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ABSTRACT

In Chapter I, the various attempts by different authors, to
determine the parity of X-mesons and its coupnling constants, are
surveyed. The details of the investigation carried cut by the
auther and his conclusions are given. Two types of dispersion
relations were used: (1) Matthew-Salam type which is not sensitive
to low energy data but weighs the high energy region; (2) Igi type
which ig seunsitive to low cnergy K¥ p data but comsiderably convergent
in the high emergy region. With Igi type dispersion relatiocn, two
possible cases were investigated: (i) where the x*p total cross-
seétion was constant in the low energy regiocn; (ii) where it varied
in a linear way within the experimental error.

in Chapter 1iI, a dispersion technigue suggested by Feldman,
Matthews and Salam, is used to derive the static equations for pion-
hyperon scattering and it is shown that the inclusicn of the EN
channel does not change the conclusions on the J = 3/2, I = 1 p-wave,
T~Y resonance, given by Amati, Stanghellini and Vitale and by Capps.

In Chapter III, assvming that the isotropy of KN scattering in
I =134s due to the cancellation of p-wa&e contributions coming from
the hyperon cuts and the two-pion cut, the KN scattering in I = 1
state and in I = ¢, S, Pl/z’ P3/2 states is investigated., {ualitative
agreement with the preseﬁt experimental situation is obtained. Using
crossing symmetry, the two-pion contribution in EN scattering is also

considered.



In Chapter IV, the recenﬁly discovered Y* (my;w1385 MeV,
fé- ~»15 MeV) is assumed to be a RN I = 1 bound system, and an
effective range theory for XN scattering in I = 1 state is‘ formulated.
With a large effective range for I = 1 state 2nd & zerco effective
range for I = 0 state, parameiers which fit the present low energy
K p scattering data and give constructive Ceoulemb nuclear intersference
are found. Thesc parameters indicate that the real part of tae
scattering length in I = 9 state (i.e. au) is emall. This smnallness
of a, can be explained by nostulating the existence of a EN I = O
bound state lying below the ¥ Wthreshold. also a I resonance

(I =0) just below the N threshold (bpp = 90°) is expected.
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I. THE PARITY OF K-MESCNS
AND DISPERSION RELATIONS

I.1 Introduction

It was pointed out by a number of authorsl’z’3 that the forward
. scattering dispersion relations for the K-meson nucleon scattering
may offer a powerful means to determine the parity of K-meson rela—-
tive to the hyperons and the nucleon, and also the-strength of the
K-meson interactions. The first numerical attempt in this direction,
using the experimental data, was made by Matthews and Salaml. They
found that, for K+p potential repulsive, an attractive Kp poténtial
implies pseudescalar K-mesons ( A and $ parities assumed positive)
and a repulsive K p potential implies scalar K-mesons. In both
caces, the coupling constants obtained by them were of the order of
unity. The main sources cof error in their evaluation came from (i)
lack of experimental information on total cross-sections of Kﬁpand
K}>scattering; (ii) the contribution from the unphysical continugum,
and (iii) the behaviour of 6 ab near threshold. Conclusion similar
to that of Matthews-Salam was redched by Igi4, who used a subtracted
form of dispersion reiation. He found that if ¥ p interaction is
repulsive, then ¥-coupling is scalar and is\of the order of unity.
If, on the other hand, K-p interaction is attractive, the coupling
éould be either scalar or pseudoscalar, depending on the energy

dependence of the K+p scattering cross-section at low energies. In
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this case, for scalar K-meson, the coupling constant is ~vl1 while for
p.S K-meson the coupling constant is ~ 4.

The dispersion relation used by Matthews and Salam is not very
sensitive to low energy data, but slowly convergent in the high
energy region, while that used by Igi is very sensitive to low energy
K+p data, but much more convergent in the high energy region. This
consideration, together with the fact that by early 1959, experimeﬁ-
tal results both in the low energy region5’6 and in the high energy
region7have increased considerably, prompted the author8 to re-
examine the question of the K-meson parity determination using the
new data and the dispersion relation ofSMatthews-Salam and of Igi.

The details of his calculation and results will be presented in the

following sections.

Several other authors have also attempted to determine the
parity of K-mesons and the K-meson coupling constants from forward
scattering dispersion relatione using different forms. Galzenati
and Vitale9 used two dispersion relations in subtracted form, con-
gsidering them as independent relations, for the study of the depend-
ence of the real vart of X p scattering amplitude at zero energy on
the values of the coupling constants. Their results, when compared
_ with the existing experimental information, stroagly indicate that
the K-meson is pseudoscalar with respect to both the f\and the 3

hyperon, and that the sign of B_(¢J) at low energy is positive,
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giving therefore constructive Coulomb interference in the K-p elastic
scattering. The magnitude of the coupling constant obtained by them
is of the order of 5. Amatilo has derived an effective range formula
from the forward scattering dispersion relation for K+p scattering,
which does not contain the experimentally uncertain zero energy K
proton scattering amnlitude. F¥e finds that the low energy dependence
of ' indicates equal A and I parities with opposite K parity
(K.p.s.). Selleri'! has used the effective range formulation of

Amati without the restrictive assumption of constant d+ and adopting
for the scattering amplitude in the unphysical region the solutions
given by Dalitz and Tuanlz. He finds that the experimental evidence
of weak energy depéndence of aj'indicates a p.s.K-meson (p.s. at
least with respect to one of the hyperons). Karplus, Kerth and
Kycia13 have algso used the Balitz-Tuan K;p scattering parameters and
the then existing data to study the K-meson hyperon coupling terms
occurring in the dispersion reactions. They concluded that the exper-
imental data was not sufficiently accurate for any definite conclusion
on ¥-meson parity. BSugano and Komatsuzawa14, using Igi's form of
dispersion relation for the charge exchange scattering K'n — Kop and
for the ordinary elastic scattering K+p - K+p, inferred that pKA. is
3 is undetermined and gsz-;zg 0.

The major difficulties which arise in the application of K-meson

odd and gﬁnggs while PK

dispersion relations are (i) contribution frow the high energy region,
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(ii) sensitivity on the low energy dependence of K+p cross-section or
on the experimentally uncertain sign of X p scattering length, and
(iii) the contribution from the unvhysical region. Using perturba-
tion theory Tuan15 has estimated the contribution of'the unphysical
region. On the basis of their scattering length solution for K'p
scattering, Palitz and Tuanla have pointed out that the contribution
from the unphysical region in the dispersion relation useé by Gobel
and by lMatthews and Salam may be congsiderable, sgo that the conclu-
sion(l) that the parity of K-meson can be deduced from the sign of
K—p potential is no longer clearly established. Dalitz znd Tuan also
indicated that the possibility of a resonance in the'unphysical region
may mean a very large contribution from this region than so far con-
sidered, The discovery of 2 ,&ﬂlG resonance at an energy 50 MeV
below X N threshold seems to indicate such a Dalitz-Tuan resonancel?.
Nogamil8 very recently has used the dispersion theoretic analysis,
assuming that the situation implied by Dalitz-Tuan (a-) sclution to
be correct. He finds that no definite conclusion can be reached,
though it is very likely that P y the XA parity relative to N, is
odd and PKZ is even and hence PZ'\ is odd.

From this survey, the only conclusion we can draw is that our
prescnt status of knowledge does not provide us with an unambiguous

answer to the guestion of K-meson parity on the basis of dispersion

relations.
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1.2 Bispersion Relation For X-meson-Nucleon Scattering

Investigation of the analytic structure of K-meson nucleon
. . . . . 19,20

dispersion theory, from the viewpoint of rigorous proof “’, has
shown that even for the case of forward scattering, a completely
adequate proof is not npossible, unless certain physically unrealistic
inegualities are satisfied for the masses of the particles involved.
Hdowever, as a tool for the analysigs of experimental data, dispersion
relations have served useful purnposes in pion-nucleon scatteringzl,

. . 22 , v .. .
before rigorous proof was given . With this spirit, formal deriva-

tion of K-N relativistic disrersion relationg, following conventional

23-25 27

and by Igiz.

method , has been carried out by Sakura126, by Amati and Vitale
Writing the forward amplitude for Ki-p scattering as I (w), we
divide it inte dispersive part D+(w) and absorptive part A+(w),

T+(w) = D+(w) + i €(w) A+(w) (1.1)

where w is the K-meson lah. energy and €(w) in the sign function,

¢ (w) 1 for w>0

2-1 for w<O
Putting TV @ =% 1 - @ + 7+ w3 DV (w0 + 1emaP ), (1.2)
@@ zhfr- @ -1- @)=z 2P @« iewa®w, @3
50 (w) nave simple behaviour when w =3 - w; DY) ana 4(?) are even

(1) gy

functions whereas D(Z)(w) and A are odd, Hence, the following

dispersion relations cap be written!
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oc

% [p- () + D+ () =%/iw' 2wt % [a - (w) s A ('}, (1.%)

w'!' - w

o el r
1% {D - (w) -D + (w)] =2w [ % A - (w) - A+ (w')} (1.5)
> .

T. w'2 - W

When the convergence of the integrals(4) and (5) are not

guaranteed, we may increase the power in the denominators in the foll-
owing.way:
% @ -0+ ) - L [Ditw) + D+(““ﬂ
._..vlfw -w‘}"’/dW' w' i L”\ (W)"' A (w)}
T 2. - 1.6
, ° (“’ uk:)( \Nk) ( )
o [0.09 -3, ~(%) %o [ D) - 0

,,.,,; ) .M[A(‘*) 4,64
/ wig Y w) | (1.7)

where WK is an arbitrary energy larger than m,

The contrlhutlon to the amplitudes A+(w) from the energy region
0 <W‘<<mK consists of two varts: one discrete part coming from the
A+ £ 'bound states' and another continuous part coming frow the
'unphysical region' W *(W my, where

woo = (A+TH2 - w2 - &2
2N ) (1.8)

(The particle symbols have been used to denote their masses). The
unphysical region occurs because of the possibility of AN +T and
L +T intermediate states with thresholds below KN threshold. The

position of the discrete states are given by



_W2 2 2
=y -HN =K (5 =A\,5%) (1.9)
2N

For the region of integration extending from My to ez, we have

the optical theorem

G+ (W) = 4T 4 + (w) (1.10)
K

where k is the lab. momentum of the X-meson and ¢ + is the total
+
cross-section for X -p scattering

Subgtitution ef (I.10) in (I.4) and (I.5) leads to
_ t Di ', Yox
C%i“9==4;a dw h(-¢:§n) + 6‘6~?} duf_~A>6’§
W oW w+wW ’nT w;_‘w :
=} x M
A,,l (1.11)

W 4+W

G“bﬂ) C::( ) ‘1 vvh
260 g [ k[ -¥ w+w ﬁ\v ,)/l WA{:} (1.12)

K

™k
ik

The first integrals are already expressed by exnerlmentally measurable
guantities. The gecond integrals represent the bound state contri-
butions and can be expressed in terms of renormalized coupling con-
stants. For the third integrals, one has to make some sort of
approximation ’4’15.

When the convergence is not good, equation (I.6) and (I.7) can be

applied. We may then obtain 2 disrversion relation of the type

D W - L(+__)D(g~l —a(r--— Dlwd

( W Wi d t (w) 6},{\!\") w:: de 6“
4T* (w’——v?') W e W*'W W W \»?Yw»w)
Mg +l“ﬁ ’) d“’ A-)wé
T (w' iy J(Wew)

(I.13)
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The bound state contributions can be written down using the
conventional second order vperturbation theory and interpreting the
courling constants as the renormalized coupling constants28.

If p; and p, are the initial and fipal 4-momenta of the nucleon

and qy and Uy those of the k-meson, then the Born amplitude is given

by
. 1 * ; — —
= —(p1 + ql)2

L .9k 2N “;
S - 22- q'ﬁ‘ S - /e- X %A:(_'
(I.14)

where the plus (or minus) sign is to be taken if the interation is
scalar (or pseudoscalar) i.e. if Pyy = + 1 {or ~1).

The imaginary part ¢f the Born amplitude is obtained by giving
8 a small positive imaginary vart and taking the limit when this goes
to zero. We then find that the diescrete contribution to A_ from

the Y , N\ bound states to ke

A =] [Z= NNk N+Z) 9o [T 6 (5%9)

RIES SN S

(I.15a)
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The K~-meson energy in the laboratory system is related with s by

w =g - N2 - K2

2N

changing the variable from s to w, we get,

ALY = [w; +N = z} (%*)%(w; -9
1 I .
+ 5N [ W NED (f% LEICSE

(1.15b)
where ¥, has been given before (eguation 9).
Using egquation (I.15b), we find that the bound state terms to

the dispersion relations - (I.11), (I.12) and (I.13) are respectively

i wWet+N =L (3@%) ,+,j~_‘ wa TNEA (?z%) 3

2N W, +W AT 2N Wot W 4T
2 3 X (I.162)
I W,aﬁN%.E_(m)fi_. TS am)
2 wy-w g/ 2N Wew 4T
5 3 (1I.16b)
..'-.
and -—--’2 . t,l -wi-,'N-i [.3:2_—?&)
}NL+V? K ‘2‘1 4T 5
‘.Q' L Wy +HNEA 8&
Weth i 2N 4T
V(I.16c)
where the +ve sign corresponds to P = +1 i.e. NKy interaction scalar

ky

and the -ve sign to Pky = -1 i.e. NKy interaction pseudoscalar (pky

denoctes the relative parity of X-meson and hyveron, the parity of

nucleon being sonsidered positive).
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Ig14 has put the bound state term (I.16c) in the following approximate

B::FEELL.. : (%?v\
w W 3 L 4’(( ‘ l.-.-
+ 1 — dh

2N N,\“'N-T-’\ 410 (1.164)

neglecting terms of the order wy (here, the -ve sign corresponds to

W
to scalar and the +ve sign to pseudoscalar interaction).

Matthews and Salaml used the dispersion relation obtained by
subtracting (11) from (12) while Igi4 used the relation (13) at K-N

threshold.
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I.3 Analysis Of Experimental Results

Before congidering any experimental numbers, we first introduce

some parameters which will be used in our analysis.

We define an amvplitude T which is related with the S-matrix in

the following way '
+i(2R) 8§(p+q-p -q) N 4Rw T,

= § H
\F Pop'oqoq'o mN

W

£fi fi

where ¥ is the tctal energy in the c.m. system. The diffefential
cross-seciion in c.m. is related with the amplitude T by

d (§}i = kf \Tf% 2 where ki’ kf are the initial and final

4L E; relative momentum.

For énergy near threshold Tfi is the s-wave scattering ampli-

tude. In the case of elastic scattering,
T = 1 where k is the relative momentum in c.m. and

xeold - ik & is the phaseshift.

For K+p scattering, there is no inelastic process, so that the
phase shift is real. We now define the s-wave scattering length for

K'p elastic scattering by

k coté = + where the nositive or the negative sign is to be taken

1
a

according as the potential is attractive or Bepulsivel. In the former

case, the phase shift is positive while in the latter it is negative.
The amplitude M' of MS is related with T by

M =4l gt =4Tw 1 (1.17a)

1.
N N3 - b

(pc = c.f. momentum)
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s0 that near the threshold

ReM' = + 4w a
i)

. (1.17b)

For K~p scattering, we have competing inelastic processes. The
s-wave elastic cross-section in c.m. system is related with the for-

ward scatterlng amplitude by

= |- (mw) {L N) (Immj2] (118

Using the optical theorem, we have,
InM =%%@

We now get | _
o
@QM) 4T:\s\,\, s 'Wﬁ g@}jz

It is worth noting that the amplitude used by Igi is related to

(1.19)

that of MS by

D 4+ QAT = ME . Equations (17) and (19) gives for w = 1 (we use the
U5
unit ¢ =4 = K = 1, the unit of length being g£'= 0.4 x 10-15 cm)
K
5'(1) =N +1(+a), D(QA)=H+1 (+b) (1.20)
N

where the éarﬁmeter 'h' is defined by

th=+ CﬂéL F3G$r)1
AT T

The dispersion relation used by Matthews and Salam is obtained
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by subtracting (11) from (12) at threshold. This can now be written

as
|
(tb (+a = ! SC +6”b] "—-K - W'+K dw‘
: a B3
/ \51(*“) ward w’+|< :”I:l)[. ]

Here CS;; is the elastic plus charge exchange scattering and
(BS) denotes the 'bound state' terms.
In calculating the integrals #n MS dispersion relation, we have .

taken 6’;0 to be constant throughout at a value 15 mb; § (= 6;0 + Gab-)

has alsc been taken by us to Be constant at a value 40 mb from 120 MeV
K-mesoh enérgy to 2 {hev XK-meson K.E.?. In the region 0 - 120 MeV

K.E. the elastic scattering contribution has been evaluated graphically
using the combined emulsion and bubble chamber data5. The charge
exchange scattering has been taken by ws to be one-fifth of the elastic
scattering. The contribution due to absorption in the O- 120 MeV

K.E. region as well as in the unphysical region (wyg - mk) has been
evaluated assuming a constant value 7 of {k‘ 6;b°

The MS dispersion relation can now be written in the foliowing

form : it \ j+t
s +a =d-| etAl t ’ YA ! 1
(£ +a tnl K6 o w,ﬂ)dwﬁu LAY o o 4
Ll
Wi

-(—-6'-kl~_!__ -t \dw- 6~ ,___‘_l,... dw' (7.22)
Wl Wy W W
wt ! . +B$]



- 16 -~

where t = 120 and we have taken K+p potential as repulsive. We take

e

Gel = 4,5 mbo.
a4

Inserting the calculated values term by term we get
(¥ 1.68) + 0.86 = 0.72 = 0.14 + 1.37 - 0.75 + [BS] (1.23)
If we now take the positive sign corresponding to K p potential
attractive, we get
[BS] = 1.32 (¥-meson pseudoscalar) (1.24)
and taking the negative sign, corresponding to X p potential repulsive,
I?S] = -2.0% (X-meson scalar) (1.25)
Igi'g dispersion relation at threshold hage been used by us and
for this pﬁrpose, w is put equél te 1 + h and then the limit when h

is negligible compared to 1 is taken. The first ferm in Igi's formula

beconies
i p-@ -, @] «% (3,
W, W =0 (1.26)
d 1 E1
where Wi = K-meson K.Z., in lab.
From eguation (19) (5+ = ReM+|, for the case of i scattering,
\. &
ST lu, =0 M LS. ®
1/ i — . (1.27)
P+ 1 P+ 1 '

. + 4 . . . .
Assuming that 6;c is a constant, we now write Igi's dispersion

relation at threshold in the following form:
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1+t
th)+a +[2De\ . 2Me M 1 "dw + [ gEtddw’
S AT Tl T RG)  Gr)
J_kflﬁdw + 6'4\# ) tmp
N(E'Z(wrvy [t k(wm)j M + Z F(x 28)
Inserting values term by t;rm , we have

(+1.68) + 0.86 + 0.16 = 0.66 [ -9.38 + 10.27 - 2.10 + 16.77}

o/

L *y My o (1.29)

M +1
|4

If we take the positive sign, we get
Y

1! Mp—_,’_l JL2F = 1.67 (1-30)

which corresponds to pseudoscalar X-meson.

On the other hand, if we take the negative sign, we get
M
M i
P

L 2F =-1.68 (1.31)

+ g

which corresponds to scalar X-mezon.

If now, instead of taking Gj constant, a linear variation of
it with energy of the form gi(w') =m (w' - w) + @(w) is considered
in the energy range 1 to 1 + t and then a constant value 6 (w') ="

s (1L + t) up to infinity, we shall have

2 D+
(?%ﬁ W, = O _lL_. a3 - 1+ Mp - m - =
1 MP 8 Tr a s MP+1
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ol
and /6" (w')aw' = m log 1+ [t/(z + t)]‘% ﬁ-m£% (2 + ti%
k' (w' - w) 1 - [1:/(2+t)]y2

- 6+ (1 + t) (1.32)
Kaplon has reported a K+p cross-section equal to (13.5 b 2.8)

mb in the energy range (20 - 100) MeV. The maximum value of 'm!'
permitted within this experimental error is obtained by taking
6% =1%.5 - 2.8 at 20 MeV K.E. and 6~ ' = 13.5 + 2.8 at 100 Mev K.BE.
Thie value of m comes out to be 21.61. Using this value we shall now
get, instead of equation(}ﬁ@?he following equation, term by term:
(2 1.68) + 0.68 - 2.57 = 0.66 {19.66 + 10.27 -210 +lb.7f}
TTZ + 4 ——jﬁl-éF . (1.33)

Mp_+ 1 :
If we take the rositive sign, corresvonding to X p potential
attractive, then

M

y _
4 — B . o =-3,17 (1.34a)
p+1

-

If the negative sign is taken, corresponding to K_p potential

repulsive, then

¥ My op = -6.52  (1.34b)
Mp + 1
Therefore, we find that X-meson comes out scalar irrespective

of the sign of the X p potential.
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I.4 Conclusion

Qur corclusion is that the Matthews-Salam diépersion relation
gives a pseudoscalar or scalar K-meson according to K-p votential
attractive or repulsive. However, the experimental data of Burrowes
et al do not indicate that the contribution in the dispersion relation
due to the energy region beyond Bmk, where the integrals have been
cut off, will be negligible. Igi's disperéion relation also gives a
pseudoscalar or scalar ¥K-meson, if 6* is taken to be constant in the
low energy region and the XK p potential is considered attractive or
repulsive respectively. However, within the limit of the present
data on K+p scattering, we can have K-meson scalar, irrespective cf
the sign of X p potential, if we take a linear variation of 6* with
energy. We have calculated the coupling constants from equations
(24), (25) and (30), (31). Taking gak = Bz Kk OUT result is

g2 7.26 p.s.

4w 0.78 s.

Matthews-Salam

2

H

& = %.50 p.s. Igi'(constant &)
4 0.32 s.

The above concliusions were reached by agsuwving pA-%
relative pzarity even and by using the high energy data of Burrowes

7

et al’ and the low energy dats reported at the CERHN conferenceﬁ. The
assunption of same parity fori« and & is, at present, a very quest-
ionable one. The high energy data have considerably increased now and

cross~sections up to 8 BeV/c are available. TEesides, for the low
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energy K p scattering, we shall vut forward an effective range theory
in Chapter IV. %We, therefore, felt that it would be worthwhile to
re-examine the guestion of parity determination. We have used our
theory to evaluate the disversion integrals in the unphysical region
and in tke low energy region and the new data for the high energy

region. The details are given in appendix 1.
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I1. PION-HYPERON SCATTERING

I7.1 Introduction

Feldman, Matthews and Salam29 suggested that we may write down
a dispersion relation for the quantity By# (Tli)-l’ where T,+ is the
amplitude for 4 = 1 ks % scattering and Bli is the corresponding Born
amplitude. Now, unitarity gives Im (Tli)-l = =k on the right hand
physical cut (SJ =1 + ZiE#TJE%). So if the approximation of
neglecting the left hand cut can be made, then, we have the dispersion

relation

W -W B, + (w') k'dw'
B p -

Bi (w' - w)(w' - WB) (11.1)

Bt (w) Re (Tli(w)) S

where w ig the pole of the Born term and a subtraction has been made
at this poiht. The reason for normalizing at the Born pole is that
for w near Wy the amplitude Tli(w) can be taken to be equal to the
Born amplitude. The integral term in eqguation (II.1l) indicates how
the contribution from the right hand physical cut (or the unitarity
cut) is taken into account.

Using eguation (II.1) FMS reproduced very sizply the Chew-
Mandelstam30 result on 'ﬂle scattering and the Chew-Low equation for
the (3,3) amplitude in Ti- N scattering.

In deriving the static eguetions for Ji- Y scattering, we shall

take into account the _z-ﬁ\ mass difference and we shall find that

B}_f(w) breake ur inte two 0¥ three terms, the poles of which are
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different. Eguation (IX.1) then has to be extended. To this end,
we proceed in the following way. .

Let us suprpose, Blt(w) = Blli(w) + let(w) where Bllt(w) has
the pole at w = w1 and let(w) at w = LT First of all, we notice
that equation (II.1) essentially means we have written down a

Cauchy integral for BT~14 1 with a contour which runs above and

W o~ W
B

below the right hand cut. Of éourse, we have neglected the contri-
butions from the left hand cuts. Let us now write down Cauchy inte-~

grals for the guantities

B, (W (W) - C, (W) @T W) - cywy)

and Bz where Cl(wl) and

w - W W o- W
1 2

Cz(wz) are arbitrary normalization constants. Then we have,

B, (W)T " (w) = ¢, (wy) + (- w) /B (w)m L (wr ) dw?
" (w' = w) (w'- w) (11.2)
BB(W)Tﬁl(w) = C2(w2) + (w - wa) | Ba(ﬁ')Im T-l(w')dw'

m (w' = w) (w' - w) (11.3)

We add equations (I1.2) and (II.3). Taking W) = w, and comparing
with (II.1) we find

Cl(wl) + Cg(wz) =1 : (I1.4)

If the peles w, and w, are near each other we can take e above

1 2

normalization to be valid and this, at onee, leads to
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1

1T-1+ =1 + (Wa“.»%:.;\?r' ) B+ (w')Im T‘1+ (w') dw'
= ﬁ ~ -—

BT

1

(w' - w) (w' ~ wl)

1

(w ~ w2) Bt (w!)Im T..li_' (w') dw'
T (w' - w) (' - wp) (11.5)
or B+ {w) Re T-ii (w) =1 - (w - wl)P B+ (w') xl g
" » (w' - w)(w' - wl)

- (w - wz)P Bli(w') xt aw
T (w' - w)(w? —wz) (1X1.6)

In the next section, we shall first drive the pion-hyperon
static,equations exéctly in the Chew-lgow form, neglecting the § -A
mass difference and using equation (II.1). Then we shall derive the
static equations using equation (II.6), where we skall take into
account the X -\ mass difference.

pmati, Stanghellini and Vitaleo2 "#V® studied the low energy
pion-hyperon scattering vsing a field theoretic model which takes
into account the X - A\ mass difference and the possible inequality
of YW and AW coupling constants. This model consists of a fixed
Y which can appear either as ¥ op A , interacting with the W and
the K-meson fields, treated in the one meson anproximation. Usming
our equation (II.6), we shall see that we can reproduce their
results very simply. This technigue of ASV is siwilar to that

a4

developed by Bosco, Fv,!’*biﬂi and Stanghellini;') which leads to the
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34

same results as the Chew and Low formwlism for the pion-nucleon
scattering. Relativistic, fixed momentem transfer dispersion
relations for pion-hyperon scattering have bheen derived by Capps and
Nauenberg35. They have also written down the p-wave statis equations
in the Chew-Low form with somewhat different approximations.
Resonances in the pion~ﬁyperon system, in the Chew-Low approximation,
have also been investigated by Nauenbergss.

Bxperimentally, a pion-hyperon resonance has been discovered
by AlStOﬂ et all6 in I = 1 state. Amati, Stanghellini and Vita1937
put forward the attractive idea that this resonance is possibly the
analog of (3,3) T~N resonance, expected on the basis of global
symuaetry. Using their static model, they calculated the position
df this resonance for I =1 and I = 2 states of the pion-hyperon
system. ASV, in their calculation, disregard the ¥ N channel which
is coupled with the FY channels. The reason for this is that
threshold for the process Y +f -—» K + N is of the same order as the
one for two-pion production and the two-pion production is neglected
in their model in the gpirit of one meson approximation. However,
from the study of low energy K p scattering, Dalitz and Tuan3 have
remarked that the K N interactions are guite strong. e, therefore,
felt it worthwhile to investigate the effect of the strongly coupled

39

K N channel on the position of this I = 1 resonance’”. The details

of our calculations are given in section II.4.
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Following ASV, we Have sscumed the parity of X and A to be the
same. There is not any clear experimental justification of this.
On the other hand, Nambu and SahuraiQo have cited arguments which
indicate § and N\ have opposite ?aritiea. Also, if the above res;nance
is the analog of (3,3) TN resonance, it should have spin % . Though
the experimental spin determination is not conclusive now, yet there
is indication that the sSpin may be %.41 This has prompted Duimio
and Wolter542 to study the consequences of the hypothesis of opposite

parities of § and A ; using the same approach of ASV. They obtain

two resonances for the state vectors
">+ 1D,
nd .
s R ORI

which correspond to I = 1, J = % andparity + and - respectively

( A-parity is assumed to be +1). No T¢N resonance is obtained in

3

I =1and J = 5 state. If the observed resonance is associated with

the second state wvector given above, ther they predict another

resonance occurring at an energy w » 2.5, corresronding to the first.

The FM3 technique adopted by us has also been used by Wali, Fulton

and Feldmanéj

to investigate the observed fﬁf:@soqance, assuning odd
$-A parity but no T -AN difference. They find that there can
exist a resonance in the I = 1 and J = % state andthey can fit all the

known data to a reasonable set of renormalized coupling constants.
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Also, they find it impossible to fit the resonance data, if E N
channel is completely ignored. This is contrary tc our case ( E -

even parity), where E N channel seems to have very little effect.
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I1.2 (a) Pion-Hyperon Static Equations

We peglect the Z:-f\ mass difference and considér orthogonal

combinations of | +3 and Ti+A states which diagonaiize the

Born amplitude. In owy case if the Born amplitude is diagonalized,
then C'(= BT-l) is diagonalized, so that T = B/C' is also diagonalized.

These combinations are

(.P- ”2 f[\ In, 1+ twﬁx,n
\‘( ({ Z‘F'Y/z )(T.’\}I/A,i**ﬁ {}\\‘I/t,l‘r

The Born approximation for the scatterlng in these two states are

given by _ ..(} +)

B = -”{' 3W (I1.7)

Using equation (1) we now get

w = | - WY (11.8)
where Yy = —-- ’22{"’3 ), y] 7‘»{ = ':!z.— “VI\ +>é- _‘}fm‘ :"YS

M u
We find that for o =7, Y, is positive, so that we can expect a

resonance at w = 1. This has already Eeen pointed out by Capps4?

Yo

For & = s, Yy is -ve and there does mot occur any resonsnce.

Putting )( =-f = f , we find that the scattering in the state
A
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“*; corresnonds to the (3,3) pion-nucleon scattering and the
resonance is just the z2nalog of the (3,3) pion-nucleon resonance45’46.
However, it is worth noting that its anpearance does not depend on
the assumption of global symmetry47. The scattering in the state
\fg corresponds to (1,3) pion-nucleon amplitude. We shall now
obtain the (3%,1) and (1,1) a plitude for Tj- Y scattering.

Assuming i;: {; = {-, the (3,1) and (1,1) - Y states are

given by45 [

Yy = 'f‘é‘ 2 \ﬁa,i‘.—’ \Kz,l-
v L
Yo = J’ [\l/n\ -T2 \i/lz)l'.l
we again get,
af(éd

where o= T’ ; "Y"" —

A (11.9)
2L
f

’
and Y& is given by the same cxpression as before. O =T corres-

w(oa b’“‘“

{
A= S 4 Ay = -

]
ponds to (3,1) amplitude and ¢ = § to (1,1) amplitude.
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II.2 (b) Pion-Eyperon Static Equations

We shall now takte into account the Z-/\ mass difference and
shall derive the static equations, Qsing our dispersion theoretic
technique39. We shall arrive at the same equations obtained by
Amati, Stanghellini andVita1e32 using their field theoretical model.

Since ASV discuss their results in terms of the K-matrix , SO
we introduce it also in our discussion. The K-matrix in our case is

K = 5° (rer 1)L i

k’/“ C-1 B kyﬁ (1I1.10)

where C = B He’l‘"l

Il

Let us first consider

I=0,J=-g-,1=1

In this case the Born approxination is given by

2.2 2 2
Bg=:5k Y - 2fy {oq W =W - my, ,
w - 248 w -4 A=m§-—mﬁ

The first term has the pole at w = 24 while the second term has at

w =A . Following our dispersion representation (6) we have

|3 '
c® =1 (w - 24) (2 2 k! dw v -a)
=1 - =27 ff2 2
3 T 3 8 (w - 28)7 (w' - w) [
3 :
G%fzz kd‘g' = 1-(w - 24) 2f° T +
(w' -a4)" (w' - w) , A
(w-A) 421 | (11.11)
where I = 1 k'sdw' and we have put A = o inside the integral

3 w'z (w' - w)
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following 4SV. Comparing our result with that of ASV, we find that

Co is exactly DS of ASV.

3 3
Now using equation (1I.10), we get,
: ‘ 1
tan gg = kS}_r 22 - o2 (R 7= kc,;t g) (11.12)
03 ¢
.% w-248 w-A

which is the same as that of ASV, if we neglect quantities of the
order 4f4IA in the numerator.
Next, we congider I =1, J = 5 p-wave:

Here we have two channels and the Born approximations are given by

3 2.2 2 CoL2
B == k - fA + f;_

£z 378 w - 2 w ~A !

3  2J 2, fr_ fA
Ben = - ky By = ? (11.13)

3 w

3 2 ;2 2]
B = = k ff\, .

AN 3 W +A

Correspondingly, we have the following dispersion representations:

2 2
CSS.I =1+ (w-24A) ZfAI-ﬁ(w-A) fﬁl.’
3 . _
3 =1 -2(w+ A) f2 I . (I1.14%)

[ o =
AN A
From (10) we find that the elements of K-matrix contain Det C in the

denominator. From (14), we get

1 _ 2 2 2 2 ,.2 2., .2 2
DetCz = 1 - 2 wig I - 2 (3f, - fg) IA-’&fA(f,\ +£5) I w

3
L
+ 4124 wa‘ + 4ff 12 42 (Zfi - fzz)
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Bet C;is exactly equal to ‘Dl of ASV. We now have
é =.2_5§_ - fr2\ + fg)l-(w+é).2fi I
X3 w - 24 w —-A /

pl
2
t+ 4f fl\ 1«;£ ] . (11.15)

If we again neglect quantities of the order of 4f4IA in our

nunerator as well as in that of ASV, we arrive at the same result.
This happens for all the K-matrix elements, so that we shall just
write down the Born matrix and the corresponding dispersion representa~

tion talkten by us

I = 2’ J = "g" 1 =1 >
2 2,2 2 2
B';;" =3 }xi fa + f< ,

w-2A .\

2 2 | 2
CB— =1 - 2(w~- 2a) fo I 2(w - A )f£ I .
I =0, J=%, 1=1,
2 2 2 2
B; ="'kg fh +9fA - 21;; LY
3 ; w - 24 w w -8

Cf =1+ (w-24)fa T+ 9wfpI-2(w-a)fT .

I =1, J=1,1=1,
3
1 2 T .2 2
B = k2 £ - 7t
st 5 A = ’

w - 24 W~-a

1
C££=1~ (W-ZA)fiI-l-?(W— A)f;I s



1 2 2
Bop =Ex £ | 1+ 3
3 ‘lw +A w - A

i =1+ (wap) £5 T+ 3w-aA)E5 I
1 _ 2 2 2 2 2 4
DetC1—1+(?fz.+ BfA) Iw-?A,fZ I+ 1% (-4fA +
2 2 2 ok 2 2) +
20f/\ f): ) + ITA w (IOfA - 18f£ f/\
12 A 2 (-41‘1; - 41‘22. fi),which is exactly equal to
Di of ASV .

B1 = - k3£ 'a + £ )
we- 258 w-A
% 2 2
Cy=t+(w-2a)f, IT+(@-4)1;I
Our Ca, ¢ and (32 are respectively equal to Dz, D2 and 332 of ASV.
3" 73 1 _ 3' 73 1
Summarizing, we may say that if we neglect quantities of the
order of 4f4IA Effz(_ﬂ.: 290 MeV in the case of global symmetry,

2 .
in our numerators, we get the

so that & __ 1 ) compared to f
li ~3

same equation as those of ASV. Since our denominators are exactly

equal to those of ASV, so the wnosition of any resonance predicted

by them will also be given by our procedure at the same energy (the
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condition for resonance used by ASV is that the denominator of
K-matrix elements should vanish; we have discussed this point in the

appendix, using the 2 x 2 channel as a simple illustration.)
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I1.3. Pion-Barycen Interactiocn And The

Picn-Hyperon Static Equations

It is well-known46_48that under the hypothesis of charge

independence, Yukawa tyvpe interactions equallty of the ( FAW ) and
( 2T ) coupling constants and ¥ , A even parity, the pion-barycn

interactions take the form

Hp=ig NI N T +ig [RZ¥N, +N, T V5N | T
+ ‘3 N‘ﬂ/ YE'N/_} )( (11.16)

Z. =
)N‘;’): Z_ } N =
Y Z’ 4 A=
$° g ArE T

Y"' J?. -7z L= N7

The symmetry involved in (16) i.e. the isosFinOV' descriptibn of all

where

P
N‘= " 3 Nl:

baryors (equivalently, the assumption 8y = gs) is referred to as
Regtricted Symmetery"49. The hypothesis of !"Global Symmetry'" is to

enlarge the above symmetry by assuming
€y =83 T By . (11.17)
qu given by equation (16) conserves the usual isotopic srin
and the doubtlet spin which is % for members of the four doublets

Nl’ Nz, N, and N4 and 1 for the pions. Thus‘the ﬁTNl, 1TN2, 1TN3

3
and TN, systems can be I =%orlI-= g states and the scattering of
each of these systems in a given angular momentum states can be

described by two scattering amplitude545’49 one for the I = % and one

for I = 3 state. This is the consequence of '"Restricted Symmetry,
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If we further assume global symmetry, i.e. eguation (I1.17), then
— . ; . 1
the JIH, and TTN3 scattering amplitudes in I = 5 and I = %
states can be equated to the correspronding 'ﬂ‘Nl scattering ampli-
tudes.

In deriving the pion-hyveron static equations, we have put

A=0 ( S my = mp ) in integrals of the type

T = 1 k'3 aw! . This approximnation gives corrections of the
3N w'2(w' - w)
order of A . Global symmetry and physical intuition

, - of
w cut - off suggests that the cut-off energies are of the

order of baryon masses. So any qorrections to I due to the mass53
differences and to possible different cut-off energies-will always be
of the order of & . These corrections are smaller than the

PqY 4i- correction as we shall see below.

In the derivation of pion-hyperon static equations in
section IX.2, we have taken into account the ¥ - N mass difference
and the inequality of counling censtants. In the restricted symmetry
scheme, both corrections are due to renormalization effect of heavy
mesons. The mass differences is knownexperimentally ( A= 80 h43Y> I
if the renormalization effect on the coupling constants is of the same

order of ﬁagnitude, we can expect 6 = f%; - ﬁ? to be rather small,

%

perhans such that 4 N —

M X
Y J—Y
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If we examine the function Pet Cl Cz, we find that

%3 and 3
\ . 2 2 2 . 0 Q 1
they can vanish for % fZ é f/\ é 2f ¢ while C3, €7y Det C;

and Cf do not vanish. This means that under this restriction on

3

coupling constants, we can expect resonance in J =7, I =1 or 2
2
states only. The I =1, J = -2?- resonance is obviously the analog

of MM (3,3) resonance and as we have seen in section II.2a is
expected from global symmetric considerations. It is iwmportant to
note that for each value of I and J, the K—matrix‘ for the different
reactions have the game denominator (viz. Det C) for the same value
of the total enerky. This means that if Tj:-j\ is resonant,

T -3 is also resonant just at the same total energy.

We now discuss the effect of the mass differencepand the

inequality of coupling constants 6 - f% _ fzz on the
2

R

positions of J =% , I = 2 and I = 1 resonances.

2

We have, D§ - c§ =1 - 4821w + 2609(3 + §) 1A ,
where £ = %(fi + if') 3 so that B§ = 0 gives the position of
resonance for J = -23-?, I=2to bej?

(2) = Q+244+14a (11.18)

w 2 =

r 2
where lgfa = Il-“ '
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1
D

TN 2
= Del C3

::[1 + 20%(w - 5 )1] El - 4% (w4 9_) I]+ 2f2$ v - 85°% 14

2
- 85% § 12?4 8% $ Pwa . (11.19)
(neglecting higher order terms)
For é = 0 we at once see that the position of rescnance is given by

1-4f2(wi-_.9__)1=0 or
2

w0 a (1I.20)
> «

Let us now consider the case when 6#0 but small
2 Ly
We write

D;= [1+2f2(w-A + %) 1}{}-4f2(w+g_+y) a (I1.21)
2

and compare (II.21) with (II.19).

This leads toy = % Aé so that the position of the

37

resonance becomes

(1) = : :
w - A -5 (I1.22)
5" ¢ab -

r

Comparing (II.18) and (II.22) we find a clear cut prediction of the
slafe  Then Theve will be avesena~ce in I=2 »d"i' shife
theory. If there is a rescnance in I =1, J = é’?t a hightrenergy, .
2

given by (A + _111 6‘5) = (80 + 1056 ) MeV, which is independent of
3 ' ‘

the actual position of any of these rocsonances.
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It is worth pointing out that, if there is not any restricted

symmetry, so that f, and fZ’ are widely different, then we can
36,32

have resonances in other states than those mentioned above

2
This can be geen by insvecting Cg, Cg, Det Ci and Cl' For example

for fi ;)>' f%- s we can have resonances in I = 0, J = g or I =1,

J = % states whereas for ff L ff: inI=0,d= % state. The

limit ngﬁ“ << £r 7T is very hard to reconcile with the near
equality of A- nucleon and nucleon-nucleon forcées, indicated by
hyper-nucleon interations and with the K capture experiments in
deuterium which indicate that there exists a large 2 - ]\’exchange36.
The possibility of £, D> > £y however is coupatible with these
results. The only state which does not have a msonance for all

choices of coupling constants is the I = 2, J = ) state.
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II.4. Effect of KN Channel On The Position
J

of I =1,

= g, 1-¥ Resonance

Recent experimental analysisl6 of pion-spectra in the reaction

K+p—>A+ T + 9 seems to indicate a NI~ resonant state

in I = 1. As we have already mentioned, for %fg S fﬁ ngi_ ’
a '1?- Y p-wave resonance is posgible only for J = % y I =1 and 2,
The position of the I =1 resonance37is
(1) _ .
v o= L) - -%— - g—éA . (11.22)

Since the ATl and 5 channels are strongly coupled with K N
channel, so even though this resonance is well below the K N threshold
( ~v 50 MeV), it is interesting to see how far the position of this
resonance is affected by the presence of this chanrnel. Some authors
have already considered the indication of a Y resonance in
X+ p —> Y +7 production processessg’ oL

To investigate the effect of KN channel on the position of
I = 1 resonance, we have to calculate Det € taking into account.the
RN channel.

In this case the K-matrix is a % by 3 matrix.

The Rorr approximations are

Baw =0 »

B 4"y * fﬁgg
NE 3 m, ky ke 5 —a (11.23)
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- m \ %, £,
Byn =22 | ¥ o .
3 Py w
Correspondingly, for final EN channel,
Cov =1 ,
Ny =-(w-A) bg. £.1I
¢ N1 (11.24)
CN/\ - - wav2g, .1
AN N1 U
where I = 1 [ K'y<'d! , wy = threshold of &N channel;
30 w2 (w - w)
Wr

g5 and g, are K Z N and X AN coupling constants,

g2 = [e2 |
r T |czk ) 2 _ 2 2
— ] - g ={g . 1 £ =g 2 1
470 bm 2 N A 4m,2’N —y‘%z’
y 4T y & N
2 2 | 2 _{ 2}, 1
For initial XN chanmnel,
c‘\,;‘.N =~ (w-4) ’igz .35
| .
Can =" "2V 2e, Tyl yhere I, =_1 kly kidw .
— )
3 il WTW' (wt - w)

We now have
™

2
Det C = {_1+2f2(w-A) I][l-lkfz (w+£-__)1-} +2f261w-8.}-614
2

4 2 4 2 2 2 2
-8f ‘ixw+8f 1% - w-n) 168,85 L1, -

_p.2.% 2 (1I1.25)
8w fN. gA 1112~ )
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neglecting other higher order terms. The last two terms in (2 5)

tak@ into account the effect of the KN channel. Writing as

before -
pet C = [l + 282w - A+ x') 1}[1 - 452w + D +y") ]] (11.26)
. ) 2 :

and comparing (lB')and@ﬂ), we get the following equation,

X'+ A) +y'(w-a) =8 - §wa + (w - 5)? 25 + wPcy, (11.272)
P |

xt - 2y' = 4w-4bA , - (IT.27b)
2 2 2 2 |
whereCz =ley £ C, ={&x £y ,
£ " f
Tl W E S SR f,:/f,\z-fgz :
2 A z 2 . 2
f/\ + fz

From (6a) and (6b)

y' = % &6 + 2(w -~ A )2 Cr + wzc,\ . (11.28)

3w

Putting (1¥.28) in (31.26), we find that the position of the reson-
ance is now given by
w2(3 + 202 * Cp ) + 3w A + 5&6 -_Q:}- 4 AWCZ
2 6 l
- 2 Azci =0 . (11.29)
Neglecting the last term, we get

g () = 5[_()_ - - 5A5]'+ hac, (11.30)
r 2 6 _

3+ 200 +C
N
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As we shall see below, Cy and C, are swmall guantities, so that

(I1.30) can be rewritten in the following form

(1) | ( ) )
w2l =£L-A -5 -2 Cpll-54)-C (2-24) .
r 2 6'&é 3 Z 2‘5 "3L< 2

(I1.31)
the .last two terms represent the effect of KN channel.
To estimate C‘Z. and qh , we have evaluated the integrals
I1 and 12 using & cut off at bamyon mase and putting w = o inside
the integral34 . Alsc, we have taken the effective ranges of pion-

hyperon and pion -mucleon to be equal as a first approximation.

This gives 4f21 — y22£3effective range of T-n scattering
n

=:§;_ sz {1 + 2) N k'3 Aw' .
31 _ w'3

A

The factor 2 comes from the crossing term in the static equation for

52,53

i =N effective range

"Thig gives

. o
2 -2 ' 5 f A i
£71 = £7 (4.56 x.3) x P‘W . /J.".;%—“l’—— = 4.56}19

3 fhn
i) P
. y 2
Also,we get I, ~ 1 UKy dwl o g g PT
B’R ; w‘% w' 3 -
| fin | e -
%Y 1yt 2 ' "
12,:_., 1 k'k N dw = 2.85 HT‘
7z \
3TT le 3'ﬂ y
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so that
hia = s4kx2.8 ,,1 x 1
k4 27 4 2¢
. _ 2\ 2
"CZ"/EE R N [ 1
2 20 2f 20
\fN Y

Ta:ing {) = 290 MeV, A = 80 MeV,
' 2 2
C:%(Q-%_)-x-c,\.l(g_-_a__):s(sz ) + 4gpm ) HeV.

3 < 2 2

fN fN

n .
Putting thishequation (IX1.31) we find that even if XN coupling
constant is comparable to that of N, the correction due to KN

channel is amall, being of the order rf;ﬁMeV .
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II.5 Discussion
The Chew-Mandelstam techniéue30 of finding the scatﬂ??i%gg

amplitude is to write T — N where N contains the left-hand cut and
D

D contains the right-hand cut. This technigue has been extended to
29

the UHi-channel case by Bjorken54. The FMS technique™’ is to
write down a dispersion relation br BTrl using the analyticity
property of partial wave amplitudes. In the case where N ig
approximated by the Born term and we keep only the right-hand
physical cut, both these techniques give the same result.

M3 wrote down the dispersion relation in . S = (Hz) plane,
However, a complete dispersion relation for Bli ('1‘1:i~_)-1 or for that
matter, for any Tli’ in the S plane should involve not only the first
Riemann sheet ( s = + W) but also the second Riemann sheet (JB8 = -W).
This is evident when we write a dispersion relation in the W-plane,
whére we have not only the physical right hand cut, but also a
'1eft hand physical cut'””. In the s-plane tiis 'left hand
physical cut' geces to a right hand cut on the second Riemann sheei.
Of course, this cut is related to the right hand cﬁt on the first

sneet by Macdowell's rgﬂection princip1e56

f1e 5 ) = = L, 0. (89, By = v
Brg= ¥

In all the cases we have discussed, the role of the Born

term is near the right hand cut on the first sheet, so that Born
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is dominating and to neglect all other cuts (including the right hand
cut in the second sheet) can be taken as a first approximation.
However, for a partial wave for which the pole of the Born term

does not lie near the right hand cut on the fist sheet, as in the

s-wave KN processes, this approximation does not work.
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III. K-MESON NUCLEON SCATTERING

ITI¥.1 Introduction

Experimentally, it is now known that the KN scattering in
I = 1 state is pure s-wave up to K-meson lab energy 315 MeV5’57—60.
“%hig is indicated by the igotropy of the angular distribution in
K+p scattering. On the other hand, the I = 0'state scattering indi-
cates p-wave interaction even at an energy 400 MeV57_60. Begsides,
analysis of emulsion and counter data tend to indicate that the I = O
s~wave interaction is rather weak while the I = 1 s~wave interaction
is strong and repulsivezo.

These features of KN low energy scattering have led the
theoreticians to many speculations. In particular direct X-meson
pion interactions have heen introduced by Barshay61 andby Yamaguchi6'.
In the model proposed by Rarshay for Xty scattering, an exchange of
pion takes place between the kaon and nucleon through the
Hemiltonian A KKT[”)T . In this model, the s-wave in both the
I¥O and I = 1 states are determined by the interference of the
effects due to (a) the exchange of two pions and (b) the hyperon
intermediate states arising from the direct interaction of K-mesons,
hyperons and nucleons. BRarshay finds that the two pion exchange
gives a repulsive potential independent of the X-meson parity.

Parther, assuming odd ;E-}\ varity, he tries to explain why the

s-wave scattering is weaker than that in I = 1 state. However,
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Barshay's model fails to give an explanation of why the I =1
scattering is w pure s-wave even at high energy, which is one of the
salient features of K'N scattering. SakuraiGB, using his theory of
strong interactions, attempts to explain the X+N 5cattering by
assuming the exchange of two unstable vector bosons, one having the
quantum numbers I = 1, J = I, G parity even (resonating two pions)

and the other having I = 6, J =1, G parity odd (bound or resonating
three pions) between the K-meson and the nucleon . Ceolin et al have
shown that with a direct K-Y-N scalar coupling64 the KN potential
comes out attractive in disagreement with experiment, while a direct
KJYﬁN pseudoscalar coupling65 doesnot reproduce the experiméntal
behaviour. They ccncluded that to explain XN scattering direct

" K-Y-N coupling, even in the case of odd Ef'h* parity, is inadequate.

Alsc appliczstion of fixed source dispersion theory, which has been

25

successful in explaining low energy T -N scattering ~, leads to

predictions in contrast to experimental results. In particular, an

66,67

I =31, d = % resonance is wnredicted Cf course, these predic-

tions €dn considerably change depending on the contribution of the
crossing terms due to KN reactions68’69.

Jur purpose here is to assume an explanation of the isotropy
of K-N scattering in I = 1 state, based on our present ideas of

strong interactions and see how far we can then explain the other

main features of XN scattering. Alsc, we shall investigate some
70

consequences of our approach to the low energy KN scattering’ .
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ITT.2. Kinematics, Crossing Relations Snd Analyticity

We denote the four-momenta of the incoming nucleon and X-meson
by Py and a4 and those of the outgoing particles by “Py and ~qg.

The invariant Mandelstam variables are then

s =«p, + q)? (111.1a)

_ (we use p.q = p.q - p _q_)
5 ="(p, + q2)2 (I11.1b) oo
¢ =y + pz)z , (1II.1c)

\\i(é%)
A

\

KD e /Kes) R

(a) - (b) (c)

t

Diagramatic representations of (a) channel I, (b) channel II, and

(¢) channel III,
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The Lorintz invariants defined by equations (III.1l a, b, c)
are the squares of the energies in the barycentric system of the
three reactions:

I ¥ +N-=3K+ N
II R+ N—-3EK + N
III X+ K~ N+ R

When the four-momentf are on the mass shell, i.e.

2 _ 2 _ 2 2V '
Py =Py = -Wy and qy=F -my o, where my and My o;o the masses of

the nucleon and the kaon, the four-momentaconservation implies
5 .

- 3 ~
s+t +8 = am® + 2 m " = > (111.2)

In the barycentric system of channel I, the three variables
a, 8 and t are related to the centre of mass energy W, the c.n.
momentum k and the c.m. scattering angle G by

w2 2 2 2 2¥i, 2 2
s =W =my N+k)(mk + k7)

. 2
-21:2(1 + Z) + ‘[-(kz + mNz)% - (k2 + mkz)%J (111.3)

2 2.2
mk)

+ mk2 + 2k" + 2 (m

8

- 14+ 2 (w2 - 2mN2 - 2mk2) 5
2 e 2

-2k2(1 - 2) where Z = Cos &

t

Besides,the following two relations are very useful:

= - oy s "’1:)2] [S - (my - "’k)é]
s (1I1.%)

E = (k2 + msz% = 1&}2‘+OmN2 - mkz

2W
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The S-matrix for channel I can be written as

2 %

"N

a . 4
S; - 8py - 1(2TW) 6(p1 + Py + Gy + Q)
D10 P20 410 Y20

U(-pz) [g; Y’l; TI ‘]k G)] U(pl) | (111.5)

where the nucleon spinors are normalized according to

_ ~ u
leyUe - 1, U = U+(p)Y4 ,Y4= -

and {-'-)' ,q are the isotopic spinors of the nucleon and the kaon,
and i, j, k. 1 are the isotopic spin indices of theincoming and the
outgoing nucleons, and the incoming and the outgoing kaons respectively

(i, jy X, 1 = 1 for p and p, K" and ¥, and 2 for n, n, ¥° and K°) The
. y

amplitudei%an be decomposed into two Lorentz invariant functions:

Ty = _A('f" s, t) L (11 - g )) B (s, 8, t) (111.6
2 .
The S-matrix in channel II can be written as

2 %

S11 © 5fi - i(2 1?)4 é(pl * Py 4y * Q) )
- + 4 4910 P20 %10 %20
U(“PZ)[% Y‘li Tﬂ_?k gi]U(F:) (111.7)

Now, 1 is the isotopic spin index of the incoming antikaon

and k is that of the outgoing antikaon. TII can also be decomposed .

ipto two Lorentz invariant functions:
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TII = -A (5, 5, t) + i (q2 = ql) ‘)” ﬁ (E’ o t) (III.B)

2

For channel III, the S-matrix takes the form

o 2 %
N

Sypp = - (2‘]?)4 S(p1 + Py + gy + qz)

4p1 5 P 9o 920

T * +
U €-pp) tﬁ; q1 TIIIY'k gi J(-p,) (111.9)
where U(p) is normalized so that
U(p) U (p) = -1 and U(p) 0 (p) = 0, and i, j, &, R, are the iselopic

spin indices of the outgoing antinucleon , nucleon and incoming

antikaon and kaon respectively. We decoupose TIII’ like TI and TII

in the following ‘way:
Tygr = -C(t, 8, 8) + 1 (g - ap) 3] p(t, s, 8) (111.10)
2
71

The principle of crossing relation, in the present context’™,
states that the three amplitudes ( ¢j+ q1+ Tx Y\i E K) ,w}\eve
X =1, II, IITl,are the same analytic function matrix (in the }’-4
space and in the isotopic spin space) of two variables, say s and t,
the distinction arising merely from assigning different ranges to the
variablesof the amplitude. Theproof of this statement is given in
ouf appendix 5.

Physically, it means sowething like the following. Fof

definiteness, we consider the reaction (I) K * p-PK* + D
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This reaction is expressed by the amnlitude ( §i+ Yl ;'T; Yllﬁl)
which is a function of s and t. The principle of crossing relation
states that the crossed vrecess
(II) ¥ + p -x X + p
is described by ( §1+ Y]1+ Ty 7] 1?1) = ( €1+ q1+ T, Yllﬁl)’
the same quantity which describes the original process I. Since
the physical ranges of the variables in reactions I and I are‘non-
overlapping, a procedureof continuation from one range of variables
to anotler is called for bo give the prinéiple any physical signi-
ficance. If, however, one knbws the analytic properties of the
function, then thewprocedure‘of continuation can be found. This is
one of the nplaces where ﬁhe double diSpefsion representation plays
the role of a dynamical postulate. In the conventional field theory,
the printiple of crossing relation is a consequence of the existence
of field operators and the definition of S-matrix. In quantum
electrodynamicg, it has been known as the substitution 1aw17’ 72.
The importance of this principle in elementary particle physics
was first pointed out by Gell-Mann and Goldberger73.

To investigate the conseguences of the principle of crossing
relation, we need the igotovic srin decomposition of the three
scattering'amplitudes. In the kaon-nucleon system, there are twg

isotopic spin states, I = ¢ and I = 1. Since the total isotopic
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spin is concerved in strong interactions, we can write
(0) 1KV (1) 1 XM (1) (III.11)

T, =T (0) + T

I I I

where 1k (1) is the isotopic spin projection operator for the

total isolopic spin I of the KN pystem such that

s;'qj TS Z<0 1y G HINO.KED
(,KN(I\ KKN( ) il e’KN() (111.12)

Explicit representations of the isotopic spin operators have been

worked out by Lee71. Cne obtains the result

L (b0t éékéa) I =

| §+ ) {KN(I)Y? S_L.:: (I11.13)
‘;Ut K (6 Ltk .ahsé'l) e

1
o

"

For antikaon-nucleon scattering, T can be decomposed into the

i1
isotopic spin eiaenampl itudes:

(0) KN (1) RN

= Ty (¢)") Tiq 1 (1) (I1X.1%)

Ty

where 1RN(I) is the isotopic spinprojection operator for the total

isotopic spkn I state of the KN system, andone obtains

+ KN %: %u_é’k')' P77 s
g = . ‘
e ()nk L 5}16“2 - 2’—_ 6& 6kd I=1
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In a similar way, we can write

1 (N <
Torr = Top 0) |MIELNN T, 1) (111.16)

and we obtain

1§
"iédléek 1=0

Kt: NP¢
g n (111.17)
K 6.6--_'_ S I=1
LL¥Ry 2 GLR
Using efquations (III.11), (III.13), (IIX.1%) and (III.15), and

the crossing relation

( & q1+-Tqu§i) ) (g:i+q1+ Tlf}kgi) ’

L (80 M’u)( A iy %% 'BLD

+4 (88 k‘%)( A ——YLTQ
= 3%l 1°’+Lh’ Yt 'B"")
+(5“6“ —--Su{bkb( AUHJ? %—%BQ) . (111.18)

Identifying similar terms on the left and on the right, we obtain,

A(I) (s, 5’ t) = Zq -t _(I|)(§1 8, t)

B(I) (s, s, t) = Z‘XLI )(s, 8, t)

where the crossing matrlx is given by

Iso Iz 1=
-1 3 (I11.20)
] =
I-1 ‘ ‘

(111.19)

A1
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From the crossing relat:.ons

(57 whe)= &1 Tmm.% :

e G TE)
?’11’ Cw (tss)

;;Flfpb"(f,s,z) ,

1 ‘__) ? (1I11.21)

1

AT, 5, )

B(I)(s, 8, t)

K(I)(E, s, t)

i u
{ ~
~wi :‘tﬂ\
e
SIS
= =
= T
W n
" in

§(I)(§, s, t) =

Il
where
:—'— ] G F— i ;—_.!- t 3 ( 22

In discussing the principle of crossing relation, we indicated
the ngctssity for knowing thelanalytic"properties of the scatting
amplitudes in 5 and t. Abtually, there is anothér reason to search
for the analytic properties of the amplitudes in two variables.

When one attempts to use '"one-dimensional" dispersion relations,
which exhibits the analytic properties in one variable s for fixed
t in a dynamical calculation, such as the electromagnetic structure
of the nucleon, one is congtantly baffled because the dependence oM

74

t plays a crucial role. Mandelstam first put forward a - -
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prescription for obtaining the énalytic prroperties of amplitudes

as functions of two complex variables, the energy and the momentum
transfer. He beging with the assumption that an amplitude is an
analytic function in the entivespace of these two variables

except for cuts élong certain hyperplanes. He then determines the
location of cuts from the requirement that the émplitude must satisfy
one-dimensional dispersion rclations for all the three reactions

I, II, III. The application of Cauchy's theorem twice in the
hyperspace of the complex s and t leads to a double dispersion
representation. This representation, which satisfies the principle
of crossing relatioh has been heralded as a possgible basis of S-
matrix theory of strong interactions75. However, in order to apply
Mandelstam representation to handle general S-matrix elements, we have
to deal with states iﬁvolving more than two particles, which with

our present theoretical tools has not been achieved yet. OCbviously
one may ask, how can we expect to deduce any meaningful consequences
from an incomplete theory? The answer rests on two general features
of Mandelstam representation75:

(a) The location of §tn gularities is determined by the total
"masses" of the actual nhysical systems; the higher the mass, the
farther from the origin is the associated singularity. Now, among

the strongly interacting particles there are none of zero mass;

thus, the total "mass" of strongly interacting physical systems
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systematically tends to increase with the number of particles,

and the singuiarities near the origin tend to be determined by one-
and two-particle configuration. If there are aspects of the
physical problem that are controlled mainly by "near-by' singul-
arities, then one can make meaningful comparison of theory with
experiment without a complete understanding of "faraway" singul-
arities in which multi-particle configuration play a role.

(b) The "strength" of singularities is related to physical cross-
sections and restricted by unitarity so that in a limited region

of complex plane the behaviour of an S-matrix element tends to be
controlled by the closest singunlarities. More precisely, an
analytic function is determined through the Cauch& relations by a
kind of Coulomb's law for wnotential due to point changes (poles)
and line changes (branch cuts). The line-charge '""density" is the
discontinuity across the cut, which is proportional to physical
crossésection and therefore limited in magritude. There is
assurance therefore that the "Cqulomb's law'", reciprrocal dependence
on distance, which favours nearby singularities, will not be
overwhelmed by an increasging strength of singularity with distance.
From a practical stand point this feature of the S-matrix

approach is of tremendous importance to a theory of strong inter-
actions permitting an orderly and systematic series of approximation$

whose validity ic subject to realistic appraisal witbout any
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assumptions as to the magnitudes of the coupling constants.
From tiie one-dimensional dispersion relations for reactions

I-11I, one finds that our amplitude AI(s, s, t) (eguation III.6)

has poles at s = %Az 2.2, corresponding to the single-hyperon

intermediate statefin reaction II, and the branch cuts along

S QL (mN + mk)z associated with the possible intermediate states in
reaction I, along 8 > (m, + 'fln-)z associated with theinter-
mediate states in reaction II, and finally along t ;t_(z /Lﬁ )2 for

states in reaction III. The Mandelstam double disperion representa-

tion for A(I)(s, s, t) can now be written in the symmetrical form
f
'
_ 1 Ais(ﬁ‘f)-
YL "3 L s)(?t"t)

3'4 ’Aza(g -tj 5 S‘)
*%’w" “EH T f ﬁ F 9G-9

(s V) RHR il
T'T dz Am (5) /é:" IA;”( ) (1I1.23)

e Y
Mt §0 -
where the asymptotic behaviour of the arplltude is assumed to be

A(I) (s, 8, t) =

given correctly by perturbation theory. Similar expression holdsg for

. (1) .
p(1)s with &l ™ aced by Fy(l) and Aij“) by Bij(I). The

(I), B..(I) are real and non-vanishing in the

3

spectral functions Aij

ranges which are bounded asympbotically by the limits of integrations.
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The analytic properties of the partial wave amplitudes
+1 _
I i .
Al(I)(S); Bl(I)(S) = /dz PI(Z) A [(s),t (s, z)];

1 81[5"{-(51 Z)] }

76
have been discussed by MacDowellsG, by Uehme and by Frazer and

(I1I.24)

Fulco55. All the singularities in AII(S) and‘BII(S) are associated
with the possible intermediate states in the three channels and are
referred to as "dynamical' singularities. The singularities of
A(I)(S), B(I)(S) arise when the denominators in the double dispersion
representation (i.e. equation IXII.23) vanish upon integration over
4 from -1 to +1.
The vanishing 6f each denominator

5 (s, 2) - myz =0 , y=NA,Z (111.25)

in the pole terms of the double dispersion representation, as Z

varies from -1 to +1, gives rise to two branch cuts in s associated

with the single hyperon intermediate states in channel II. These are

- 05 < <] é_ O 3
(m 2 - m 2)2 | 2 2
N 2’“1: £ s —<2(mN +m ) - m 2 _ (I11.26)
o .
y

Vanishing of the denominators s' - s (s,Z) = 0, 8% 2;(m“ + flﬂ)2

gives a branch cut along the real axis
; 2 2
..g{;<s gz(mN+mk)-(mf\+fLﬁ

”ext, we consider t' - t (s8) = © (111.28)

)2 (111.27)
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for t'3 (2 /"“h‘ )z, -1 £ 2 £1. It is convenient to consider t as
a function of k2 and Z, rather than s and Z. One finds equation

. . o . 2 2 . 2
(117.28) is satisfied if k __(_ - /u'i‘ . The line segment -m, é

K2 £ —ﬁz gives rise to a branch cut
— \/Y

mN2'mk2$S_<_"‘1\12+mk2'zf*-n2+2 @Nz_ #ﬁ_z)x
anz - ]u?p_)\/z_ 5 (I11.29)

. . 2 2 2 2 2 2 2
we use the relatlons—mN + m + 2k +2J(mN +k‘_)(mk + k).

For -mNz <k2 .S. "mka, we get & circular branch cut with radius
1 P 5 .
Bl= oy - m - (1II.30)
i P ™
For - ocdk? & -m’ we get e beanch el -0z s € -mymy. (II1.31)

Finally, s' - s = 0, s' } (mN + mk)2 gives the physical cut

oc Y5 > (my + m)? h (111.32)
The vartial wave amplitudes Al(I), Bl(I) are not very conven-
ient quantities to deal with, despite their comparative simple
analytic properties. The main reasons are that they are not the
&%gmmuﬂitudes of the total angular momentum and that the unitarity in
the physical region is not readily expressible in terms of these
amplitudes. The amplitude f,+ in the state of rarity - I-l)1 and
total angular momentum j = 1 I % can be expressed in terms of the

(1) (1) 25:

invariant amplituvdes A and B

_“:—_ Té._‘._(_.w (Em\) [At-r(w,m")‘ga (I11.32)
i +E-m) E‘Au.z ¥ (W*T@BL«:_J
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The partial wave fli is related to the phase shift by

In addition to the dynamic singularities of Al and Bl’ fl hasgot

winenatical' singularities arising from W and E; the combination

14 2 2

+ +
-m =8 -25mM + m - mk

)
W

2s
12

brings in an additional pole at s = ¢ and the branch cut of s’ into

f,+. One can avoid the kinematical éingularities by working with

i
55.

the amplitude hl(w) = W fL+(W) of Frazer and Fulco

L
k21 E+m

In non-relativisitc treatment, where one is interested in an energy

region near the threshold and only '"nearby" singularities are taken

into account, the aﬁplitudes hl(W) and fl(w) give the same results.

The unitarity condition is very simply expressed in terms of the

reciprocral of the amplitude fli viz.

Im L,y g : (I1I.33)
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II1.3 DBasic Assumption Regarding XN

Scattering in I = 1 state

We begin with the consideration that for low energy XN
scattering, the important left-hand contributions come from the
hyperon cuts and the two-pion cut, which comes very close to the
threshold. The hyperon cuts near the physical region of EN scatter-

ing are given by

2
M2 - L <\/2 (mNé‘l + mkz) - my2 (y=pZ) (111.34)

m ————
y

ice. 4 i < w _4_6.,9{117
The two-pion cut extends from thé left up to
Vg2 - ’J.ﬂ-z + \/;kz_ T (111.35)

9.97 (2~ 35 MeV below KN threshold)

oy
¥

We approxima%e the two-pion cut by a single pole. This single pole

approximation may be regarded as a sharp two-pion resonance,fus con-

sidered by Frazer and Fulco77 and also by Bowcock et 3178 and by
grantschi79 to explain the nucleon electromagnetic structure and the

small pion-nucleon phase shifts.

Let us denote the two-pion contribution to 4 and B in equation

(I11.6) by PURE (s, t) and ﬁﬁhﬂs (s,t). Now, the single pole

approximation of the two-pion cut leads to the following forms:



Aj‘lt (s, t)

(111.362)

1
i}
+
o
1
2 10,
®

T

B (S; t) =

i
=

(111.36b)

where we regard 'a' and 'b' as unknown parameters; 'tr' is the
position of the wole. The forms (III.36a) and (III.36b), including
the kinematic factor in the fisrt, are suggested from the works of
. . 8o . 71
Fradtschi and Walecka in 1]- N scattering, of Lee and of
Ferrari, Frye, Pasterala81 in KN, KN scattering.
From equations (I11.36), we find that the two-pion contribution

to I =T, p 2 KN séattering is

-)(:é;)(" o [(\.ﬁ- -—‘m,;] [ a -r-(W—m) J [l‘}A'mA_jJ
t B\W -m,q)1 ~‘m;:) ’d'— (\ﬁ[i—m,b b}(

r~ - wli%._;‘l—i- [@wm@ «-mf;] {a’-@—@-m) b] fﬁz

where a' = (s + ty - T )a,

i
|
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The two-pion contribution to I =1, p, o KN scatterlng is
W) ~ 33w =g A 5 tY 2k

+2W [ (N-I—Th)b]

£+, -t, zk"

(111.38)
The contribution due to the hyperon cute (i.e. the usual 'Born

ap’croxlmatlons ) toI =1, Px /0 XN scattering is

7((“’) = 321m [(wm) "m] [WZ‘:\\(-m] (%m 3zr)-k

(111. 39)

and t{:)\I =1, pyfscatterlng is . [W*m‘(-zmla 4 2
7( 2w [2"“ E””*) [ ;_xl — 5

2 [geg JEmewamd 28

zg (111.40)

where Qf :-z‘wz + mya - 2(mN +om ) - 2&

and we have assumed even A-Z parity, K pseudbscalar land have "'neg_
lected }:«-A mass difference. '

We now assume that the explanation of the isotropy of XN
scatt’ering in I = 1 state is that the two-pion amplitudes for p% and

p3/2 states cancel the corresponding Bora ampliitudss.

This assumption at once gives up the following two equations.
B() T (a)
]('(W) T W) (111.412)
I+ :

)LB(' +‘fM) (1I1.41b)
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From these two eguations we obtain,

2 _ 2\ 2
(ch + g}:Kz) (W + m - 2mN) (tr + 2k)

a'+(W—mN)b
o
(III.&za)

at - (W+m) b= 2 2) (W + amy - m) (¢ + 2k2)

(gkl{ * By
(III.42b)

We can now find out our parameters 'a' and 'b'. 1In the static

limit, they are given by

1 ' 2 2
a = . . 1" (gl\l‘f + ng( ) trg "
(2mN My * _r) 2 W, X{W7,)
2
[(Wu + mN) (Wy + my - 2mN) tr +
| A(w,)
(Wg - mN) (Wg + 2mN = my) 1 (I11.43a)
1 2 2 ,
b = Bp *Ezi) [(Woaf m, - 2m) b
- (Wg + ZmN - my):{ | (I1I.43b)
where W§ = mN + mk
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I1X.4 KN Scattering In Other States

Since the two parameters in equations (III.36a, b) are now
known, so we should be able to make definite predictions on s-wave
scattering in I = 1 state 2and on s, Py, and p3/2 scattering in I = 0
state, taking only the two-pion contributions and the Born

amplitudes.

The two-pion contiibution to I = 1, s-wave XN scattering is now

(1)
]E(N) ~ ST Mfm”)z'm‘a La*(W—m,QbJW

| ¥ 2 2 [,2 ot WHTMy-m t:»zf‘
’__=~3-~““2‘,»,Wx[(w"’m°3 "ml] 3(»&*3;{ 2( o(\';‘b, &

(using equation III.h2a) (III.44)
The negative sign in front of (ITI.4%) shows that §he two~pion con-

tribution is repulsive,

The Born amnlitude for I = 1, s-wave KN scattering is

fz\% == 3z.Tl 52T W [(W m@ IK] ("3&‘*’ 3;( 2 (W+Y:(Y -1my)

¢
(111.45)

K]

which is also repulsive,

We therefore expect repﬁlsive interactioﬁs fof I=1 s-w@ve
KN scattering. We defer the gquestion of quantitative agreement with
experimental fesults, in this case, for the moment and switch over

t01=00
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Crossing syas :et shows tbat the two-pion I = 1, T = 1 resonant
state gives = - ‘ﬁ . ‘The Born term in this case
}f.“’) % @ )
(X = 0, s}é) is repulsive. Since (W) is repulsive, so f
¢t o+
should be attractive and three times larger. This at once shows why

we can expect rather weak s-wave I = O interaction. To put this

uantitative we find
q)(w) l)(ﬂ-( . W" . ﬂwx

() +
E(SZ;-E%:Q*(&%H%;)\B(?%E (III.46)

We can now derive an expression for the s-wave I =.0 scattering
length, using the relation

k cot 9 - 1 (I11.47)

where N is the amplitude due to the left-hand cuts; equation (III1.47).
holds so long as the rescattering term i.e. the contribution from the

unitarity cut is not important. From (III.46) and (III1.47), we

get feg = 0.08 3gz.Kz - g)\l{z _ g2K2 + gi\1(2 3 f_{’_ -
4T 4T 47 o (W,)
(I11.48)
where tan é £ -a,4 k .. .
For _t = 22 f}.ﬂ, (P’owcock et 3178), v = 0.38. From (I1I1.48), we

« (WQ)

then find that a suitably chosen ratio of ngz will give agreement

with results known from experiments. g f\Kz
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Next, we proceed to calculate the I = 0, p3/2 andp% amplitudes,.
using equations (III.42a, b) and bearing in mind that the I = 0 two-

plon contribution is -3 times that of I = 1 contribution. We obtain

f (x N-)KN) 7[“ (°)+ e

[@V*‘“N) ”‘J ILWﬂn 2 o
3> X .

| 4k
@ B AN SENE S
and {(KN—’QKM ""} {_’ ) 30‘
fs('(”"’\(”) 51"7w“‘ :f*“hx
2(W2my-1hy) - kz(sazx'*ah‘)

(111.50)

(I11.49)

The scattering lengths corresponding to these amplitudes are given

by
8oz = -0.04 x. 1 3 gs:xz + g;\.xa, Fermi> (111.51
1.5 5T Ay
- 5.3 :

(tan 6‘33 = a°3 k’ ) and
a = .02 x 1 3 2 + 2 3
o] < —— [“ B2k " EAK | Fermi (111.52)

115 LT AT

3

- 3
(tan éo‘ = - ao‘ k)

Expression (IXI.51) and (III.52::)i5<:"indi‘ééi‘t‘e that the I = O, P30 is
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attractive and stronger than I = O, Py which is repulsive. These
results are in qualitative agreement with the analysis of emulsion
results82 and quantitative agreement can be obtained by choosing
suitable values of gzxz and g’“{z. However, our present Knowledge
of g’—kz and g"u‘2 as well as the status of emulsion data do not
Justify anything much beyond qualitative agreement.

We now come back to our discussion of I =1, s~wave scattering.-
In this case an effective range formula is usually applied to flt the
experimental resultsgs. In our language, this means that we have not
only the left-hand contributions, but also the right-hand contributions
coming from the unitarity cut (i.e. the rescattering term is imvortant).

The amplitude in this case will be given by29’30

Q) k'dw -
M [ ‘}o (w') + ]( ) (W-wh)
Reot 5 RO + ‘?(wi | (I11.53)

where Wl is the subtraction vpoint and at this point the physical
™) B .

amplitude is out egual to e By adjusting the point Wl and

taking a suitable cut off, we can now fit the experimental scattering

length and effective range. For the nurpnose of illustration, taking

W, = W = N +m", we find the scatterlng length

t gzk‘ T 31&&'
Cow)/ 4T

and we get r = 0.5 £ with a cut off k = 3.6 Here k cot 6
1 v may .l 10
R S 3 rk2 (I =1, s-wave) .

210

= 0.08 {1+ Fermi (IIT.5%)

230
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III.5 Two-Pion Contributions to KN Interaction

We now investigate the sign and magnitude of the two pion con-
tribution in KN scattering on the basis of our knowledge of this in XN
sg%rtterlng. Use of croseing symmetry71 shows that if we denote by
f (ﬂ . the two pion contribution in £ + N ~¥E + N (energy of this

L

process being W), then "m(l)
i.e. the two-pion pole givesLthe same contribution in EN and KN
scattering. This means in I = 1, this contribution is repulsive and
in I = 0 it is three times larger and sttractive. Ferrari, Frye and
Pusteralagl* have tried to determine the sign of the two-pion contri-
bution following the precedure whick has been applied in TN case,

They approximate the two-pion cut by
o~
ImGE =R 8(- a)

. | (111.55)
GE = J; f,iigh)tk =S (E—rm).{-(w))

which gives the_contrlbutlon
|
p R
Wity Sovecpa—
T §-4a - (111.56)

i

to their amplitude G (8). The.position of their pole is given by
sﬁ?: 9.611,1.‘ which is very near the physical threshold Wo = 10.2 Pn.
Let us now try to find out R by equatinmg (111.56) at threshold

. . FE0)
with that given by our (-n) « We find
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R-—-25)ﬁ ,; l’]d‘

(1I1.57)

ancl W == dik’fab- ’t X0.0 ermi
(Wq) | dzk Ok Wc t‘,g 1;70 +°:T-tu_?§)

“fw) 0.3% {MT-{’Z?. T

We see that R has the pesltlve sign as found by them, Taking
t, =12 {.A,u ’ 3£K+ 30.(— 10, we get &' = 0.40 MN Fermi. Since the
coupling constants g;d the value of t are not well established, we
cannot say anything much about the magnitude of Rl. However, it scems
our value of R; is possibly smaller by a factor of 2 to that of
Ferrari et a181’84a

Finally, a word zbout the interpretation of two-pion contribu-
tion in the piysical EN scattering region is not out of place.
Ferrari et a181 have defined the interaction as the discontinuity
across the left-hand cut and then from equation (III.5%) considering
the pdsitive sign of R', they have interpreted the interaction as
attractive in I = 1 state. However, if we take the usual field
theoretic definition that an interaction ig attractive (repulsive) if
the phase shift due to it alome is positive (negative), then from
(I11.58) we find that their interpretation should be that the inter-

action is repulsive. This is essentially bhorne out by our equation

(III.ﬁs) for jlcw) . For I = 0, the interaction will be attractive.
: o}
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and the net effect of two pion interaction in K-p scattering is
attractive. Another point worth making is that our amplitudes do not
have the energy devendence qC-;ngéasindicated by (I1I.56) which is
rather strong because of the closeness of yfa to the physical thresh-
old; so we should expect much less energy dependence of k cot 6 than

that of Ferrari ot a184.
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I11.6 Conclusion

Summarizing, we can say that by assuming the isotropy of XN
scattering in I = 1 state as the recsult of the cancellation of the
two-pidn ané the Forn contributions in é3/2 and P1/2 states, we
have reproduced all the qualitative features of low energy KN scatter-
ing as indicated by our present experimental knowledge; also we have
some insight to the two<pion contribution to KN scatiering. The
solution of tlie experiwmentai results, which agrees with ali our 6
theoreticai congiderations, is the D solution of Rochester Conferenc:
and the B solution of Meliankoff et allgg, characterised by weak
51/2’ attractive p3/2 and repulsive Pl/z in I = 0 state and a

repulsive pure s~wave interaction in I = 1 state.
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IV LOW ENERGY K -p

SCATTRRING AND EN BOUND STATES

IV.1l Introduction

The major theoretical effort in the analysis of low energy
K--p scattering processes has been based on the phenomenological zero

85’86’87, proposed by Jackson, Ravenhall and Wyld. In

range theory
the zero range theory one assumes k cot 6 to be essentially constant
and equal to the reciprocal of thevcomplex scattering length. The
principal justification of the zero range tﬁeory is its simplicity;

it needs minimum number of parameters. All present experimental

data are consistent with the zero effective range parameters. Besides,
no thecry has been advanced which would give an estimate of the

effective range (except, of course, the argument that on the basis of

conventional Yukawa theory, one expects this to be of the order of

ﬁ/mkc. corresponding to the exchange of a K-meson and VM = 0.4
Fermi, is small), Explicit parametrization of the KN scattering and
reaction amplitudes has been done by Jackson and Wy1d86 and by Dalitz
and Tuan87 which under simple assumptions of energy dependence, leads
to the zero range theory. These authors have also given formulae,
taking into account the kinematic éffect, arising from the energy
difference of K p and X-n thresholds and the Coulomb effect. A greét
deal of effort has also been dewoted in studying the effect of KN

interactions on global symmetry and restricted symmetry and the
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45,88-90

indications of this effect in low energy X p data The

flattening of the K p elastic scattering cross-section, indicated
by the preliminary experimental data, has also réceived considerable
attenation84’86’91.

The recent discovery of a ﬂﬁf resonance16’92’93 (called y*) in
K +p DN+ ’ﬂ‘+ + -ﬁ: process at an energy 1382 + 20 MeV, has
renewed interest in the study of KN interactions. Two years ago,
Dalitz and Tuan17 suggested that with their (a-) and (b-) scattering
length solutions, there should be resonances in I =1 and I = O pion-
hyperon scattering)states. Such a resonance can be interpreted as a

‘bound state of EN system which is metastable because of the pion-

hyperon interaction94’95. At present, (a-) scattering length solution

has been found which prédicts the position and width of Y*, as det-

94

ermined by experiment”’ . However, one crucial point here is that the
Dalitz-Tuan (a-~) solution requires destructive Coulomb-nuclear inter-
ference while there is no evidence for it. Though the present experi-
mental data do not provide any unambigUOUSanswertb this qﬁestion,

96

indicate constructive

97,93

the results reported at the Xiev Conference
Coulomb-nuclear interference. The present emulsion data seem to
favour the constructive Coulomb interference. We, therefore, thought
it would be worthwhile to see if we could have positive Coulonb

interference as well as Y* andinvestigate the consequences of such a

theory.
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From the very béginning, we assume the existence of ¥* as a
bound state of XN I = 1 system (mass ~~1385 MeV) which is stable if
we switch off the pion-hyperon interaction. In that case we have the
well-known effective range expansidn75’99 for k cotrg (§ real in this
situation) where the scattering length is connected with the binding
energy and the effective range by equation (IV.2). e investigate
the case where we can have k cot 6 always positive and this leads to
a very large effective range (equation IV.4). We then assume that
when the pion-hyperon interaction is switched on, the scattering
length, the effective range and the binding energy all» become complex,
the imaginary part of the binding energy being completely determined
by the experimental half-width of Y*. We assume the zero range theory
to be valid for the I = 0 state. ¥We find that we can explain the
existing experimental data with a large effective range in i=1
state which gives positive Coulomb interference. Our set of para-
meters indicate that the real part of the scattering length for i=0
to be small (reminiscent of the (a+) solution of Dalitz-Tuan). We
have investigated tkis point theoretically and find that by assuming
the existence of BN I = O bound state, with mass below the XTT
threshold, we can explain this. We also expect & narrowﬁzwlwmonance

just below KN threshold in I = O state (glﬂf = 900).
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IV.2 Basic Formulation And Results

As we have said, we begin with the assumption that Y* is a
stable bound state of KN system in the absence of pion-hyperon inter-

99,75

action. We then have the effective range expansion

keot § =2.1n2 (8 vea}) (1v.1)
==Y
d2- 2]-13 > ' (1v.3)

where 'B!' is the binding energy (72250 MeV) and M= My Pg .
mN + M

Examining (1) and (2), we find three interesting tases:

|

r*o’ 2 1 (Iv.2)

=

160

(i) -é—r ~g0; this gives k coté;:.g..:_.'ﬂ anC is the zero range theory when
we have a bound state. The phase shift, in this case, begins at‘jrat
the threshold and gradually decreases with energy.

(ii) %) -;-r > 0; in this case, %— 18 t;egative, so that somewhere in the
physical region k cot 6 = 0 or 6 is E . The phase ghift begins at
TT at the thresheld and decreases so ai to fall through j—;— . In this
case a gituation giving a Breit-Wigner tyve of resonance is con-

100
ceivable .

1 .
. in &hi 1. itive. T ‘ ;
(iii) %r) %, in hhis case < is always rpositive The nhase shift
begins at zero at the threshold and increases with energy. k cot.‘é
is alwaye vmositive. We shall take this to be the right situvation for

EN elastic scattering in I = 1 state. Then, we at once get a lower
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limit of the effective range:

%r) 1.1 Fermi (= 1.1) 7 (IV.4)

which is obviougly very lavge.
Let us now suppose that the pion-hyperon interaction is switched

on so that instead of equations (1) and (2) we have

k cot_.é--—_- % + % RKZ : : (Iv.5)
%:_q.,.%ﬁdz (1Iv.6)

where S, A, R are all complex guantities and

2
ol

y} {1 = half width of Y*
2

2,4(}3 + 17‘) (Iv.7)

The Dalitz—Tuan17’94 bound state theory for (a-) sclution

follows simply now, if we put R = 0; this gives

kcots=%=—q

Taking A = a + ib we get,
a ' b
-2 = Re®l , 52—
a® + b2 a® + b2

= Im of

The position of the bound state is now given by

my +me - B=my o+ m - Re( &™)

p)
r 2
=’“N+mzf°’12}1(2a2)

a 4+ b -
Re( o ) 2% (Re o)

» 11 if (Ime()2<< (Re &)
I 2f‘ a” Oy

2
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while its width is given by

-3 . b

1
_._ZRedImdz_
/u a2 + b2 az + b2

2" 2{1 %u

r}_c__hﬂdz)_l

sl _ b
I
Taking @= -1.09 and b = 0.20, we at once get the observed position
and half-width of Y*.
We next try to fit the present experimental data with a large
. 1 m ,0
effective range (Re 3 R> 1.1). The formula for o’el, o’;x and G.zlab
have been derived by Jackson and Wy1d86 and by Dalitz and Tuan87.
The only thing we have to do is to replace Al in these foruulae by

Ay (K) where 1 = + 1 Rk> and 1_is given by equation (6).

1
A, () 2 A

1
1 Ay 1

We find that we can jﬁt the present low energy data with an effective
range

R=1.29 - i 0.277 Fermi and

> ol

L =0+ il " (1v.8)

which gives at 175 MeV/c X momentum, with no Coulomb included, the

following cross-sections

d;l = 77.2mb
¢ = 14.0mb
ex

& (g + if) = 38.4mb .
assuming € = (}—F§§TET{>~= 0.5. Also the ratio 33 (k = 0) comes out

[
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to be 4.15 which is within the present experimental value & = 5.5
1.4, 1In Fig. 1 we have plotted o’Bl when Coulomb effect is not
included ms well as when it is included (the mass difference of

K p and K,n thresholds has, of course, always been taken into account).
The cut off used by us for Coulomb scattering is the same as that of

Jackson andi%fyld86. - In Fig. 2, we have plotted ‘isz i.e. (I}ﬁ l‘ufex)

following a suggestion by Matthews101' It is worth mentioning that we

have chosen our effective range such that at 175 MeV/c our scattering

lengths Al(k) and AO coincide with the Dalitz (a+) solution. We have

also verified that our 6 ( ¥ + Z+) agree with the Kiev data96(FL8- 5)

Finally, a few words about the —S:—-_'_ ratio. This is given by

32 - J6 3 Cos P
g2 +J6 J Cose*:v

1
W poj\ai o

1 .
where T gn: g = Je-lq{ @being the phase difference of ¥ -production

(o]
Ty " amplitudes in isotopic spin O and 1.
ka 2
_ -1 o -§ ka, - (a,8 + b r)k
<}‘> —43(Et) + tan” T—e o - tan 1 1 1 (1V.9)
2
1 + kb1 + (alr - bls)k

-~

where ¢(Et) is the phase difference at the k p threshold and %R =

r + is. Experimentaily, ?(Et)"-’ t 60° which is very large and has
' 102
been a headache for theoreticians. From global symmetry conditions

’

Flnd
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one expects this to be small. In the next section we shall attempt
to give an explanation of this.

Using eguation (9), we find that the relative phase changes by

-320, for the effective range used by us, when we go from the thres-

hold to £; _ 175 MeV/c. If now C‘)(Et) = -60°%, this would mean
- ”1, sincedb would be -900. This is, of course, indicated by the

y R
present experimental data. In this context, it is possibly worth

87

mentioning a remark by Balitz and Tuan that, if Coulomb interfer-

ence is constructive, then the (a+) solution, together WithC#(Et)

<

puf-6o°, giving an upward cusp in -7 ratio at ¥°n threshold,

scems to be the best candidate (the upward cusp is reminiscent of

the large g- ratio cbtained by the Berkeley group in the momentua
+

range 50-10C MeV/c).
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IV.3 EKN I = O Bound State

As we have seen, our set of parameters which fit the experi-
mental data (when no Coulomb is taken into account) corresponds to
Re Ao = 0. This really indicates that Re Ao is small (the corres-
ponding Dalitz (a+) solution with errors i% Ao = 0.05 Io2+1

+0.09)).

(1.1 % g.25); A = 1.45 Io0.2+14(0.35 107 Assuming the

existence of a KN I = O bound state lying below the FJ threshold
103

and using the T-1 matrix formalism we can explain the smallness

of Re Ao. Such a bound state with binding energy much greater than
Y* has been postulated hy Sakurai and by Gell-MannlOS.

Let us denote the EN channel by '1' and the £ T channel by '2'.
Let us suppose, W = a is tihe position of this bound state. We next
write down two subtracted dispersion relationleg for the elements

of T! matrix with the subtraction point at W = a. These relations

can be put down in the form

R (1v.10)
where A - ik = of; - ik o
o d 3 - ik2
1]
o, =¥ - a)? K aw , (1v.11a)
1 K / @ - m@ - a)? |
Wy
Al
oy = - (W= a)? kiy dd (IV.11b)

(W - W) (W' = a)2
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1 and w are the thresholds of KN and Zrﬂchannels and A—l matrix
2
elements contain the lefthand contributions, T-l matrix elements at

w

ghe subtraction point and derivative terms. Time reversal invariance
and unitahity regquire A-I to be a symmetric réal matrix.

Equation (10) can be written in the following form

AT-l =1+ Ao - iAk (1Iv.12)

which is exactly the BT_l dispersion formulation of Feldman Matthews
and Salamz9, if A can be approximated by the Born matrix. We note
that since the subtraction point is far below the EN threshold, so
the energy dependence of A_l and O may be neglected in the low energy
Kp scattering region and we shall have the zero range theory, as
seen below.

For our following discussion, we use eguation (12). Then

-1
Ty _ [1 + A (o -ik) :) A, (IV.13a)
. 11

Again

T, = 1 = 1 (IV.13b)
11 1 T : ” |
a, + ib_ by Xo = Wo - %

where 1

From (13a) and (13b), we get,

(1 + o A (A, +of &) + ko A D
O = Hy bop 11 =P £ “a2 Lol (1V. 14a)

(A, +oi,8)° + (kzg)z
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v’ =k Agn 81, - A
Z( 12 & (k)2
A11+o(2A + 3

(A = Det A) (IV.14b)

From (14a) and 14b) we can obtain the following relation

yo '
‘&F = (Ay, - = 24y;) (IV.1kc)
where F:‘__ (xo - Q(l + ﬁ ol ) .
kg 2

The KN and ifﬁ‘ amplitudes should have a pole corresponding to
our EN I = O bound state. Usually, one expects that when the T-

matrix is diagonalized, this vole should occur in one of the diagonal

110

elements . In other words, we should be able to write the T-matrix

in the following form
Cos €& Siné

T=1U R U U= -Sing Cosf

where the pole terms correspond to the Born amplitudes for the diff-

erent processes and the terms involving 'e' represent contributions

from other singularities. The Porn matrix is given by B = U-l

R
W -a

U, so that we have Det B = O . (Iv.15).

c

Again, in a situation like this where the important lefthand

contributions may be tihought of coming from the pole term, the FMS
dispersion formulation29 is applicable and we can approximate our '4'

by B. Egquation (15) then, at once, leads to
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Det A 20 ) (1Iv.16)

Using (16) in (l4a), we get,

y .

XoRt 1. oz 2 + 4 (1Iv.17)
11 Re

From (10), meT Y = a1 4 o{ , so that taking determinant on

both sides,

Det ReT ™t = L+ Ay &y v Ay Ay vy A2 A (pAzDet 4)
D\

1

If now, Det ReT ( = 1 where X is the K-matrix) is not very

Det X
111

large , then putting A =z2 0, gives
1+ A 0l g+ Agy XpR¥0

From (l4c), we have for A <0, Azz'_;v,;_g All, so that using this
b3

in the above relation, we get

e

KL*"(l . o Joay0 (1v.18)

11 2 ki
Comparing (17) and (18), we expect x, to b2 small, which is, of
course, indicated by our parameters.
The ZT{- elastic scattering amplitude below the KN threshold

is given by

-1
T = (T )y g = Bag+ (ot + 1'&{‘ )8 1
25 = — 11 x ,
(T oo Ay + ety - kA (xg +]igd -iy,
~ 1 (using A a2 o) (Iv.19)
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1 (IvV.20)

Again, T22 =
I{Z Cot af,w - lltz

Therefore from (19) and (20), we find that if X is small andnegative,
then just below the KN threshold, kg Cot é s = 0 or the
elastic phase shift vpasses through /2.

This at once leads to an important result. Since the phase of
the non-diagonal amplitude is sum of the.phases of the diagonal
amplitudesllz from unitarity, so the E:-production amplitude in
I = 0 state should have a phase shift as large as'l'+‘n1f(n = 0, 1),

113 2

This will provide an explanation why this relative phase of

96

3 -production amplitudes in I = 0 and in I = 1 states is so large
(~1%60%.

Equation (19) can be written in the following way,

T = (hed - x)
k
?f" ( lkﬂz - "oz) -1 (‘klcl - %) ke (Iv.21a)
- 1 r

2ky (Eo - E) - if’/z

o] 7o

(E { o)

]

where Il

2 (1v.21b)

E

2 2
- ‘_kx\_ » Bg = - ka} 0, : (1IV.21c)
2,} 2r1
which shows that the elastic Erﬁ‘amplitude below KN threshold in

I = ¢ state has a Breit-Wigner resonance form with a narrow width

( lxol being small).
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The elastic Z’ﬂ' scattering amplitude above KN threshold in
I = 0 state is given by

T = 1
22 «
k:xo

. k
-ikyp (1 + “X)

Yo ¥,
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IV.%4 Conclusion

We conclude that the low energy K p scattering data is consis-
tent with a large effective range for I = 1 state which gives positive
Coulomb-nuclear interference. The real part of the zero range scatter-
ing length in I = O state is, in our opinion, small énd negativells.
The smallness can be accounted for by assuming the existence of a
KN I = 0 bound state lying below § T threshold. If, further, Re A,
is negative, then we get a narrow Z‘)T resonance116’u7 just belou;

ZN threshold, which will provide an exvlanation of the large relative
phase of z — productidn:amrlitudes at EN threshold.

Besides 2 complex scattering length, we have a complex effective
range for I = 1 state. This means we have two more parameters than
that of Dalitz-Tuan. For this reason, we needed two inore pieces of
data to fix the parameters (viz. the mass and the width of ¥*) while
they can predict these two things with their (a-) solution. The main
justification of our approach is that experiments inay well confirm

the Coulomb-nuclear interference in low energy K p scattering to be

constructive118 and it is worthwhile to consider this possibility.
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FIGURE CAPTIONS

The total elastic scattering cross-section as a
function of the laboratory momentuwm. The continuous curve
corresponds to nuclear interaction cnly, norizalized so as to
agree with the 172 MeV/c data. The dotted curve corresponds
to nuclear plus Coulomb effect, with the cut-off angle
determined by the criterion that the recoil proton have a
laboratory momentum of at least 30 MeV/c. The experimental
data are the bubble chamber results of ref. (96) and the
emulsion results of ref. (97).

. Variation of the function ’Tl 2 with laboratory
momentum of the incident X-meson. }T! 2 represents the
charge exchange cross-section without the kinematic factor
417%%. The experimental data are that of ref. (96).

( Z- + zf) rrofuction cross-section plotted against
K-meson  laboratory momentum. The experimental data ate of

ref. (96).

Re T} =k cot é (k2 > 0)
lk‘ coté’ (k2< C)

plotted against kz (= B') for the two cases:

(a) when scattering length is positive,

(b) when it is negative.
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APPENDIX 1

In this appendix, we re-examine our investigation on X-meson
parity, given in Chapter I, using the new experimental data available

119, 120, and the theory put forward by us

in the high energy region
in Chapter IV on low energy X p scattering.
In evaluating the dispersion integral in Chapter I, we tookx

é'to be constant at a value 15 mb'all'&hroughdut and Jytat a value
40 wb above X-meson kinetic energy 120 MeV, e used a cut-off 5 m_
following the data of Burrowes et a17. The »nresent high energy data
extends up to X-meson mementum 8 GeV/c. We shall therefore use a
cut-off 16 m,_ in our new evaluation. We shall take g{ﬂ'to be constant
at a vaiue 15 mb as before, but 6 at a value 30 mb above K-meson
K.BE. 120 MeV. To evaluate the disperéion integrals in the unphysicai
region and in the low energy X r scattering region up to K-meson lab.
energy 120 MeV (i.e. up to X-meson lab. momentum 344 MeV/q), we use
the effective range and the scattering lengths obtained by us in
Chapter IV which fit low epergy,K~p scattering &ata. The imaginary
part of the forward scattering amplitude in terms of these parameters

is given by

A=W oL 9oy
N 2

AFTE N, % (Al.l)‘
(g J ooy, S'y)o“%

+ Cx? 4—@, 3) (GV>°)
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z__\?i....l.[ *rSW'
N 2 {7

\(*’l@l"ﬁ"é} @ ‘*‘SWD j} (A1.2)

2-
o
M +J=v))’~+y (4«
where q@ = c.m. pomentum, E-R =r + is, K = g+ SR =X - iyl and
1
EZfILIE; = x = iy . Using eguations (A1.1) and (41.2), we can

evaluate the dispersion integrals numerically.

For Mattgfws-Salam dispersion relation, we obtain
-+

. " } .
Y, Sy I PSR .

6T w'-
Won

16
- o AW = -
%?/zl(w'*l T )‘!W 179 (A1.3b)
+T
16

(Lﬂm =R, as30mb

= 18" 75’—L)
1
L /h !'*-- é\,d = {.]0
! Wil W H (6‘*,; [S'mb (41.3c)
B - (D = Re & = 9.38 )
N+1 = 4.30 (A1.%4)
Thus M-S dispersion relation gives, znsfeaé { Eﬂﬂ'i (1 28)5
4.30 + 0.86 = 1,07 + 1.79 ~ 1.10 + [B §} (41.5)

so that {BS} = %.40 ) (A1.6)
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For Igi's dispersion relation, we obtain

\+T
}mm dw' - 15.88,
LTI
K (\w'ew
e ( o )’
aw =42.57,
4 ! :
F (W -+
so that instead of eqn. (Iﬁl%)’we have
4.30 + 0.86 + 0.16 = 9—'—2-6- (- 938 + 13.88 + 12.57) + M .oF
M o+ 1
p .
(41.7)
Therefore, 4Mp oF = 4.18 ' ‘ (41.8)
M +1 '
P

The positive sign of the bound state term in equations (Al.6)
and{%lnﬂ) shows that X-meson cannot be scalar relative to both the
hyperons. Comparing (Al.5) with eguation iiﬁlf%), we find that the
contribution from the high energy region has not changed appreciably,
The only term iné%l.ﬁ) er in (Al.7) which consgiderably differs from
the corresponding term in(?zsgéais the magnitude of b (b = 4.30, in
the present case, is to be compared with b = 1.68 taken before). The
larger value of b has increased the value of the bound state term
and therefore gives much larger coupling constants. However, we must
not taikke the value of b literally, because our parameters fittiﬁg

the low energy % p data are juite rough. The extreme variation of
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5* which was considered in Chapter I as a possible case, seens to
be ruled out by present experimental data.

Cur only important conclusion is, therefore, that X is
pseudoscalar at least relative to one of the hyperons, and the
pseudoscalar coupling constant ig comparable to ?Ti N coupling
constant.

APPENDIX 2

For two channel case, we may write121
T*‘ . [ 8-t *3' ¢
c b Lkl (A2.1)
when both the channels are open. The X-matrix, in this case, is

given b \ a ‘

Ya 2 C

R KR™ =] ~
c b

(42.2)

If we now define the condition for resonance as the vanishing
of the denominator of K-matrix elements, as has been used by ASV,
we have

2

ab - ¢“ = © . (A2.3)

However, there are two other ways of defining the cordition
for resonance. One iz to take

i

Re (Bet T°7) =0 , which gives

2 e . '
ab - ¢ - Kk, = 0 , (A2.%)
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while the other is

1.y _
Re (m = Q ’ (A2.5)

which gives the position of resonance for 'll' process as
2

(ab - c2)b + kz a =0 ; (i) (42.6)

for '12' or '21' wnrocesg as

ab - ¢ - Kk, =0 (ii)

172
and for '22' process as

(ab - ¢2) a + Kb = 0 . (iii)

If we neglect the momentui dependehtierms, we find that
(a2.3), (42.4) and (Aé.é) are the same.

Let us now supncse that channel 2 ig cloged. Then, if we
comple@ely ipnore this channel, the condition for resonance ior the
'11' procesa is |

a =0 . (22.7)

If, eon the other hand, we takeninto account the prescnce of channel 2,
by making the continuation Rxwéi ‘kgt , the condition for recsonance
becones, in the F-matrix formalism,

a(b + lkzt ) - c2 = 0 . (42.8)

If we neglect the wmomentum dependent term, we get,

ab - ¢ =0 . (A2.9)
If the coupling between chamnel 1 and 2 is weak, then 'c' is small,
so that (42.8) or (42.9) gives cssentially a a0 as the condition
for resonance. Por strongly coupled chaurels, however, we can

expect considerable deviation irom a 2z0.
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APPENDIX 3

In Chapter II1X, we used the principle of crossing relation
which essentially states that the threce processes:
I X+ N-—-2X + N
(@) +p; —» - qy - py) - (23.1)

II X+ N 5K+ N (@ + Py — - a; - py)

III X+ K=>»N + H (q1+q2a-p1-p2)
have the same scattering matrix element. We shall siiow this using

the Lehmann, Syma nzik, Fimmerman technique.

The nucleonr field in terms of plane wave states is

'fz -l
\!/(x)-«(—m%):/}) A\.(P)c 4:“ E’)‘"C’A\"( e %x\’r(
(43.2) .

where A is the igotoric spin index and r is the spin 1ndex
A =1 for p and p, 2 for n and n; E‘:() Es(.‘) P"z t’x Pio'

) b ipx
Defining, )ﬂ" )“z‘z""‘.ﬁ)s/z e U‘Y‘(F)EA

and U ~ r(-p) =}}r(p) (r =1, 2),

we can write the nucleon field as

Y= Z/ H:C”h”- () +dxr ,\—w(bx) (43.4)
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The creation and destructioun orerators for nuclecons and anti-nucleons

EEENCEY RIS

L0 T o
ey 8) = 1% VY b e (8

| d:v(.’?) = ﬁ x F),—Y‘(“p ,x))ftﬁ’(x
The K~meson field in terms of plane wave states is
=3 O Ly o
C#?(x) = qz:\ﬂﬁgr L@E Vv ]Ch(\;() + bﬁ’{'b(ﬁ})] (43.6)

where '~y ' is the isospin index (¥ = 1 for k¥ and K7; Y= 2 for X°

and T°) and by

,f(x = € q
P,V QTI} /2 V AR, Y}\; being the isospirn - wave function.
The creation and destructlon operators for kaons and anti-kaons are

b= i [fg T, d%

QP \7”‘/‘?(?\’.) 3, f(l) dx (43.7)
b{a\w L/CP(X) 8 f(’@ JX

pr"‘/{@)B ¢ dx

Let us consider

SNERD K En | NG ,;,v),t(@,;h»
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= i zg)tcz) 7 49| PEING i K )

= bgi+i Az;(z) (p D,)<N(l% 9| ‘P(Z)'N(P.»L *‘) K@, B>

= - /:\zéw ,(cz) (12 u,)(w(ms)l'rq>tz)¢®)lw»'?
.{(

- Suecfis e fo (2 B) mh@mxw)w »

X ‘p‘ D)fc(v k(w 8)
On the other hand,

<NER i, k(w lz)]N(p, w) Ky )

= &, +ﬁw 2 -t<~ms>|¢<w>l~(m>,x(a«z9 ) H

= 8504 fw A SO B 6 ﬁ)ﬁw’
= &y +1 /; “wdz ]ﬁ(z)(/! ~T) <NC b\,,s))r(cprw)d?(zJ)IN(W"))

(/A Dw iv(vf)

(A3, 9)
Comparing (A3.8) and (43.9), we finéd that processes I and II in
(A3i1) have the same scattering amplitude.

Let us now consider the matrix element for the process K + K

~3 I + fi

NCRADD w\k(m, )>



% L k) PRGN LRy
% Ty o) DEACBUD YR ovz,t) o
L dy B sbBAP, 2 <l‘r(~r(s (r))ik(w e W

I cfy hy sf P’é \O‘T(“Y(S)Y(I))}K(%,&) K@,,k))(ﬁ k—w
wheve D (YH.....-;.Wb Y,;Hn)

If we now take out tke X, K states, then we get,

NER S) N(- .w)}!’(%@ K h»

x—«/,aza 5T AT
<oir(~m)\yoo é'p(z r;a(w))}c»k b, w0

where 22 _ (}AZ-U;-)', Kw~ ,u ) EW)' X )‘%Q j\ ;—T(p\»

Proceeding in the game way, we can obtain

<NERi 9K, O!K(%k) NE-L9)>

+L/ﬁ¢ ydz LJs ﬁ")'[(")FKZ

Sl T(# VT H) FO KD,

qu/(\‘é)h”(}?,j (43.11)

Comparing (AS;IO), (£3.11) and remembering that the fermion fields

x\x\m

=t
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anti-commute, we f£ind that the amplitudes for the processes I and

IIT in (41.1) are the some, if we separate out the Dirac scinors.

This proves owy crogging relation.

APPENDIX 4

In tris Appendix, we discuss the relation between phase shift,

bound state and resonance. We assume a single channel with a beund

state. Then,we have

e 770 = k cot % (kz > o)
11 .2
=z+5rk ) (4%.1)

The S-wave scattering amplitude is given by

1
T =
k cot § - ik (4%.2)

and the correct continuation of Re T 1 below threshold (k? <: o)

is well known to be k ..y i ‘ki. Let us define a phase shift by

lk! tot 6' =Re T_l (2;2 < o),
then
[ cot 4" = % - %_ r lkla + {k} : (24.3)

The bound state correstonds to

M Cot 4' =0 (ah.4)
and from (A.3), we then get the relation,

1 1 2

-5=-7}+-2-r\5) (44.5)

w‘hereg2 = ZIIB, B ig the binding energy and /.l is the reduced mass.
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From (A4.1) and (A%.3) we find that
1

k cot 3 = -

B3 0 a 1

. -.-_-_lhic.of S

i o

Since % is a constant, this, therefore, wmeans that § and 5
either o or'Tr at the threshold.

Firet of all, let us consider % positive. From (A4.5) we

- ‘ 2

find, in this case, %r)é-) e« e plot Re T 1 against EI = k , as

in Fig. 4 (2).

93) At the point B, ‘k’ cot 6’
(See‘ F:Lg4@)’ .R?ge | = 0 and this corresponds

to the bound state. We take
S’ = T/2 at the bound
state. BSince lkl cot 6'
is alwaye positive as we’
ge from the bound state to -
the threshold, so 8' must
fall fromanyz to 0 at the threshold. The phase shift s beging from 0
in thes case and increases.
Next we consider % negatlve' then from (44.5) —-x‘(f ?f In

Pl? 4 (b) we have nlotted Re T against g/ . Again, the point B

7
where ‘k‘ cot 5 = {0, corre““onds to bound state and 5 = ’“72.
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/ /
Since tk} cot 5 is always negative, therefore, 5 must increase from

1;/2 ta'ﬁ', as we go from the bound state te the threshold. The
phase ghift s begins ataﬁhand gradually decreases and falls through
"N/@ at the point Q.
This happens inp neutron-
proton triplet scattering

See F‘]‘g4(g)) %ge 93) where we have the deutron

bound state. This falling

sy

11/2 is not

called a resonancelza,

of 5 through

gince it does not give
rise to a resonance peak.
Let us examine this woiant.

From (A%.1) =2nd (4%.2),

= 1 = 1 —..];-. r' . -
§+%rk2-ik %‘r(k‘-k?‘)-ik % (g -p) - ift (440
0 o 3
2
1.2 1 K N _x
wl.erezrko--a,E_-é-/aand—-é--F (44.7)

Cbviously, (4%.6) is a Zreit-Wigner type of resonance ampliiude.
However, the concept of a resonance is only useful when f?z is small,
sc that there is a peak in liiz. If the effective pange is small,
(i.e. if the phasge ghift goes through TT/Z ver& glowly) then the
width will be very large (equation 4%.7) and we can no longer talk

about a2 resonance. This is what happens in 351 scattering of



- 106 -

neutron~proton (l% = Eg = 23,4 eV whereas Ec.s 9.3 MeV). However,
r

it is not inconceivable for r to be large so that the phase shift

falis through‘ﬁy2 rapidly; and we sheuld then call it a resoconance.
The extreme case, r = O gives k cot 6 = -Eg. This is the

zero range theory with a bhound state and corresnonde to the Dalitz-

Tuan bound state dbheory of Y*.
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