given by 

        

B3 = k2  

  

2 	2 fA   - 

 

1 w = W mA  , 

mA 

       

       

 

TO. 

    

The first term has the pole at w = 2A while the second term has at 

w =41 . Following our dispersioh representation (6) we have 

1r 	3 	(w' 
k dw/  

(w' _4:)2 (w' 

(w -4) 4 f2 I 

where 	= 1 	k'3dw/  
3Tr w o 2 (ve 

3 -/ 
	

f
2
/N

) 	 Co 	(w - 2 4 )  

and we have put4 = o inside the integral 
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following ASV. Comparing our result with that of ASV, we find that 

D3 _ Co
3 
 is exactly D

3 
 o f ASV. 

Now using equation (11.10), we get, 

tan ,,,e ° - k31: 1.  A2 	2 1 3  - 	____s 	- 	2f. 	ze-r—I= le c ;t 0 	(11.12) 
D3 3  w - 2 ZS. w - A 

which is the same as that of ASV, if we neglect quantities of the 

order 4f4it. in the numerator. 

Next, we consider I = 1, J = 2  p-wave: 

Here we have two channels and the Born approximations are given by 

B3 	= 3 k  	2 	 + f;  2 £ 	Z w - 2 	w - 

DMA 

	

2.n 	is 4  = kE  kA 	 (11.13) 3 

2 	.2 B3 

	

AA 	= 5  Ag4 	 

+ A 

Correspondingly, we have the following dispersion representations: 

C 	= 1 + (w - 2A) 2f I - 2 (w - A) f 2  I, 1.Z 

	

C 3 t,1/ 4 E 	= Cox = 2 sir2 f 	f.7  

=1 - 2(w A ) f (11.14) 

From (10) we find that the elements of K-matrix contain Det C in the 

denominator. From (14), we get 

	

DetC = 1 - 2 wf2 	2 - 
2  

I - 2 (3fA 	fE) 14,- 4f (f2A  + f ) 12 w2 2 

	

3 	L A 	Z 

	

+ 412 44 	h INV + 4f2 12 46. 2 (2f2 - f 2I 

	

A 	 A 
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1 	1 Det C3  is exactly equal to D3  of ASV. We now have 

=
2 06 ....= 

2 k  { (-  fh2 	+  f x 	1 - (w +) .2f2 

) 
tt  5 n1 	w - 26 	w -4 

3 k,N 
± 	A 44 f

2 I k E 	. 	(II.15) 

If we again neglect quantities of the order of 4f4Ig in our 

numerator as well as in that of ASV, we arrive at the same result. 

This happens for all the K-matrix elements, so that we shall just 

write down the Born matrix and the corresponding dispersion representa- 

tion taken by us 

I 	= 2, 	J= 2,1 

2 	2 	2 B-
3 	

= 3 k.s.  

2 c3- = 1 - 2(w 

I 	=0, 	J 

B1 	= 	kr2  

= 1 	, 

2 + 

- 2(w _ A  )4 

- 	2 fi 

I 

w - 24. 

2 2A.) fA 	I 

1 = 2— 	1 = 1 ' 

fh2 	+ 9fh2  

3 w-21 	w 	w -A 

+ (w - 24)f2 2 2 = 1 I + 9wf A  I - 2(w - )fi.  

I = 1, J = 1, 1 =1 , 
2 

1 2 2 B 7fx 7 
3 w - 2 4 w- +  

= 1 	(w 	7(w - 41)f2 I 
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1 	= Yik" I B
AZ 	3 1 A   L  k k 	— - 	AN  

	

w 	w - 	
f f 

 6, 

CAz =,.. f1  f
A 
 I ( - w + 3(w - .6 ) , 

3 	• 	 w +41, 	w - ill 

B 
AA 

 = k  fh \ 
1  +  3  

) 

CA A 	= 1 + (w + A ) f 	I + 3 ( w - Ati. ) f 2A  I 

1 	2 Dot Ct  = 1 + (ix + f 2 	 „ 4 
Iw 	7 	I 	I

2 
w
2 (-‘tf 

A 

2 20f A f- ) + I2 W (1of4 - 18f2 f2) + E 
2 	2 , 	4 	L  2 	2, 4 	 `tf.  - in) which is exactly equal to 

11
1  of ASV 

I= 2, J= 	, 1= 1 

B2 = 2 	fh  [ 2 
f
2  

3 w - 2 	w 
1  

= 1 + (w - 2 	f
2 

I + (w - to, ) 12 I 

2 o 	 2 o Our C3, C3  and Ci2  are respectively equal to D3, D3  and Di of ASV. 

Summarizing, we may say that if we neglect quantities of the 

order of 4141b Zte(ja= 290 MeV in the case of global symmetry, 

so that A) compared to f2  in our numerators, we get the 
^ 15 

same equation as those of ASV. Since our denominators are exactly 

equal to those of ASV, so the Taosition of any resonance predicted 

by them will also be given by our procedure at the same energy (the 
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condition for resonance used by ASV is that the denominator of 

K-matrix elements should vanish; we have discussed this point in the 

appendix, using the 2 x 2 channel as a simple illustration.) 
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11.3. Pion-Baryon Interaction And The  

Pion-Hyperon Static Equations  

It is well-known46-48that under the hypothesis of charge 

independence, Yukawa type interactionsloquality of the ( All ) and 

( I T ) coupling constants and 5: ,A even parity, the pion-baryon 

interactions take the form 

[?' 5 N2it fi 	 N2 + Ti3 	11311 

+ iti41;14" .  -4 N4  If( 0  

z  N3  = Ni N4  =CI  \ 
7 	r-7  ZS A  1-1°  

\i2 
The symmetry involved in (16) i.e. the IS0 +liter description of all 

baryons (equivalently, the assumption g2  = g3) is referred to as 

"Restricted Symmetery"
49. The hypothesis of "Global Symmetry" is to 

enlarge the above symmetry by assuming 

gi = g2 = gif 

given by equation (16) conserves the usual isotopic shin 

and the doubtlet spin which is 1/2  for members of the four doublets 

N1, N2, N3  and N4  and 1 for the pions. Thus the liN1, 11142, 1N3  

and 	 3 ITN4  systems can be I = 1/4  or I = states and the scattering of 2 

each of these systems in a given angular momentum states can be 

described by two scattering amplitudes
45'49 one for the I = 1/2  and one 

for I = 3 state. This is the consequence of "Restricted Symmetry. 

= airq, lc  ti 
(11.16) 

where 

  

  

 

A- * Ys 42. 
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If we further assume global symmetry, i.e. equation (II.17), then 

the 1p2  and 7rN3  scattering amplitudes in I = 2 and I = 

states can be equated to the corresponding -RN scattering ampli- 

tudes. 

In deriving the pion:-hyperon static equations, we have put 

4i= 0 ( ii= m1 	m A  ) in integrals of the type 

I = 	1 	k'3  dw' 	• This approxim:ation gives corrections of the 

	

31r 	w'2(w' - w) 

order of 	L1 	▪ Global symmetry and physical intuition 

w cut- off 	suggests that the cut-off energies are of the 

order of baryon masses. So any corrections to I due to the mass53 

differences and to possible different cut-off energies will always be 

of the order of A . These corrections are smaller than the 

NY 45-correction as we shall see below. 

In the derivation of pion-hyperon static equations in 

section 11.2, we have taken into account the .2.- -t\ mass difference 

and the inequality of coupling constants. In the restricted symmetry 

scheme, both corrections are due to renormalization effect of heavy 

mesons. The mass differences is knownexperimentally ( .6/2:80 MeV) *) 

if the renormalization effect on the coupling constants is of the same 

order of magnitude, we can expect= f 2 	f2 to be rather small, 

perhaps such that --- 
Ply 
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1 
If we examine the function Det C3 and C;' we find that 

- - 	3 	• ' 
they can vanish for I f2 	f 4: 2f2  while C°'  C°  Det Ci  1 
and CI

2  do not vanish. This means that under this restriction on 

coupling constants, we can expect resonance in J = 3, I = 1 or 2 
2 

states only. The I = 1, J = Z resonance is obviously the analog 

of IrN (3,3) resonance and as we have seen in section II.2a is 

expected from global symmetric considerations. It is important to 

note that for each value of I and J, the X-matrix for the different 

reactions have the same denominator (viz. Det C) for the same value 

of the total energy. This means that if 1F-A is resonant, 

-Tr-  -y is also resonant just at the same total energy. 

We now discuss the effect of the mass differenceAand the 

inequality of coupling constants 
=  f A 

	

2 	
f 
2 	on the 

-  

	

f2 	+ 2 	+ E T_ 

positions of J = .-- , I = 2 and I = 1 resonances. 

We have, D2  = C3 = 1 - !f2Iw + 212(3 + 	IA ' 

1(2 
+ 4 ) 	

2 where f2  = -2- f z 	so that 8
3 

= 0 gives the position of 

resonance for J = 3' I = 2 to be37  

W (2) = 	+ 3  41 + 1 ix 
r 

where 	f  2 I 	1,. 

For J = 3,2 
	I = 1 
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D
3  
1 

tt,  pet C32' 

+ 21
2
(w - 	- 4312(sv + d Ili. 21

2 
 1w - 812  14 

8f4 12w2 8f4 	 (11.19) 

(neglecting higher order terms) 

For 	6 . 0 we at once see that the position of resonance is given by 
1  - 4f2(w f d ) I = 0 or 

2 

Vi (1) = 11. - r 2 
(11.20) 

Let us now consider the case when 6 *0 but small 
( 6(0.3 for y2f„... <r<2./ 2  

1 = D
3  

and 

We write 

[1 + 212(w - d, 

compare (II.21) 

+ x.. 	) 

with 

1]  

(11.19). 

1 - 412(w + + y) 
2 

This leads toy = b Q 	so that the position of the 

resonance becomes37 

(1 wr 
) = 
	- 5 .66 (11.22) 

Comparing (11.18) and (11.22) we find a clear cut prediction of the 
State :Men *MeV' e 	be a sr eS4Vnal-ir...e in 1-=. 	$147i 

theory. If there is a resonance in I = 1, 3 = 3 at a higherenergy, 
2 r‘ 

given by 	+ 4 W = (80 + 105 ) MeV, which is independent of 
3 

the actual position of ay of these resonances. 
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It is worth pointing out that, if there is not any restricted 

symmetry, so that f and f 	are widely different, then we can 

have resonances in other states than those mentioned above
36
'
32 . 

This can be seen by inspecting c3, ci0  , Det Ci  and C. . For example 

for f2  ''' / 	 2
1),  f 2 	 3 . , we can have resonances in I = 0, J = 	or I = 1, 

1 	
<< 2 
	1 

J = — states whereas for f2 fzI  in I = 0, J = 4 state. The 2 	A  

limitg ..... — .(< 	g 2 z : ir is very hard to reconcile with the near Z Ali 
equality of A- nucleon and nucleon-nucleon forces, indicated by 

hyper-nucleon interations and with the K capture experiments in 

deuterium which indicate that there exists a large I - A exchange
36. 

The possibility of f A> > fl 	however is compatible with these 

results. The only state which does not have a insonance for all 
1 

choices of coupling constants is the I = 2, J = E' state. 
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11.4. Effect of RN Channel On The Position 

	

Of I = 1, 	3 rr - — u-Y Resonance  2 

Recent experimental analysis16  of pion-spectra in the reaction 

+ P 	A + 11+ 
	

seems to indicate a AT  resonant state 

4(: in 	= 1. As we have already mentioned, 	for 1:f 	
f2 	2f22 r --- A .."'• 

a IN  Y p-wave resonance is possible only for J.  = 3 , I = 1 and 2. 

The position of the I = 1 resonance37iS 

wr
(1) = 	- 	64% 	• 	 (11.22) 

Since the Air and Er channels are strongly coupled with ii"N 

channel, so even though this resonance is well below the K N threshold 

( 	r 50 MeV), it is interesting to see how far the position of this 

resonance is affected by the presence of this channel. Some authors 

have already considered the indication of a Tir resonance in 

K 	p --* Y +li production processes50' 51 

To investigate the effect of RN channel on the position of 

I = 1 resonance, we have to calculate Det C taking into account the 

RN channel. 

In this case the K-matrix is a 3 by 3 matrix. 

The Born approximations are 

BNN = 0 1  

1/2  
BN 	= 4 mv 	frog 
Z 3 	k w (11.23) 
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fN  

w 

Correspondingly, for final RN channel, 

C
N
N 

= 1 

CN 	= - (w - 
4N 
 ) 4g f I N 1 	 (11.24) 

CNA = -w"t2...r2gi‘  

where I1 = 1 	IONk'dw' 

31r 	
w'2(w' - w) 

are K N and Kp•N coupling constants; 

	, 	2 	I 
4m  2 	61\ =

g 

=(g  )• 1 

	

1T. 	y 

	

Zit 	A 
4 4 M ` 	

f2 f2 	2 

For initial RN channel, 

1 

 

2 4my 

C Pd  = - (w - A ) ZNI 

C AN = - w2 	g f NI2 where 12 = 1 
3 It 

We now have 

Det C = 1 + 2f 2(w - A) I 1 - 4f2  (w + d  ) I + 2f2  Iw 8.f2SIA 
2 

I2w 8f4 i4I2w4) - 
2 -8w2  fN  gA  1112  

(w - A )2  16rN2g z213.12  

w
T 
 = threshold of RN channel; 

- 

gE  and gA  

2 = 2 
g Z 	ZIE 

  

2 
1 	fN  = g 
2 4m 411 

  

  

   



3'(w+ 	) + Yqw - Lk) =);Sv.? - 46w4+ (w z )2  
2 

x' - 2y' = 

where 

f4 

f2 	1 	2 + f 	f (f 	+ f  2), 	( 2 - 	2 

f
A
2 + f 2 2 

\ 

6w - 6.6: 

/ 2,2 =gz I N  CA  
f 4 	1 ' 

+ 3w 41 + 546 -12.7- 4 	wCE  
2 4 

ance is now given by 

w2(3 + 2  Cs  + c ) 

f. 2 42c 	= D 	. (11.29) 
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neglecting other higher order terms. The last two terms in (2.5) 

take 

before 

into account the effect of the RN channel. Writing as 

Detf: = + 2f2(w - 4 + 	) I 1 - 4f 2(w + 

[ 

+ y') 	I 
2 

and comparing (2.5)and(24, we get the following equation, 

(11.26) 

2C 	w2 	(II.27a) 

(II.27b) 

From (6a) and (6b) 

Y' =55 A6 	2(v. 	iL)
2  Cr_ + w2CI, 	(11.28) 
3 w 

Putting (11.28) in (11.26), we find that the position of the reson- 

Neglecting the last term, we get 

wr
(1) = 3[12 - 	- 54.6] + 44C1 2 	.6  

3 + 2CE  + 
i‘ 
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As we shall see below, Ct  and Ch  are small quantities, so that 

(11.50) can be rewritten in the following form 

wr
(1)  = 	- "a  -5 46 -2 C(n. - 	- EL ( 

	

\ 	2 	
II. - 	) 

2 6 	3 	3 	2 

(11.31) 

The .last two terms represent the effect of RN channel. 

To estimate C L and C , we have evaluated the integrals 

1 and I2 using a cut off at bapyon mass and putting w = o inside 

the integra134 Also, we have taken the effective ranges of pion- 

hyperon and pion -nucleon to be equal as a first approximation. 

This gives 4f21 	ygyveffective range of 1N scattering 

m  4 	f2 
N 
(1 2) N  

5Tr   

Pr- 

The factor 2 comes from the crossing term in the static equation for 

H-N effective ran e52'53  

'This gives 

f2 = f2 (4.55x.3)  x 
rir  31i 

rY‘N 

ik13  
‘94*3  

Alsowe get 

Alt m 

12 d̂  1 	Y k'k'2
N 
 dw' 

w, 3 	3 r it 
= 2.85 ii 

di(31T 	 ) 

k13  dw'  
w13  

de/ Y  kl2k1N  dw' = 5.44  

wi 3Ir 

SM. 
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so that 

1112= 5.44 x 2.85 	,t 

A 

( 

1 	x 	1 

1 
20 

2) + 4(g^ 2) I2eV. 

f 412 

2 
E 3 

4 x 9 f N  
x (4.56)2 -- 

.. 

20 

= 290 MeV, 

+ 	A  
3 

fN
4 2C 

CA 	= 2) 

f 	2 
N 

TrLing/1 

( ,,-1 ) 

fN 

 

= 80 Nev, 

- 	) = 3 (g 
2 2 

f 2 
N 

2  

ih 
Putting tir.aisisequation (I1.31) we find that even .if RN coupling 

constant is comparable to that ofij , the correction due to fai 

channel is small, being of the order <5IsleV 



11.5 Discussion 

The Chew-Mandelstam technique30  of finding the scatte?krg 

amplitude is to write T = N where N contains the left-hand cut and 

contains the right-hand cut. This technique has been extended to 

the Thtilti-channel case by Bjorken54. The FMS technique29  is to 

write down a dispersion relation ibr BTrl using the analyticity 

property of partial wave amplitudes. In the case where N is 

approximated by the Born term and we keep only the right-hand 

Physical cut, both these techniques give the same result. 

FM3 wrote down the dispersion relation 	S = (W2) plane, 

However, a complete dispersion relation for B1+  (T1  +)
-1 or for that 

matter, for any T1+, in the S plane should involve not only the first 

Riemann sheet ( 	= + W) but also the second Riemann sheet (Js = -W). 

This is evident when we write a dispersion relation in the W-plane, 

where we have not only the physical right hand cut, but also a 
• 

'left hand physical cut'55. In the s-plane this 'left hand 

physical cut' goes to a right hand cut on the second Niemann sheet. 

Of course, this cut is related to the right hand cut on the first 

sheet by Macdowell's reflection principle5
6  

f
1+ 

(S 
	

) = r f

(1+ 1)- 

	 = +cad 

-w  

In all the cases we have discussed, the pole of the Born 

term is near the right hand cut on the first sheet, so that Born 
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is dominating and to neglect all other cuts (including the right hand 

cut in the second sheet) can be taken as a first approximation. 

However, for a partial wave for which the pole of the Born term 

does not lie near the right hand cut on the fist sheet, as in the 

s-wave RN processes, this approximation does not work. 
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III. K-MESON NUCLEON SCATTERING  

III..1 Introduction 

Experimentally, it is now known that the EN scattering in 

I = 1 state is pure s-wave un to K-meson lab energy 315 MeV5,57-60 

This is indicated by the isotropy of the angular distribution in 

+
p scattering. On the other hand, the I = 0 state scattering indi-

cates p-wave interaction even at an energy 600 MeV
57-60.  Betsides, 

analysis of emulsion and counter data tend to indicate that the I = 0 

s-wave interaction is rather weak while the I = 1 s-wave interaction 

is strong and repulsive20  

These features of KM low energy scattering have led the 

theoreticians to many speculations. In particular direct K-meson 

pion interactions have been introduced by Barshay6l  andby Yamaguchi62. 

In the model proposed by 3arshay for K+N scattering, an exchange of 

pion takes place between the kaon and nucleon through the 

Hamiltonian 	K .10 r 1 . In this model, the s-wave in both the 
I=0 and I = 1 states are determined by the interference of the 

effects due to (a) the exchange of two pions and (b) the hyperon 

intermediate states arising from the direct interaction of K-mesons, 

hyperons and nucleons. Barshay finds that the two pion exchange 

gives a repulsive potential independent of the K-meson parity. 

Farther, assuming odd 	A rarity, he tries to explain why the 

s-wave scattering is weaker than that in I = 1 state. However, 
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Barshay's model fails to give an explanation of why the I = 

scattering is a pure s-wave even at high energy, which is one of the 

salient features of K+N scattering. Sakurai
63  , using his theory of 

strong interactions, attempts to explain the K+N scattering by 

assuming the exchange of two unstable vector bosons, one having the 

quantum numbers I = 1, J I, G parity even (resonating two pions) 

and the other having I = 0, J = 1, G parity o4J (bound or resonating 

three pions) between the K-meson and the nucleon . Ceolin et al. have 

shown that with a direct K=f-N scalar coupling
64 the KN potential 

comes out attractive in disagreement with experiment, while a direct 

K-YLN pseudoscalar coupling
65 

doesnot reproduce the experimental 

behaviour. They concluded that to explain K+14 scattering direct 

K-y-N coupling, even in the case of odd • A parity, is inadequate. 

Also application of fixed source dispersion theory, which has been 

successful in explaining low energy Ir-N scattering25, leads to 

Predictions in contrast to experimental results. In particular, an 

I = 1, J = -2 3 - resonance is nredicted66'67. Of course, these predic-

tions Cdrkconsiderably change depending on the contribution of the 

crossing terms due to RN reactions68'69  

Our purpose here is to assume an explanation of the isotropy 

of K-N scattering in I = 1 state, based on our present ideas of 

strong interactions and see how far we can then explain the other 

main features of NN scattering. Also, we shall investigate some 

consequences of our approach to the low energy RN scattering70. 
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111.2. Kinematics, Crossing Relations SndAnalyticity  

We denote the four-momenta of the incoming nucleon and K-meson 

by pl  and 	and those of the outgoing particles by -p2  and -q2-
The invariant Mandelstam variables are then 

s  = 4p1 	q1)2. 	(III.la) 

; =(131 	q2)2 

	
(III.lb) 
	(we use p.q = E.a poq 

t = -(tai  102  

\ 	1 
‘1((e4 NEt W -it, 
\ 	 % 
\ \ 	 \ 

/ 

/K6/2) 140,) /K(.1) 	41,) 

(b) 
	

(c)  

Diagramatic representations of (a) channel I, (b) channel II, and 

(c) channel III. 
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The Lorintz invariants defined by equations (III.1 a, b, c) 

are the squares of the energies in the barycentric system of the 

three reactions: 

I X+ N 	K+ N 

II R + N 	k N 

III 	X + R 	N + 

When the four-momenta are on the mass shell, i.e. 

2 	2 	2413- 
Pi n = = 

-2 	-mN2 and qlmv. -mkt, where mN  and m_ 
h are the masses of 

the nucleon and the kaon, the four-momentaconservation implies 

s + t + g = 2mN2  + 2 mk2  = 
	

(III.2) 

In the barycentric system of channel I, the three variables 

s, s and t are related to the centre of mass energy W, the c.m. 

momentum It and the c.m. scattering angle 0 by 

s = W2 = mN2 + mk2 + 2k2 + 2 	(mN2  + k2 )V44. (mk2  + k2  ) 

,)16 
s = -2k2(1 + Z) + Ek2 + mN

2 	(k2 + mk̀ ) j 2  

= 1 - Z (mN2 - mk2)2 - 1 f Z (W2 2mN2  2mk
2) 1 

2 W2 	
2 

t = -2k2(1 Z) where Z = Cos 0 

Besidesthe following two relations are very useful: 

k2 = 	(mN rak ) 	[13  - (14N mk ) -2] 
4s 

E = (k2  + m
N
2)1/4  = W2  +mN2  mk

2 

1/2  

(III.3) 

(III.4) 

 

2W 
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The S-matrix for channel I can be written as 

mN  

4910 P20 q10 q20 ( 

U(-pa) [V r1 	Ti  Ilk  q U (pd 	(III.5) 

where the nucleon spinors are normalized according to 

V(p) Li (p) = 1 	, 	0(p) = U+(p) y 
4 

4 = (I  ...I) 

and 	, are the isotopic spinors of the nucleon and the kaon, 
11 

and i, j, k. 1 are the isotopic spin indices of theincoming and the 

outgoing nucleons, and the incoming and the outgoing kaons respectively 

(i, j, k, 1 = 1 for p and ii, le and k-, and 2 for n, 71, k°  and K°) The 
li 

amplitude can be decomposed into two Lorentz invariant functions: 

T = -A(s'' 	+ i (q1 - q2) 	B (s, 	(111.6 

2 

Thee-matrix in channel II can be written as 

1/4  
SII = ifi - i(2 lt)4  S(P1  + p2  + ql  + q2) 	

mN2 

Ti(-132) j + rill Ilk f] I* 

4p 10 P20 6110 6120 

(I11.7) 

Now, 1 is the isotopic spin index of the incoming antikaon 

and k is that of the outgoing antikaon. T11  can also be decomposed 

into two Lorentz invariant functions: 

sI = 6fi - i(2 li)
4 

6(1)1 4. P2 	ql 	q2)  

2 



For channel III, the S-matrix takes the form 

SIII = 	(glr) e 	 2 
0(1'1 	p2  + qi 	c12) 

m
N  

4p10 P20 (10 R20 
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TII = 	s, 	+ i (q2 	ql) 671, s, 	(III.8) 

 

2 

  

(-p2) 5;÷ 	1 TIII  1 k 	i 1,(-131) 

where V(p) is normalized so that 

15(p) I, (p) = -1 and I)(p) j  (p) = 0, and i, j, t, k, are the tisitel,ie 

spin indices of the outgoing antinucleon , nucleon and incoming 

antikaon and kaon respectively. le decompose Tin, like TI 
and TII 

in the following way: 

TIII = -(:(t, s, 	+ i  (q1 -  q2)  D(t, s, i) 	(III.10) 

      

2 

The principle of crossing relation, in the present context71, 

states that the three amplitudes ( 
	i 1+  T X  

X = I, II, IIIIare the same analytic function matrix (in the )(-

space and in the isotopic spin space) of two variables, say s and t, 

the distinction arising merely from assigning different ranges to the 

variablesof the amplitude. Theproof of this statement is given in 

our appendix 3. 

Physically, it means something like the following. For 

definiteness, we consider the reaction (I) K p-pe + p 
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This reaction is expressed by the amplitude ( 	
1+1-1111) 

which is a function of s and t. The principle of crossing relation 

states that the crossed rrocess 

(II) k-  p 	e + p 

is described by ( 	11+ TII 1 1 1
) 

the same quantity which describes the original process I. Since 

the physical ranges of the variables in reactions I and II are non-

overlapping, a procedureof continuation from one range of variables 

to another is called for to give the principle any physical signi-

ficance. If, however, one knows the analytic properties of the 

function, then the procedure of continuation can be found. This is 

one of the places where the double dispersion representation plays 

the role of a dynamical postulate. In the conventional field theory, 

the printiple of crossing relation is a consequence of the existence 

of field operators and the definition of S-matrix. In quantum 

electrodynamics, it has been known as the substitution law17' 72 

The importance of this principle in elementary particle physics 

was first pointed out by Gell-Mann and Goldberger
75 . 

To investigate the conseauences of the principle of crossing 

relation, we need the isotopic spin decomposition of the three 

scattering amplitudes. In the kaon-nucleon system, there are two 

isotopic spin 	states, I = 0 and I = 1. Since the total isotopic 
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spin is concerted in strong interactions, we can write 

TI = TI
(0) IKIN  (0) 	

TI
(1) 	(1) 

where 1kN (I) is the isotopic spin projection operator for the 

total isotopic spin I of the kN mystem such that 

el

i  

l.  0 '<NISI\ 

1/ 	I .1k .11 	Z. <NO )1((t)II ii7.> <UZI Niti),K0> 
SL 

cow v.t4(i) 	tKNo.) 
Explicit representations of the isotopic spin operators have been 

worked out by Lee71. One obtains the result 

.40 64,) I = 

2. 	jt. 	.4k 	
=0 

(III.13) 

For antikaon-nucleon scattering, T
II 

can be decomposed into the 

isotopic spin eirnamplitudes: 

T
II 

=
II

(0) 
 I

re 
N
(0)') 

TII 	
1RN(1) 
	

(III.14) 

where 12N(I) is the isotopic spinproiection operator for the total 

isotopic spin I state of the IN system, andone obtains 

e"01 
I =0 

= 

(111.15) 

(III.12) 

af.:}14-t  tKV1S, 



I = 
(III.17) 

I 
 14 a 41. 6..iLk 	= 1 11

N 1 
t 
c

t) 
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In a similar way, we can write 
ir
III 

= 1,
III

(0) ite 	T  (1) ift:NR 
III 	(1) 

and we obtain 

(III.16) 

Using equations 	(III.13), (III.14) and (III.15), and 

the crossing relation 

fj+  11+  TI 1  k i = (c j+  1+ Tillk 

4.(‘,t‘l-tk.-'6;YOI
-tkA(91+L.‘s4?* 14212  /3(9 

we get 

2. 

2 ilk 	 / 

— L4. ‘p) (zio I tk 	kt 	. _ 27:- (111.18) 

Identifying similar terms on the left and on the right, we obtain, 

(s, ;, 	= 2E: cq l# A(11)6, 8, t) 

D(I) (s, ;, t) = - 	
I / 11 

17'(I')
(s
-

e 
 s, 

1-InE  

where the crossing matrix is given by 
1, 
0I  ° 
	1 ) 

1 

(III.19) 

(III.20) 
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From the crossing relation 

q 4't -1 1100 
we obtain 	(c* 1f t. 1- 311)=  (tYt TELI14 

(I) A (s, s, t) 	2 TT,/ 1. 	y4 

(1) B (., ;, 	. ;E: li,D4iy3,!) 
1/ 

(I) A 	(s, s, 	= 2 
(111.21) 

where 
( 1 -3) 

2 i 

  

 

ir.' (111.22) 

   

In discussing the principle of crossing relation, we indicated 

the necessity for knowing the analytic.'properties of the scatting 

amplitudes in s and t. Actually, there is another reason to search 

for the analytic properties of the amplitudes in two variables. 

When one attempts to use "one-dimensional" dispersion relations, 

which exhibits the analytic properties in one variable s for fixed 

t in a dynamical calculation, such as the electromagnetic structure 

of the nucleon, one is constantly baffled because the dependence 01 

t plays a crucial role. Mandelstam74  first put forward a • 
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prescription for obtaining the analytic properties of amplitudes 

as functions of two complex variables, the energy and the momentum 

transfer. He begins with the assumption that an amplitude is an 

analytic function in the enti'tespace of these two variables 

except for cuts along certain hyperplanes. He then determines the 

location of cuts from the requiremerit that the amplitude must satisfy 

one-dimensional dispersion relations for all the three reactions 

I, II, III. The application of Cauchy's theorem twice in the 

hyperspace of the complex s and t leads to a double dispersion 

representation. This representation, which satisfies the principle 

of crossing relation has been heralded as a possible basis of S-

matrix theory of strong interactions75. However, in order to apply 
Mandelstam representation to handle general S-matrix elements, we have 

to deal with states involving more than two particles, which with 

our present theoretical tools has not been achieved yet. Obviously 

one may ask, how can we expect to deduce any meaningful consequences 

from an incomplete theory? The answer rests on two general features 

of Mandelstam representation75: 

(a) The location of gingularities is determined by the total 

"masses" of the actual physical systems; the higher the mass, the 

farther from the origin is the associated singularity. Now, among 

the strongly interacting particles there are none of zero mass; 

thus, the total "mass" of strongly interacting physical systems 
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systematically tends to increase with the number of particles, 

and the singularities near the origin tend to be determined by one-

and two-particle configuration. If there are aspects of the 

physical problem that are controlled mainly by "near-by" singul-

arities, then one can make meaningful comparison of theory with 

experiment without a complete understanding of "faraway" singul-

arities in which multi-particle configuration play a role. 

(b) The "strength" of singularities is related to physical cross-

sections and restricted by unitarity so that in a limited region 

of complex plane the behaviour of an S-matrix element tends to be 

controlled by the closest singularities. More precisely, an 

analytic function is determined through the Cauchy relations by a 

kind of Coulomb's law for potential due to point changes (poles) 

and line changes (branch cuts). The line-charge "density" is the 

discontinuity across the cut, which is proportional to physical 

cross-section and therefore limited in magnitude. There is 

assurance therefore that the "Coulomb's law", reciprocal dependence 

on distance, which favours nearby singularities, will not be 

overwhelmed by an increasing strength of singularity with distance. 

From a practical stand point this feature of the S-matrix 

approach is of tremendous importance to a theory of strong inter-

actions permitting an orderly and systematic series of approximationS 

whose validity is subject to realistic appraisal without any 
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assumptions as to the magnitudes of the coupling constants. 

From the one-dimensional dispersion relations for reactions 

1-III, one finds that our amplitude A (s, g, t) (equation 111.6) 

has poles at s = mA2, m 	corresponding to the single-hyperon 2 

intermediate staterin reaction II, and the branch cuts along 

S 	(inn  0,4)2 associated with the possible intermediate states in 

reaction I, along g > (mA + 	)2 associated with theinter-

mediate states in reaction II, and finally along t > (2 fry )2 for 
states in reaction III. The Mandelstam double disperion representa-

tion for A(1)fs, s, t) can now be written in the symmetrical form 

A(1) (s, 5, t) 	 Y 	+ 
	OC 	OC 

cif' 	A l3 6:+)' 

Y.A,t 	

IT)144Y11  (211117 	CO (.0  0449 

crs-' 	

St:t) 	WSW"' 

	

(Thh-+P.0) (2/4 	&IA e'lcrie) 
11±1  (111.23) 4g 

movin 
where the asymptotic behaviour of the amplitude is assumed to be 

given correctly by perturbation theory. Similar expression holds for 
(1) (I) with y(1) fI) replaced by 	(I) and Ali 	by Bil(1). The 

(I)
'  

spectral functions Aij 
	

$ 

	

i,(1) . 	are real and non-vanishing in the 

ranges which are bounded asymptotically by the limitA of integrations. 
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The analytic properties of the partial wave amplitudes 

} 

+1 

Ai(i)(S); Bi(i)(S) 	= C12 Pi(Z) 	AIES)7t (s, Z5 
(111.24) 1  

BiLs ,t(S,  z)1 
74 

have been discussed by MacDowell56, by Oehme and by Fraser and 

Fulco55. All the singularities in A1I(S) and B1
I(S) are associated 

with the possible intermediate states in the three channels and are 

referred to as "dynamical" singularities. The singularities of 

A(I)(S), B(1)(S) arise when the denominators in the double dispersion 

representation (i.e. equation 111.25) vanish upon integration over 

Z from -1 to +1. 

The vanishing of each denominator 

s (s, 	- my2  = 0 (111.25) 

in the pole terms of the double dispersion representation, as Z 

varies from -1 to +1, gives rise to two branch cuts in s associated 

with the single hyperon intermediate states in channel II. These are 

s 4 0 

(mN
2 
 - mk

2)2
e  N%   <2(mN

2 + mk  ) - my2 

m 2 	-- 
y 

- oc < s < 2(mN
2  + mk2) - (m 

t1/4  

)2 

Vanishing of the denominators 	- g (s,Z) = 0, g° 

gives a branch cut along the real axis 

t1ext, we consider t' - t (s) = 0 	 (111.28) 
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for t1 ;› (2 /Iv  )2, -1 < Z 4:1. It is convenient to consider t as 

a function of k2 and Z, rather than s and Z. One finds equation 

(111.28) is satisfied if k
2 < - /I. The line segment -mkt4: 

2 _,.• k .‹ -pi2 gives rise to a branch cut 

-mkt 	< inN2 	2 	(m2  2 	2\VL 
mN
2  

	< 8 	+ mk
2 
- 2 

(An + 2 N - tAIT 1 1  ...... 

( N2  - AA 12) 
A 

5 	(111.29)  

we use the relation s = mN
2  + mk2  + 2k2 	(InN2  + k2Mmk2  + k ) + 2 ,i 	. -------------------'' 

For -mN2 	2 	
-mk 

< 2 we get a circular branch cut with radius 

PI- m2mk2 
	

(111.30) 

For - cx:<k2 
	

-mN2)  We 341 to irraYlab titt 	<5 < 	(111.31) 

Finally, s' - s = 0, s' > ( mN mk)2  gives the physical cut 

°C.  > s  > (mN mk) 2 

	
(111.32) 

The Partial wave amplitudes Al(I)1 B1
(1) are not very conven-

ient quantities to deal with, despite their comparative simple 

analytic properties. The main reasons are that they are not the 

eiramplitudes of the total angular momentum and that the unitarity in 

the physical region is not readily expressible in terms of these 

amplitudes. The amplitude f1  + in the state of rarity - t-1)
1 and 

total angular momentum j = 1 ± 1/2  can be expressed in terms of the 

invariant amplitudes A(1) and B(I) 25: 

f,+ 16114  
(5+Yr) [AL  + 641--rn, 	 (111.32) 

+.-4,1) [- Ain (wtro LtA 
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The partial wave 11+ is related to the phase shift by 

ig 
f + = e 1-+ sin + 1 	1- 

k 

In addition to the dynamic singularities of Al 
and B1, f1 

hasgot 

"kinematical" singularities arising from i and E; the combination 

E - m = s + - 2s
1/4 
 m + m

2 
- mk

2 

2s 

brings in an additional pole at s = 0 and the branch cut of s1/2  into 

f +. One can avoid the kinematical singularities by working with 

the amplitude hi(W) = 1 	W 	f
t+
(w) of Frazer and FUlco55. 

k21 E + m 

In non-relativisitc treatment, where one is interested in an energy 

region near the threshold and only "nearby" singularities are taken 

into account, the amplitudes hi(W) and fl(W) give the same results. 

The unitarity condition is very simply expressed in terms of the 

reciprocral of the amplitude fl+ viz. 

Ire( 
( 	) = 	k 

it 
(111.33) 
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111.3 Basic Assumption Regarding KN 

Scattering in I = 1 state  

We begin with the consideration that for low energy KN 

scattering, the important left-hand contributions come from the 

hyperon cuts and the two-pion cut, which comes very close to the 

threshold. The hyperon cuts near the physical region of IN scatter-

ing are given by 

mN2  - mk
2 

( 

 
4 W 4/2 (mN4  + mk2) - 

m  2 
Y 	

( y =1\1E ) (111.34) 
Y  

i.e. 4 NT. <' 1 4 6.,9 thr  
The two-pion cut extends from the left up to 

w = v(mN2 _ tiv2 + \fmk2 	 

= 9.97 	(-4%0935 MeV below fN threshold) 

We approximate the two-pion cut by a single -aole. This single pole 

Approximation may be regarded as a sharp two-pion resonancev as con-

sidered by Frazer and Fulco77 and also by Bowcock et al
78 and by 

grautschi79  to explain the nucleon electromagnetic structure and the 

small pion-nucleon phase shifts. 

Let us denote the two-pion contribution to A and B in equation 

(111.6) by Al 	(s, t) and Blrir  (s,t). Now, the single pole 

approximation of the two-pion cut leads to the following forms: 

(111.35) 



-63- 

(= s + tr - r 	a 

2 	2' t - tr  

t - tr 

B (s, t) = 	b 

(111.36a) 

(111.36b) 

where we regard 'a' and 'b' as unknown parameters; 'tr' is the 

position of the Pole. The forms (111.36a) and (111.36b), including 

the kinematic factor in the fisrt, are suggested from the works of 

FraUtschi and. Tgaleckago in 	N scattering, of Lee71 and of 

Ferrari, Frye, Pasterala
81 in KN, RN scattering. 

From equations (111.36), we find that the two-pion contribution 

to 1 = T, 

ONO .=r- 

p3/2  J scattering is 

RW 	Eatjyrf_L-7- + A q 
r  

3 

 

 

 

 

          

Lai- ()41-111,)bIt 
_ 

-11-31t 
L 	2. 	A- i 

,2= 	ii+ yn2--- 'm r] [a/  + (h) --111t) bi 4k 
32.7rW 	7 	 3(tr+2- 

where a' It (s + tr - 1: )a, 

 

2 

 

2 

A 	 tsa( r + 14) 

2k
2 

 



and to I = 1, 	scat tering is 

‘327142. [2W (E-07)1) Nt+11-1:1 	4-1-1,_ 711:i-1 	k 
 of z 

-11--k [22  I- 5' EIMY V1-214110] 
Etynt4  Alt 2:1( 	(III.40) 

to I = 1, pv2  KN scattering is 

2-1 "mx (ty +2.k ) 
2-411  1a1-641-171 1:j 

(III.38) 
The contribution due to the hyperon cuts (i.e. the usual 'Born 

The two-pion contribution 

-04 	327W1 —16144.1aN)11.  

approximations') to I = 1, p3/2  KN scattering is 
)1. 

.1-"M ti  
ev  32111'4"  

47- f
ill 

(111.39) 

where 	+ m 
2 
 - 2(mN

2 
+ mk

2) - 2k2  

and we have assumed even AI parity, (pseudoscalar and have neg- 

lected. E.-A mass difference. 
We now assume that the explanation of the isotropy of KN 

scattering in I = 1 state is that the two-pion amplitudes for p1/2  and 

P3/2 states cancel the corresponding Born am litudes. 

This assumption at once gives up the following two equations. 
/BO 	) 

0 	 (III.41a) it 	It 

V) 
	 (III.41b) 
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From these two equations we obtain, 

a' + (w - mN) b = (g 
2  + g 	(W+ m - 2mN) tr + 2k2

) 	
,) 2 

(111.42a) 

a' - (w + mN) b = (goo  + g;E:) (W + 2mN  - my) (tr  + 2k2) 

0< 	
(111.42b) 

We can now find out our parameters 'a' and 'b'. In the static 

limit, they are given by 

a= 	
1 

mx  tr) 	1. (gAK
2 	

1;2: 2) tr 
(2mN  2 Wo 	6Trgj 

2 

[I(Wo  + mN)(Wo  + my  - 2mN) tr  

CX(W0) 

(W0 	mN) ( go + 2mN  my) 

b 1 	2 (g, 	4- 1  2) tr 	(W + m - 2m..) t = 

2 W0 	
N r 

- (W + 2mN  - 

where VI  I = mN  + mk  

(we  

(III.43a) 

(III.45b) 
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111.4 KN Scattering In Other States  

Since the two parameters in equations (III.36a, b) are now 

known, so we should be able to rake definite predictions on s-wave 

scattering in I = 1 state and on s, p. and p3/2  scattering in I = 0 

state, taking only the two-pion contributions and the Born 

amplitudes. 

The two-pion contribution to I = 1, s-wave KN scattering is now /aro t(w) 
* 	3 	 ziz 

2 	/1 I 	1)a villYy'rnw (tv+29 
2F KY4÷111h) -Yi/dOAK+  ID; 	CX. 	• ok 

(using equation 111.42a) 
	

(111.44) 

The negative sign in front of (111.44) dhows that the two-pion con-

tribution is repulsive. 

The Born amplitude for I 1, s-wave KN scattering is li(q
21-  64) 	[(w-s-rn,2--TrI] (12  4- ) 2 (W+Yhy  -11)0 0+ 	2-11 Ye' 	AK /K 

(111.45) 

which is also repulsive. 

We therefore expect repulsive interactions for I = 1 s-wave 

KN scattering. We defer the question of quantitative agreement with 

experimental results, in this case, for the mwdent and switch over 

to I = O. 



-67- 

Crossing synnetry shows that the two-pion I * 1, j.= 1 resonant 
TIM 	ifIVI) 

state gives bol) = -.3 . ,,i) 	. The Born term in this case 
42 71) 	117 6 

(I = 0, %) is repulsive. Since 	(4 is repulsive, so /C4W) 
01- 

sh ould be attractive and three times larger. This at once shows why 

we can expect rather- weak s-wave I = 0 interaction. To put this 

quantitative)y, we find 

+ (W 
r s) 

321rW 2- 	K 114b 	I   iltAitm 	1 In2 2--7--614+111-Y----L-111°  x 
ot  )] 

4Kli‘y(g.t13 	(111.46) 

We can now derive an expression kot the s-wave I =.0 scattering 

length, using the relation 

k cot 6 . 
(111.47) 

N 

where N is the amplitude due to the left-hand cuts; equation (111.47) 

holds so long as the rescattering term i.e. the contribution from the 

unitarity cut is not important. 

get 
a.°  = 0.08 	3g 2:K2 - gmt2 

Prom (111.46) and (111.47), we 

(132* k
2 	

gi1X2) 	3  tr Fermi 

we 

(111.48) 

	

41T 	41r 

tan s 	o* 
lc where tan 	= -a 

78 For t 	= 22 A 2(Bowcock et a 

4 II 

• tr 	= 0.38.. 	From 

--- 
0/ 

(111.48), 

K (W0) 

then find that a suitably chosen ratio of gzx2  will give agreement 

with results known from experiments. 	givt 
2 
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Next, we proceed to calculate the I = 0, p3/2  andN amplitudes, 

using equations (111.42a, b) and bearing in mind that the I = 0 two- 

pion contribution is -3 times that of I = 1 contribution. We obtain 
-Bo 118 
i i, 
. 	[(IV  i'mt$n  — )1121 	A -i- WV  -2xin v  - ". 

3 V/ vii. 	V 

04 	 s(b)  	+ al  01' 
riit9 c, 

a
ne LotKi 5. 

fill(N —4  t N) = 51_  t -ft_ 	. 
0 	1 	2 W •zi 	(Kist--) 0) 

3.211 WI  E t Tth 
............P0ar••• X 

i # 

( III .50) 

The scattering lengths corresponding to these amplitudes are given 

by 

aq = -0.04 x 1 	3 g lcx2  + 

{ 	

e }(2.1  Fermi3  

11.5 4ir 
g  j  

Tr 

(tan 603  = - a 3  k3  ) and 
0 3 

ao]  = 0.02 x 1 

11.5 

3 
(tan Sol  = ao, 

{

--f 
2 

3 gik  + gfoc2 Fermi3 
it 1r 	43. ...4 

k3 ) 

(111.52) 

Expression (II1.51) and (111.52) indicate that the I = 0, 13
3/2 is 

leo) 
(te N 	= 

1+ 

( 111.49) 

and 

2.(w+2.viterN) -.1112" 3r;(4.4
of  

2;) 
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attractive and stronger than I = 0, N which is repulsive. These 

results are in qualitative agreement with the analysis of emulsion 

results82 and quantitative agreement can be obtained by choosing 

suitable values of g l:x
2 
and g po

2. However, our present knowledge 

of g 2 	2 and g 	as well as the status of emulsion data do not 

justify anything mucn beyond qualitative agreement. 

We now come back to our discussion of I = 1, s-wave scattering.-

In this case an effective range formula is usually applied to fit the 

experimental results85. In our language, this means that we have not 

only the left-hand contributions, but also the right-hand contributions 

coming from the unitarity cut (i.e. the rescattering term is important). 

The amplitude in this case will be given by29'30, 

6)  
VO 1 kidiAll  

 
[4060 t (w) j( v..v.) 	044,4) 

1I-__
- -1- 	t 4+ 	

(111.55) 41  
where W, is the subtraction Point and at this point the physical 

length and effective range. For the purpose of illustration, taking 

wi  = 710  = mN  +we  we find the scattering length 

-6•14  ( 	 t'  1 I V 1-  I .  
a10 = 0.08 (1+ ---"-  dot) 	44-1 	

Fermi 	(111.54) 

and we get r = 0.5 f with a cut off k 	= 3.6fr Here k cot  rno 	1 	 10 1 1 . - 	+ 1  rk2 (I = 1, s-wave). a10 

amplitude is rut equal to 
IRO f;S(.0 

1-  . • By adjusting the point Virl and 

taking a suitable cut off, we can now fit the experimental scattering 
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111.5 Two-Pion Contributions to RN Interaction  

We now investigate the sign and magnitude of the two pion con-

tribution in RN scattering on the basis of our knowledge of this in KN 

scattering. Use of crossing symmetry71 shows that if we denote by 

.1"" 
! 	

the two pion contribution in R + N -1PR + N (energy of this 
it 
process being TW), then

fr7 
I) 

C4(  
i.e. the two-pion pole gives the same contribution in KN and KN 

scattering. This means in I - 1, this contribution is repulsive and 

in I = 0 it is three times larger and attractive. Ferrari, Frye and 

Pusterala84 have tried to determine the sign of the two-pion contri-

bution following the procedure which has been applied in 14N case. 

They approxiasate the two-pion cut by 

(111.55) 

which gives the contribution 

 

(111.56) 

to thtir amplitude G (S). The'Tosition of their pole is given by 

sr= 9.6/A1  which is very near the physical threshold Wo  = 14 .2 

Let us now try to find out R1 by equating (III.56) at threshold 741c(4 
with that given by our 7e find 



TITO 

064-')  
and 

41 

- 71 - 

(Tr() 
2‘5 t (yR, 

 

( 111 . 57) 

has the positive sign as found by them. Taking 

. VI) itry 	= /214 
X 0.0 g 

fw} _ — 
0.38 	2.214 

L 
2 	5E it+  tr  = 12 tit, 	oe 10, 

coupling constantnd the value of tr 

cannot say anything much about the magnitude of Hi. However, it seems 

our value of R1 is possibly smaller by a factor of 2 to that of 

Ferrari et al81,84. 

Finally, a word about the interpretation of two-pion contribu-

tion in the physical RN scattering region is not out of place. 

Ferrari et a181 have defined the interaction as the discontinuity 

across the left-hand cut and then from equation (111.55) considering 

the positive sign of RI, they have interpreted the interaction as 

attractive in I = 1 state. However, if we take the usual field 

theoretic definition that an interaction is attractive (repulsive) if 

the phase shift due to it alone is positive (negative), then from 

(111.56) we find that their interpretation should be that the inter- 

action is repulsive. 

(III.1g) for ( 
Ari(4 

;7f) is 

This is essentially borne out by our equation 

. For I = 0, the interaction will be attractive. 

We see that R 

we get 0 = 0.40 Mrj4 Fermi. Since the 

are not well established, we . 



- 72 

and the net effect of two pion interaction in K-p scattering is 

attractive. Another point worth making is that our amplitudes do not 

have the energy dependence at 	asindicated by (111.56) which is 

rather strong because of the closeness of 	to the physical thresh- 

old; so we should expect much less energy dependence of k cots than 

that of Ferrari et al
84. 
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111.6 Conclusion 

Summarizing, we can say that by assuming the isotropy of KN 

scattering in I = 1 state as the result of the cancellation of the 

two-pion and the Eorn contributions in p3/2  and p1/2  states, we 

have reproduced all the qualitative features of low energy KN scatter-

ing as indicated by our present experimental knowledge; also we have 

some insight to the two-pion contribution to RN scattering. The 

solution of tiae e:ilperimtmtai results, which agrees with all our 	
60 

theoretical considerations, is the D solution of Rochester Conference 

and the B solution of Melkankoff et all
82, characterised by weak 

s1/2, attractive 133/2 	- 
D
1/2 and repulsive 	in I = 0 state and a 

repulsive pure s-wave interaction in I = 1 state. 
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IV LOW ENERGY 11C-p 

SCATTERING AND RN BOUND STATES 

IV.l Introduction  

The major theoretical effort in the analysis of low energy 

K -p scattering processes has been based on the phenomenological zero 

range theory85,86,87,  proposed by Jackson, Ravenhall and Wyld. In 

the zero range theory one assumes k cot 6 to be essentially constant 

and qua' to the reciprocal of the complex scattering length. The 

principal justification of the zero range theory is its simplicity; 

it needs minimum number of parameters. All present experimental 

data are consistent with the zero effective range parameters. Besides, 

no theory has been advanced which would give an estimate of the 

effective range (except, of course, the argument that on the basis of 

conventional Yukawa theory, one expects this to be of the order of 

4/4114ccorresponding to the exchange of a K-meson and lymv,t5 2:0.4 

Fermi, is small), Explicit parametrization of the RN scattering and 

reaction amplitudes has been done by Jackson and Wy 1d86  and by Dalitz 

and Tuan87 which under simple assumptions of energy dependence, leads 

to the zero range theory. These authors have also given formulae, 

taking into account the kinematic effect, arising from the energy 

difference of Kp and R-n thresholds and the Coulomb effect. A great 

deal of effort has also been devoted in studying the effect of RN 

interactions on global symmetry and restricted symmetry and the 
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indications of this effect in low energy K p data45,88-90. The 

flattening of the Kp elastic scattering cross-section, indicated 

by the preliminary experimental data, has also received considerable 

atten4tion84 8691 ' ' 

The recent discovery of a Air resonance16,92,93 (called r) in 
K 	p 	A°4-  It

+ 
+ Ir process  at an energy 1382 20 MeV, has 

renewed interest in the study of RN interactions. Two years ago, 

Dalitz and Tuan17 suggested that with their (a-) and (b-) scattering 

length solutions, there should be resonances in I = 1 and I = 0 pion-

hyperon scattering states. Such a resonance can be interpreted as a 

bound state of RN system which is metastable because of the pion-

hyperon interaction94'95. At present, (a-) scattering length solution 

has been found which predicts the position and width of Y*, as det-

ermined by experiment94. However, one crucial point here is that the 

Dalitz-Tuan (a-) solution requires destructive Coulomb-nuclear inter-

ference while there is no evidence for it. Though the present experi-

mental data do not provide any unambiguous answer to this question, 

the results reported at the Kiev Conference°  indicate constructive 

Coulomb-nuclear interference. The present emulsion data97'93 seem to 

favour the constructive Coulomb interference. Ve, therefore, thought 

it would be worthwhile to see if we could have positive Coulomb 

interference as well as Y* andinvestigate the consequences of such a 

theory. 
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From the very beginning, we assume the existence of Y* as a 

bound state of RN I = 1 system (mass-,..,138.5 MeV) which is stable if 

we switch off the pion-hyperon interaction. In that case we have the 

well-known effective range expansion75,99  for k cot 	(6 real in this 

situation) where the scattering length is connected with the binding 

energy and the effective range by equation (IV.2). We investigate 

the case where we can have k cot S always positive and this leads to 

a very large effective range (equation 11/.4). We then assume that 

when the pion-hyperon interaction is switched on, the scattering 

length, the effective rangeand the binding energy all become complex, 

the imaginary part of the binding energy being completely determined 

by the experimental half-width of Y. We assume the zero range theory 

to be valid for the I = 0 state. We find that we can explain the 

existing experimental data with a large effective range in I = 1 

state which gives positive Coulomb interference. Our set of para-

meters indicate that the real part of the scattering length for =0 

to be small (reminiscent of the (a+) solution of Dalitz-Tuan). We 

have investigated this point theoretically and find that by assuming 

the existence of RN I = 0 bound state, with mass below the 11T 

threshold, we can explain this. We also expect a narrow 11  resonance 

just below RN threshold in I = 0 state (grt  = 900). 



k cot 6 = 1 — 1 rk 2 a 

+ 
	

r ‘Z? 2  

2 = 2B 
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IV.2 Basic Formulation And Results 

As we have said, we begin with the assumption that Y* is a 

stable bound state of RN system in the absence of pion-hyperon inter-

action. We then have the effective range expansion99,75 

where 	is the binding energy ('.:450 MeV) and Ak= 111N mK . 
m
N + 

mK 

Examining (1) and (2), we find three interesting Cases: 

(i) 1r2t.10; this gives k 	and is the zero range theory when _a  
we have a bound state. The phase shift, in this case, begins at" at 

the threshold and gradually decreases with energy. 

(ii) 4> 2r > 0; in this case, a  is negative, so that somewliere in the 
s Ii . The phase shift begins at 

2 
at the threshold and decreases so as to fall through irt -- . In this 2 

case a situation giving a Breit-Wigner type of resonance is con- 
100 

ceivable 

(iii) df 	

1  1; in Ihis case — is always positive. The nhase shift a 2  
begins at zero at the threshold and increases with energy. k cot 

is always nositive. We shall take this to be the right situation for 

N elastic scattering in I = 1 state. Then, we at once get a lower 

100 

physical region k cot 6 = o or 6 
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limit of the effective range: 

1 1.1 Fermi 

which is obviovay very 
Let us now suppose that 

( Tr= 1.1) 

LI 	

(IV.4) 

the pion-hyperon interaction is switched 

on so that instead of equations (1) and (2) we have 

k cot. 
• A

+  1 RK2 (Iv.5) 

R c42 (Iv.6) 

where 

The 

A ,  R are all complex quantities and 

a(2 = 	ii) 

= ri= half width of IC* 
2 

Dalitz-Tuan17,94 bound state theory for (a-) solution 

(IV.7) 

follows simply now, if we put R = 0; this gives 

k cot a = 1  -r = A 

Taking A = a + b we get, 

a - 	Re CI< ,
2 	

Im 
a + b2 a2 + b2 

The position of the bound state is now given by 

= mN  + mK  - Re( .42). 
2/1 

mN + ml  - B 

2 

Re(g04:111(Rea()2  

if (Immik)24 (Re p()2  

( 	> b) 

1 	a  
mN 	°F. 	à + b2/ 

'-*--`mN +irk - 
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while its width is given by 

_ r _ 	
2 )  = 1 2 Re of lm 2 	2r 

1 -a 

  

 

a2 b2 a
2 

b
2 

Ae  1 

lai 
3 

Taking 41= -1.09 and b = 0.2o, we at once get the observed position 

and half-width of Y. 

We next try to fit the present experimental data with a large 

1 	 ...I 
effective range (Re - 2 . R i> 1.1). The formula for d'l' 0-ex and 0  e 	b0  

have been derived by Jackson and gym.86 and by Dalitz and Tuan87. 

The only thing we have to do is to replace Al  in these formulae by 

Al (K) where  1  = 1 + 1 Rk
2 and 1 is given by equation (6). 

A1(K) Al  2 	Al 

We find that we can fit the present low energy data with an effective 

range 

1 -2 R = 1.29 - i 0.277 	Fermi and 

A = 0 + i 1.1 (iv.8) 
0 

which gives at 175 MeV/c K-  momentum, with no Coulomb included, the 

following cross-sections 

6;1 

ex 

0 ( 	+ ie÷) 

Irr  
A 

assuming 4 = 	 - 0.5. 
 

Also the ratio 7.-
o  (k = 0) comes out 

= 77.2mb 

= 14.0mb 

= 38.4mb 



tan-I ka1 - (a1s + b1 
 r)k2 

1 + kb1 + (a1r - b1 
 s)k2 

= 47(Et) + tan
-1 kao  

1 + kbo 

- 8o - 

to be 4.15 which is within the present experimental value 	= 5.5 

f 1.4. In Fig. 1 we have plotted Gel  when Coulomb effect is not 

included us well as when it is included (the mass difference of 

le-p and R,n thresholds has, of course, always been taken into account). 

The cut off used by us for Coulomb scattering is the same as that of 

Jackson andWyid86.  In Fig. 2, we have plotted 
JT12  i.e. (4- itex) 

fi 

following a suggestion by Matthews101. It is worth mentioning that we 

have chosen our effective range such that at 175 Mellic our scattering 

lengths Al(k) and A0  coincide with the Dalitz (a+) solution. We have 

also verified that our d"( 	+ 27) agree with the Kiev data964431) 

Finally, a few words about the 	ratio. This is given by 

1+ 
3
J2  -jg J Cos1) 

1 + 2 J2 + 	J Cos et, 

where T1 
KN: 	= Je 4, 4, being the phase difference of r-production 

amplitudes in isotopic spin 0 and 1. 

 

T
0 
KN: Tt 

 

1R  where .4(E ) is the phase difference at the k 	2 p threshold and — 

r + is. Experimentally, oryd‘,  ± 600  which is very large and has 
102 

been a headache for theoreticians. From global symmetry conditions 	, 
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one expects this to be small. In the next section we shall attempt 

to give an explanation of this. 

Using equation (9), we find that the relative phase changes by 

-32°, for the effective range used by us, when we go from the thres 

hold to =  175 MeV/c. If now {?(Ft) = -60°, this would mean 

since 45 would be-90°. This is, of course, indicated by the 

present experimental data. In this context, it is possibly worth 

mentioning a remark by Dalitz and Tuan87 that, if Coulomb interfer-

ence is constructive, then the (a+) solution, together with4,(Et
) 

J:+ 
seems to be the best candidate (the upward cusp is reminiscent of 

the large JE: ratio obtained by the Berkeley group in the momentum 
i.+ 

range 50-100 MeV/c). 

giving an upward cusp in ratio at en threshold, 



T-1 = A-1 + 	ik, 

CSC - ik = 	- it 

0 

_ (W a)2  
1 

where 

(IV.11a) k1 dW' 

(W' 	W) (W' - a)
2 

0 
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IV.3 RN I = 0 Bound State 

As we have seen, our set of parameters which fit the experi-

mental data (when no Coulomb is taken into account) corresponds to 

Re Ao = 0. This really indicates that Re Ao is small (the corres-

ponding Dalitz (a+) solution with errors it Ao = 0.05 t 0.2 + i 

+0.0 (1.1 ± 0.25); Al  = 1.45 ± 0.2 + i (0.35 	 )). 0.07 	
Assuming the 

existence of a RN I = 0 bound state lying below the lor threshold 
and using the T-1 matrix formalism103 we can explain the smallness 

of Re Ao. Such a bound state with binding energy much greater than 

Y*. has been postulated by Sakurai and by Gell-MarT108 

Let us denote the RN channel by '1' and the tir channel by '2'.  

Let us suppose, W = a is the position of this bound state. We next 

write down two subtracted dispersion relations109 for the elements 

of T-1 matrix with the subtraction point at W = a. These relations 

can be put down in the form 

(W - a)2 
	

k'2  affl 
	

(IV.11b) 
W) (TV 	a)2 



w
1 and w are the thresholds of IN and Zitchannels and A

-1 matrix 
2 

elements contain the lefthand contributions, T-1 matrix elements at 

TII  

k 	xo - iyo - i ao + ibo 

(IV.13b) 1 
	

1 

xo - iyo ao + ibo 

where 	1 

x - 
(An  +0(2,6)2 + 	4 )2 

2 (1 + 0(2 A22 ) ( Ail +1;42 16.) + k E  A224 
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the subtraction point and derivative terms. Time reversal invariance 

and unitarity require A-1 to be a symlletric real matrix. 

Equation (10) can be written in the following form 

AT 1 =l+A0( - iAk 	(IV.12) 

which is exactly the BT-1  dispersion formulation of Feldman Matthews 

and Salam29, if A can be approximated by the Born matrix. We note 

that since the subtraction noint is far below the RN threshold, so 

the energy dependence of A-1 and O( may be neglected in the low energy 

K-p scattering region and we shall have the zero range theory, as 

seen below. 

For our following discussion, we use equation (12). Then 

T11  1  + A ( O(  -ik) ]- 
11 

(IV.13a) 

Again 

From (13a) and (13b), we get, 

(Iv.14a) 
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y =k A22 A11 - A (IV.141J) 	 ( A = Det A) 
+ G(2  A )2 + (kIA )

2 

From (14a) and 14b) we can obtain the following relation 

atoF = (A22  - Yo  :All) (IV.14c) 

Y0 CP( ) 
kt. 	2 

The RN and /1-1 amplitudes should have a pole corresponding to 

our RN I = 0 bound state. Usually, one expects that when the T-

matrix is diagonalized, this pole should occur in one of the diagonal 

elements110 In other words, we should be able to write the T-matrix 

in the following form 

	

Cos E 	Sin6 

(17 - a 2) 

T= U 	 U= -Sin€ 	Cosh 

where the pole terms correspond to the Dorn awplitudes for the diff- 

erent processes and the terms involving 'e' represent contributions 

from other singularities. The Porn matrix is given by B = U 

U, so that we have Det B = 0 	(IV.15). 

Again, in a situation like this where the important lefthand 

contributions may be thought of coming from the pole term, the FM 

dispersion formulation29  is applicable and we can approximate our 'A' 

by B. Equation (15) then, at once, leads to 

where 	3 le (x. - eic 

-1 

R 

- a 
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Det 	A•"`" 0 	 (IV.16) 

Using (16) in (14a), we get, 

xo  1 +0(2  + 

All 	
(IV.17) 

From (10), ReT-1  = A-1  + 0(, so that taking determinant on 

both sides, 

Oct ReT-1 1 + All  4 1  + A22  opt 2  + _ e4 2  4 A v% 	3. ( t: D e t A) 

If now, Det ReT-1  ( 	1 	where K is the K-matrix) is not very 
Det K 

large111, then putting AILIO, gives 

1 + A e4 + A22  a 1-  WO 
11 1 	2 

From (14c), we have for AN 	A22 "•-•° — A11 so that using this 

in the above relation, we get 

1 + 	+ 	Yo 	• 
All 	.41  1 	

.4 
 

(Iv.18) 

Comparing (17) and (18), we expect xo  to be small, wkich is, of 

course, indicated by ceir parameters. 

The Ilrelastic scattering amplitude below the RN threshold 

is given by 

(T-1)11 T22 = T 11 = g22 + (O(1  4.  INA 	)6  1 
(,1

) 
 
22 A11 +( (J12  - iki)is 

1 	(using A 

(x0  +)kiip -iyo  

o) 	(IV.19) 

Y o 
(X -ik 



1 	 (IV.20) 

k 	Cot 6 , 	- ikE 
Again, T22  
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Therefore from (19) and (20), we find that if xo  is small andnegative, 

then just below the RN threshold, k lt  Cot 6111. = 0 or the 

elastic phase shift passes through 1T/2. 

This at once leads to an important result. Since the phase of 

the non-diagonal amplitude is sum of the phases of the diagonal 

amplitudes112 from unitarity, so the c-production amplitude in 

I = 0 state should have a phase shift as large as ir+ nir(n = 0,t 1). 
2 

This will provide an explanation113 why this relative phase of 

I -production amplitudes in I = 0 and in I = 1 states is so large96 

± 600) . 
Equation (19) can be written in the following way, 

T22 
	(fkij - xo ) 

Y 
 r 
( 	- x 2) o 

(1k1,1 - xo ) kr  (IV.21a) 

1  

    

(E (o)  2k1. (E
o 	

E) ir/2  

	

where P 	Ix°1 Y0  

	

—5 	il  2 	t2 
E = - 	= - IkKt  , E 0 	)9C4q , 

which shows that the elastic tli amplitude below RN threshold in 

I = 0 state has a Breit-Wigner resonance form with a narrow width 

( Ixol being mall). 

(IV.21b) 

(IV.21c) 
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The elastic 	scattering amplitude above RN threshold in 

I = 0 state is given by 

T22 = 

  

1 

 

k x o 

yo 
-ik (1 + kK) 

yo 
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IV.4 Conclusion  

We conclude that the low energy Kp scattering data is consis-

tent with a large effective range for I = state which gives positive 

Coulomb-nuclear interference. The real part of the zero range scatter-

ing length in I = 0 state is, in our opinion, small and negative
115 

The smallnass can be accounted for by assuming the existence of a 

RN I = 0 bound state lying below Tor threshold. If, further, Re Ao  
is negative, then we get a narrow rir resonance116'117 just below 

RN threshold, which will provide an explanation of the large relative 

phase of I—productiOnzamrlitudes at RN threshold. 

Besides a complex scattering length, we have a complex effective 

range for I = 1 state. This means we have two more parameters than 

that of Dalitz-Tuan. For this reason, we needed two more pieces of 

data to fix the parameters (viz. the mass and the width of Y*) while 

they can predict these two things with their (a-) solution. The main 

justification of our approach is that experiments may well confirm 

the Coulomb-nuclear interference in low energy K-p scattering to be 

constructive118 and it is worthwhile to consider this possibility. 
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FIGURE CAPTIONS 

Fig.1 	The total elastic scattering cross-section as a 

function of the laboratory momentum. The continuous curve 

corresponds to nuclear interaction only, normalized so as to 

agree with the 172 IeV/c data. The dotted curve corresponds 

to nuclear plus Coulomb effect, with the cut-off angle 

determined by the criterion that the recoil proton have a 

laboratory momentum of at least 30 11eV/c. The experimental 

data are the bubble chamber results of ref. (96) and the 

emulsion results of ref. (97). 

Fig. 2 	Variation of the function 1T1 2  with laboratory 

momentum of the incident K-meson. 11'1 2  represents the 

charge exchange cross-section without the kinematic factor 

k' 411 7  . The experimental data are that of ref. (96). 

Fig. 3 ( 	+ 	proeuction cross-section plotted against 

K-meson laboratory momentum. The experimental data ate of 

Fig. 4 

ref. (96). 

Re T-1  = k cot 	(k2> 0) 

=114 cot SI  (k2 ( 0) 

plotted against K2  (1E E') for the two cases: 

(a) when scattering length is positive, 

(b) when it is negative. 
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APPENDIX 1  

In this appendix, we re-examine our investigation on K-meson 

parity, given in Chapter I, using the new exrerimental data available 

in the high energy region119, 120, and the theory put forward by us 

in Chapter IV on low energy K-p scattering. 

In evaluating the dispersion integral in Chapter I, we took 

to be constant at a value 15 mb 'all throughout and ( at a value 

40 mb above K-meson kinetic energy 120 MeV. We used a cut-off 5 mk  
following the data of Burrowes et a17. The present high energy data 

extends up to K-meson momentum 8 GeV/c. We shall therefore use a 

cut-off 16 mk  in our new evaluation. We shall take eto be constant 

at a value 15 mb as before, but 6' at a value 30 mb above K-meson 

K.E. 120 MeV. To evaluate the dispersion integrals in the unphysical 

region and in the low energy K-p scattering region up'to K-meson lab. 

energy 120 MeV (i.e. up to K-meson lab. momentum 344 MeV/c), we use.  

the effective range and the scattering lengths obtained by us in 

Chapter IV whiCh fit low energy Kp scattering data. The imaginary 

part of the forward scattering amplitude in terms of these parameters 

is given by 

   

2 

A w 

N 

 

  

   



y 	s  

(ti- frit —.1047.  

(xoilgv)+t 

2R

.12 

Tii 	•P -- 
where 1 c.m. Tomentum, 

2—Ft = r + is, 
jyl and 

16 

I\01- 
61r2  

V14,1 

14 

I ) 	1 
•••••••••••11.1. 	 W 

WI+1  
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1  
xo - iyo. Using equations (A1.1) and (A1.2), we can a

o 	 0 
+ ib 

evaluate the dispersion integrals numerically. 

For Matthews-Salam dispersion relation, we obtain 
144, 

1.07 	(A1.3a) 

(A1.3b) 

(in m-= k 40; 1  tr:zon4 
= le'75.-1;) K2  

	

ii., ---2---- 	I 
V 

I. 

1.10 6-R 1 	V4-1 	Vi IS- i (.6tm  1 cm1, 
Further, b = N D- (1) = Re Al 	zrn. 9,3g -J-3) 

N + 1 = 4.30 

Thus N-S dispersion relation gives , irstta4 of 1101. 4.2Z) J 
4.30 + 0.86 . 1.07 + 1.79 - 1.10 + D s) 

so that [8 	= 3.40 

(A1.3c) 

(A1.4) 

(A1.5) 

(A1.6) 
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For Igi's dispersion relation, we obtain 

tit 

LT/ 

V4(4-PV4) 
cA 

le(Y41-1-'0 

so that instead of eqn. (1A))9we have 

4.30 + 0.86 + 0.16 =0.662  ( 	938 + 13.88 + 12.57) + 4mp 	.2F 11  
M 1 p 

(A1.7) 

Therefore, 4Mp 	 .2F = 4.18 
	

(A1.8) 
N + 1 
p 

The positive sign of the bound state term in equations (A1.6) 

and(A1.8) shows that K-meson cannot be scalar relative to both the 

hyperons. Comparing (A1.5) with equation (1.2.6) we find that the 

contribution from the high energy region has not changed appreciably. 

The only term in@.5) or in (A1.7) which considerably differs from 

the corresponding term in",234is the magnitude of b (b = 4.30, in 

the present case, is to be compared. with. b = 1.68 taken before). The 

larger value of b has increased. the value of the bound state term 

and therefore gives much larger coupling constants. However, we must 

not take the value of b literally, because our parameters fitting 

the low energy Is p data are quite rough. The extreme variation of 

6 

= 13.88, 

tat 12.51, 



-97- 

t which was considered in Chapter 1 as a possible case, seems to 

be ruled out by present experimental data. 

Our only important conclusion is, therefore, that K is 

pseudoscalar at least relative to one of the hyperons, and the 

pseudoscalar coupling constant is comparable to 	N coupling 

constant. 

APPENDIX 2  

For two channel case, we may write121 

(A2.1) 

when both the channels are open. The s-matrix, in this case, is 

given 

	

C 	C124) (A2.2) 

1 ,1(  ky2 	a 

If we now define the condition for resonance as the vanishing 

of the denominator of F-matrix elements, as has been used. by ASV, 

we have 

ab 	c2 = 0 
	

(A2.3) 

However, there are two other ways of defining the condition 

for resonance. One is to take 

Re (.uet T-1) = 0 	, which gives 

ab - c2  k1k2 = 0 
	 (A2.4) 
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while the other is 

Re (-a ft = 0 
	 (A2.5) 

which gives the position of resonance for '11' process as 

(ab - c2)b + 1rZ a = 0 , 

for '12' or '21' Process as 

ab - c2 - k1  k = 0 

and for '22' process as 

(ab - c2) a + k2b = 0 . 

If we neglect the momentum dependent terns, we find that 

(A2.3), (A2.4) and (A2.6) are the same. 

Let us now suppose that cLannel 2 is closed. Then, if we 

completely ignore this channel, the condition for resonance for the 

'11' process is 

a = 0 	 (A2.7) 

If, on the other hand, we takeninto account the Oresence of channel 2, 

by ::Aaking the continuation ft —4i 	2( , the condition for resonance 

becomes, in the 17.-matrix formalism, 

a(b + 1k2! ) 	c2  = 0 	 (A2.8) 

If we neglect the momentum dependent term, we get, 

ab - c2 = 0 	. 	 (A2.9) 

If the coupling between caannel 1 and 2 is weak, then 'c' is small, 

SO that (A2.8) or (A2...9) gives essentially a t0 as the condition 

for resonance. For strongly coupled channels, however, we can 

expect considerable deviation from a 
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APPENDIX 3  

In Chapter III, we used the principle of crossing relation 

which essentially states that the three processes.: 

I K N 	+ N 

P
1q2 

132) 
	

(A3.1) 

II R + N —}k+ N (q2  4. 131 	ql -P2) 

III K + 	+ R (q1 	- P1 - p2 ) 

have the same scattering matrix element. We shall show this using 

the Lehmann, Syma nzik, Zimmerman technique. 

The nucleon field in terms of plane wave states is 

ei31 (1-cAlal)ellIurM fAr(1))641Y,A,Oij 
(A3.2) 

where A is the isotopic spin index and r is the spin 
/0  

A= 1 for p and p, 2 for n and a; 	=4) %.=(k 11 

index. 

J):X  131—kte  

Defining, lokr(K•i\ = 	(7,n  r. 
(z104/2 	e u.ro:) A  

(A3.3) 
and UL- r(-p) =1,r(p) (r = 1, 2), 

we can write the nucleon field as 

(A3.4) 
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The creation and destruction orerators for nucleons and anti-nucleons 

are 

cAr(0 -1;3- TIA M Y4 114  
= A-5)(.13(04if‘viick 

dA,(0.:-)43)ei/(044fxl_y.(- 
citA4  

(A3.5) 

The K-meson field in terms of plane wave states is 

Ct)(4 	f0 64-12..44' 1 i7,42 	 (A3.6) 

where vf is the isospin index (4 = 1 for K and K-; V= 2 for K°  

and fe) and 

:11) 	 1 4  bieinre, the isospin wave function. 

The creation and destruction operators for kaons and anti-kaons are 

ato) 	-1.-16d10  4:00 411')‹  

j3)( 	
(A3.7) 

.1. 	" 	3  

Let us consider 

KNEllli ) (1(2:01 Nth 117 \  ) ) 1(k1Z)> 
Vt 
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l •  - 24.  
41121 	in 

----- 	
e 

640-iptio(ptl---67)<N(kiiiscp(zANfroily)Ikko> 
.., 	t-m 

64L — iycl4z rvsi I„ -f (4 V—IV <*h :4 101T(P(44))1N (11,0 o ws - .10, 

On the other hand, 

<14  ()24PS))17(-% v§)1 N  >i• :Y))1-<-(14  
out 	 i-A 

-141,4 	 • + 
Yv.10 -1<\'NE-  zo  91071  

= 	84,  ' 	01(-1)2 )(iCII;t641 N(120i. l'i)117( kg  0> (el"-  61-)f (w) 
, 	 94)K 

6 i  + iVet w crz  -f 4  (z-1  011) <N(-ka)s)17-01):( O ckz))1No?,i,kep 
(1,) 

(A3.9) 

Comparing (A3.8) and (A3.9), we find that processes 1 and. II in 

(A3.1) have the same scattering arplitude. 

Let us now consider the taatrix element for the process K R 
11,1 

<14(421i1Sq(ltitIRet210 ) K6 /1 JO 

)( 1  4 6A6 

= g4i 	ci v.( -rfr) 	-152z) /-111:1 I  9 T(40) (W) 14i4'11> 
4 

X (A -  (5w) (W) +014,k • ( A3.8) 
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44.<4 kr))*(4117624)Ovitio 21x, 	 iy) 
•1(14 (--Plix)15x.<F1(-1'iit') 110v61.2101,1( 61.0> 

sir x ct; 171 s(-121. 	liff(fftx)) I fe(ey4r0): hiP)  
44 ijdx c1; -1-1)  ls(-4?)i): TN9)11x)) ikt K 	iosPI 

wkey.e tz--(Y 	4-1) 15i  ='t (lee ÷Th) 
If we now take out the .7k, k states,-then we get 

<N(t 	iliy)1g(cif2../1‹(04h> 
.....L61 . crx crz 	Tvj is(...1„At .14:(1) ){(2  

<01 T(i;(1)* (X) oz)4))14:>1?,04t; (A3.10) 

7  Q4  62z.) 	(t A - 1-52v) 	x faa 	0), 

Proceeding in the same way, we can obtain 

-in 
= 	• t 14/ci4lAux.  d; AI 4W riA'.s Et; 44...+cl)  C174  IL 	 IL 	\ 

<,I T(4)(2)114017 () 0010 Kw 
X  fdp.(1 hi,,t(k))) (,3.11) 

Comparing (A3.10), (A3.11) and remembering that the fermion fields 

where 
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anti-commute, we find that the amplitudes for the processes I and 

III in (A1.1) are the same, if we separate out the Dirac sdinors. 

This proves ourcrossinp: relation. 

APPENDIX 4 

In t.,-L Appendix, we discuss the relation between phase shift, 

bound state and resonance. We assume a single channel with a bound 

state. Then,we have 

Re T
-1,

= k (k2 

=-g 1 	1 r I  ,E2 

The 3-wave scattering ai,plitude is given by 

(A4.1) 

T - k cot 6 - ik 	 (A4.2) 

and the correct continuation of Re T
-1 
 below threshold (k2 „: o) 

is well known to be k-," (ki . Let us define a phase shift by 
tot 	' 	Re T 	(9 .2 	o), 

then 

114 Cot 1 r k 2 (A4.3) 

1 

tki 

The bound state correstonds to 

114 cot 6,  = 0 
and from (A.3), we then get the relation, 

I 	1 .32 
= - 	+ g r 6 

where 2 = TB, El. is the binding energy and 

(A4.4) 

(A4.5) 

is the reduced mass. 
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From (A4,1) and (A4.3) we find that 

4 k cot o 

   

Since 1  is   a constant, this, therefore, 

either o or g at the threshold. 

/i 
means that 6 and 	are 

First of all, let us consider — positive. From (A4.5) we a 
1 	 2 

find, in this case, 7r) 	. We plot Re T-1 against E s k , as 

in Fig. 4 (a). 

(see F:tg.z10) Pe e`33 

fall from /2 to 0 at the threshold. 

in this case and increases. 

At the point B, pl cot O 

= 0 and this corresponds 
to the bound state. We take 

g =1/2 at the bound 
state. Since 11 cot 6 

I 

is always positive as we 

go from the bound state to 
it 

the threshold, so 6 must 

The phase shift S begins from 0 

Fit 4 (b) we have 

where 	cot b = 

1 < 1 
then from (A4.5) 2  r 	. 

plotted Re T against E1  . Again, the point B 
,f 

0, corresnonds to bound state and 6 = 1/2. 

, 	1 Next we consider — negative; a In 

-1 
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Since 11 cot 6 is always negative, therefore, 6 must increase from 

1/2  tel., as we go from the bound state to the threshold. The 

phase shift f) begins at i and graftally decreases and falls through 

11/2 at the mint Q. 

ee Fig 4(0 Pie 93) 

This happens in neutron-

proton triplet scattering 

where we have the deutron 

bound state. This falling 

of S through 11/2  is not 

called a resonance 

since it does not give 

rise to a resonance peak. 

Let us examine this roint. 

From (A4.1) and (A4.2), 

T - 	 - 
1 	1 	1 	P  

1r(k2  1 + 	1 -ff  rk 2 	ik = 	- ko2) - ik = 2k (E  - Eo)  _ iil (A4.6) - 
a 	 2 2 

1 	
2

2  where - rk2 	1 = - -, E 	 - and -- = - 2 o a 	 u 2 aka. 	 (A4.7) /  

Obviously, (A4.6) is a 7reit-Wigner type of resonance amplitude. 

However, the concept of a resonance is only useful when rr2 is small, 

so that there is a peak in IC If the effective range is small, 

(i.e. if the phase shift goes through T/2 very slowly) then the 

width will be very large (equation A4.7) and we can no longer talk 

about a resonance. This is what happens in 3S1  scattering of 
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neutron-proton (-2- r,  k = 	= 23.4 MeV whereas 	9.3 MeV). 

F
r 

it is not inconceivable for r to be large so that the phase shift 

falls througTA H/2 raridly; and we should then call it a resonance. 

The extreme case, r = 0 gives k cot i = 	This is the 

zero range theory with a bound state and corresponds to the Dalitz- 

Tuna bound state theory of Y. 

However, 
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X11 	11  k2 

	

11 	11 — 	= 5 f N 
2 2 2 

Eli = B31 = A13 -- - f 3 N 

	

2 	 4 , 2 

	

B33 	=W 	?.̀.33 

2 
2. gir n ) (f N 	% mr12 	411. 

Also, Re T71 = k cot If (for single channel case) 
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