
Investigation of Single Fiber Composite residual

strength pre and post fragmentation: Using

Progressive Damage Analysis and HFGMC

framework

Mr. Pankaj Pandya

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Mechanical and Aerospace Engineering

July 2017







Acknowledgements

A very special acknowledgement to the Department of Mechanical and Aerospace Engineering, IIT

Hyderabad and the Ministry of Human Resource Development (MHRD) for their academic and

financial support in conducting my research.

I express my sincere gratitude towards Dr. Viswanath Chinthapenta for his guidance in the time of

research and thesis writing. Many thanks to my M.Tech thesis evaluation committee member, Dr.

Seetha N (Chairman) and Dr. Prashant Saxsena (Examiner), for their astute remarks.

I thank Ms. Mohini L. Kale for her assistance in the development of source code for progressive

damage analysis. I wish to thank Mr. Madhu Pandicheri for his help in availing several computa-

tional resources used in conducting my research.

I would also like to show my gratitude towards the members of Micro-Mechanics Lab, IIT Hyderabad

who assisted me in the tough time of source code debugging.

Last, but by no means the least, I thank my family members for their endless moral support and

being extremely helpful in the time of need.

iv



Dedication

To my friends

v



Abstract

Single fiber composites (SFC) provides an insight of damage behavior in the fiber reinforced polymer

(FRP). Study of stress redistribution after the fiber breakage in the SFC reveals the development

of different damage modes that occur in FRPs. Two separate analysis are presented in the current

work. The first one being the effective property calculation of multi fiber composite and the second

is the analysis of the fiber breakage in the SFC under tensile loading in the direction of the fiber.

Analysis of multi fiber composite is carried out using the representative volume element of SFC (SFC-

RVE) with periodic boundary conditions. High Fidelity Generalized Method of Cells (HFGMC) has

been used for the stress analysis to capture the influence of the length scales in both SFC-RVE

and SFC fiber fragmentation test. Progressive damage in the SFC-RVE is detected using the Multi-

Continuum Theory (MCT). The choice of MCT to detect damage is purely based on the convenience

to obtain the single damage metric in the SFC-RVE analysis. In order to detect the damage of fiber

in SFC with fiber fragmentation test, a maximum stress criterion is employed. Further, the use of

sudden material property degradation rule is common to both SFC-RVE and SFC fiber fragmentation

test. It assists in degrading the property of damaged subcells. Above three steps constitutes the

progressive damage analysis (PDA) and it is performed numerically in the FORTRAN language.

The analysis of the SFC-RVE determines the average properties of the multi-fiber composite. In the

result of SFC fiber fragmentation test, the evolution of matrix crack, fiber-matrix interface failure,

stress redistribution around the fiber failure is discussed. Realizing stress interactions along the

fiber-matrix interface provides and insight of load transfer from the matrix to the fiber. The effect

of fiber fragment length on the strength of fiber is also presented.
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Chapter 1

Introduction to composite

materials and their

micro-mechanical analysis

1.1 Composite materials

Composite materials are known for their superior mechanical properties. They have a high strength

to weight ratio, fatigue life, high stiffness, and corrosion and wear resistance. Composites are the

multiphase structure whose constituents are insoluble in each other. It consists of reinforcing phase

and the supporting medium. The primary function of reinforcing phase is to take the stress when

the composite is loaded. Supporting medium has the function to transfer the external load to the

reinforcing phase. Carbon fiber reinforced polymer (CFRP) is one variant of a composite in which

the epoxy matrix transfers the load to the carbon fibers. Other examples of composites include

ceramic matrix reinforced with carbon matrix.

Composites are classified in three categories [1]. These are fibrous (Figs. 1.1a and 1.1b), laminated

(Fig. 1.1c) and particulate composites (Fig. 1.1d). Single fiber composites (SFC) belong to the

unidirectional fibrous class of composites. SFC has been introduced in Section 1.2. Its complete

exposition is given in Chapter 4.

Extensive use of composites, having improved properties, has made their analysis essential [2]. The

analysis of diversely tailored composites is required to predict its behavior under loading. Multi-scale

analysis technique helps in predicting the effective response of composites at a global scale while

incorporating original microstructure in the micro level analysis. The micromechanical approach

also helps in predicting the local behavior of composites at the micro level [3, 4].

1.1.1 Multi-scale analysis of composites

Analysis of a composite material is performed at a global, meso and micro level [5]. At the micro level,

composites are composed of its constituents, namely – fiber/inclusions, matrix and interface. At the

meso level, micro level constituents combine to form laminae. Furthermore, laminates combine

at a global scale to form composite structures. At a micro level, the analysis is performed with
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(a) Continuous fiber (b) Short fiber

(c) Laminated

(d) Particulate

Figure 1.1: Classification of composites

the help of micromechanics which assists in understanding load transfer interactions between the

composite’s constituent. It provides insight of failure mechanisms in fibers/matrix/interfaces and

also gives the information on strength, fatigue life and toughness. However, micromechanics cannot

be used at the laminate (meso) level or the structural (global) level due to computational limitations.

Consequently, macromechanics is used at the laminate level and its basis is homogenization. Here

properties of laminates are averaged between its constituents. Macromechanical techniques are

further developed to understand stacks of laminates. Structural analysis is performed at the global

scale for understanding overall behavior of composite structures. Localization and homogenization

techniques help in linking constituent and structural level.

1.2 Single Fiber composites

Properties of composites significantly depend on the fiber from which it has been manufactured.

There are several techniques to calculate the effective properties of fiber in the composite. One way

of quantitatively characterizing the fiber in a composite is to conduct tensile testing of single fibers.

Experimental work had been performed in this direction by Kumar et al. [6]. Apart from this SFC

has been widely used for the quantitative characterization of microscopic damages and interfacial

properties in the composites [7]. Fig. 1.2 shows the outline diagram of single fiber embedded in the

matrix under tensile loading.

1.2.1 Analysis of Single Fiber Composite

In the present work, micromechanical analysis has been performed to analyze the SFC with fiber

breakages in it. To this end, localization has been performed to carry out micromechanical analysis
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Figure 1.2: Single fiber composite under tensile loading

of fiber breakages in SFC. Further, homogenization is performed to evaluate global response of SFC.

Fiber is the main load bearing member in a unidirectional fiber composite under tensile loading. It

causes fiber to break into small fragments until damage saturation is achieved. Damage saturation

is the state when each fiber has its length less than or equal to the critical length lc [8, 9]. Critical

length lc is the minimum length of the fiber fragment, such that the stresses in it are just sufficient

to fracture the fiber fragment. Eq. (1.1) gives the expression for critical length. Based on the shear

lag model critical length has been derived in [10, 11]. The complete formulation of critical length is

present in the Section 4.3.1. Here σu is the ultimate strength of fiber and τm is the shear stress at

the fiber-matrix interface.

lc =
σud

2τm
(1.1)

Fig. 1.3 helps in understanding stresses present in fiber fragments. Fiber fragments having the

Figure 1.3: Schematic of SFC with fiber fragmentation

length a can undergo further fracture as it has a constant stress over its length. On the other hand,

fragments of the length b shorter than critical length lc are having stresses less than the ultimate

strength of the fiber. It cannot undergo any further breakage since stresses in it never reach to

ultimate fracture stress. The full description of stress development in fiber fragments is available in

literature[9].

1.2.2 Types of failure in SFC

Damage in SFC is a complex phenomenon as it consists of multiphase structures. Unidirectional

fiber composites are formed with the help of the high strength multiple fibers embedded in the

matrix. Fibers are the primary load carrying members while the matrix helps in the load transfer to
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the fiber. Thus the composite fails with the multiple fiber failures. Other failure modes undergone

by composites are matrix cracking, delamination, fiber-matrix debonding and fiber pull outs.

Figure 1.4: Schematic of SFC with fiber fragmentation

Fig. 1.4 show different failure modes that occur in SFC. These are fiber rupture, matrix crack and the

fiber matrix debond. The work performed on the analysis of SFC assists in understanding damage

modes shown in Fig. 1.4. Besides, stress redistribution and load transfer are also explained based

on the analysis of SFC.

1.3 Motivation

Composites find their extensive usage in aeronautics, astronautics, military defense and transporta-

tion due to their superior mechanical properties. Analysis of composite materials is essential to

ensure its reliability as a structural material. SFC fragmentation test provides important correla-

tion with structural composites. The correlation is present as the SFC display damage mechanisms

that are prevalent in multi-fiber composite which is used as structural components [12].

Experimental findings provide essential information on the damage modes that are present in the

SFC under tensile loading. Experimental analyses are present in the literature [6, 13]. Experimental

procedures lack flexibility as compared to computational methods. In order to address this shortcom-

ing of the experimental procedure, computational methods are developed. The existing progressive

damage analysis (PDA) framework allows one to vary material and geometrical parameters such

that different composites can be analyzed.

1.4 Objectives

Following are the objectives that have been met in the present work.

• To simulate experimental testing conditions on single fiber composite (SFC)

• To understand the stress redistribution in composites with fiber fragmentation

• To capture stresses responsible for fiber matrix debond

• To analyze the increase in the strength of the fiber with reduction in its length
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1.5 Thesis layout

The work presented in the current thesis has been divided into six chapters. Chapter 1 comprises of

the introduction about the composites, its constituents, and SFC. Methodologies used in the analysis

of SFC has been introduced. Chapter 2 gives the detailed understanding of HFGMC stress analysis

method. Effective property calculations has been described at the end of this chapter. Chapter 3

talks about the PDA of SFC. All the three major parts of the PDA are described in this chapter.

Derivations pertaining to damage detection module have also been discussed in Chapter 3. Detailed

analysis of SFC is presented in the Chapter 4. Besides, the geometrical and material parameter is

described towards the end of Chapter 4. Results of the analysis of SFC are discussed in Chapter 5.

The work done is concluded in Chapter 6.
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Chapter 2

High Fidelity Generalized Method

of Cells

2.1 Introduction

High fidelity generalized method of cell (HFGMC) methodology helps in conducting micromechani-

cal stress analysis of inhomogeneous materials. HFGMC is generally used in multi-scale modeling.

It predicts average and local strain response based on the constituent properties of a given structure.

HFGMC is used for stress analysis since it can adequately capture the local stress transfer mecha-

nism between the fiber and the matrix in composites. Further, it allows the isoparametric subcell

generation, thus making it possible to discretize the structure in arbitrary quadrilateral shapes other

than squares and rectangles. HFGMC employs the quadratic expression for displacement in the term

of local coordinates placed at the centroid of the subcell. Such inclusion of higher order terms helps

in conducting transverse shear stress analysis. For understanding the basics of HFGMC concepts,

it is necessary to go through the MOC [3] and GMC [14] literature.

HFGMC is the third stage evolution of the technique that works on the subcell discretization of

repeating unit cell (RUC). The first two being Method of Cells (MOC) and Generalized Method of

Cells (GMC) respectively. The displacement equation for the center of the subcell in the HFGMC

is obtained from the MOC. The main difference between HFGMC and MOC is that the former uses

up to second order term in its displacement equation while the later uses the first order term. The

inclusion of higher order terms in displacement equation helps in capturing the stress field gradients.

These stress field gradients are predominantly found at the interface of two different phases of the

microstructure [15]. For MOC the displacement equation at the center of a subcell is given by the

Eq. (2.1).

uβγi = wβγi (x) + yβ2φ
βγ
i + yγ3ψ

βγ
i i = 1, 2, 3 (2.1)

where wβγi (x) is a displacement corresponding to the center of a subcell, yβ2 and yγ3 represents local

coordinates within a subcell. Here (βγ) represents a particular subcell. The coordinates yβ2 and yγ3
are related to the displacement uβγi through the φβγi and ψβγi functions respectively. Using MOC

approach, one can perform the analysis of composite with elastic fiber and inelastic matrix. It
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provides an overall effective constitutive response, calculations of coefficients of thermal expansion,

thermal conductivities and specific heat of composite materials. MOC has proved to be an effective

tool to calculate average properties of composites but there are several limitations associated with

this approach:

• Since the discretization of RUC is limited to four subcells, composites with complex fiber

shapes cannot be analyzed.

• It is not possible to analyze the composite with the interface in between matrix and fiber as

there are insufficient number of subcells to accommodate the interface material for analysis.

In order to address the limitations of MOC, Generalized Method of Cells (GMC) was derived. In the

GMC methodology, RUC can be divided into an arbitrary number of subcells. The generalization of

the MOC method extends its capability to analyze composites having the variation in fiber distance

and composites having an interface between fiber and matrix. Since in the GMC method, RUC

can be divided into an arbitrary number of subcells, it provides a more accurate result for complex

structures when compared with the MOC analysis results. GMC method also allows the analysis of

structures having three-dimensional periodicity, thus making it possible to analyze composites with

discontinuous fibers, foam structures and woven composite structures. Non-linear material models

can also be solved with GMC method.

The formulation of GMC method is similar to the MOC method. The first order formulation within

the subcell is given below in the Eq. (2.2):

uαβγi = wαβγi (x) + yα1 χ
αβγ
i + yβ2φ

αβγ
i + yγ3ψ

αβγ
i i = 1, 2, 3 (2.2)

where wαβγi (x) represents the displacement of the center of subcell. Note that here (x) is a vector

and it represents the displacement of the center of subcell with respect to the origin of coordinate

system defined globally (x1,x2,x3). The coordinate yα1 , yβ2 and yγ3 is corresponding to the local

coordinate system within the subcell. χαβγ , φαβγ and ψαβγ are the weights to characterize the

linear displacement within the subcell with respect to the local coordinate system.

GMC method overcomes the limitation of MOC. In GMC, RUC is discretized in an arbitrary fash-

ion to capture the complex microstructure present in a composite. However, the main drawback of

GMC is the lack in capturing shear coupling. Aboudi et al. [16] have shown that the GMC method

is unable to realize the transverse shear stress when the composite is loaded with global transverse

strain. In order to address this problem, second order terms in the local coordinate are included in

the displacement formulation of HFGMC method by Aboudi et al. [16].

Figure 2.1 shows the schematic multiscale modeling of HFGMC method. From the figure, it can

be seen that:

• The structure at a global scale (Fig. 2.1(a)) is divided into the number of unit cells. If the

repetition of any single unit cell in the two or three dimension space produces the same global

structure, it is considered as a repeating unit cell (RUC). HFGMC can also be extended for

analysis the nonrepetitive unit cell in which the entire domain is discretized in the subcells.

• RUC, identified in the Fig. 2.1(b), are further divided into Nβ ×Nγ subcells. The dimension

9



Figure 2.1: Multi-scale modeling in HFGMC analysis

of the RUC is taken H as a height, and L as a length and x2 and x3 is a global coordinate

system.

• Each subcell has a dimension of hβ and lγ . The local coordinate system (yβ2 , y
γ
3 ) is placed in

the center of the subcell as shown in Fig. 2.1(c).

In the present work single fiber composite is analyzed in two dimension with the HFGMC formu-

lation. However several other application of HFGMC are reported in the literature by Haj-Ali &

Aboudi [17, 18].

The novelty of the present work lies in using the progressive damage analysis (PDA) coupled with

the HFGMC framework. Re-equilibrium is required after each degradation and the analysis is highly

non linear in nature. Aboudi et al [16] have only focused on the material non linearity and not on

the PDA where the non linearity comes due to the degradation in the material properties. Greater

details on the PDA can be found in Chapter 3.

2.2 HFGMC formulation

The detailed discussion on the HFGMC methodology is available in Aboudi et al [16]. For the

completeness of the work, the HFGMC formulation is presented in the subsequent paragraphs to lay

the foundation of PDA which is discussed in the Chapter 3.

2.2.1 Displacement vector in HFGMC framework

The basic displacement equation used in the HFGMC framework is derived from the expansion of

the Eq. (2.3).

uβγ = ε̄.X +

M∑
m=0

N∑
n=0

w(mn)Pm (r)Pn (s) (2.3)
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In Eq. (2.3), ε̄ is the global externally applied strain, Pm (r) and Pn (s) are the Legendre polynomials,

M and N are the maximum orders required in the displacement polynimials. For the HFGMC for-

mulation, M and N are taken to be equal to 2 each such that the displacement equation is quadratic

in the coordinate r and s which are uniform parametric coordinates. w(mn) is the coefficient variable

vector. The standard complete expansion of the Eq. (2.3) gives the Eq. (2.4).

uβγ = ε̄.X + w(00) + rw(10) + sw(01) + rsw(11) +
1

2
w(20)

(
3r2 − 1

)
+

1

2
w(02)

(
3s2 − 1

)
(2.4)

The detailed expansion of the Eq. (2.3) is given in appendix A.

It is assumed that the product between the two Legendre Polynomial in the Eq. (2.3) is a dot product.

When the orthogonal discretization of RUC is used, the term w11 goes to zero as it involves the

dot product of two perpendicular vectors. Thus the bilinear term y2y3w(11) does not exist in the

incomplete displacement formulation of HFGMC with orthogonal discretization of RUC. Hence the

displacement equation of the subcell in HFGMC methodology is given as:

uβγ = ε̄.X + wβγ
(00) + yβ2 wβγ

(10) + yγ3wβγ
(01) +

1

2

(
3yβ22 −

h2β
4

)
wβγ

(20) +
1

2

(
3yγ23 −

l2γ
4

)
wβγ

(02) (2.5)

where yβ2 and yγ3 are the local coordinate axes, centered at the center of a subcell. hβ and lγ are the

height and the width of the subcell respectively (see Figure 2.1(c)).

For two different discretization illustrated in Fig. 2.2, displacement Eqs. (2.4) and (2.5) are differ-

Figure 2.2: Multi-scale modeling in HFGMC analysis

ent. However in the current framework the discretization of single fiber composite is orthogonal in

nature (similar to Fig. 2.2(a)). Hence Eq. (2.5) is followed. It is same as Eq. (2.4). By doing so, the

degrees of freedom are limited to 15 as compared to 18. Thus less computation is required for less

number of unknowns.

In Sections 2.2.2–2.2.8, derivations are performed to calculate the unknown displacement microvari-

able w(mn).

2.2.2 Strain vector at each subcell

The average strain vector ε̄βγ is written in the Voigt notation [1] in the equation given below:

ε̄βγ = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)
βγ

(2.6)
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The finite strain tensor is given as:

εij =
1

2
(ui,j + uj,i + uk,iuk,j) (2.7)

In the HFGMC analysis, small strain assumption is made [19] such that it can be derived from

displacement Eq. (2.5) with help the of differentials given below:

εij =
1

2
(ui,j + uj,i) (2.8)

Above strain term can be expanded for all the six strain components. Strain terms comes out to be:

εβγ = ε̄+ p(10)w
βγ
(10) + p(01)w

βγ
(01) + p(20)w

βγ
(20)y2

β + p(02)w
βγ
(02)y3

γ (2.9)

where,

p(01) =



0 0 0

0 0 0

0 0 1

0 0 0

1 0 0

0 1 0


p(10) =



0 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 0 1


(2.10)

also

p(20) = 3p(10) p(02) = 3p(01) (2.11)

In Eq. (2.9), ε̄ is the global externally applied strain.

2.2.3 Average strain

The average strain in HFGMC analysis is derived from the Eq. (2.9) itself. The linear terms

p(20)w
βγ
(20)y2

β and p(02)w
βγ
(02)y3

γ are zero in the average sense about the center of the subcell. Thus

the average strain equation becomes:

ε̄βγ = ε̄+ p(01)w
βγ
(01) + p(10)w

βγ
(10) (2.12)

In the Eq. (2.12) ε̄ refers to average strain that has been applied externally. The Eq. (2.12) is

expressed in incremental form, that is used in the numerical implementation of HFGMC analysis.

Strain influence matrix Bβγ is taken out of the expression.

∆ε̄βγ ≡ Bβγ∆ε̄ =
[
I + P(10)D̂

βγ

(10) + P(01)D̂
βγ

(01)

]
∆ε̄ (2.13)

where I is the identity matrix, D̂
βγ

(01)∆ε̄ = wβγ
(01) and D̂

βγ

(10)∆ε̄ = wβγ
(10)

12



2.2.4 Average stress

The expression of stress is assumed to follow linear expansion in the local coordinate system [16].

Stress vector is defined in the Eq. (2.14) .

σβγ = σ̄βγ + σβγ(10)y
β
2 + σβγ(01)y

γ
3 (2.14)

Where σ̄βγ is the average stress in the cell βγ and the stress per unit length σβγ(mn) can be found out

using the total stresses that are determined at the stress integration points (see Fig. 2.3).

σβγ(10) =
1

hβ
(σβγ1 − σβγ3) (2.15)

σβγ(01) =
1

lγ
(σβγ2 − σβγ4) (2.16)

The value of stress per unit length σβγ(mn), can also be calculated with the help of stress moments,

Figure 2.3: Stress integration at subcell interface

but the above form (Eqs. (2.15) and (2.16)) is preferred for easy numerical implementation.

2.2.5 Equilibrium equation

An equilibrium equation can be written as ∇.σ = 0. For static analysis the dynamic terms involved

in the equilibrium equations are neglected [20]. For HFGMC analysis, the equilibrium equation is

written in the matrix form as shown in the Eq. (2.17) below:

r2σ
βγ
(10) + r3σ

βγ
(01) = 0 (2.17)

In the Eq. (2.17) r2 = pT10 and r3 = pT01. Here T represents transpose.
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2.2.6 Incremental form of constitutive relation

The incremental form of the constitutive relation, for the material available in the subcell (βγ), is

given by the equation:

∆σβγ = Cβγ∆εβγ (2.18)

Cβγ is selected considering linear or nonlinear behavior of the material present in the subcell. The

incremental form of the stress in Eq. (2.14) is given as:

∆σβγ = ∆σ̄βγ + ∆σβγ(10)y
(β)
2 + ∆σβγ(01)y

(γ)
3 (2.19)

Pre-multiplying Cβγ on both the sides of the incremental form of the Eq. (2.9), following equation

is obtained:

Cβγ∆εβγ =

Cβγ∆ε̄+ Cβγp(10)∆wβγ
(10)+

Cβγp(01)∆wβγ
(01) + Cβγp(20)∆wβγ

(20)y2
β + Cβγp(02)∆wβγ

(02)y3
γ (2.20)

As the L.H.S of the Eqs. (2.19) and (2.20) are same, their R.H.S are be compared to give the

incremental form of stresses shown in Eq. (2.21).

∆σ̄βγ = Cβγ∆ε̄+ Cβγp(01)∆wβγ
(01) + Cβγp(10)∆wβγ

(10)

∆σβγ(10) = Cβγp(20)∆wβγ
(20)

∆σβγ(01) = Cβγp(02)∆wβγ
(02)

(2.21)

Eq. (2.17) can be written in incremental form as:

r2C
βγp(20)∆wβγ

(20) + r3C
βγp(02)∆wβγ

(02) = 0 (2.22)

In the compact form, the increment form of the equilibrium equation is thus derived as:

Qβγ2(20)∆wβγ
(20) +Qβγ3(02)∆wβγ

(02) = 0 (2.23)

where Qβγi(mn) ≡ riC
βγp(mn) for (mn) 6= (00) and Qβγi(00) ≡ riC

βγ

2.2.7 Traction and displacement continuity

To enforce the displacement and the traction continuity between the subcells, Eqs. (2.24)–(2.27)

are presented. These continuity equations are defined along the interface between two neighboring

subcells as follows:

For the Eqs. (2.24) and (2.25), the continuity equations for displacement and continuity are defined

on the boundary with normal in y3 direction.

∫ hβ
2

−hβ
2

[
uβγ |

y
(γ)
3 =

lγ
2

− u(βγ1)|
y
(γ1)
3 =

lγ1
2

]
dy

(β)
2 = 0 (2.24)
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∫ hβ
2

−hβ
2

[
r3σ

(βγ)|
y
(γ)
3 =− lγ2

− r3σ(βγ1)|
y
(γ1)
3 =− lγ12

]
dy

(β)
2 = 0 (2.25)

For the Eqs. (2.26) and (2.27), the continuity equations for displacement and continuity are defined

on the boundary with normal in y2 direction. For directions y2 and y3, see Fig. 2.1(c).

∫ lγ
2

−lγ
2

[
uβγ |

y
(β)
2 =

hβ
2

− u(β1γ)|
y
(β1)
2 =

hβ1
2

]
dy

(γ)
3 = 0 (2.26)

∫ lγ
2

−lγ
2

[
r2σ

(βγ)|
y
(β)
2 =−

hβ
2

− r2σ(β1γ)|
y
(β1)
2 =−

hβ1
2

]
dy

(γ)
3 = 0 (2.27)

Above equations are further simplified after putting the value of displacement and traction in the

incremental form. The result yields following four equations.[
∆w

(βγ)
(00) +

lγ
2

∆w
(βγ)
(01) +

l2γ
4

∆w
(βγ)
(02)

]
−

[
∆w

(βγ1)
(00) −

lγ1
2

∆w
(βγ1)
(01) +

l2γ1
4

∆w
(βγ1)
(02)

]
= 0 (2.28)

[
∆w

(βγ)
(00) −

hβ
2

∆w
(βγ)
(10) +

h2β
4

∆w
(βγ)
(20)

]
−

[
∆w

(β1γ)
(00) +

hβ1

2
∆w

(β1γ)
(10) +

h2β1

4
∆w

(β1γ)
(20)

]
= 0 (2.29)

[
Q

(βγ1)
3(00) −Q

(βγ)
3(00)

]
∆ε̄ =

[
Q

(βγ)
3(10)∆w

(βγ)
(10) +Q

(βγ)
3(01)∆w

(βγ)
(01) +

lγ
2
Q

(βγ)
3(02)∆w

(βγ)
(02)

]
−
[
Q

(βγ1)
3(10)∆w

(βγ1)
(10) +Q

(βγ1)
3(01)∆w

(βγ1)
(01) −

lγ1
2
Q

(βγ1)
3(02)∆w

(βγ1)
(02)

]
(2.30)

[
Q

(β1γ)
2(00) −Q

(βγ)
2(00)

]
∆ε̄ =

[
Q

(βγ)
2(10)∆w

(βγ)
(10) +Q

(βγ)
2(01)∆w

(βγ)
(01) −

hβ
2
Q

(βγ)
2(20)∆w

(βγ)
(20)

]
−
[
Q

(β1γ)
2(10) ∆w

(β1γ)
(10) +Q

(β1γ)
2(01) ∆w

(β1γ)
(01) +

hβ1

2
Q

(β1γ)
2(20) ∆w

(β1γ)
(20)

]
(2.31)

Eq. (2.23) and Eqs.(2.28)-(2.31) are combined together to form the system of linear equations. It

has been discussed in the Section 2.2.8.

2.2.8 System of equations and unknowns

The displacement vector in the HFGMC formulation consists of five unknown vectors: ∆w
(βγ)
(10) ,

∆w
(βγ)
(01) , ∆w

(βγ)
(00) , ∆w

(βγ)
(20) , ∆w

(βγ)
(02) . These five unknown vector are combined together to form one

unknown vector ∆X(βγ):

∆X(βγ) =
{

∆w
(βγ)
(10) ,∆w

(βγ)
(01) ,∆w

(βγ)
(00) ,∆w

(βγ)
(20) ,∆w

(βγ)
(02)

}
(2.32)

Each ∆w vector consists of three unknown along 1, 2 and 3 component of the coordinate system.

Counting the contribution of every ∆w, the length of the unknown vector ∆Xβγ is 15 for a subcell

βγ.

Using the Eq. (2.23) and Eqs.(2.28)-(2.31), system of linear equations of the form AX = B is formed.
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This system of equations consists of five equations and five unknowns vectors for a single subcell. A

global set of equations is obtained by assembling all the equations obtained in the process. For the

number of subcells equal to Nβ ×Nγ , the number of unknowns become 15×Nβ ×Nγ .

MG∆X −NG∆ε = 0 (2.33)

In the Eq. (2.33) MG and NG are the global matrix obtained after assembling individual subcell’s

M and N matrices. Such M and N vectors are obtained from the set of the traction and the dis-

placement continuity equations along with the equilibrium equation for every subcell. They have

been given such a form to take out unknown vector ∆X and form the linear system of equations.

Matrices shown below gives the value of M and N matrix.

M
(βγ)
1 =



Q2(10) Q2(01) 0 −hβ2 Q2(20) 0

Q3(10) Q3(01) 0 0 − lγ2 Q3(02)

0 0 0 Q2(20) Q3(02)

−hβ2 I 0 I
h2
β

4 I 0

0
lγ
2 I I 0

l2γ
4 I



βγ

M
(β1γ)
2 =



−Q2(10) −Q2(01) 0 −hβ12 Q2(20) 0

0 0 0 0 0

0 0 0 0 0

−hβ12 I 0 −I −h
2
β1

4 I 0

0 0 0 0 0



(β1γ)

M
(βγ1)
3 =



0 0 0 0 0

−Q3(10) −Q3(01) 0 0
lγ1
2 Q3(02)

0 0 0 0 0

0 0 0 0 0

0
lγ1
2 I −I 0

l2γ1
4 I



(βγ1)

N
(βγ)
1 =


−Q2(00)

−Q3(00)

0

0

0



βγ

, N
(β1γ)
2 =


Q2(00)

0

0

0

0



β1γ

and N
(βγ1)
3 =


0

Q3(00)

0

0

0



βγ1

Rearranging the Eq. (2.33), following equation is obtained:

∆X = M−1G (NG∆ε) (2.34)
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2.2.9 Residual vector

Residue vector is required for calculating error involved in the iterative solvers. It is further required

to follow Newton Raphson iterative scheme. Residual vector in its incremental form ∆Rβγ has been

defined as:

∆Rβγ ≡ {∆Rσ,∆RE ,∆Ru} (2.35)

In the Eq. (2.35) ∆Rσ represents the residue based on two traction continuity expressions given by

Eqs. (2.30) & (2.31). Other terms ∆RE and ∆Ru represents residue for equilibrium Eq. (2.23) and

displacement continuity Eqs. (2.28) and (2.29) respectively. Thus

∆Rβγ ≡ {Mβγ
1 ∆Xβγ −Nβγ

1 ∆ε̄}+ {M (β1γ)
2 ∆X(β1γ) −N (β1γ)

2 ∆ε̄}+ {M (βγ1)
3 ∆X(βγ1) −N (βγ1)

3 ∆ε̄}
(2.36)

The residue for numerical implementation of HFGMC is calculated with the help of total stresses

calculated at the stress integration points. In order to do so, for a particular subcell, total residual

vector is calculated in the integral form rather than incremental one as defined in Eq. (2.36). It has

been calculated at stress integration points shown in the Fig. 2.3. It is given as:

R(βγ) =


r2σ

(βγ)1 − r2σ(β1γ)3

r3σ
(βγ)2 − r3σ(βγ1)4

r2σ
(βγ)
(10) − r3σ

(βγ)
(01)

0

0

 (2.37)

Once the residue is obtained, the Newton Raphson iterative scheme is applied. The process is

as explained below:

Initially the residual vector is calculated between the current and the previous iteration solution. If

the norm of the residue is less than the allowable tolerance of 10−5 than the solution of current step

is accepted, otherwise correction for micro-variable is computed with the help of the Jacobian. The

micro variables are updated with the corrections based on Jacobian calculations.

2.3 Homogenization of properties

Using HFGMC, both local and averaged stress-strain field are obtained. The local strain field in the

RUC is related to globally applied homogenized strain field with the help of strain influence matrix

B, as shown in the Eq. (2.38). Here ∆ denotes the incremental form of strain.

∆ε̄βγ = B∆ε̄ (2.38)

Further to find the stress field, the constitutive matrix of individual subcell is used in the following

Eq. (2.39). Here H and L are the dimensions of RUC, Cβγ is the stiffness tensor of individual

subcell, and hβ and lγ are the dimensions of subcell.

∆σ̄ =
1

HL

Nγ∑
γ=1

Nβ∑
β=1

hβlγC
βγBβγ∆ε̄ (2.39)
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Expression of Bβγ is obtained from the Eq. (2.13).

Using Eq. (2.39) one can find the effective stress update. Eqs. (2.3)–(2.39) completes the derivation

of HFGMC formulation. Later in the Chapter 3, HFGMC methodology is coupled with damage

detection and damage modeling to form the PDA. Further the parameters hβ , lγ , H, L and Cβγ

required in the Eq. (2.39) are detailed in the Sections 4.2.3 and 4.3.3.
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Chapter 3

Methodology

Progressive damage analysis

Progressive damage analysis (PDA) [21] involves the detailed study of damage initiation, evaluation

till final failure. PDA comprise of three steps. These are given in the schematic Fig. 3.1:

• Stress Analysis

• Damage Analysis

• Damage Modeling

Figure 3.1: Basic steps involved in PDA

Current chapter contains the thorough explanation of all the three steps of PDA. Stress analysis

is discussed in Section 3.1. In the Section 3.2, models for damage initiation and evaluation are

discussed. Section 3.3 gives the information on the damage modeling aspect of the PDA. Progressive

damage analysis have been performed numerically with the help of the home grown code devised in

the Fortran fixed format. Structural outline of the code is explained in Section 3.4.
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3.1 Stress analysis

Stress analysis is carried out using the HFGMC methodology to effectively capture the stress gradi-

ents present at the fiber/matrix interface. It is possible as the HFGMC method employs higher order

terms in the displacement equation which helps in obtaining the local effects generated by composite

microstructure. The detailed description of HFGMC methodology is available in Chapter 2.

3.1.1 Composite modeling for stress analysis with HFGMC method

Basic parameter are required to be preset for using the HFGMC method. These are:

• The single fiber composite (SFC) structure has been discretized into subcell. Each subcell is

identified by βγ index.

• Dimension of each sucell is hβ and lγ . Discretization in HFGMC can be both regular and

adaptive. In the former discretization, dimension of each subcell is identical to the other while

in the later one different subcells have different dimensions. For the present case, only regular

discretization has been used.

• The constitutive law is defined for every fiber and matrix subcell. Both fiber/matrix follow

isotropic constitutive law at subcell level.

• Effective properties are calculated to evaluate homogenized stress strain behavior of the com-

posite.

Using HFGMC stress analysis, stress value in each subcell is obtained using Eq. (2.39). The obtained

stress value is used in the damage detection as described in subsequent section.

3.2 Damage detection

Several damage detection theories are available in the literature for composite materials [1, 22, 23,

24, 25]. For the effective property calculation of multi fiber composite, Multi Continuum Theory

(MCT) is used. MCT provides a unified damage index over the fiber and the matrix subcells and it

also considers the interaction effect between the fiber and the matrix subcell [24]. Detailed discussion

of MCT is illustrated in the Section 3.2.2. Firstly, the MCT has been derived in detail, later, it has

been used to device a failure criteria.

While analyzing the SFC for the successive fragmentation of the fiber, Maximum Principal Stress

Theory is used [26]. It is discussed in the Section 3.2.1. Further the matrix is assumed to be ductile

to take large strains such that it allows the progressive failure of the fiber. Thus no failure criteria

is used for the matrix in the case of successive fiber fragmentation. Above mentioned assumptions

have been further discussed in the Section 4.3.4.

3.2.1 Maximum Principle Stress Theory

Maximum principle stress criteria is used for the failure analysis of brittle material [23]. It assumes

that the failure will occur in a material when the maximum principal stress in a complex stress
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system reaches the elastic limit stress in a simple tension [27].

σ1 = σyp (3.1)

where σ1 is the principal tensile stress. In the 2D state of stress, the principle stress σ1 is obtained

as

σ1 =
σx + σy

2
+

√(
σx − σy

2

)2

+ τ2xy (3.2)

Where σx and σy are the tensile stresses in the x and y direction respectively and τxy is the shear

on the plane x in y direction.

3.2.2 Multi continuum theory (MCT)

The Representative Volume Element (RVE) concept is used in the derivation of the MCT theory. It

is explained using the Fig. 3.2. The detailed literature on the RVE subject is available in Drugan [28]

and Kanit et al [29]. RVE helps in determining the effective mechanical quantities of the continuum.

RVE has reduced dimensions as compared to the global dimension of the body. Its dimensions are

chosen to represent a statistically accurate microstructure.

Consider Fig. 3.2 that shows the hypothetical composite cross section in which the gray and the

Figure 3.2: Composite and its RVE

black material are assumed as the matrix and the fiber respectively. The enlarged portion of the

selected unit cell is presented in Fig. 3.2(b). The selected unit also represents a Repeating Unit

cell (RUC) such that its repetition in two dimension form the structure given in Fig. 3.2(a). If the

analysis of RUC with periodic boundary condition evaluates the effective mechanical quantities of

the composite structure, then the RUC is also the representative volume element (RVE).

Subsequent paragraphs deals with the derivation of the basic concepts of MCT and its usage in

determining damage criteria. It has been reviewed from the work of Hashin [30] and Mayes [24].

The literature available in Mayes [24] is first used in deriving the MCT, further Tsai and Wu failure

criteria, present in Hashin [30], is used in obtaining the MCT damage criteria.

In the MCT, unknown strains in the matrix and the fiber are evaluated with the help of Eq. (3.11)

and Eq. (3.12). To this end, the RVE concept is used. Corresponding to the composite structure,
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having two phases (fiber and matrix), three volume averaged quantities are calculated (Eqs. (3.3)–

(3.5)).

σf =
1

Vf

∫
Df

σ (x) dV (3.3)

σm =
1

Vm

∫
Dm

σ (x) dV (3.4)

In the Eq. (3.3) and (3.4), Vf and Vm are volume of the fiber and the matrix respectively. σ (x) is

the stress value at the position x. Df and Dm are the respective domain over which the integration

is carried out. If the material is considered to be a single continuum, then the value of average stress

comes out to be

σ =
1

V

∫
D

σ (x) dV (3.5)

Comparing the Eq. (3.3), (3.4) and (3.5), average value of stress over the RVE comes out to be

σ = σfφf + σmφm (3.6)

Following the same procedure, the average strain value is

ε = εfφf + εmφm (3.7)

Note that φf and φm are the corresponding volume fractions of the fiber and the matrix. Using the

constitutive law for each of the composite, fiber and matrix separately, the equations between stress

and strain are given below:

{σ} = [C]{ε} (3.8)

{σf} = [Cf ]{εf} (3.9)

{σm} = [Cm]{εm} (3.10)

Combining Eqs. (3.6)–(3.10) (simplified in appendix C), the expression for the matrix and the fiber

strains are obtained as

{εm} = (φm[I] + φf [A])
−1{ε} (3.11)

{εf} =
1

φf
({ε} − φm{εm}) (3.12)

Here [A] is

[A] = −φm
φf

([C]− [Cf ])
−1

([C]− [Cm]) (3.13)

The stress and strain information produced by MCT criteria is used with the generalized failure

criteria proposed by Tsai and Wu [30], to construct the MCT failure criteria. The generalized

failure criteria is given as

Fiσi + Fijσiσj = 1 (3.14)

When the failure criteria in Eq. (3.14) is expanded and written in form of stress invariant, the

Eq. (3.15) is obtained.

Z1I1 +A1I1
2 + Z2I2 +A2I2

2 + C12I1I2 +A3I3 +A4I4 = 1 (3.15)
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Invariants I1, I2, I3 and I4 are given below:

I1 = σ11

I2 = σ22 + σ33

I3 = σ2
22 + σ2

33 + 2σ2
23

I4 = σ2
12 + σ2

13 (3.16)

Assuming that there is no stress interaction between the fiber and the matrix, the term C12 is set

to zero. Stress invariants I1 and I2 are the first order term in stress. The coefficient Z1 and Z2 are

set to zero since linear terms are already considered in the basic derivation of MCT.

A1I1
2 +A2I2

2 +A3I3 +A4I4 = 1 (3.17)

Two primary failure modes in composite are the fiber failure mode (rupture in tension or buckling

in compression) and the matrix failure mode (matrix crack parallel to the fiber) [30]. Fig. 3.3 shows

the failure planes for fiber and matrix modes. Fiber is in the ′1′ direction. Matrix failure planes

are ′12′ and ′13′ while the fiber failure plane is ′23′. The two failure modes have been discussed in

detail in the subsequent Sections 3.2.3 and 3.2.4.

Figure 3.3: Primary failure mode planes in composite material

3.2.3 Fiber failure mode

The transverse failure of composite is matrix dominated. For considering the fiber strength only,

all the invariants (see Eq. (3.16)) which are independent of stress in the plane ′1′ have no effect on

the failure equation. Thus the coefficients A2 and A3 in Eq. (3.17) are set to zero. Resulting failure

equation is thus:

Af1

(
If1

)2
+Af4I

f
4 = 1 (3.18)

Unknowns in the Eq. (3.18) are determined by considering their respective failure cases given in the

Eqs. (3.19)–(3.21).
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• Case of in-plane shear load only
(
σf11 = 0

)
Af4 =

1

Sf12
2 (3.19)

• Case of tensile load only
(
σf11 > 0, σf11 = 0

)
Aft4 =

1

Sft11
2 (3.20)

• Case of compressive load only
(
σf11 < 0, σf11 = 0

)

Afc4 =
1

Sfc11
2 (3.21)

The Sf12, Sft11 and Sfc11 denotes the strength property in shear, tension and compression for fiber.

3.2.4 Matrix failure mode

Assuming the longitudinal failure of the composite is fiber dominated, A1 has been set to zero in

the Eq. (3.17). Then the criteria for matrix failure can be given as:

Am2 (Im2 )
2

+Am3 I
m
3 +Am4 I

m
4 = 1 (3.22)

Constants for the matrix failure can be computed considering respective failure cases as given below:

• Transverse shear only (σ11 = σ22 = σ33 = σ12 = 0)

Am3 =
1

2Sm23
2 (3.23)

• In-plane shear only (σ11 = σ22 = σ33 = σ23 = 0)

Am4 =
1

2Sm12
2 (3.24)

• For transverse and compressive loads (σ12 = σ23 = 0, (σ22 + σ33) > or < 0)

Amt2 =
1

(S22mt
22 + S22mt

33 )2

(
1− (S22mt

22
2

+ S22mt
33

2
)

2Sm23
2

)
(3.25)

and

Amc2 =
1

(S22mc
22 + S22mc

33 )2

(
1− (S22mc

22
2

+ S22mc
33

2
)

2Sm23
2

)
(3.26)

The subscript ‘22’ in above failure parameter is denoting the direction of applied load.
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The S22mt
22 , S22mt

33 are the matrix tensile strength in the direction 2 and 3 respectively. S22mc
22 ,

S22mc
33 are the matrix compressive strength in the direction 2 and 3 respectively and Sm12 denotes the

strength property in shear.

Failure criteria derived in the present section will be used in the damage detection in the Section 4.2

which details the effective property calculation of multi fiber composite (MFC). Information gathered

in the Section 3.2 is further utilized in the subsequent section which comprises of the damage

modeling aspect of PDA.

3.3 Damage modeling

In the Section 3.2, material subcell gets damaged when it is loaded beyond the strength limit. With

the damage detection, it is necessary to degrade the stiffness and the strength properties of the subcell

accordingly. It ensures that the damaged subcell does not take external load in the next analysis step

of PDA. Sudden degradation and progressive degradation models are avalilable in the literature for

damage modeling [31, 32]. In the present work, sudden material property degradation rule has been

used. Degradation coefficient has been kept equal to 99% for both the MFC (Section 4.2) analysis

and the SFC fiber fragmentation test (Section 4.3). Since in both the analysis, the structure under

study has been loaded longitudinaly in the fiber direction, only the Young Modulus E11 and the

Poisson’s ratio are degraded as per the sudden material property degradation rule given in literature

[32, 33]. The procedure of stiffness degradation is common in both the SFC fiber fragmentation

test and MFC analysis. In order to consider the strength dependency of the fiber on its fragment

length (Section 4.3.2), one additional function of reassigning the fiber strength is used in the damage

modeling of single fiber fragment.

3.4 Structural outline of PDA

The source code for the progressive damage analysis has been devised in the Fortran language. The

format of the code has been kept fixed so that it can be utilized in the user subroutine feature of

the commercially available finite element softwares. The working procedure of the code is classified

into four modules. All of them have been listed below:

1. Input data for the analysis

The code requires several parameter to be preset to conduct the PDA of a given structure.

These parameters are broadly classified into five categories:

(a) Geometric parameter: Dimensions of the cell and subcell are specified.

(b) Material property: Stiffness and strength properties of the fiber and the matrix are

given.

(c) Discretization: Number of subcells are provided to discretize the geometry of the struc-

ture.

(d) Degradation coefficient: Damaged subcells are degraded using the degradation coeffi-

cient.

(e) Solver options: The choice of the solver for the linear system of equations is selected

here.
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2. Stress analysis

External global strain is applied in an incremental fashion to carry out the stress analysis. In

this stage the HFGMC methodology is applied. The current stage thus includes the procedure

to solve the linear system of equations. Considering the optimization between computational

speed and accuracy, the code currently provides the choice among three different solvers:

(a) DGELSD routine available in the LAPACK library [34]

(b) Parallel direct solver (PARDISO) included in the Intel math kernel library [35, 36]

(c) Linear Iterative Solver (LIS) [37]

Analysis of global stiffness matrix TG shows that its a sparse matrix with most of its elements

lying along and near its diagonal. Sparsity of TG matrix encourages one to use sparse solvers.

First solver is taken from LAPACK library. It is named as DGELSD. Complete description

of this subroutine can be found in the literature [38]. It gives the most accurate result but

the computation time is also high. It takes 45 minutes to perform stress analysis, when the

geometry is discretized in 45 × 45 subcells. Second solver is the parallel direct solver (Intel

MKL Pardiso solver) which is 9 times faster than that of the first discussed solver but it looses

its accuracy with increase in number of subcells. The third solver is the Linear Iterative Solver

(LIS), which is fast as compared to the DGELSD but it also looses its accuracy with increase

in number of subcells. For the present code, it is advised to use the second solver upto 45× 45

subcells as it is already included in Intel MKL library and easy to use as compared to LIS

solver. Appendix B shows the solution strategy for the linear equation involved in HFGMC

analysis and it also justify the use of sparse solvers.

3. Damage detection

Fracture indices are used to quantify the damage in subcells. MCT criteria is applied for

the damage detection of the subcell while conducting the SFC-RVE analysis. Application of

MCT criteria provides unified fracture index for both the fiber and the matrix. For the damage

detection in the fiber fragmentation test of SFC, the maximum principle stress criteria provides

the fracture index for the fiber subcell.

4. Damage modeling

A subcell is termed as damaged if its fracture index is greater than one. The stiffness of the

damaged subcell is degraded in an ad hoc manner. In the effective property calculation of

multi fiber composite and SFC fiber fragmentation test, the degradation factor is kept 99%.

The detailed flowchart is shown in Fig. 3.4. Study conducted in the Chapters 2 and 3 is used in the

analysis performed in Chapter 4:

The Section 4.3 talks about the SFC fiber fragmentation test followed by the Section 4.3.3 to explain

the numerical analysis of SFC. The strength of the individual fiber fragment is modeled based on

the literature discussed in the Section 4.3.2. Further the effective property calculation of multi fiber

composite based on the SFC-RVE concept is discussed in the Section 4.2.
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Chapter 4

Progressive damage analysis of

single fiber composite

4.1 Introduction

Single Fiber Composite (SFC) is manufactured as a single fiber embedded in a cylindrical matrix

[6, 26]. The interface between the fiber and the matrix is assumed to be perfectly bonded. It is used

in the quantitative characterization of microscopic damages in the composites [39]. Experimental

procedure of single fiber fragmentation test is explained in the literature [13, 26, 40].

Concepts discussed in the current chapter are broadly divided into two sections. Section 4.3 gives

the detailed information on the fiber fragmentation test of the SFC while Section 4.2 presents the

analysis required for the effective property calculation of multi fiber composites.

4.2 Effective property calculation of multi fiber composite

Multi fiber composite (MFC) has been studied with the SFC representative volume element (SFC-

RVE) assuming that MFC can be modeled as SFC repeating unit cell (SFC-RUC) with periodic

boundary condition (PBC). The aim of this analysis is to obtain the effective material properties

through the size dependent framework and than compare it with the experimental findings and

simplified analytical estimates. Similar to the fiber fragmentation test of SFC (Section 4.3), the

PDA is adopted for the analysis. That is the HFGMC framework is used to carry out the stress

analysis (Chapter 2 for detailed discussion). Damage detection is based on the multi continuum

theory (Section 3.2.2). For the damage modeling, sudden material property degradation method is

applied (see Section 3.3). From here onwards MFC is termed as SFC-RVE.

Individual fiber and matrix properties are given in Section 4.2.1. Material property of CFRP com-

posite obtained from the experiment and the rule of mixture is presented in Section 4.2.2. Further

the model of SFC-RVE for dimensions and boundary conditions are explained in Section 4.2.3.

Assumptions for the analysis are stated in Section 4.2.4.
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4.2.1 Material properties of fiber and matrix from experiment

The Carbon fiber reinforced polymer (CFRP) has been used for the analysis. Its properties have been

taken from the work of Kashfuddoja & Ramji [41] where they had used Digital Image Correlation

(DIC) technique to find the property values of CFRP composites. They are listed in the Table 4.1.

Table 4.1: Properties: Carbon fiber and epoxy resin

Carbon fiber Epoxy resin
Shear modulus (GPa) Gf = 88.461 Gm = 1.477
Poisson’s ratio νf = 0.35 νm = 0.34
Volume fraction φf = 0.33 φm = 0.67

4.2.2 Rule of mixture

In Section 5.1, the numerical results have been compared with both the experimental finding [41]

and the analytical result based on the rule of mixture. In the rule of mixture, effective properties of

the composites are found with the help of Eqs. (4.1) and (4.2) [42].

E11 = Efφf + Emφm (4.1)

ν12 = νfφf + νmφm (4.2)

Refer Table 4.2 for experimental based and the rule of mixture based property values of CFRP

composite.

Table 4.2: Longitudinal modulus (E11) and In-plane Poisson’s ratio (ν12)

E11 (GPa) ν12

Experimental [41] 81.90 0.34

Rule of mixture 81.47 0.34

4.2.3 Model of SFC-RVE

The geometric model used in the present analysis of SFC-RVE is illustrated in Fig. 4.1. Fig. 4.1(a)

shows the schematic of multi fiber composite (MFC). Fig. 4.1(b) shows the SFC-RVE taken out of

the MFC structure for analysis. The SFC-RVE is discretized into Nβ ×Nγ . For the discretization

independent solution, the SFC-RVE is discretized in 30×30 subcells. Mesh increment studies shows

that the analysis solution repeats itself with the discretization of 15× 15, 30× 30 and 45× 45. The

global coordinate system x2−x3 for the SFC-RVE has been placed at the bottom left corner (origin

(0, 0)). Fiber dimension is taken as 7.5 µm in diameter. Inter fiber distance in the MFC is chosen

to be 15 µm and hence the matrix width is 7.5 µm on either side of the fiber. Length of the fiber is

kept same as a width of the RVE. PBC exists at the four boundaries of the SFC-RVE.
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The model shown in the Fig. 4.1, is loaded with the longitudinal strain ε in the fiber direction. At

the completion of each PDA step, the strain is increased by the value of ∆ε = 0.0005. Starting with

ε = 0, the strain value is increased till the composite fails. For present case, it is decided that the

composite fails with the failure of two third of its total Nβ × Nγ subcells. Note that the Fig. 3.4

shows the common flowchart for the analysis of both SFC fragmenattion analysis (Section 4.3) and

the analysis of SFC-RVE (Section 4.2). In the case of SFC-RVE, the procedure of length effect in

the damage modeling is omitted.

Figure 4.1: Model for SFC-RVE analysis

4.2.4 Assumptions for the analysis of SFC-RVE

Assumptions made for the analysis of SFC-RVE are listed below:

• Fiber are perfectly embedded in the matrix at regular interval.

• Matrix and fiber are assumed to be isotropic.

• It is assumed that there is perfect bonding between matrix and fiber.

• RUC is assumed to be RVE.

• MFC is assumed to be transversely isotropic.

Using aforementioned procedure (Section 4.2), the effective material properties of MFC are evaluated

and are presented in the Section 5.1.
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4.3 Fiber fragmentation test of Single Fiber Composite

The schematic of the SFC is shown in Fig. 4.2 in which a single fiber filament is embedded in the

matrix. In the fiber fragmentation test of SFC, the test piece is loaded with uniaxial tensile load and

the loading is applied until each fiber fragment is shorter than the critical length lc. The concept

of critical length lc has been discussed in the Section 4.3.1. For the PDA analysis of SFC with fiber

breakages, strength of the fiber at the smaller length has to be predicted. It is accomplished by the

use of Weibull tensile strength distribution [43] of the fiber. It has been discussed in Section 4.3.2.

The details of material and geometric parameter for the analysis are discussed in Section 4.3.3. The

analysis provides the stress distribution in the SFC with fiber breakages. Distribution of stress at

the site of fiber failure gives the direction of matrix crack propagation and the fiber/matrix interface

failure. Results of the numerical analysis of the fiber fragmentation test of SFC have been discussed

in Section 5.2.

Figure 4.2: Single fiber embedded in a matrix

4.3.1 Critical length for fibers

The load transfer mechanism between the matrix and fiber is explained by using a single fiber

composite. Theory of critical length lc is required in understanding interface stresses between the

fiber and matrix. It has been reviewed from the work of Curtin [8, 9, 44]. In order to understand

the stress distribution along the fiber-matrix interface, the Kelly & Tyson model [10, 11] has been

reviewed briefly in subsequent paragraphs.

To derive the expression for critical length lc, a small length of fiber in equilibrium is considered.

Figure 4.3 shows a small fiber fragment which is in equilibrium under the action of matrix shear τm

and internal force δF . Eqs. (4.3)–(4.6) have been derived to get an insight of critical length [45].

Figure 4.3: Fiber fragment under mechanical equilibrium
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As shown in the Fig. 4.3, force δF on the small element δx with diameter equal to d is equal to the

external matrix shear force. Force equilibrium gives the Eq. (4.3).

δF = (πτmd) δx (4.3)

In order to calculate total force F along the fiber, Eq. (4.3) is integrated from 0 to x.

F =

∫ x

0

(πτmd) dx (4.4)

Assuming a fiber to be of constant cross section area a =
(π

4

)
d2, the stress can be obtained from

Eq. (4.4) as

σ(x) =
4

d

∫ x

0

τ(x)dx (4.5)

From Eq. (4.5), it observed that the tensile stress in the fiber increases linearly with increase in x

if τ(x) is constant. For further simplification of the Eq. (4.5), it has been assumed that the shear

stress is constant in the small length near the fiber ends [11]. Fig. 4.4 shows the constant shear

assumption at the end of fiber. In the zone of the constant shear, tensile stress increases linearly.

Figure 4.4: Constant shear stress at the fiber ends

The length over which tensile stress increases linearly is termed as a recovery length. After that, the

tensile stress remains constant. The constant tensile stress in the fiber mid length is because of the

matrix shear on the fiber ends. Thus the maximum stress developed in the fiber is decided by the

shear stress on fiber at ends. Consequently, the fiber breaks when the tensile strength developed in

the fiber is more than its ultimate tensile strength. Eq. (4.5) is solved for constant matrix shear at

the ends of the fiber. Eq. (4.6) is valid only in the zone of constant shear.

σ(x) =
4τmx

d
(4.6)

Fig. 4.5 assist in realizing the stresses present in the fiber fragments. It is a qualitative illustration of

fiber fragmentation test. Readers are encouraged to follow the literature by Netravali et. al [46] in

which the detailed study of shear strength at the fiber/matrix interface is conducted experimentally.

It shows the tensile stress distribution along the fiber length. Location of zero tensile stress shows
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the fiber break points. In Fig. 4.5(a), fiber fragments having the unbroken length can undergo

further fracture. In Fig. 4.5(b), fiber fragments still undergoes damage. Further, in Fig. 4.5(c), the

length of each fiber fragment is less than the recovery length and hence it cannot take any external

loading. It should be observed that there are several fiber fragments of the length lc, in which the

tensile stress is equal to that of the ultimate strength. The term lc is the critical length of the fiber.

Figure 4.5: Stress distribution in fiber fragments

The critical length lc is evaluated considering the limiting value of ultimate tensile strength σult in

the Eq. (4.6).

σult =
2lcτm
d

(4.7)

Eq. (4.7) is rearranged to get the critical length lc as

lc =
σultd

2τm
(4.8)

Note that in Fig. 4.5, the maximum tensile stress in the fiber increases after every successive break

(σ(1) < σ(2) < σ(3)). The reason for increased fiber strength is discussed in subsequent Section 4.3.2.

4.3.2 Weibull tensile strength distribution

Numerical simulation of the single fiber composite fragmentation test requires the information of the

ultimate fiber strength at the smaller length of fiber fragments. Experimental data on tensile testing

of a single fiber is available at a relatively longer gauge length of the fiber. This data can be linearly

extrapolated to obtain fiber strength at smaller gauge length. But it gives the fiber strength at critical

length which is fallible as shown by Piggott [47]. Consequently, the fiber strength dependence on

the fiber length has been assumed to follow Weibull distribution [43, 40]. The cumulative failure

probability χ (σ, l) for the fiber length of l and the stress σ is given by Eq. (4.9) below.

χ (σ, l) = 1− exp

{
− l

l0

(
σ

σ0

)m}
(4.9)
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Where σ0 and m are the Weibull scale and shape parameter for given fiber. For the failure probability

of 63.2% [40], the fiber strength can be related to the fiber length by the Eq. (4.10) given below

σ

σ0
=

(
l0
l

) 1
m

(4.10)

The maximum strength of broken fiber fragments is found out with the help of Eq. (4.10). Weibull

scale σ0 is termed as the mean strength of the fiber at the gauge length of l0. The variability in the

strength is denoted by Weibull shape parameter m where σ0 and m are determined experimentally,

and they are found to be greater than zero [40]. It implies that for the length l < l0, σ > σ0. The

detailed explanation of the Eq. (4.9) is shown in the Appendix D.

4.3.3 Numerical simulation of SFC fragmentation test with PDA

The numerical analysis of fragmentation of SFC has been discussed in this section. Fig. 4.6 shows

the dimensions and the components of the SFC structure that have been used in the PDA. Unidi-

rectional carbon fiber reinforced in the ceramic matrix (FRCMC) has been used for the analysis.

The properties of carbon fiber and ceramic matrix (taken from Cheng et al. [27]) are listed in the

Table 4.3.

Table 4.3: Properties: Carbon fiber and Ceramics Matrix

Carbon fiber Ceramic Matrix
Young’s Modulus (GPa) Ef = 300 Em = 140
Poisson’s ratio νf = 0.2 νm = 0.2
Weibull shape parameter m = 3.6 −−
Gauge length (mm) l0 = 50 −−
Mean tensile strength (MPa) at gauge
length

σ0 = 2500 −−

Figure 4.6: Discretized model of SFC for the fiber fragmentation test

In order to conduct the stress analysis with HFGMC methodology, SFC shown in Fig. 4.6 has

been discretized into 23 × 37 number of subcells. These are Nβ × Nγ respectively. Nβ is in the

x2 axis and Nγ is in x3 axis (see Fig. 2.1 for reference). Such type of discretization allows for the

desired micro dimensions of the fiber in Fig. 4.6.
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4.3.4 Assumptions in the analysis of SFC fiber fragmentation test

Few assumptions have been made while conducting the numerical analysis of fiber fragmentation in

SFC. These are:

• Fiber is assumed to be flawless (homogeneous). This allows the next fiber break to occur at

the subcell having highest equivalent tensile stress.

• Ceramic matrix is allowed to take high strains. It helps to carry out the progressive failure of

the fiber.

• The strength of the fiber fragment is assumed to be size dependent that is the tensile strength

increases with the decrease in length. The strength variation follow the Weibull tensile strength

distribution (Section 4.3.2).

• Perfect bonding is considered between the matrix and the fiber. The assumption of perfect

bonding has been proved reasonable in the work of McCartney [48] and Parambil & Gururaja

[49] as far as the longitudinal loading of a unidirectional composite is considered.

Figure 4.7: Loading diagram for SFC fiber fragmentation test

The SFC shown in the Fig. 4.7 has been loaded longitudinally through the monotonic increase

in the strain. Applied strain is incremented by ∆ε = 5× 10−3 after every PDA step. To start with,

zero strain is applied at the beginning of PDA. HFGMC stress analysis is used in evaluating stress

in every subcell. Subsequently, each fiber subcell is checked for damage. The principle stress criteria

have been used for the damage detection. Fiber subcell is marked as damaged when the equivalent

tensile stress exceeds the strength limit. Fracture index (FI) is quantified for every subcell βγ which

is defined as

FIβγ =
σβγ

Xβγ
(4.11)

where Xβγ is the maximum tensile strength of the βγ subcell. If the fracture index FIβγ ≥ 1, it

implies that the subcell βγ has failed. The properties of failed subcells are suddenly degraded. For

the present analysis, the degradation factor is chosen to be ad hoc and has been kept equal to 99%.

It cannot be 100% as it would leave the stiffness matrix singular. Along with this, the degradation

factor of 99% ensures that the failed subcells do not transfer any load in the subsequent PDA step.

Same procedure is followed for every strain increment till the stopping criteria is met. Simulation is

terminated when the fiber reaches its critical length. Results of the single fiber fragmentation test

are presented in Section 5.2.
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Chapter 5

Results and discussion

Results of the analyses described in the Sections 4.2 and 4.3 have been presented in the current

chapter. While Section 5.1 provides results of the analysis of CFRP composites with the representa-

tive volume element of single fiber composite (SFC-RVE), Section 5.2 provides the discussion on the

results obtained in the SFC fiber fragmentation test. Inferences derived in Section 5.1 are based on

the observation of stiffness matrix and homogenized stress-strain curve. Geometrical and material

details required in the multi-fiber composite analysis with SFC-RVE are provided in Sections 4.2.1

and 4.2.3.

The outcome of the fiber fragmentation test in SFC are detailed in Section 5.2. It comprises of the

discussion on stress re-distribution in SFC as a consequence of fiber fragmentation. Section 4.3.3

contains the information on the material and geometrical parameters required in the SFC fiber frag-

mentation test. Further, a common progressive damage analysis framework summarized in Fig. 3.4

is used in conducting numerical simulations.

5.1 Effective property calculations of multi fiber composite

Present section provides a detailed discussion on the results obtained by the progressive damage

analysis (PDA) of SFC-RVE. Analysis information is available in Section 4.2 where a single RVE

is loaded with a strain in the direction of the fiber. Further the applied strain was increased

monotonically by ∆ε = 0.0005 at the completion of each PDA step. Starting with ε = 0, the strain

is applied till the total of two-third of the Nβ × Nγ subcells fail. Discretization of SFC-RVE in

Nβ ×Nγ = 30 × 30 is required for the HFGMC stress analysis. The schematic of the SFC-RVE is

provided in Fig. 4.1 in which geometry of the SFC-RVE to be analyzed is square having the sides of

22.5 µm. Fiber diameter is kept 7.5 µm. Such dimensions are required to simulate the experimental

testing of multi-fiber CFRP composite conducted by Kashfuddoja & Ramji [41]. They had used

Digital Image Correlation (DIC) technique to find the property values of CFRP composite. Further

the results obtained from the numerical simulations are compared with the experimental finding

available in the same literature. Analytical estimates based on the rule of mixture (Section 4.2.2)

are also provided for comparison with SFC-RVE analysis results. Subsequent paragraphs furnishes

results with the help of Fig. 5.1 and Table 4.1. All the results provided are based on the effective

stress-strain response of composite upon loading.
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Fig. 5.1 shows the homogenized stress-strain response obtained from the numerical analysis of SFC-

RVE. The plot has been made till the failure in SFC-RVE is detected. In the present case, SFC-RVE

fails with the matrix failure which is detected at a strain of ε = 4×10−3. The horizontal axis denotes

the increment in strain. Corresponding to each strain increment, a homogenized stress value (in

MPa) is calculated and plotted against the vertical stress axis. Thus the three trends are obtained

for each of the matrix, fiber and composite. From the figure, it is observed that the effective stiffness

property of composite lie between the fiber and the matrix.

Figure 5.1: Homogenized stress-strain curve for SFC-RVE analysis

The strain at the fiber/matrix interface is equal as it has been assumed in Section 4.2.4 that there

is a perfect bond between fiber and matrix. Thus it follows that

εf = εm

σf
Ef

=
σm
Em

Ef and Em are obtained with the help of relation E = 2G(1 + ν) (Table 4.2 gives the value of shear

modulus G and Poisson’s ratio ν). Using these values in the above equation it is seen that the fiber

is 60 times more stressed than the matrix. The matrix does not take part in the loading but its

primary function is to transfer the load to the fiber. Hence the matrix reinforcement is required in

composite even if there is an overall decrease in its stiffness property as compared to the fiber.

Numerical simulation provides effective properties in the direction of the fiber. It estimates the

longitudinal modulus E11 to be 89.37 GPa. Table 5.1 gives the results based on the analysis of
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SFC-RVE, and it has been compared with the experimental and analytical results. Analytical results

are based on the rule of mixture. The longitudinal modulus E11 calculated on the basis of HFGMC

analysis is deviating from the experimental findings with an error of 9.13%. Hence the assumption

of one repeating unit cell is equal to the representative volume element, stated in Section 4.2.4, has

to be researched. Though there is a deviation between the numerical analysis of SFC-RVE from

the experimental findings, the results obtained are used in the qualitative explanation of the load

transfer between the fiber and the matrix.

Table 5.1: Comparison between numerical, experimental and analytical results

Longitudinal modulus, E11 GPa In-plane Poisson’s ratio, ν12

Numerical simulation 89.37 0.30

Experimental findings 81.90 0.34

Analytical estimates 81.47 0.34

The stiffness matrix for the multi fiber composite is shown in Eq. (5.1) which is obtained from the

SFC-RVE analysis. The stiffness matrix shows the transversely isotropic nature of unidirectional

CFRP composite under analysis.

σ11

σ22

σ33

σ23

σ31

σ12


=



89375 28431 4403 0 0 0

28431 89375 4403 0 0 0

4403 4403 9054 0 0 0

0 0 0 2198 0 0

0 0 0 0 2198 0

0 0 0 0 0 30472





ε11

ε22

ε33

ε23

ε31

ε12


(5.1)

5.2 SFC analysis for the fiber fragmentation test

Detailed discussions on the results of SFC fiber fragmentation test is presented in subsequent sections.

The result of the present work provide the stress contours of progressively damaged SFC. The

average tensile and shear stress contours are discussed to understand the stress redistribution and

fiber-matrix debonding in the SFC. The anti-plane shear present at the fiber end causes the interface

to fail. The plot of average tensile stress along the fiber length gives the indication of increased fiber

strength after the fiber fracture. Further, the stress transfer at the fiber ends is also explained.

Results under the present analysis are classified into four categories.

• Stress redistribution

• Matrix fiber interface failure

• Average tensile stress distribution in the fiber

• Stress interactions along the fiber-matrix interface
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In order to conduct the fiber fragmentation test of SFC, PDA framework briefed in Fig. 3.4 is

used. All the results derived in current section are obtained on the common problem definition

discussed in Section 4.3.3 where the strain is applied in the direction of the fiber. The external

longitudinal load is applied with an increment of ∆ε = 0.0005 at the end of each PDA step. The

monotonic load increment is applied till the stopping criteria of achieving the critical length lc is

met (Section 4.3.1). Further, the output obtained in the analysis are post processed in MATLAB.

They follow in subsequent sections:

5.2.1 Stress redistribution

Fig. 5.2 shows the average tensile stress contour and the stress redistribution after the fiber breakage.

Color-bar accompanying each sub-figure indicates the average tensile stress in megaPascals (MPa).

It consists of four figures depicting the progressive failure. Note that the figure shows the maximum

stress the fiber can take just before the next breakage. The vertical and the horizontal axis for each

of the four figures is showing Nβ and Nγ respectively. Each subplot in Fig. 5.2 has been plotted at

the maximum value of strain the fiber can take such that the damage is induced in the next PDA

step. Plots have been made at a strain value of 1.8%, 2.2%, 2.65% and 2.75%.

The maximum stress taken by the fiber decreases just after the new break. As a result of the stress

redistribution, SFC continues to take stress after the damage. It happens as a result of the increased

fiber strength. Thus the residual strength of the SFC increases.

The average stress is maximum at the center of the fiber, and it reduces to zero at its end. Similar

observations are presented by Wu et al. [50] in which authors had conducted the fiber fragmentation

process in SFC with finite element procedure. In the same figure, failure strain is increasing which

is attributed to the increased fiber strength. Fiber strength is varying with the number of breaks.

It increases with the reduction in fiber length. Thus the increased fiber strength results in increased

failure strain.

The redistributed stress also provides the region of maximum stress in the matrix. As it can be ob-

served from the Fig. 5.2(c), the cross X pattern shows the possible direction of matrix cracking. The

cross X pattern traces matrix subcells which are having higher strain than the surrounding subcells.

It is consistent with the finite element analysis and experimental analysis of fiber fragmentation test

presented by Wang et al. [51]. The matrix crack pattern is witnessed around every failed subcell.

Zero stresses are present in the failed subcells (as can be seen in Fig. 5.2((b),(c) & (d)) and it is the

site at which the matrix and interface failure emanate.

5.2.2 Matrix fiber interface failure

Fig. 5.3 shows the shear stress distribution in the SFC. Most stressed subcells around the fiber

break will result in the matrix and interface failure. The region of maximum anti-shear around the

fiber breaks has been shown with the lobes drawn around them. Positive shear stress is captured

in the continuous lobe. The maximum positive and negative shear around the fiber break causes

the interface to fail. Further, it should be noticed that the shear stress in the matrix subcells

present along the fiber matrix interface is zero except those that are present at the ends of the fiber.

Consequently, the stress transfer between fiber and matrix happens at the ends of fiber fragments.

It is further explained in the Section 5.2.4.
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Figure 5.2: Average tensile stress redistribution with progressive damage in the SFC

5.2.3 Average tensile stress distribution in the fiber

Average tensile stress distribution along the fiber length is shown in Fig. 5.4. Fiber stress is plotted

against the fiber length of 2.8mm. There is an increase in the tensile strength as is evident from the

Fig. 5.4. It is due to the statistical fiber strength distribution as discussed in the Section 4.3.2.

5.2.4 Stress interactions along the fiber-matrix interface

Fig. 5.6 assists in capturing the stress transfer that occurs at the ends of the fiber. Average tensile

stress is plotted against the fiber length in Fig. 5.6(a)while the average shear stress is plotted

against the fiber length in Fig. 5.6(b) which consists of two different trends. These trends represent

the average shear stress present in the matrix subcells that are immediately neighboring the fiber

subcells. Matrix subcells adjacent to the fiber are apprehended in Fig. 5.5. y → δ+ and y → δ−
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Figure 5.3: Shear stress contour in the SFC

correspond to the bottom and the top interface between the fiber and the matrix. 2δ represents the

fiber diameter and y − axis is perpendicular to the fiber axis.

It is realized that the maximum average shear stress is present in the matrix subcells which occupy

the neighborhood of fiber ends. Elsewhere it is zero. Section 4.3.1 discussed the theory on tensile

stress development in the fiber. It is the zone of stress transfer. Similar trends are obtained in

the present analysis such that the tensile stress development happens only in the region of non-zero

shear stress. Away from the fiber ends the tensile stress is constant and maximum.
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Figure 5.4: Average tensile stress along the fiber axis

Figure 5.5: Figure showing the matrix subcells causing stress transfer to the fiber

Figure 5.6: Stress transfer mechanism at the ends of fiber; (a) Average tensile stress along the fiber
subcells; (b) Average shear stress plot at the fiber matrix interface
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Chapter 6

Conclusion and future work

6.1 Conclusion

Single fiber composite (SFC) has been analyzed with progressive damage analysis (PDA). A numer-

ical study has been carried out using the PDA framework that is devised in FORTRAN. Results

obtained out of this work have been discussed in Chapter 5. Micro-mechanical studies have been

performed for SFC with fiber breakages. It has provided an insight of stress distribution between

matrix and fiber. Stiffness properties obtained for multi-fiber composite have been compared with

experimental and analytical results.

In Section 5.1, effective property estimation based on the representative volume element has been

discussed. Results are used in explaining the effective stiffness of composite. Apart from this, the

transverse isotropic nature of unidirectional CFRP composite is also discussed. Importance of ma-

trix reinforcement in composite is understood and realized how matrix assists in transferring load

to the fiber.

All of the work done has provided a better intuition of stresses arising in the SFC while it is loaded

longitudinally. As discussed in Section 5.2, stress redistribution direction is visualized. As a result

of the stress redistribution around the fiber breaks, the composite continues to take the stress. As

a result of which successive fragmentation is observed at higher value of strain.

The maximum shear stress region around the fiber ends give the information of fiber-matrix interface

failure. Because of the anti-plane shear present at the end of fiber, the interface between fiber and

matrix will fail.

Apart from this, the increase in the residual strength of the composite is also discussed. Since the

fiber strength increases with decrease in its length, the overall strength of the composite increases

and the successive fiber fragmentation happens at increased value of strain.

Toward the end of the Chapter 5, stress interactions along the fiber-matrix interface are presented.

It is observed that the load transfer between the fiber and matrix happens at the ends of the fiber.

Shear stress applied by matrix at the ends of fiber develops longitudinal tensile stress in the fiber.

Also, the zero shear stress in the mid-length of the fiber confirms that the load transfer interactions

between fiber and matrix happen only at the end of the fiber.
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6.2 Future work

The PDA code developed so far in FORTRAN has the capability to correctly estimate the effective

properties of the multiphase structure. The code allows discretization of multiphase structure upto

45 × 45 (details are provided in Appendix B). Extensive discretization of up to 200 × 200 is still

required to analyze multiphase structures having more than two different phases. It would require

the analysis of global stiffness matrix and research for the best possible subroutine available in the

literature.

The current PDA analysis allows for the analysis of two-dimensional structures. Three-dimensional

HFGMC formulation has to be developed based on the information available in literature [18].

Provision of isoparametric formulation will allow for arbitrary discretization of the structure with

quadrilateral shapes other than squares and rectangles. It is known as isoparametric subcell gener-

alization.
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Appendix A

HFGMC displacement equation

A.1 Complete and incomplete quadratic equation of displace-

ment in HFGMC method

The general equation for displacement of a subcell in the parametric coordinate is given by:

u(βγ) = ε̄.X +

M∑
m=0

N∑
n=0

w(mn)Pm (r)Pn (s) (A.1)

Expanding the above equation upto second order in r and s, following equation is obtained:

u(βγ) = ε̄.X

+ w(00)P0 (r)P0 (s) + w(01)P0 (r)P1 (s) + w(10)P1 (r)P0 (s)

+ w(11)P1 (r)P1 (s) + w(02)P0 (r)P2 (s) + w(20)P2 (r)P0 (s) (A.2)

Legendre polynomials [52] P0(x), P1(x) and P2(x) are defined as

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1) (A.3)

Putting the value of P0(x), P1(x) and P2(x) back in the equation Eq. (A.2), following equation is

obtained:

uβγ = ε̄.X + w(00) + rw(10) + sw(01) + rsw(11) +
1

2
w(20)

(
3r2 − 1

)
+

1

2
w(02)

(
3s2 − 1

)
(A.4)

Above is the complete form of HFGMC displacement equation in parametric form. When the subcell

array arrangement is orthogonal, the term w11 is zero. The incomplete HFGMC formulation in the
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local coordinate system (yβ2 , y
γ
3 ) is:

uβγ = ε̄.X + wβγ
(00) + y

(β)
2 wβγ

(10) + y
(γ)
3 wβγ

(01) +
1

2

(
3y

(β)2
2 −

h2β
4

)
wβγ

(20) +
1

2

(
3y

(γ)2
3 −

l2γ
4

)
wβγ

(02)

(A.5)

In the case of parametric HFGMC analysis [53], the term rsw11 is retained in the displacement

equation. It is due to the non orthogonality in subcell arrangement such that the dot product of the

rs in Eq. (A.4) does not vanish.
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Appendix B

System of linear equation in

HFGMC analysis

B.1 Least square solution of the problem A× x = b

The least square solution helps in determining the solution of overdetermined system (where number

of constraints are more than the unknowns) and the solution of the problem where the unique

common solution does not exist. In such a case, least square solution is predicted which gives the

least error as compared to other possible solutions. Derivation of the linear least squares is given

below:

Let the most correct solution of the system of the equation A× x = b is b and let it gives the error

of e. Thus the expression for error e is:

Ax− b = e (B.1)

The sum squared error (SSE = eT e) is given as:

SSE = (Ax− b)T (Ax− b) (B.2)

As the transpose operator is distributive over the product, we have (Ax−b)T = (xTAT −bT ). Hence,

SSE = (xTAT − bT )(Ax− b) (B.3)

With matrix pre-multiplying operation, we have,

SSE = xTATAx− xTAT b− bTAx+ bT b (B.4)

The middle two terms of Eq. (B.4) are transpose of each other and can be added. Thus

SSE = xTATAx− 2xTAT b+ bT b (B.5)
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Since the SSE has to be minimum, its partial derivative with respect to x is evaluated and then

equated to zero to get the least error solution.

∂SSE

∂x
=

∂

∂x
(xTATAx− 2xTAT b+ bT b) (B.6)

= ATAx+ xTATA− 2AT b

= 2ATAx− 2AT b

Equating the SSE to 0, we have

ATAx = AT b (B.7)

Multiplying both the sides by (ATA)−1, we have

x = (ATA)−1AT b (B.8)

This solution of the Eq. (B.8) given the least error solution, to the system of linear equation. In the

HFGMC analysis, the solution of the equation ∆X = T−1G DG, is found with the help of Intel Math

Kernel Library. ’DGELSD’ is the subroutine used to solve this equation. Other solvers are also

used based on the sparsity of the TG matrix.

B.2 Use of the sparse solvers

Sparse analysis of the TG matrix is shown in the Table B.1 given below. The number of the subcells

are increased on the multiple of three. The analysis shows that the non-zero values comprise less

Table B.1: Analysis of sparsity of TG matrix

Number of subcells
(Nβ ×Nγ)

Total non-zero val-
ues in TG matrix

Total number of
values in TG matrix

% of non-zero val-
ues

3× 3 666 135× 135 3.65
6× 6 2664 540× 540 0.91
9× 9 5994 1215× 1215 0.406
12× 12 10656 2160× 2160 0.228
15× 15 16650 3375× 3375 0.146
18× 18 23976 4860× 4860 0.1015
21× 21 32634 6615× 6615 0.0745

of the total TG matrix. This sparsity helps in utilizing sparse solver libraries like MUMPS, LIS,

SuperLU, PARDISO, etc. Further, the structure of the TG matrix is shown below. Most of the

non-zero elements lie on the diagonal of the matrix. Also, the Fig. B.1 shows the extra memory

occupied by the zero elements of TG matrix. White pixels shows the non-zero values. The present

PDA code definition in the Section 3.4, PARDISO and LIS sparse solvers have been included.
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(a) Morphology of 3 × 3 subcells (b) Morphology of 6 × 6 subcells

Figure B.1: Distribution of zeros and non-zeros in TG matrix
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Appendix C

Stress and strain expression for

multi continuum theory

In the Section 3.2.2, Eq. (3.6) and Eq. (3.7) are derived. These are:

σ = σfφf + σmφm (C.1)

ε = εfφf + εmφm (C.2)

When the Hooke’s law is applied for each of the fiber, matrix and composite separately, following

expressions are obtained:

{σf} = [Cf ]{εf} (C.3)

{σm} = [Cm]{εm} (C.4)

{σ} = [C]{ε} (C.5)

Putting the value of Eqs. (C.4) and (C.5) in Eq. (C.1), following equation is obtained:

[C]{(φf εf + φmεm)} = φf [Cf ]{εf}+ φm[Cm]{εm} (C.6)

[C]{φf εf}+ [C]{φmεm} = φf [Cf ]{εf}+ φm[Cm]{εm} (C.7)

To solve for εf , Eq. (C.7) is rearranged such that terms in fiber and matrix are separated.

[C]{φf εf} − φf [Cf ]{εf} = φm[Cm]{εm} − [C]{φmεm} (C.8)

Taking out the terms in common on RHS and LHS, following equation is obtained:

φf [[C]− [Cf ]] {εf} = φm [[Cm]− [C]] {εm} (C.9)
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Thus the value of εf is obtained as:

εf = − φf
φm

([C]− [Cf ])
−1

([C]− [Cm]) {εm} (C.10)

The term in the multiplication of εm on the RHS of Eq. (C.10) is taken as [A]. Then the above

equation becomes:

εf = [A]{εm} (C.11)

Using the value of [A] in the Eq. (C.2), the value of εm is obtained as:

{ε} = [A]{εm}φf + {εm}φm (C.12)

{εm} = (φm[I] + φf [A])
−1{ε} (C.13)
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Appendix D

Statistical Weibull distribution

D.1 Fiber strength distribution with Weibull distribution

The standard probability density function (pdf) for the Weibull distribution is given below in

Eq. (D.1). It is used in calculating the cumulative distribution function (CDF) used for the de-

termination of the fiber strength. The following derivation has been done based on the literature

available at Exploratory Data Analysis [54].

f(x) =
m

α

(
x− µ
α

)(m−1)

exp(−((x− µ)/α)m) x ≥ µ;m,α > 0 (D.1)

In the above equation, m is the shape parameter, µ is the location parameter and α is the scale

parameter. A two-parameter Weibull distribution is obtained by putting µ = 0 and α = 1. The two

parameter standard Weibull distribution is obtained as in Eq. (D.2).

f(x) = mx(m−1)e(−x
m) (D.2)

e in the above equation represent exponential exp. To get the cumulative distribution function F ,

the expression in Eq. (D.2) is integrated in the limit 0 to x.

F =

∫ x

0

mx(m−1)e(−x
m)dx (D.3)

Eq. (D.3) can be easily integrated by assuming u = −xm, such that

u = xm (D.4)

du

dx
= −mxm−1

F = −
∫
eudu

F = −eu + C
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Putting back the value of u and solving the Eq. D.5 for the limits, following equation is obtained.

F = 1− e−x
m

(D.5)

For the statistical distribution of fiber strength, the variable xm in the Eq. (D.5) is replaced by the

term l
l0

(
σ
σ0

)m
. The expression obtained is

F = 1− exp
(
− l

l0

(
σ

σ0

)m)
(D.6)

For the cumulative failure probability of 63.2%, the term inside the exponential of Eq. (D.6) should

be -1. Thus the following equation is obtained.

σ = σ0

(
l0
l

) 1
k

(D.7)

Note that at the probability of 63.2%, the Weibull fitted curve intersects the experimental data -

least square fitted line [54]. Fig. D.1 shows that the failure probability of 0.632 intersects the Weibull

Figure D.1: Weibull plot of the value of m = 3.6

curve at x = 1. It is the point of intersection of Weibull curve with the experimental data. Note

that the above curve is plotted at the shape parameter of m = 3.6, which has also been used in the

SFC analysis in Chapter 3. Also, the plot shown above is similar to general the Weibull trend for

the fiber strength, as can be seen in the literature [40].
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