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Abstract

Background: Coagulation factor VIII (FVIII) deficiency leads to haemophilia A. Conversely, elevated plasma levels are a
strong predictor of recurrent venous thromboemboli and pulmonary hypertension phenotypes in which in situ thromboses
are implicated. Extrahepatic sources of plasma FVIII are implicated, but have remained elusive.

Methodology/Principal Findings: Immunohistochemistry of normal human lung tissue, and confocal microscopy, flow
cytometry, and ELISA quantification of conditioned media from normal primary endothelial cells were used to examine
endothelial expression of FVIII and coexpression with von Willebrand Factor (vWF), which protects secreted FVIII heavy
chain from rapid proteloysis. FVIII transcripts predicted from database mining were identified by rt-PCR and sequencing.
FVIII mAb-reactive material was demonstrated in CD31+ endothelial cells in normal human lung tissue, and in primary
pulmonary artery, pulmonary microvascular, and dermal microvascular endothelial cells. In pulmonary endothelial cells, this
protein occasionally colocalized with vWF, centered on Weibel Palade bodies. Pulmonary artery and pulmonary
microvascular endothelial cells secreted low levels of FVIII and vWF to conditioned media, and demonstrated cell surface
expression of FVIII and vWF Ab–reacting proteins compared to an isotype control. Four endothelial splice isoforms were
identified. Two utilize transcription start sites in alternate 59 exons within the int22h-1 repeat responsible for intron 22
inversions in 40% of severe haemophiliacs. A reciprocal relationship between the presence of short isoforms and full-length
FVIII transcript suggested potential splice-switching mechanisms.

Conclusions/Significance: The pulmonary endothelium is confirmed as a site of FVIII secretion, with evidence of synthesis,
cell surface expression, and coexpression with vWF. There is complex alternate transcription initiation from the FVIII gene.
These findings provide a framework for future research on the regulation and perturbation of FVIII synthesis, and of
potential relevance to haemophilia, thromboses, and pulmonary hypertensive states.

Citation: Shovlin CL, Angus G, Manning RA, Okoli GN, Govani FS, et al. (2010) Endothelial Cell Processing and Alternatively Spliced Transcripts of Factor VIII:
Potential Implications for Coagulation Cascades and Pulmonary Hypertension. PLoS ONE 5(2): e9154. doi:10.1371/journal.pone.0009154

Editor: Jeffrey A. Gold, Oregon Health and Science University, United States of America

Received May 6, 2009; Accepted January 14, 2010; Published February 11, 2010

Copyright: � 2010 Shovlin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by donations from families and friends of hereditary haemorrhagic telangiectasia patients, with some reagents purchased as
part of a separate study funded by the British Heart Foundation. We are also grateful for support from the National Institute for Health Research (NIHR) Biomedical
Research Centre Funding Scheme. GNO was supported by an NIHR Academic FY2 position, FSG by a British Health Foundation PhD studentship, and IGM by the
European Commission (LSHG-CT-2005-518238, EURASNET). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: c.shovlin@imperial.ac.uk

Introduction

Coagulation cascade activation is essential for normal haemo-

stasis [1]. Activated factor VIII (FVIIIa) is responsible for sustained

intravascular generation of thrombin via its role as a cofactor for

FIXa in the intrinsic Xase, with FVIIIa/FIXa ultimately respon-

sible for most of the FXa produced by both extrinsic (tissue-factor

initiated) and intrinsic coagulation cascades [2]. FVIII deficiency

leads to the bleeding disorder haemophilia A (OMIM +306700) [3].

Conversely, elevated levels of FVIII are emerging as one of the

strongest predictors of recurrent venous thromboembolic events

[4,5]. Venous thromboemboli (deep venous thromboses and

pulmonary emboli) carry significant health burdens [6], including

the development of chronic thromboembolic pulmonary hyper-

tension [7] in up to 3.8% of cases of pulmonary emboli at 2 year

follow up [8]. Elevated plasma levels of FVIII are unusual amongst

general thrombotic risk factors, as they are not only a risk factor

for venous thromboembolism, but also associated with chronic

thromboembolic pulmonary hypertension [9,10]. High levels of

von Willebrand Factor (vWF), the glycoprotein with which FVIII

circulates in a non-covalent complex [11], are also observed in

pulmonary hypertensive states [9,10].
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The liver produces sufficient FVIII for normal plasma levels

[12], with immunohistochemical evidence for stronger expression

by hepatic sinusoidal endothelial cells than hepatocytes [13].

Extrahepatic sources can also contribute to circulating levels of

FVIII, as demonstrated by the surprisingly high residual FVIII

plasma levels in dogs transplanted with haemophiliac livers [14].

We hypothesised that pulmonary endothelial cells might be a

source of plasma FVIII after demonstrating an age-independent

association between elevated plasma FVIII levels and pulmonary

arteriovenous malformations (AVMs) in hereditary haemorrhagic

telangiectasia (HHT) [15]. A pulmonary endothelial source of

FVIII would be of particular importance to these patients whose

ischaemic strokes are attributed to paradoxical thromboemboli

through pulmonary AVMs [16], and who are also at risk of several

pulmonary forms of pulmonary hypertension [17]. Pulmonary

endothelial synthesis of FVIII would also be of importance to

patients with in situ pulmonary thromboses, and potentially, of

immense importance to the haemostatic balance, since pulmonary

endothelial cells provide an endothelial-blood interface approxi-

mately twenty times all other vessels combined [18].

Others have demonstrated accumulation of FVIII in the effluent

from an isolated reperfusion model of lungs from three of four

heart-beating donors, and conditioned medium of early passage

pulmonary microvascular endothelial cells [19]. In this study, we

examined expression and processing of FVIII by a number of

normal pulmonary and systemic endothelial types, in situ and in

vitro, and compared to expression of von Willebrand Factor.

Materials and Methods

Subjects/Source of Endothelial Cells
a) Normal primary endothelial cells: Human pulmonary artery

endothelial cells (HPAEC), pulmonary microvascular EC

(HPMEC) and human dermal microvascular EC (HDMEC) were

purchased from PromoCell GmbH, Heidelberg, Germany. All

Figures are from lot numbers HPAEC 5060806.7, 5110901.3 and

6031391.3; HPMEC 7042502.7. Three lots of locally derived

human umbilical vein EC (HUVEC), derived from anonymised

and untraceable human umbilical cords, as specifically approved

by the Hammersmith Hospitals Research Ethics Committee (ref

no. 06/Q0406/21), were also studied. All EC were from separate

donors.

b) Human lung tissue: Frozen normal human lung tissue was

obtained from the Human Biomaterials Resource Centre of the

Hammersmith Hospitals Trust, with ethical approval from the

MREC for Wales (07/MRE09/54). In this protocol, written

consent for the use of waste material for research was part of the

procedural consent for the operation. This is obtained prior to the

procedure, and filed in the patient’s healthcare records. All tissue

handling was compliant with the requirements of the Human

Tissue Act (2004). Coded material was supplied accompanied by a

minimum data set (tissue type, pathology and clinical diagnosis

together with the age (in years) and ethnic group of the donor).

Five separate donors were examined.

Primary Antibodies
FVIII expression was primarily examined using a series of

hybridoma-derived murine anti-human FVIII:Ag IgG1 k mono-

clonal antibodies (C2, C5, C6 and C8 mAbs; Figure 1) which

display no vWF cross reactivity [23] and were used to purify FVIII

for the original Genentech cloning. FVIII ELISA experiments (see

below) utilised monoclonal antibody ESH-4 coated to the microtitre

wells as the capture antibody of the Imunobind FVIII ELISA (Axis

Shield, Bicton, UK, #ADI-884CON). Other primary antibodies

were obtained from DAKO UK Ltd, Ely, UK (monoclonal mouse

IgG1 antibody to Aspergillus niger glucose oxidase (X0931) as an

isotype control; anti-human CD31 clone JC70A (M0823); and

rabbit anti-human VWF polyclonal Ab (A0082)).

Immunohistochemistry
Serial sections from blocks from the five separate donors were

immunostained for 1 hour at room temperature with control

mouse IgG1 (20 mg/ml), anti-CD31 mAb (20 mg/ml), or FVIII C5

mAb (20 mg/ml). Stained sections were incubated with biotiny-

lated goat anti-mouse IgG (DAKO UK Ltd, Ely, UK) followed by

a Streptavidin alkaline phosphatase-conjugate (Roche Diagnostics

GmbH, Mannheim, Germany). Fast Red Kit (BioGenex, San

Ramon CA, USA) development was followed by Mayer

haematoxylin counterstaining.

Figure 1. FVIII genomic and domain structure. FVIII undergoes a complex series of steps between primary transcript synthesis and eventual
activity [20]. The 9 kb ‘full length’ 26 exon primary mRNA transcript is translated to a 360 kDa polypeptide chain which is translocated to the ER and
Golgi for post-translational processing including B domain proteolysis to generate the mature heavy and light chains [21,22]. Bars indicate the
epitope sites for mAbs C2, C5, C6 and C8 which react with the 360 kDa precursor, and the heavy (C2, C6, C8) or light chains (C5) [23]. Dotted lines
indicate the sites of previously described transcriptional silencing regions (see text).
doi:10.1371/journal.pone.0009154.g001
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Endothelial Cell Cultures
Human pulmonary artery endothelial cells (HPAEC), pulmo-

nary microvascular EC (HPMEC) and human dermal microvas-

cular EC (HDMEC) were from PromoCell GmbH, Heidelberg,

Germany. These primary human endothelial cells (not cell lines)

were ordered to arrive at passage two in a proliferating state: On

arrival, after inspection for confluency and viability, they were

rested for 2 hr at 37uC, 5% CO2, before the addition of fresh

reconstituted Promocell EC or microvascular EC (MEC) media

(2% and 5% fetal calf serum respectively), and subsequent passage

according to degree of confluency and experimental design.

Experiments were performed within 10–15 doubling times as

recommended. All Figures are from EC at passage 4–6.

Confocal Microscopy
EC were seeded at 36105 in individual wells of BD Falcon

CultureSlides (354118, BD Biosciences, Oxford, UK). After 24–

48 hr, media was either left in situ (unstimulated cells) or replaced

with fresh media containing 0.5 U/ml thrombin (T4393, Sigma

Aldrich, Gillingham, UK) for 6 hours. Following phosphate

buffered saline (PBS) washes, cells were fixed and permeabilised

with methanol at 220uC for at least 10 minutes. After methanol

aspiration, and two further PBS washes, cells were incubated with

100 ml of primary antibody (diluted to 1 ug/ml in 3% bovine serum

albumin (BSA) for the four mouse anti-FVIII mAbs; 3 mg/ml for

rabbit anti-vWF pAb), or control media for 15 minutes at room

temperature. Cells were washed in PBS, then incubated with 150 ml

of appropriate fluorescently conjugated secondary antibodies (Alexa

Fluor 488 goat anti-rabbit IgG or Alexa Fluor 555 goat anti-mouse

IgG) in 3% BSA, with or without Alexa Fluor 633 To-Pro-3 for

nuclear counterstain (all from Invitrogen, Paisley, UK). Following

incubation in the dark for 15 minutes, aspiration, and PBS washes,

the CultureSlide was disassembled, stained cells mounted in anti-

fade medium (VectashieldH, Vector Laboratories, Burlingame, CA,

USA), and imaged following no more than 3–4 days storage in the

dark at 4uC. Images were acquired using the Plan-Neofluor 20x/0.5

and 40x/1.30 objectives of an LSM 510 META inverted

fluorescence confocal microscope (Carl Zeiss, Welwyn Garden

City, UK). Each channel was collected sequentially using LSM

Image Browser software. In preliminary experiments in HPAEC, all

four FVIII mAbs demonstrated comparable staining patterns.

ELISAs
EC were seeded into 24 well plates and cultured to confluency.

500 ml of fresh media (+/20.5 U/ml thrombin (T4393, Sigma

Aldrich, Gillingham, UK)) was added, with at least three replicates

for each condition, donor or cell type. Conditioned medium was

aspirated from triplicate wells after 24 hr and 48 hr for immediate

storage in aliquots at 270uC. Reconstituted control media of each

type was also dispensed to 3 separate wells of a 6 well plate and

incubated at 37uC, 5% CO2 for 24 hours prior to immediate

storage in aliquots at 270uC. FVIII:Ag was detected using a

commercial FVIII ELISA (Immunobind ADI-884CON, Axis

Shield, Bicton, UK), with standard curves generated using supplied

lyophilised FVIII concentrates. VWF:Ag was detected as previously

described [24]. All samples were processed in duplicate. Optical

readouts were quantified on an Opsys MR Plate Reader using

Revelation Quicklink Software (both from Dynex Technologies,

Worthing, UK). All data sets were included in the final analyses.

FVIII Activity Assessments
Initial FVIII activity measurements were performed by running

diluted conditioned media through a CA7000 automated

coagulation analyser (Sysmex UK, Milton Keynes, UK) in the

hospital service laboratory. Samples were also analysed undiluted

in a manual one-stage assay in which 0.1 mls of congenital FVIII

deficient plasma (Technoclone Ltd, Dorking, UK), and 0.1 mls of

test plasma or media, were aliquoted into glass tubes, and a stop

watch started immediately after the addition to the tubes of

0.1 mls of APTT reagent (Actin FS, Dade, Sysmex UK Ltd,

Milton Keynes, UK). The time to the generation of a clot was

recorded.

Flow Cytometry
EC were seeded into 12 well plate wells and allowed to reach

confluency. Triplicate confluent samples of each HPAEC,

HPMEC and HUVEC were trypsinised, washed in Hanks

buffered saline solution (HBSS), and aliquoted into centrifuge

tubes for sedimentation, prior to resuspension in 50 ml residual

media, and addition of 50 ml HBSS and 1% fetal calf serum (FCS)

+/2 1 mg murine FVIII mAb C2, rabbit anti-vWF, or control

IgG1 for 20 minutes at 4uC. After washing and centrifugation, all

cells were resuspended in 50 ml residual media, and treated with

50 ml HBSS/1% FCS containing 1 mg of an appropriate

secondary conjugated antibody (Alexa Fluor 488 goat anti-mouse

IgG for FVIII and controls; Alexa Fluor 488 goat anti-rabbit IgG

for vWF). Cells were incubated in the dark for 20 minutes at 4uC,

prior to a further wash, PBS resuspension, and immediate analysis

using an EPICS XL flow cytometer (Beckman Coulter, High

Wycombe, UK). Relative fluorescent intensity (RFI) was calculat-

ed by dividing the mean fluorescent intensity of test antibody by

the fluorescent intensity of untreated or isotype control treated

cells from the same well. Hence no expression has an RFI of 1.00.

FVIII Transcript Analyses
RNA was extracted from EC at various degrees of confluency

using TriH Reagent (Sigma). Following quantification by optical

densitometry, 1 mg of RNA was used for cDNA synthesis using

SuperscriptTM II (Invitrogen, Paisley, UK). Oligonucleotide

primers were designed to constitutive and alternative exons of

the known FVIII transcripts (RefSeq [25] variants 1; NM_000132

and 2; NM_019863), and to novel exons identified by the

ExonMine project [26] through extensive mining of BLAT

alignments [27,28,29] to human genome NCBI Build 36.1 of

mRNA and expressed sequence tag (EST) sequences deposited in

the GenBank [30]. Rt-PCR products were purified by gel excision

or treated with an ExoSAP mix comprising 1.2 u of ExoI and

1.06 u of SAP (Promega, Southampton, UK), sequenced on an

ABI 3730x1 DNA analyser, and results analysed using FinchTV

V1 4.0 software (Geospiza, Seattle, USA). Confirmation of FVIII

transcript identity was obtained by Blastn (http://blast.ncbi.nlm.

nih.gov/Blast.cgi). Evolutionary conservation of flanking sequenc-

es was performed via the UCSC Genome Browser [29].

Analyses
The main outcome measures were i) endothelial cell reactivity

to Abs assessed qualitatively and semi-quantitatively (see below); ii)

ELISA quantification of conditioned media reactivity; iii) flow

cytometric quantification of cell surface reactivity; and iv)

comparison of transcript detectability by single and nested rt-

PCR reactions.

For confocal microscopy, FVIII and vWF expression levels per

cell were defined semi-quantitatively by examination of at least five

separate high power fields. FVIII expression was graded as

undetectable, weak and strong cytoplasmic expression. vWF

expression was recorded as 0, 10 or .10 Weibel Palade bodies

(WPB) per cell, with high level expression defined as .10 WBP per

Endothelial FVIII
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cell. The percentage of cells expressing the different levels was

expressed as mean6standard deviation, calculated using Graph-

Pad Prism version 4, GraphPad Software, San Diego, USA.

For ELISA and flow cytometry, no assumptions were made

about data distribution, and non-parametric analyses were

performed: Multiple group comparisons were performed using

the Kruskal-Wallis test on all datasets, with p values from post test

analyses of the indicated selected groups using Dunn’s Multiple

Comparison test. Two group comparisons were performed using

the Mann Whitney test.

Results

FVIII Protein Expression in Lung Tissue
Factor VIII expression by the pulmonary endothelium was

assessed in situ, by comparing serial sections from the same donor

blocks stained with the IgG1 isotype control mAb, CD31 mAb, or

C5 mAb to FVIII. As demonstrated in Figure 2, there was no

reactivity to staining using the isotype control antibody (Figure 2ai,

Figure 2bi). In contrast, anti-CD31 demarcated the endothelium

of pulmonary capillaries in interalveolar septae (Figure 2aii,

Figure 2bii), and staining was observed in a similar but less

extensive distribution using C5 mAb to FVIII (Figure 2aiii,

Figure 2biii). Comparable staining patterns were observed in the

other three cases examined.

FVIII Protein Expression by Endothelial Cells In Vitro
Using confocal microscopy, all four mAbs to both heavy (C2,

C6, C8) and light (C5) chains demonstrated significant reactivity in

HPMEC and HPAEC (Figure 3), HDMEC, but not HUVEC

(data not shown). In pulmonary EC, FVIII expression increased

with the degree of confluency (Figure 3ci), and for the pulmonary

and dermal microvascular EC, with the formation of vessel-like

structures in vitro. There was no difference in expression patterns

following EC treatment with thrombin for 6 hours (data not

shown). There was also no difference between appearances for the

four antibodies for the same EC lot.

Since vWF is required for stable accumulation of FVIII in

cellular supernatants [11], intracellular expression of FVIII and

vWF were compared. Anti-vWF defined classical Weibel Palade

bodies in a proportion of HPMEC and HPAEC, as in the original

description in pulmonary endothelial cells [31]. Expression of

VWF also increased with the degree of confluency (Figure 3ci).

Overall, a higher proportion of EC expressed vWF than FVIII

(Figure 3cii). Usually, high vWF and high FVIII expresssion did

not overlap in HPMEC (Figure 3d) or HPAEC. Where

coexpression did occur, generally the intracellular sites were non

overlapping, but in some HPAEC, colocalisation of FVIII and

vWF within the same cells appeared to be centred on vWF-

containing Weibel Palade bodies (Figure 3e, Figure 3f, Figure 3g).

FVIII/vWF Cell Surface Expression
FVIII expression was next examined on the surface of EC using

flow cytometry. HPAEC and HPMEC, but not HUVEC

demonstrated significant surface expression of FVIII compared

to control untreated (Figure 4a) and isotype control-treated

(Figure 4bi) cells from the same well. When compared to the

isotype control-treated HPAEC, the overall increase in RFI was

shown to reflect stronger staining of a small proportion of EC

(Figure 4bii, Figure 4biii). Expression of vWF on the cell surface of

a proportion of HPAEC was also detected (Figure 4c).

FVIII/vWF Secretion
Conditioned media from HPAEC and HPMEC, but not

HUVEC detected higher (low mU) levels of FVIII than respective

control media (Figure 4d). Overall, approximately 5 mU/mL

FVIII accumulated over 48 hours in the conditioned media from a

pulmonary EC surface area of 3.8 cm2. There was no significant

difference in the quantity of FVIII secreted into conditioned

medium supernatants following 24 or 48 hour treatment of

HPAEC or HPMEC with thrombin (individual p values .0.11,

data not shown). In addition, conditioned media from HPMEC

also had significantly higher mean levels of vWF antigen after

48 hours incubation (1.40 [SD 0.20] U/ml) compared to 24 hours

(0.74 [SD 0.058] U/ml).

To test whether the FVIII antigen was functional, manual

FVIIIc assays were performed. Standard curves were generated

using replicate serial dilutions of lyophilised FVIII concentrate

representing a range of 0.1% (0.001 U/ml) to 100% (1.0 U/ml).

Clotting times ranged from 58 seconds (1.0 U/ml FVIII) to 120

seconds (0.001 U/ml VIII), with a good standard curve

(r2 = 0.993, Figure 4e). In contrast, clotting times exceeded 240

seconds in all conditioned media samples, and no clot formation

was observed, even at 30 minutes. Diluted test samples were also

assayed using the automated CA7000 FVIIIc assay, but again, no

clot was detected in any sample.

Figure 2. Lung expression of FVIII. Serial sections of frozen normal human lung tissue from two donor blocks (a and b) stained with i) control
IgG1, ii) anti-CD31, or iii) anti-FVIII (C5). The 200x images are representative of data from all five donors.
doi:10.1371/journal.pone.0009154.g002
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Multiple FVIII Transcripts in Pulmonary EC
To confirm that FVIII was synthesised in endothelial cells,

polyadenylated FVIII transcripts were analysed by reverse

transcription (rt) using an oligo-dT primer and amplification of

cDNA products by specific polymerase chain reactions (PCR).

In nested rt-PCR reactions, in addition to full length FVIII

transcript (variant 1), three further transcripts were detected, the

known RefSeq variant 2 and two new transcripts (Figure 5, see

also exon positions in Figure 1). Variant 2, and novel variant 3

utilised different first exons (22B and 22A) within intron 22,

splicing to constitutive exon 23. Novel variant 4 had a first exon

(U1) derived from genomic DNA 4.3 kb 59 to the first exon of the

full length transcript, variant 1. All four transcripts were also

detected in dermal microvascular EC, and for all EC, FVIII

transcripts were detected more readily in equivalent concentra-

tions of cDNA derived from confluent EC (data not shown). The

four alternate first exons contained AUG start codons in-frame

with the open reading frame in subsequent exons. Between

different cell types, there was a possible reciprocal relationship

between expression of exon U1 (and exon 22B)-containing

transcripts with full length isoform sequence (Figure 5b). Exon

22A sequences amplified preferentially from pulmonary EC

(Figure 5b).

Coding transcripts of importance are subject to strong selective

pressure, as demonstrated by the strong evolutionary conservation

of exon 22 sequences encoding part of the FVIII light chain

(Figure 6a). The most striking feature of the alternate exons U1,

22A and 22B was the degree of conservation of 59 flanking

sequences, compared to those for exon 1, that are part of the

characterised FVIII promoter region [32,33] (Figure 6b, Figure 6c,

Figure 6d). Exons 22A and 22B are sited within the int22h-1 repeat

which shares significant homology with the int22h-2 and int22h-3

sequences also on the X chromosome (Figure 6e, Figure 6f).

Nevertheless, BLASTn alignments confirmed that the novel exon

sequences were identified only once in human genomic DNA

sequences.

Discussion

In this study we report that endothelial cells, particularly

pulmonary endothelial cells, are a source of FVIII synthesis, with

evidence of cell surface expression, secretion, and co-expression

with vWF. The study also highlights the complex alternative

splicing patterns employed by the FVIII gene in endothelial cells.

Limitations of the study include the relatively limited number of

donors examined, particularly for a protein with plasma

concentrations that can differ three-fold and remain within

normal laboratory ranges (45–158 iu/dl at our institution).

Nevertheless, in view of the potential implications of the findings

for haematological and pulmonary vascular disorders, we believe it

is important to bring our results to the attention of the wider

biomedical communities at this stage.

The study demonstrates that endothelial cells from several

vascular beds in addition to those of the hepatic sinusoid [13], and

Figure 3. Immunofluorescence images of FVIII expression by EC. a: Sequential confocal fluorescence microscopy images in primary human
EC. a and b: Representative HPMEC and HPAEC control images using To-Pro-3 nuclear counterstain (first panel, monochrome), murine control IgG1

(second panel monochrome) and merged images (third panel: To-Pro-3 nuclear counterstain white, control IgG1 red) using maximum gain used for
imaging. c) Comparison of proportion of i) HPMEC and ii) HPAEC expressing vWF and FVIII protein (expression levels defined in methods). d, e, f,
g) Sequential confocal fluorescence microscopy images comparing vWF (monochrome in first panel); FVIII (monochrome in second panel, specific
mAb as denoted), and merged images (third panel; vWF green, anti-FVIII reacting protein red) in d): HPMEC, and e, f, g): HPAEC. FVIII mAb images
displayed here are representative of all FVIII mAbs examined, and all cell lots. Note yellow merged images suggesting degree of FVIII/vWF
colocalisation in e, f, g, with white colouring denoting the nuclei (TO-PRO3 nuclear counterstain). Scale bars indicate 5 mm.
doi:10.1371/journal.pone.0009154.g003

Endothelial FVIII

PLoS ONE | www.plosone.org 5 February 2010 | Volume 5 | Issue 2 | e9154



pulmonary microvascular circulation [19], can synthesise and

secrete FVIII. PubMed searches suggest apparently similar

findings were reported for ‘FVIII antigen’ in human umbilical

vein EC [34,35], but it is important to note that this work referred

to an antigen that was present at normal levels in haemophiliac

plasma, but at reduced levels in plasma from patients with von

Willebrand’s disease [35], representing what we would now term

VWF:Ag, as described in [36]. In our hands, HUVEC were not a

good source of FVIII, and indeed were used as a negative control

for ELISA and FACS analyses.

Secreted FVIII would be unstable unless associated with vWF.

Weibel Palade bodies, now recognised as VWF storage bodies,

were first described in pulmonary endothelial cells [31]. This study

demonstrates not only that endogenous vWF and FVIII can be

secreted and expressed by the same endothelial cells, but also, that

in some pulmonary artery EC, endogenous FVIII colocalises with

vWF-containing Weibel Palade bodies (Figure 4e, Figure 4f,

Figure 4g). Further support for this localisation is obtained from

the studies by others that have demonstrated recombinant FVIII

may localise within Weibel Palade bodies [37,38]. The FVIII

released into conditioned media in our experiments did not exhibit

procoagulant activity. Since even completely FVIII-deficient

plasma has an APTT less than 240 s, and others [19] detected

FVIII:c activity in pulmonary microvascular EC conditioned

media, we assume that particular media conditions may contain

inhibitors or proteolytic inhibitors. In addition, it is possible that

not all FVIII:Ag produced by pulmonary endothelial cells is active,

suggesting it may be important to explore further which specific

factors activate any latent antigen in vivo, in different experimental

media.

While general endothelial expression of FVIII:Ag is clearly

important, it is the particular contribution of the pulmonary

endothelial bed which carries greater potential to influence general

coagulation pathways: The pulmonary endothelial cell–blood

interface area exceeds 60 m2 [18]: Were in vitro accumulation

rates to be replicated from pulmonary EC in vivo, this would

approximate to constitutive secretion of FVIII:Ag of 16106 mU/

hr; or 50 mU per cardiac cycle. Taken together, these observa-

Figure 4. Secreted and cell surface FVIII. a) Quantification of FVIII on the surface of EC. Relative fluorescence intensity (RFI) of confluent
HUVEC, HPAEC and HPMEC stained with FVIII mAb C2, compared to EC from the same well in which C2 was omitted. b) Quantification of HPAEC
surface FVIII: bi Comparison of EC RFI for HPAEC from the same well treated with IgG1 control, or C2 mAb; p values calculated by Mann Whitney.
bii-iii. Representative raw data plots of log expression (FL1 log) versus forward scatter as a marker of cell size for HPAEC from the same well treated
with bii) IgG1 control, biii) C2 mAb. c) Quantification of HPAEC surface vWF. ci) Comparison of EC RFI for HPAEC from the same well treated
with IgG1 control, or vWF pAb, p values calculated by Mann Whitney. cii-iii. Representative raw data plots of log expression (FL1 log) versus forward
scatter as a marker of cell size for HPAEC from the same well treated with cii) IgG1 control, ciii) vWF pAb. d) Quantification of FVIII:Ag in control
and EC-conditioned media by ELISA. M1 denotes control EC media (2% FCS), M2 denotes control MEC media (5% FCS). M1 control data are
presented twice for clarity. P values are presented for the 48 hour data sets of EC from passages 4 and 5. Differences at 24 hours did not reach
statistical significance. e) Manual FVIII:c assay standard curve. Ln FVIII, logarithm of FVIIIc activity (U/ml). Note clotting time in samples exceeded
240 seconds.
doi:10.1371/journal.pone.0009154.g004
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tions suggest that the pulmonary endothelium could be one source

of the releasable pool of FVIII that can be secreted with vWF, as

predicted from clinical studies [39].

The potential for dysregulated release of FVIII by the

pulmonary endothelium may carry implications for two forms of

pulmonary hypertension. In chronic thromboembolic pulmonary

hypertension, 50% of patients have no evidence of a preceding

venous thrombus, leading to the concept that a primary

pulmonary arteriopathy and in situ thromboses could be causal

or contributory factors [40,41]. In primary pulmonary artery

hypertension, microvascular intrapulmonary thromboses are

recognised as part of the pathological spectrum. Both of these

pulmonary hypertension phenotypes are associated with elevated

total plasma levels of FVIII and vWF. The current findings that a

proportion of pulmonary EC express FVIII and vWF on the cell

surface, together with recent evidence that resting EC can

constitutively express membrane constituents involved in sustained

FVIII/IXa-dependent activation of FX [42], lead us to hypothe-

sise that dysregulated pulmonary endothelial FVIII processing

may contribute to exuberant local intravascular thrombus

formation in these pulmonary hypertension phenotypes. Further

work on tissues from patients with these pathologies is required to

support or refute this hypothesis.

A consistent feature of all experiments in this study was that

adjacent EC could express different levels of FVIII. We

hypothesised that this variation, and potentially the low level

steady state FVIII full length transcript mRNA levels and other

recombinant FVIII expression limitations observed by others

[11,21,43], may be due to expression of different splice isoforms of

FVIII by different cells. The current study provides evidence for

four alternate transcripts of FVIII in the endothelium. Noting that

alternate splicing and alternate transcription initiation are

recognised to provide major regulatory potential for higher

organisms [44], we considered whether the alternate FVIII splice

isoforms were likely to be important.

All three short transcripts have the potential to encode short

segments of FVIII protein sequence. While direct contribution of

any short transcript-encoded protein to FVIII catalytic activity

would be unlikely in view of the exons involved (Figure 1, Figure 6),

roles for such proteins facilitating or interfering with the complex

intermolecular associations required to generate activated FVIII

could be postulated. Alternatively, the option for alternative

transcript initiation may provide a further layer of regulatory

control: The short transcripts do not contain the sequences

previously implicated in FVIII transcriptional silencing [45], but it

is recognised that minigene insertion into FVIII intron 1 improves

Figure 5. FVIII splice isoforms. a: Variants identified by ExonMine: Variants 1 and 2 correspond to major and minor RefSeq isoforms; variants
3–5 to expressed sequence tag (EST) sequences deposited in Genbank. Note none of the alternate variants encode the FVIII mAb epitopes. b:
Variants identified in EC. Simultaneous expression of variants 1–4 in HPAEC (PA), HPMEC (PM), and HUVEC (H). Gels: wx, HaeIII-digested wx marker,
CA negative water control for HPAEC/HUVEC, CM negative water control for HPMEC. The apparent difference in size of variant 4 is an artefact due to
gel running (note differential site of 194 marker band in first and last lanes). Cartoons: Thin and thick arrows indicate sites of PCR and sequencing
oligonucleotide primers respectively. Sequence chromatograms were obtained using nested reverse internal primers in exon 23 (variants 1–3) or
exon 3 (variant 4; low concentration first round product sequenced). Note V5 sequences (exons U1-1-2-3) were not amplified from EC in any reaction.
doi:10.1371/journal.pone.0009154.g005
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in vivo production of FVIII [46]. Our data suggest that further

examination of whether trans expression of 22A-containing

transcripts facilitates FVIII processing, or whether switching to

U1- and 22B-containing transcripts limits full length FVIII

transcript production, may be informative.

Genome-wide analyses indicate that alternatively spliced

sequences expressed differentially between tissues are subject to

strong selective pressure [47], and there is clearly strong

conservation of sequences flanking the alternatively spliced first

exons U1, 22A and 22B. This suggests that these 59 flanking

sequences, sited up to 140kb from the characterised FVIII

promoter, may have functional roles, and that further evaluation

of promoter activity within these regions would be appropriate.

Other factors however, may be driving the evolutionary

conservation in these regions: First, there are genes on the

opposite strands of exon U1 (FUNDC2) and exons 22A and 22B

(H2AFB3). Second, exons 22A and 22B lie within the 9.5kb int22h-

1 sequence which undergoes intra-chromosomal gene conversion

with the repeats int22h-2 and int22h-3 [48]. This region is well

known to haematologists, since homologous recombination

between int 22h-1 and one of the telomeric repeats on the X

chromosome leads to the intron 22 inversion responsible for 40%

of severe haemophilia.

In summary, this study provides further evidence for endothelial

cell sources of FVIII expression of potential importance to

haematological disease states and pulmonary vascular thrombor-

egulation. Detailed evaluation of pathways governing FVIII:Ag/

FVIII:c relationships, and co-transcriptional modulation of

alternate FVIII splicing and transcription initiation by cell type

or exogenous stimuli may be required for a better understanding

of the molecular mechanisms regulating cell surface and plasma

levels of FVIII.
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