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ABSTRACT 34 

HLA-B*57:01 and HLA-B*57:03, the most prevalent HLA-B*57 subtypes in Caucasian and 35 

African populations, respectively, are the HLA alleles most protective against HIV disease 36 

progression. Understanding the mechanisms underlying this immune control is of critical 37 

importance and yet remains unclear. Unexplained differences are observed in the impact of the 38 

dominant CTL response restricted by HLA-B*57:01 and HLA-B*57:03 in chronic infection 39 

towards the Gag epitope KAFSPEVIPMF (‘KF11’,Gag162-172). We previously showed that the 40 

HLA-B*57:03-KF11 response is associated with a >1 log lower viral setpoint in C-clade infection 41 

and that this response selects escape mutants within the epitope. We first examined the relationship 42 

of KF11 responses in B-clade infected subjects with HLA-B*57:01 to immune control and observed 43 

that a detectable KF11 response was associated with a >1 log higher viral load (p=0.02). No 44 

evidence of HLA-B*57:01-KF11 associated selection pressure was identified in previous 45 

comprehensive analyses of >1800 B-clade infected subjects infected. We then studied a B-clade 46 

infected cohort in Barbados where HLA-B*57:03 is highly prevalent. In contrast to B-clade 47 

infected subjects expressing HLA-B*57:01, we observed strong selection pressure driven by the 48 

HLA-B*57:03-KF11 response for the escape mutation S173T. This mutation reduces recognition of 49 

virus-infected cells by HLA-B*57:03-KF11 CTL, and is associated with a >1 log increase in viral 50 

load in HLA-B*57:03-positive subjects (p=0.009). We demonstrate functional constraints imposed 51 

by HIV clade relating to the residue at Gag-173 that explain the differential clade-specific escape 52 

patterns in HLA-B*57:03 subjects. Further studies are needed to evaluate the role of the KF11 53 

response in HLA-B*57:01-associated HIV disease protection.  54 

  55 
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IMPORTANCE SECTION 56 

HLA-B*57 is the HLA class I molecule that affords the greatest protection against disease 57 

progression in HIV infection. Understanding the key mechanism(s) underlying immune suppression 58 

of HIV is of importance in guiding therapeutic and vaccine-related approaches to improve the levels 59 

of HIV control occurring in nature. Numerous mechanisms have been proposed to explain the HLA 60 

associations with differential HIV disease outcome but no consensus exists. These studies focus on 61 

two subtypes of HLA-B*57, prevalent in Caucasian and African populations, HLA-B*57:01 and 62 

HLA-B*57:03, respectively. These alleles appear equally protective against HIV disease 63 

progression. The CTL epitopes presented are in many cases identical, and the dominant response in 64 

chronic infection in each case is to the Gag epitope KF11. However, there the similarity ends. This 65 

paper seeks to better understand the reasons for these differences and what this teaches us about 66 

which immune responses are contributing to immune control of HIV infection. 67 

 68 

 69 

  70 
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INTRODUCTION 71 

HLA polymorphism has a substantial impact on HIV disease outcome (1-5) and yet the principal 72 

mechanisms underlying these effects remain unresolved (5). The most protective HLA class I 73 

molecule is HLA-B*57. HLA-B*57:01 is the most prevalent subtype in Caucasian populations, 74 

apparently conferring a similar level of protection against HIV disease progression as HLA-75 

B*57:03, the most prevalent subtype in African populations (6). One proposal is that the HLA-76 

B*57-mediated protection is at least in part due to the breadth of the Gag-specific CD8+ T-cell 77 

response, and that HLA-associated immune control of HIV is related to the ability of the CTL 78 

response to drive selection pressure on the virus, such that escape can only be achieved at 79 

significant cost to viral replicative capacity (5, 7-10). However, although HLA-B*57:01 and HLA-80 

B*57:03 appear to present the identical Gag epitopes, previous studies suggest that significant 81 

differences exist in the impact of these responses on immune control.  82 

 83 

The dominant HIV-specific CD8+ T-cell response in each case is directed towards the Gag epitope 84 

KAFSPEVIPMF (‘KF11’, Gag 162-172). Published studies in HLA-B*57:01-positive subjects have 85 

been almost exclusively conducted in B clade infection and these have suggested that a response to 86 

KF11 is not associated with immune control (2, 11) and that the magnitude of HLA-B*57:01-KF11 87 

responses may even be higher in progressors. Evaluation of full-length viral sequences in 1888 B 88 

clade infected subjects failed to identify any sequence polymorphisms within the KF11 epitope or 89 

flanking it that were directly associated with HLA-B*57:01 (12) and that would have suggested 90 

strong selection pressure imposed on the virus by this response. By comparison, 20 HIV amino acid 91 

polymorphisms were identified elsewhere in the HIV proteome that were directly associated with 92 

HLA-B*57:01. In contrast, in studies undertaken in C clade infected African subjects expressing 93 
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HLA-B*57:03, a KF11 response is associated with a >1 log lower viral load (13), and there is 94 

strong evidence of selection pressure within this epitope, with approximately 70% of subjects 95 

carrying mutants at Ala-163 and/or Ser-165, positions 2 and 4 in the epitope (P2 and P4) (9, 10, 14).  96 

 97 

The escape mutants that are selected within KF11 in C clade-infected HLA-B*57:03-positive 98 

subjects are typically A163G and S165N. The A163G mutation is selected first, reducing CTL 99 

recognition, but also significantly lowering viral replicative capacity (14). The S165N mutant is 100 

then selected, substantially restoring viral replicative capacity at the same time as entirely 101 

abrogating recognition: an ideal result for the virus (14) that has been associated with higher viral 102 

loads (15). Thus the impact of the HLA-B*57:03-KF11 response on the virus is consistent with the 103 

mechanism of HLA-mediated immune control described above, with CTL activity forcing the 104 

selection of viral escape mutants that reduce viral replicative capacity, whereas that of the HLA-105 

B*57:01-KF11 response is not consistent with this mechanistic model.  106 

 107 

Initial studies proposed that the HLA-B*57:01-KF11 TCRs are highly conserved, with a dominant 108 

or exclusively expressed V�5/V�19 TCR in 60-100% of subjects (15, 16). These HLA-B*57:01-109 

KF11 TCRs were more likely than the HLA-B*57:03-KF11 TCRs to recognise epitopes containing 110 

A163G and S165N; hence these mutations would not be selected in individuals expressing HLA-111 

B*57:01 (15, 17). However subsequent studies of HLA-B*57:01-KF11 TCR usage have been 112 

contradictory, with the V�5/V�19 TCRs identified as the dominant receptor in 0/6 and 2/10 HLA-113 

B*57:01-positive subjects, respectively (11, 18). Thus it appears unlikely that HLA B*57 subtype-114 

specific effects, namely a public TCR clonotype with high functional avidity for HLA-B*57:01-115 
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KF11 (19) fully explain the observed differences in selection of KF11 escape mutants in HLA-116 

B*57:01 and HLA-B*57:03. 117 

 118 

An alternative hypothesis is that escape mutations within KF11 are tolerated in the context of the C-119 

clade, but not in the B-clade Gag sequence, and that this may contribute to the high frequency of 120 

escape mutations within the KF11 epitope in HLA-B*57:03-positive individuals infected with C-121 

clade virus. To address this possibility, we here compared a cohort of B-clade infected subjects in 122 

Barbados, in which the HLA-B*57:03-subtype predominates, with a cohort of C clade infected 123 

subjects in Botswana, where the HLA-B*57:03-subtype also predominates. We identified clade-124 

specific sequence differences that influence the dynamics of viral escape within the HLA-B*57:03-125 

restricted KF11 epitope. These differences were confirmed in a large multi-cohort dataset featuring 126 

3298 subjects (including the Barbados and Botswana cohorts), including 1732 clade C infected 127 

Africans and 1566 clade B infected North Americans. 128 

 129 

  130 
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METHODS 131 

Study cohorts and subjects 132 

HIV-1 B clade infected subjects expressing HLA-B*57:01 were studied from ART-naïve cohorts in 133 

Oxford, UK (the Thames Valley Cohort, as previously described (20) and in Barcelona, Spain (21). 134 

Additional study cohorts for evaluation of HLA-B*57:03 in the context of B clade and C clade 135 

infection in Barbados and Botswana, respectively, were: (i) Bridgetown, Barbados (B-clade, n=246 136 

Median age: 38 years IQR 31-47, female:male ratio 60:40, samples collected between 2008-2010), 137 

where study subjects were attendees at the Ladymeade Reference Clinic; and (ii) Gaborone, 138 

Botswana (C-clade, n=514, Median age; 27 years IQR 23-32, female:male 100:0, samples collected 139 

between 2007-2008), where study subjects were antenatal women from the Mma Bana Study, as 140 

previously described (8, 13, 22, 23).  141 

 142 

Ethics approval was given by the Health Research Development Committee, Botswana Ministry of 143 

Health, by the Barbados Ministry of Health, the Hospital Germans Trias i Pujol' Ethics Committee, 144 

and by the Oxford Research Ethics Committee. Subjects received voluntary testing and counselling 145 

and written informed consent was obtained from all individuals. Viral load in chronic infection was 146 

measured using the Roche Amplicor version 1.5 assay; CD4+ T cell counts were measured by flow 147 

cytometry. Viral load and absolute CD4 count measurements were obtained at study entry 148 

(baseline) for all individuals. All study subjects were ART-naïve. 149 

 150 

Four-digit HLA typing of the Class I locus was performed from genomic DNA as previously 151 

described (24) by sequence-based typing at the ASHI* accredited HLA typing laboratory, 152 

University of Oklahoma Health Sciences Centre, USA. Exons 2 and 3 of HLA Class I were 153 
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amplified by locus-specific PCR and then sequenced. Resolution of ambiguities was undertaken 154 

according to the ASHI committee recommendations. 155 

 156 

Additional viral sequence analyses were performed on two previously described, multi-center 157 

cohorts: (1) the International HIV Adaptation Collaborative (IHAC) consisting of 1443 clade B Gag 158 

sequences (12); and (2) 1470 African clade C Gag sequences from cohorts based in Durban (8), 159 

Bloemfontein (25) and Kimberley (20) South Africa, Zambia and the Thames Valley area of the 160 

United Kingdom (20). Where high-resolution HLA typing was unavailable, we employed a 161 

published machine learning algorithm trained on a dataset of high resolution HLA class I types 162 

from >13,000 individuals with known ethnicity to complete these data to high resolution. (26). 163 

 164 

IFN-γ ELISPOT assays  165 

IFN-γ enzyme-linked immunospot (Elispot) assays were performed as previously described (13, 27), 166 

using optimally defined epitopes and 18mer overlapping peptides (OLP) with input cells/well 167 

ranging from 30,000 to 100,000.  The number of specific spot-forming cells (SFC) was calculated 168 

by subtracting the mean number of spots in the negative control wells from the number of spots 169 

counted in each well. The magnitude of epitope-specific responses was calculated as SFC per 170 

million cells.  171 

 172 

Site-directed mutagenesis of NL43 173 

The mutation S173T (Serine to Threonine at Gag HXB2 position 173) was introduced by site 174 

directed mutagenesis (Quikchange I, Stratagene,UK) into wild-type NL43 plasmid DNA, as well as 175 

NL43 containing the mutations A163G and/or S165N (14). Whole plasmid DNA p83-2 (the 5’-half 176 
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of HIV-1NL43 strain) was PCR-amplified in a mutagenesis reaction with two overlapping primers, 177 

containing the target mutation. Primers used for the mutagenesis reaction were: F 5'-178 

CCCAGAAGTAATACCCATGTTTACGGCATTATCAGAAGGAGC-3' and R 5´-179 

GCTCCTCTGATAATGCCGTAAACATGGGTATTACTTCTGGG-3 (the mutagenesis site is 180 

underlined) .The presence of mutations were verified by DNA Gag sequencing in newly generated 181 

plasmid clones. The DNA fragment ranging from SapI to Apa I restriction sites was then subcloned 182 

into a new p83-2 vector to avoid potential carry over of additional mutations during the 183 

mutagenesis, and the coding region sequence was verified again as previously described (28) 184 

 185 

Virus production and Replication kinetics 186 

Viral stocks were produced by cotransfection of the different site-directed mutant plasmids (5’ half 187 

of HIV-1NL43 strain) with p83-10eGFP (3’ half of HIV-1NL43 strain) into MT4 cells (29). Viral stocks 188 

were harvested and viral RNA extracted (Qiagen, UK). The gag p24/p17 coding region was PCR 189 

amplified and sequenced to confirm the presence of the mutations in the viral RNA and the absence 190 

of any other potential polymorphisms. The 50% tissue culture-infectious dose (TCID50) for each 191 

viral stock was determined in MT4 using the Reed and Muench method (30). For replication 192 

experiments, Jurkat, MT4 and H9 T cells were infected in triplicate with a multiplicity of infection 193 

(MOI) of 0.005 in a total volume of 3ml with wild-type or mutant HIV-1 NL43 virus and incubated 194 

at 37ºC for 2 hours. Pellets were washed twice with PBS and cultured at 37ºC and 5% of CO2. After 195 

infection around 50,000 cells were harvested daily in order to measure infectivity by percentage of 196 

eGFP-positive cells by Fluorescent Activated Cell Sorting (FACS). Replication kinetics were 197 

determined by calculating the mean viral slope using the LOGEST function (Microsoft Excel) and 198 



 10

converted to natural logs. Variation in replication slopes was assessed using Student’s T test. All 199 

statistical calculations were performed in Prism 5.0 (Graphpad).  200 

 201 

Amplification and sequencing of proviral DNA 202 

Gag p17/p24 sequences (Cohort;Barbados n=125, Botswana n=322) were generated from genomic 203 

DNA extracted from peripheral blood mononuclear cells (PBMC) where available, amplified by 204 

nested PCR using previously published primers to obtain population sequences, as previously 205 

described (31). Sequencing was undertaken using the Big Dye Ready Reaction Terminator Mix 206 

(V3.1) (Applied Biosystems, UK). Sequences were analysed using Sequencher v4.8 (Gene Codes 207 

Corporation) and aligned by SeAl to HXB2 B-clade reference strain. Sequences were submitted to 208 

Genbank and accession numbers are as follows FJ497801-FJ497875, FJ497885-FJ497899, 209 

FJ497901-FJ497905, FJ497907-FJ497916, FJ497918-FJ497950. 210 

 211 

Identification of HLA-associated viral polymorphisms from proviral DNA 212 

HLA-associated viral polymorphisms were identified from proviral DNA using a previously 213 

described method that corrects for phylogeny, HLA linkage disequilibrium and codon-covariation 214 

(8, 32). A q-value statistic, representing the p-value analogue of the false discovery rate (FDR), was 215 

computed for each association. The FDR is the expected proportion of false positives among the 216 

associations identified at a given p-value threshold; for example, among associations q≤0.2, we 217 

expect 20% to be false positives. The phylogenetically corrected methods rely on an inferred 218 

phylogeny. We constructed two phylogenies for this study: (i) a phylogeny consisting of clade B 219 

and C sequences from Barbados and Botswana was constructed using Phyml v2.4.5, under the 220 

general time reversible (GTR) model (33) (ii) a phylogeny consisting of N=3298 p17/p24 221 
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sequences from all cohorts described in this study. This phylogeny was too large for Phyml, so we 222 

employed a 3 stage process to infer the phylogeny. (1) A combined alignment was created, then 223 

sites with >10% missing data were removed, after which sequences with missing data in >10% of 224 

remaining sites were removed (resulting in the above noted N’s); (2) a phylogeny was inferred 225 

separately for clade B and C alignments, using Phyml v2.4.5 under the GTR model); (3) the 226 

resulting phylogenies were joined by adding single common ancestor to the two clade trees, and the 227 

branch lengths were optimized using hyphy, under the GTR model (34).  228 

 229 

PhyloDOR ratio 230 

Identification of HLA-associated polymorphisms and assessment of differential escape between 231 

viral clades and/or closely-related HLA alleles were performed as previously described (12, 32, 35). 232 

Briefly, a maximum –likelihood phylogenetic tree was constructed for each gene, and a model of 233 

conditional adaptation was inferred for each observed amino acid at each codon (32). In this model, 234 

the amino acid is assumed to evolve independently along the phylogeny until it reaches the 235 

observed hosts (tree tips). In each host, the HLA-mediated selection pressure is modeled using a 236 

weighted logistic regression, in which the individual’s HLA repertoire is used as predictors and the 237 

bias is determined by the transmitted sequence (35).  Because the transmitted sequence is not 238 

observed, we average over the possible transmitted sequences, and all possible phylogenetic 239 

histories, as inferred from the phylogeny. Similarly, where high resolution HLA types are not 240 

available, we perform a weighted average over possible completions (12).  241 

 242 

To test for differential escape between HLA-B*57:01 and B*57:03, or to test for clade-specific 243 

effects on selection, interaction variables were added to the phylogenetically-corrected logistic 244 
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regression model and significance was determined via a likelihood ratio test, as previously 245 

described (35). 246 

 247 

Effect of S173T mutation on epitope recognition by KF11-specific CD8+ T cells 248 

CD4+ T cells were enriched from PBMCs from healthy donors expressing HLA-B*57:03 using 249 

negative selection (Dynabeads) and activated for 3-6 days using IL-2 (50U/ml Roche) and PHA 250 

(3ug/ml). KF11-specific CD8+ T cells (<98% specificity) were enriched from PBMCs from HIV-251 

infected donors using tetramers as previously described (36). B*57:03-positive CD4+ T cells were 252 

infected with NL43GFP or NL43GFP containing the S173T mutation as described above. To test for 253 

epitope recognition, epitope-specific CD8+ T cells (<98% specificity) were cocultured with the 254 

HIV-infected CD4+ T cells in the presence of CD107a antibodies (PE-Cy5), 10ug/ml Brefeldin A, 255 

Golgi stop (BD), CD49d and CD28 for 6.5 hours at 37oC in a 5% CO2 incubator. Cells were 256 

stained for surface and intracellular antibodies against CD4 (APC), CD8 (Alexa Fluor 700), MIP1B 257 

(FITC), p24 (PE), IFN-y (PE-Cy7), Live/dead marker (Pacific Blue), and then immediately 258 

acquired by FACS (BD LSRII). 259 

 260 

 261 

  262 
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RESULTS 263 

B clade HLA-B*57:01-KF11 responders have higher viral setpoints than non-responders 264 

Previous studies of B clade infected subjects using peptide-MHC class I tetramers have suggested 265 

that a detectable HLA-B*57:01 response is more frequently observed in progressors (including 266 

those with viral loads of >90,000) than in elite controllers/long-term non-progressors (2, 11). These 267 

studies however were not sufficiently powered to demonstrate a statistically significant result. We 268 

therefore started by comparing responses to KF11 in B clade infected, ART-naïve individuals 269 

expressing HLA-B*57:01 whose viral setpoints ranged from undetectable to 500,000 copies/ml (Fig 270 

1). Here the association between KF11 responders and high viral setpoint reaches statistical 271 

significance (p=0.02, Mann Whitney test). These findings are consistent with the earlier studies 272 

cited of B clade infected subjects expressing HLA-B*57:01, and provide the opposite result to that 273 

obtained in HLA-B*57:03-positive individuals infected with C clade virus (13), using the identical 274 

approach of measuring IFN-g elispot responses to KF11, where a response was associated with a 275 

>10-fold lower viral setpoint. Equivalent studies of KF11 responses in 17 HLA-B*57:03-positive 276 

subjects infected with B clade virus similarly showed substantially lower median viral loads in 277 

KF11 responders compared to non-responders (median viral load 1,629 versus 6,127 c/ml, 278 

respectively), although here this difference did not reach statistical significance (p=0.28, data not 279 

shown). 280 

  281 

Differential escape in the B*57:03-KF11 epitope in B-clade versus C-clade infection  282 

In order to evaluate further the potential differences between HLA-B*57:01 and HLA-B*57:03, we 283 

investigated a B clade infected, ART-naïve study cohort in Barbados where HLA-B*57:03 is highly 284 

prevalent. It has been noted in several other studies that HLA-B*57:03 is associated with immune 285 
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control of HIV in B clade and C clade infection (1-5). Consistent with these studies, HLA-B*57:03-286 

positive subjects in Barbados exhibited significantly lower median viral loads than HLA-B*57:03-287 

negative subjects (median 3,450 versus 13,350, p=0.015, Mann Whitney test) and significantly 288 

higher CD4+ counts (median 565 versus 398, p=0.003 Mann Whitney test) (Fig. 2).  289 

 290 

To determine the nature of any selection pressure imposed in the B clade virus through the HLA-291 

B*57:03 KF11 response, we analysed viral sequences in gag in the Barbados cohort in order to 292 

identify associations between HLA-B*57:03 and viral polymorphisms in the region of the KF11 293 

epitope. This revealed that HLA-B*57:03 expression was associated with the previously described 294 

escape mutations T242N, in the epitope TW10 (TSTLQEQIGW; Gag HXB2 240-249) (7, 39), and 295 

I147X, in the epitope ISW9 (ISPRTLNAW; Gag HXB2 147-155) (Table I) (40, 41). However, the 296 

intra-epitope escape mutations within KF11 (KAFSPEVIPMF; Gag HXB2 162-172), namely 297 

A163G and S165N, selected in approximately 70% of C-clade infected HLA-B*57:03-positive 298 

subjects (3, 14), were not associated with HLA-B*57:03 in this Barbadian study cohort (Table I-II).  299 

 300 

However, in this same Barbados cohort, we identified an HLA-B*57:03-associated viral 301 

polymorphism located at Gag HXB2 position 173, which immediately flanks the C-terminus of the 302 

KF11 epitope. This mutation has not been observed in association with HLA-B*57:03 in studies of 303 

C-clade infected cohorts, which in any case have Threonine as the consensus residue at position 173 304 

(14, 42, 43). The high frequency of selection of S173T by HLA-B*57:03-positive subjects (61% 305 

versus 24% in HLA-B*57:03-positive versus HLA-B*57:03-negative subjects) together with the 306 

lack of any selection of intra-epitope KF11 mutations led to the hypothesis that selection of S173T 307 
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in B-clade virus may mitigate against further selection of KF11 escape mutations A163G and/or 308 

S165N (Table II) (see below).  309 

 310 

We performed a further analysis using a phylogenetically-corrected method (12) to compare the 311 

impact of HLA-B*57:03 on the selection of Gag escape mutants in B-clade versus C-clade HIV, 312 

using data from the study cohorts in Barbados (B-clade) and in Gaborone, Botswana (C-clade). We 313 

found no statistical difference between odds of HLA-B*57:03-mediated escape in the two cohorts 314 

for T242N (p=0.82) or I147L (p=0.29). In contrast, we observed substantial clade differences for all 315 

three KF11 escape mutations: the strength of selection for A163G and S165N was significantly 316 

greater in the C clade cohort (p=0.006 and p=0.08, respectively), whereas 173T was only selected 317 

in the B clade cohort (p=0.0006). In fact, Gag-173T, the consensus in C-clade, arises at 318 

significantly lower frequency in HLA-B*57:03-positive subjects in Botswana (p=0.0062; discussed 319 

further below) (Table III). These data demonstrate clade-specific differences in the impact of HLA-320 

B*57:03 on Gag escape mutant selection, with differential effects at Gag-163, 165 and 173, within 321 

or immediately flanking the dominant KF11 epitope.   322 

 323 

Impact of S173T on recognition of virus-infected target cells and on viral setpoint  324 

The location of the HLA-B*57:03-associated mutation immediately downstream of the KF11 325 

epitope suggests that the S173T mutant reduces processing of the epitope. To test whether the 326 

HLA-B*57:03-associated S173T polymorphism reduces recognition of virus-infected target cells, 327 

CD4+ T cells from HLA-B*57:03+ healthy subjects were infected with NL43 HIV that was either 328 

wildtype, expressing Ser-173, or engineered to express the S173T viral polymorphism. Infected 329 

cells were incubated with HLA-B*57:03-KF11-specific CD8+ T-cells (>98% specific) and the level 330 
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of CD8+ T-cell activation monitored by CD107a and MIP1β expression. We observed that the 331 

S173T mutant indeed significantly reduced recognition by the KF11-specific CD8+ T cells (Fig 3, 332 

p=0.0038, Student’s t test). In the same assay, using CD8+ T-cells specific for the HLA-B*57:03-333 

restricted Pol-specific epitope IATESIVIW (‘IAW9’), no difference were observed in the level of 334 

stimulation by the two viruses on the HLA-B*57:03-restricted IAW9-specific CD8+ T cells (Fig 3). 335 

These data support the hypothesis that S173T specifically reduces presentation of the KF11 epitope 336 

by HLA-B*57:03. Furthermore, mismatched CD4+ T cells induced consistently low levels of 337 

stimulation confirming that activation of the KF11- and IAW9-specific CD8+ T cells was HLA-338 

B*57:03-dependent. 339 

 340 

We next examined the viral setpoints and CD4 counts in HLA-B*57:03-positive subjects with and 341 

without the S173T mutation. Viral loads in HLA-B*57:03-positive subjects with the B-clade 342 

wildtype, Serine at Gag-173, were more than 10-fold lower than in B*57:03-positive subjects with 343 

the S173T polymorphism (median viral load 520 versus 6,905 respectively; p=0.009 Mann Whitney 344 

test). Furthermore, 173S was associated with a substantially higher CD4 count in HLA-B*57:03-345 

positive subjects than 173T (median CD4 count 787 versus 375 respectively; p=0.036 Mann 346 

Whitney test) (Fig. 4). However no differences in median viral load or CD4 counts were observed 347 

in B*57:03-negative subjects with Serine versus Threonine at Gag-173 (median viral load 14,450 348 

versus 10,600 respectively; p=0.949 and median CD4 count 358 versus 374 respectively; p=0.522 349 

Mann Whitney test). These data together support the conclusion that HLA-B*57:03-KF11 350 

responses drive the selection of the S173T mutation in B clade infected individuals expressing 351 

HLA-B*57:03; and that this is an escape mutation in that it reduces recognition of virally infected 352 

targets. These findings are consistent with the hypothesis that this response contributes to HLA-353 
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B*57:03-associated control of HIV, since viral loads are significantly higher in those with the 354 

S173T escape mutation. 355 

 356 

S173T with A163G and S165N significantly reduces viral replicative capacity 357 

The observations above prompt the question: if A163G and S165N are escape mutations frequently 358 

selected in HLA-B*57:03-positive subjects infected with C clade virus, why are they not selected in 359 

HLA-B*57:03-positive subjects with B clade virus infection? To assess the functional significance 360 

of the HLA-B*57:03-associated S173T mutation and the possible impact of this polymorphism on 361 

the selection of A163G and S165N, the viral polymorphisms S173T, A163G, and S165N were 362 

introduced by site-directed mutagenesis into the B-clade backbone of NL43GFP. Infectious viral 363 

stocks were generated by transfecting MT4 T-cells with the relevant DNA constructs. H9, MT4 or 364 

Jurkat T cells were then infected and the rate of viral growth was determined by monitoring the 365 

percentage of GFP-infected cells over 14 days.  366 

 367 

Analysis of the rate of viral growth in MT4, H9 and Jurkat T-cells showed, first, that the S173T 368 

polymorphism had no significant effect on viral fitness in this in vitro system in any of these three 369 

cells lines used (Fig.5 and data not shown). We previously showed that the introduction of A163G 370 

or A163G/S165N into the NL43 backbone significantly reduced viral replicative capacity, with 371 

S165N acting as a partial compensatory mutant for A163G that also completely abrogated 372 

recognition of KF11 (14, 15). Here we observe that the introduction of either A163G or S165N into 373 

the NL43 backbone in combination with S173T also significantly reduces viral spread, but 374 

substantially more so than in the absence of S173T. Furthermore, the combination of S173T and 375 

both of the KF11 mutations, A163G and S165N, dramatically reduced viral spread even further, 376 
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indicating a significant cost to viral fitness of this combination of viral mutations in a B clade virus 377 

(Fig. 5). These data together suggest that the KF11 escape mutant S173T is more commonly 378 

selected in B clade infected subjects expressing HLA-B*57:03 because the cost to replicative 379 

capacity is negligible, and less than that resulting from A163G or S165N. Subsequent mutations in 380 

addition to S173T result in such a substantial reduction in replicative capacity, without any apparent 381 

amelioration from S165N to reduce these fitness costs, that these arise very rarely (Table II).  382 

 383 

As mentioned above, Gag-173T, the consensus in C-clade, arises at a significantly lower frequency 384 

in HLA-B*57:03-positive compared to HLA-B*57:03-negative subjects in Botswana (p=0.0062). A 385 

larger analysis of the KF11 epitope region of 1899 C-clade sequences confirmed that the presence 386 

of A163G, S165N or both in combination, was significantly associated with Serine at position 173 387 

and that this was the case both for HLA-B*57:03-positive and HLA-B*57:03-negative individuals 388 

(Fig 6). Thus, although 173T is consensus in C-clade, it appears unfavourable in the context of the 389 

KF11 intra-epitope escape mutations, supporting the findings in B-clade suggesting that this 390 

combination of mutations has a detrimental impact on viral fitness.  391 

 392 

  393 
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DISCUSSION 394 

HLA-B*57:01 and HLA-B*57:03 are the two most protective HLA molecules against HIV disease 395 

progression in both B and C clade infection (5). These molecules differ by only two amino acids 396 

(D114N and S116Y respectively), and the peptide binding motifs are almost indistinguishable (44, 397 

45). In chronic infection, the dominant HIV-specific CD8+ T cell response in subjects expressing 398 

HLA-B*57:01 or HLA-B*57:03 is to the Gag epitope KAFSPEVIPMF (‘KF11’, Gag HXB2 162-399 

172) (2, 10, 13). Studies of HLA-B*57:03-positive subjects infected with C clade virus indicate that 400 

this KF11 response makes an important contribution to immune control (3, 15), and contributes to 401 

the superiority of HLA-B*57:03 as a protective HLA class I molecule over the closely-related 402 

HLA-B*57:02 and HLA-B*58:01. (10). 403 

 404 

This study sets out to investigate the observations, first, that whilst the HLA-B*57:03-KF11 405 

response is associated with significantly lower viral setpoints in C clade infection (13), studies of 406 

HLA-B*57:01-KF11 responses had suggested the opposite in B clade infected indiviuduals (2, 11); 407 

and, second, whereas the HLA-B*57:03-KF11 response frequently drives escape mutations within 408 

KF11 in C clade infection (A163G and S165N) (8), these are not selected in response to HLA-409 

B*57:01 responses in B clade infection (12).  410 

 411 

We first confirmed a statistically significant association between response to the KF11 epitope in B 412 

clade infected subjects expressing HLA-B*57:01 and a >1 log higher viral load. This result arose 413 

from the identical assays that were used in the studies that showed a KF11 response was a 414 

associated with a >1 log lower viral load in C clade infected subjects expressing HLA-B*57:03 415 

(13). We next showed that HLA-B*57:03 has a similar impact in B and C clade infection in terms 416 
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of the escape mutations selected in the Gag epitopes ISW9 and TW10, but a differential impact in 417 

the KF11 epitope. The S173T mutation selected in B clade infection reduces recognition of virus-418 

infected targets and is associated with a >1 log increase in viral setpoint. This is consistent with 419 

studies in C clade infection (15) suggesting that this HLA-B*57:03 KF11 response contributes to 420 

HLA-B*57:03-associated immune control of HIV infection. The clade specific differences in the 421 

selection of KF11-driven escape mutants observed in Barbados (B clade infected cohort) and 422 

Botswana (C clade infected cohort) were corroborated in analyses of larger datasets. 423 

 424 

The position of S173T one residue downstream (P1’) of the KF11 epitope suggests that it may be a 425 

processing mutation since this residue would be involved in the cleavage site of the proteasome 426 

(46). Previous studies of peptide cleavage motifs have suggested that the constitutive- and immuno-427 

proteasome have a strong preference for Alanine at P1’ but prefer Serine over Threonine; thus the 428 

mutation S173T could affect efficient cleavage of the C-terminal end of the KF11 epitope by the 429 

proteasome (46).  430 

 431 

We show that the HLA-B*57:03-associated S173T mutation effectively precludes further selection 432 

of the KF11 intra-epitope viral mutations, A163G and S165N, since the combination of these three 433 

mutations in a clade B backbone results in a virus with severely reduced replicative capacity. 434 

Indeed, the close proximity of the amino acid positions 173, 163 and 165 between helix 1 and helix 435 

2 of the Gag p24 structure, suggests that structural constraints prevent selection of A163G and 436 

S165N if S173T has already been selected. Previous work has shown that, using a B-clade 437 

backbone, and in the presence of S173, the mutation A163G reduces replicative capacity, but that 438 

the further addition of S165N, as observed in vivo, partially restores replicative capacity (14, 47). 439 
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This fits with the order of selection of A163G and S165N, with S165N apparently always arising 440 

subsequent to A163G (14). However in B clade infection it appears that the selection of S173T 441 

prevents the selection of further mutants within the epitope because the fitness cost is too high. 442 

S173T appears to be the preferred choice of viral escape from the KF11-specific response since it 443 

has minimal effect on viral fitness.  444 

Our inference from the data described above and from previous studies (23) indicating that the 445 

HLA-B*57:03-KF11 response contributes to immune control of B and C clade HIV infection. The 446 

reduced recognition of S173T-virus-infected cells by KF11-specific CTL together with the lack of 447 

cost to viral replicative capacity resulting from S173T is consistent with the observation that viral 448 

loads are higher and CD4 counts lower in B clade infected subjects expressing HLA-B*57:03. 449 

 450 

In view of the substantial reduction in viral replicative capacity resulting from the 451 

A163G/S165N/S173T combination in B clade infection, it is perhaps surprising to observe the 452 

selection of A163G/S165N at high frequency in HLA-B*57:03-positive subjects infected with C 453 

clade virus in which the vast majority of sequences carry Thr at Gag-173. It may be inferred from 454 

this that the presence of consensus 173-Thr in the context of C clade Gag does not have the same 455 

prohibitive effect on viral fitness, as it does not prevent the selection of A163G and S165N. 456 

Nevertheless, in C clade infection, both in HLA-B*57:03-positive and HLA-B*57:03-negative 457 

individuals, A163G/S165N are significantly associated with Ser at Gag-173 (Fig. 6), as opposed to 458 

the consensus Thr at this position, suggesting that the combination of A163G/S165N/S173T is not 459 

favoured in either B or C clade infection.  460 

 461 
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Gag-173 has been well-studied in relation to HLA-B*27, another protective HLA molecule, 462 

because of the S173A mutation that accompanies the R264K escape variant within the dominant 463 

HLA-B*27-restricted epitope KRWIILGLNK (KK10) (48-50). It is noteworthy that in C clade 464 

infection, R264K escape in HLA-B*27-positive subjects is typically accompanied by compensatory 465 

mutations not at Gag-173, but at S165N (Brener et al, in preparation). These data underline the tight 466 

constraints on amino acid substitutions in the capsid protein, the interdependence of residues at 467 

certain key positions in the structure, including Gag-163, Gag-165, and Gag-173, and therefore the 468 

impact that clade can have on the escape options for the virus. 469 

 470 

These data help to explain why HLA-B*57:03 is not associated with the ‘usual’ KF11 intra-epitope 471 

mutations A163G/S165N in clade B, but they do not explain why HLA-B*57:01 is not associated 472 

with either the S173T flanking mutation, nor with any KF11 intra-epitope mutations. Previous 473 

studies have suggested that TCR usage for the HLA-B*57:01-KF11 response allows recognition of 474 

the KF11 variants (15), but these initial TCR studies indicating conservation of a ‘public’ HLA-475 

B*57:01-KF11 TCR have not been borne out by subsequent studies (11, 18). One possible 476 

explanation is that the potency of the HLA-B*57:01-KF11 response is so great that a moderate 477 

reduction in processed epitope would not affect killing sufficiently to be selected, however 478 

preliminary data suggests that HLA-B*57:03 response is, if anything, the more potent. Further 479 

studies with a large number of KF11-specific clones would be needed to establish whether clear-cut 480 

differences between the responses restricted by HLA-B*57:03 and HLA-B*57:01 exist in terms of 481 

potency, and the relevance of this to viral escape patterns.  A recent study comparing the impact of 482 

individual HLA class I molecules on immune control (viral load <2000 copies/ml) versus non-483 

control (VL>10,000 copies/ml) of B clade infection showed the identical odds ratio for protection 484 
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via HLA-B*57:01 in a European American cohort as via HLA-B*57:03 in an African American 485 

cohort (6). 486 

 487 

These studies therefore provide an explanation for the distinct clade-specific selection of escape 488 

mutants by the HLA-B*57:03-KF11 response but do not resolve the question of why the HLA-489 

B*57:01-KF11 response does not select escape mutants. Insufficient studies have been undertaken 490 

in C clade infected subjects who express HLA-B*57:01 to be certain of whether this response 491 

selects no escape mutants in C clade as well as in B clade infection. The absence of the KF11 492 

response in elite controllers with HLA-B*57:01 does not necessarily mean that these responses 493 

have not contributed to immune control in these subjects, since it is possible that the period of 494 

detectability may be transient. It is clear that many responses that are undetectable in elite 495 

controllers can become detectable after peptide stimulation (51). However, if the KF11-specific 496 

CTL response contributes to immune control of HIV in HLA-B*57:01-positive subjects in B clade 497 

infection, it would be unique in failing to select escape mutants in the process and the mechanism 498 

would be invaluable for directing successful vaccine targets. 499 

 500 
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FIGURE LEGENDS 798 

Figure 1. Median Viral of KF11 responders versus nonresponders in B clade-infected 799 

individuals expressing HLA-B*57:01 800 

PBMCs from B clade-infected, ART-naïve individuals expressing HLA-B*57:01 were analysed by 801 

IFN-γ ELISPOT assay for responses to the KF11 epitope. Viral loads of responders and 802 

nonresponders were compared. Mann-Whitney U tests were performed. 803 

 804 

Figure 2. Median Viral Load and CD4 count of B*57:03-positive versus B*57:03-negative 805 

subjects in Barbados cohort (B-clade). 806 

B*57:03-positive subjects were compared to B*57:03-negative subjects for (A) Viral Load and (B) 807 

CD4 count. Median and 5-95 percentiles are shown. Mann-Whitney U tests were performed. 808 

 809 

Figure 3.Effect of viral mutation S173T on epitope recognition of HIV-infected cells by KF11-810 

specific CD8+ T-cells 811 

Ex vivo CD4+ T-cells from B*57:03+ and B*57:03- donors were infected with wildtype NL43 virus 812 

or NL43 virus harbouring the S173T viral mutation. Infected CD4+ T-cells were then cultured with 813 

KF11-specific CD8+ T-cells (A) or IAW9-specific CD8+ T-cells (B) and the level of CD8+ T-cell 814 

activation monitored by expression of CD107 and Mip1β. Data from both experiments were 815 

standardized relative to % recognition by wildtype virus (C). Experiments were performed in 816 

triplicate, mean and SD are shown. Student’s t test were performed. p value summary is as follows; 817 

p<0.01 *, p<0.001 **, p<0.0001 ***.  818 

 819 
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Figure 4. Median Viral Load and CD4 count of B*57:03-positive HIV-infected subjects with 820 

viral polymorphisms S173 and T173. 821 

Proviral DNA sequences from B*57:03-positive subjects from the Barbados cohort (B-clade) were 822 

analysed for the presence of the viral polymorphisms S173 and T173. Viral Loads (A) and CD4 823 

counts (B) were compared. Median and 5-95 percentiles are shown. Mann-Whitney t tests were 824 

performed. 825 

 826 

Figure 5. Viral replication capacity of NL43GFP virus with multiple B*57:03-associated viral 827 

mutations 828 

NL43 GFP virus was engineered to contain combinations of the viral mutations 173T, 163G and 829 

165N. MT4 cells were infected and monitored for GFP-positive cells over 14 days (A). The slope of 830 

the curve was calculated from the exponential growth phase using the LOGEST function and 831 

converted to natural logs (B). Experiments were performed in triplicate and mean and SD are 832 

shown. Dunnett’s multiple comparison tests were performed. p value summary is as follows; 833 

p<0.01 *, p<0.001 **, p<0.0001 ***. 834 

 835 

Figure 6. Frequency of KF11 mutations (A163G and S165N) and S173T in C-clade gag 836 

sequences (n=1899) 837 

HIV-1 p24 gag sequences (n=1899) were analysed for the presence of the KF11 mutations, A163G 838 

and S165N, in the presence of 173T and 173S. B*57:03-positive subjects (A) and B*57-negative 839 

subjects (B) were analysed. Fisher’s exact tests were performed. 840 

 841 

 842 



 34

 843 

 844 

Table I. Summary of HLA-B*57:03-associated viral mutations in Barbados cohort (n=125). 845 

A phylogenetically-corrected method was used to determine the location of HLA-B*57:03-846 

associated viral mutations in proviral gag p17 and p24. Polymorphism location and HXB2 number 847 

are shown. A q value cut-off of q<0.2 was used. 848 

 849 

Table II. Summary of amino acid polymorphisms in the KF11 epitope region (HXB2 162-173) 850 

in Barbados cohort (n=125). 851 

Proviral sequences were grouped into those from HLA-B*57:03-positive and B*57:03-negative 852 

donors. A summary of all HIV-1 polymorphisms is shown for HXB2 region 162-173. 853 

 854 

Table III Summary of PhyloDOR of B*57:03-associated mutations located in HIV-1 p24 gag 855 

between Barbados [BB] and Botswana [BW] cohorts. 856 

Proviral sequences from Barbados (n=125) and Botswana (n=322) were analysed from HLA-857 

B*57:03-positive and -B*57:03-negative individuals for the presence of B*57:03-associated viral 858 

mutations located in known viral epitopes in p24 gag. HXB2 position of mutations is shown. p 859 

values were calculated from phylogenetically-corrected Odds ratios (PhyloDOR) using an online 860 

tool (35). 861 
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