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Abstract

The proliferation of smartphones and tablets has led to huge demand for data

services over cellular networks. Cisco VNI mobile forecast (2014-2019) tells that al-

though only 3.9% of mobile connections were Long Term Evolution (LTE) based they

accounted for 40% of the mobile traffic and this will rise to 51% by 2019, by which

the mobile data usage will grow 11 fold to over 15 Exabytes per month. Reports by

Cisco and Huawei tell that 70% of the traffic is generated in indoor environments

such as homes, enterprise buildings and hotspots. Hence, it is very important for

mobile operators to improve coverage and capacity of indoor environments. Indoor

data demand is partly met by intensifying the deployment of Macro Base Stations

(MBSs/eNodeBs) in LTE cellular networks. Owing to many obstacles in the commu-

nication path between MBS and users inside the building, radio signals attenuate at a

faster rate as the distance increases. Thus, Indoor User Equipments (IUEs) receive

still low signal strength ( i.e., Signal-to-Noise Ratio, SNR) compared to Outdoor

User Equipments (OUEs). To address this problem, one can deploy a large number

of Low Power Nodes (LPNs) a.k.a. small cells (e.g., Picos and Femtos) under an

umbrella MBS coverage and thereby form an LTE Heterogeneous Network (HetNet).

Small cells are mainly being deployed in homes, enterprise buildings and hotspots

like shopping malls and airports to improve indoor coverage and data rates. This is

a win-win situation as telecom operators also benefit by reduction in their CAPEX

and OPEX.

Though the deployment of Femtocells improves indoor data rates, the resulting

LTE HetNet may face a host of problems like co-tier and cross-tier interference (due

to frequency reuse one in LTE) and frequent handovers (due to short coverage areas of

Femtocells). Deployment of Femtos inside a building can lead to signal leakage at the

edges/corners of the buildings. This causes cross-tier interference and degrades the

performance of OUEs in High Interference Zone (HIZone) around the building area,

which are connected to one of the MBSs in the LTE HetNet. Arbitrary placement of

Femtos can lead to high co-channel cross-tier interference among Femtos and Macro

BSs and coverage holes inside buildings. If Femtos are placed without power control,

this leads to high power consumption and high inter-cell interference in large scale de-

ployments. Our goal is to address these problems by developing efficient architecture,

Femto placement and power control schemes in LTE HetNets.

Random or unplanned placement of the Femtos leads to poor SNR and hence

affects achievable data rates of IUEs. Hence, placement of Femtos is important for

the cellular operators to perform planned deployment of minimum number of Femtos
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with no coverage holes and guarantee a good signal quality with no co-tier interfer-

ence. Once the placement of Femtos is done optimally in enterprise environments,

operators need to ensure that traffic load is evenly distributed among neighboring

Femtos for improving Quality of Service (QoS) of IUEs by efficiently utilizing the

network resources. In traditional cellular networks, the uplink access and downlink

access of UEs are coupled to the same (Femto) cell. Suppose a Femto is fully loaded

when compared to its neighboring Femtos, the traditional offloading or load balanc-

ing algorithms will try offloading some of the UEs for both their uplink and downlink

access from the loaded cell to one of less loaded neighboring cells (i.e., target cell)

provided that these UEs could get connected to the chosen target cell. This type of

offloading is a forced handover to reduce traffic imbalance and trigger for handover is

not based on better signal strength from the target cell. But, the offloaded UEs are

connected for both their uplink and downlink access to the same target cell. Since

UEs are most likely separated by walls and floors from their connected cells in enter-

prise environments, these offloaded UEs now have to transmit with higher transmit

power in the uplink and thereby affects their battery lives. In order to reduce the

battery drain for the offloaded UEs while maintaining their QoS, we employ the De-

coupled Uplink and Downlink (DUD) access method in such a way that, the uplink

of UE is connected to the closest Femto while the downlink is connected to a less

loaded neighboring Femto.

To maximize the utilization of the limited operating spectrum and provide higher

data rate for IUEs, operators can configure Femtos in open access mode with fre-

quency reuse one (i.e., all Femtos and MBSs operates on a same frequency) in LTE

HetNets. However, this leads to high co-tier interference and cross-tier interference.

Another problem in enterprise buildings having Femtos is frequent handovers, that

happens when IUEs move from one room/floor to another room/floor inside the

building. This leads to degradation of network performance in terms of increased

signaling overhead and low throughputs. In order to reduce this kind of unnecessary

handovers in enterprise buildings, Femtos should be placed optimally with handover

constraints. Hence, we obtain the optimal coordinates from the OptHO model by

adding handover constraints to the Minimize Number of Femtos (MinNF) model

which guarantees threshold Signal-to-Interference plus Noise Ratio (SINR) of -2 dB

for all IUEs inside the building. Such optimized deployment of Femtos reduces the

number of handovers while guaranteeing good SINR to all IUEs.

In LTE HetNets, even though planned deployment of Femtos in open access mode

boosts the IUEs performance, the power leakage from indoor Femtos create interfer-
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ence to the OUEs in the HIZone in the buildings surrounding areas. We propose

an efficient placement and power control SON (Self organizing Network) algorithm

which optimally places Femtos and dynamically adjusts the transmit power of Femtos

based on the occupancy of Macro connected OUEs in the HIZone. To do this, we

use the same MinNF model to place the Femtos optimally and solve Optimal Femto

Power (OptFP) allocation problem (Mixed Integer Linear Programming (MILP))

which guarantees threshold SINR of -4 dB for IUEs with the Macro users SINR

degradation as lesser than 2 dB. In the OptFP model, Femto’s transmit power is

tuned dynamically according to the occupancy of OUEs in the HIZone. But the

presence of even a single OUE in the HIZone decreases SINR of numerous IUEs,

which is not fair to IUEs. In order to address this issue, we propose two solutions

a) On improving SINR in LTE HetNets with D2D relays and b) A novel resource

allocation and power control mechanism for Hybrid Access Femtos in LTE HetNets,

which we describe in the following two paragraphs.

To guarantee certain minimum SINR and fairness to both IUEs and OUEs in

HIZone, we consider a system model by applying the concept of Device-to-Device

(D2D) communication wherein free/idle IUEs connected to Femto act like UE-relays

(i.e., UE-like BS, forwarding downlink data plane traffic for some of the HIZone

users connected to MBS). We formulate a Mixed-Integer Linear Programming (MILP)

optimization model which efficiently establishes D2D pairs between free/idle cell-

edge IUEs and HIZone users by guaranteeing certain SINRTh for both IUEs and

HIZone users. As D2D MILP model takes more computation time, it is not usable

in real-world scenarios for establishing D2D pairs on the fly. Hence, we propose a

two-step D2D heuristic algorithm for establishing D2D pairs.

In above works, we assume that Femtos are configured in open access mode. But

Hybrid Access Femtocells (HAFs) are favored by the operators because they ensure

the paid Subscribed Group (SG) users certain QoS and then try to maximize the sys-

tem capacity by serving near-by Non Subscribed Group (NSG) users in a best-effort

manner. To reap in the benefits of HAFs, the operators need to employ effective

resource sharing and scheduling mechanisms to contain co-tier and cross-tier interfer-

ence arising out of reuse one in the HetNet system. Towards this, we address various

challenges in terms of deployment and operation of HAFs in indoor environments. We

propose an Optimal Placement of hybrid access Femtos (OPF) model which ensures

a certain SINRTh inside the building and a certain SINRTh in the HIZone of the

building. Unlike in previous optimization models, in this model, users in HIZone are

connected to HAFs deployed inside the building. Also we propose a decentralized
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Dynamic Bandwidth Allocation (BWA) mechanism which divides the available HAF

bandwidth between the two sets of user groups: SG and NSG. In order to mitigate

co-tier and cross-tier interference, we then propose a dynamic Optimal Power Control

(OPC) mechanism which adjusts the transmit powers of HAFs whenever the users in

the HIZone cannot be served by the HAFs. In such a case, HIZone users connect

to an MBS instead. Since the OPC problem is hard to solve in polynomial time,

we also present a Sub-Optimal Power Control (SOPC) mechanism. To maintain fair

resource allocation between SG and NSG users, we propose an Enhanced Priority

(EP) scheduling mechanism which employs two schedulers which are based on the

Proportional Fair (PF) and the Priority Set (PS) scheduling mechanisms.

In above works, placement of Femtos is optimized to reduce co-channel co-tier

interference among neighboring Femtos and transmit power of Femtos is optimized

to reduce cross-tier interference between MBSs and Femtos. But, for arbitrary de-

ployed Femtos, Inter Cell Interference Coordination (ICIC) techniques could be em-

ployed to address co-tier interference problem among Femtos which are connected with

each other over X2 interface. Hence, in this work, we propose an ICIC technique,

Variable Radius (VR) algorithm which dynamically increases or decreases the cell

edge/non-cell edge regions of Femtos and efficiently allocates radio resources among

cell edge/non-cell edge regions of Femtos so that the interference between neighbor-

ing Femtos can be avoided. We implement the proposed VR algorithm on top of PF

scheduler in NS-3 simulator and find that it significantly improves average network

throughput when compared to existing techniques in the literature.
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Chapter 1

Introduction

1.1 Evolution of Cellular Networks

The history of mobile networks or cellular networks is four decades old. It began with

the introduction of first generation mobile networks (1G) in late 1970s which were

using analog communication schemes and designed to deliver voice services. Some of

the first generation systems were Advanced Mobile Phone Service (AMPS), Extended

Total Access Communication Systems (ETACS) and Narrowband Total Access Com-

munication Systems (NTACS). The era of second generation mobile networks (2G)

came in early 1990s where mode of communication is switched from analog to dig-

ital. The adoption of digital communication improved cellular systems in terms of

enhanced system capacity, improved voice quality by using efficient speech codecs,

lesser battery consumption, enhanced security, facilitation of digital data services

such as Short Message Service (SMS) and Internet access. Some of the examples of

2G digital cellular systems are Global System for Mobile Communications (GSM),

IS-95 Code Division Multiple Access (CDMA), IS- 136 Time Division Multiple Ac-

cess (TDMA). Later in mid 1990s, in order to achieve higher data rates, General

Packet Radio Service (GPRS) was introduced. GPRS is based on packet switching

where data is sent in the form of packets unlike in 1G and 2G systems where circuit

switch was employed. Advantage of packet switching over circuit switching can be

well understood from the fact that, in circuit switching, resources are reserved for

the whole voice or data session and released only after end of the session. Packet

switching got more importance with the evolution of Internet and Internet Protocol

(IP). Enhanced Data for Global Evolution (EDGE) or enhanced GPRS is an example

of 2.75G cellular technology. Although, EDGE network was providing voice as well as

data service, specially Internet access, it was unable to fulfill user demands because
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of increasing number of mobile phone users and their increasing urge for data. As a

solution, 3G technologies [1] came into existence in late 1990s with the objective of

providing high data rates and better Quality of Service (QoS) to various data appli-

cations such as web browsing, online gaming and streaming multimedia applications.

CDMA was the key enabler of 3G technologies. Examples of 3G technologies are

W-CDMA and CDMA2000. CDMA does not scale well for higher bandwidths (i.e.,

beyond 5 MHz). In case of higher carrier bandwidth, data transmission rate will be

higher and hence, transmission step will be shorter which will increase the impact of

multipath fading on received signal. With the progress of time, demand for high data

rates is increasing which motivated research communities come up with new technolo-

gies that efficiently work at highest bandwidths. As a solution, Orthogonal Frequency

Division Multiplexing (OFDM) technology was conceptualized in which data signal

is split into multiple data streams and each stream is sent over a narrowband car-

rier. In this case, transmission step will be longer and hence, multipath fading will

have lesser impact on received signal. With this approach, it was possible to scale

cellular systems for higher bandwidths just by increasing the number of narrowband

carriers. Further, Multiple Input Multiple Output (MIMO) technology enhanced the

data throughput even under adverse environments such as interference and multipath

fading. In MIMO, multiple transmitting antenna are kept at sender side and multiple

receiving antennas are kept at receiver side. Using MIMO techniques, multiple data

streams can simultaneously be sent over the same carrier. Both OFDM and MIMO

were the key enablers of 4G cellular systems [2, 3]. Third Generation Partnership

Table 1.1: Comparison of LTE and LTE-Advanced Networks

Parameter LTE LTE-Advanced
Downlink peak data rate 300 Mbps 1 Gbps
Uplink peak data rate 75 Mbps 500 Mbps
Downlink bandwidth 20 MHz 100 MHz
Uplink bandwidth 20 MHz 40 MHz
Bandwidth scalability 1.4, 3, 5, 10, 15 & 20 MHz 20, 40, 60, 80 & 100

MHz

Project (3GPP) developed standards and specifications for 3G mobile systems based

on evolved GSM technologies. 3GPP standards are structured in the form of ’re-

leases’. The scope of 3GPP includes development and maintenance of GSM and its

related standards such as GPRS and EDGE, UMTS and its related standard such as

HSPA, LTE and its related standards such as LTE-A. LTE is abbreviation of Long

Term Evolution. LTE standards were introduced by 3GPP in Release 8 [4]. LTE has

13



several advantages such as enhanced system capacity and coverage, better Quality of

Experience (QoE), backward compatibility with existing systems viz., 2G and 3G and

reduced operating costs. LTE-A meets requirements of 4G specified by International

Mobile Telecommunications-Advanced (IMT-Advanced). Release 10 and all further

advancements for LTE are called as LTE-A.

1.2 Overview of LTE

Table 1.1 shows the comparison of LTE and LTE-A networks. Following are some of

advancements in LTE-A in summarized form:

1. Carrier Aggregation: It was introduced in Release 10 [5]. In this concept,

multiple carriers are aggregated to achieve higher system bandwidth. The max-

imum bandwidth that can be achieved is 100 MHz. Using carrier aggregation,

peak data rate reaches up to 1 Gbps in downlink and 500 Mbps in uplink. Apart

from higher data rates, several other advantages are associated with carrier ag-

gregation which include QoS differentiation, carrier load balancing, interference

management and efficient deployment of heterogeneous LTE network. Depend-

ing upon the availability of the spectrum, there are three aggregation scenarios,

viz., contiguous aggregation in a single radio band, non-contiguous aggregation

in single radio band and non-contiguous aggregation in multiple radio bands.

2. Co-ordinated Multi-point Transmission and Reception (COMP): It

was introduced in Release 11 [6,7]. In COMP, users in the overlapping region of

multiple BSs are jointly scheduled by allocating the same radio resources from

the multiple neighboring base stations, thereby improving the throughput of

cell edge users. COMP also enables the dynamic coordination of transmission

and reception over a variety of different base stations within the network. This

concept can be applied to both homogeneous (i.e., all the base stations belong

to the same type and power class) and heterogeneous networks (i.e., the base

stations could belong to different type or power classes).

3. Device to Device (D2D) Communication: In traditional cellular networks,

during communication between two users (devices), both control plane (C-

Plane) and data plane (D-Plane) are under the control of base stations. In

D2D communication, only C-Plane is handled by base stations while data ex-

change between two devices is done directly without involving base stations.
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Figure 1.1: Typical example of D2D communication

The base stations control and optimize the use of shared radio resources for

regular and D2D sessions. Figure 1.1 shows a typical example of D2D com-

munication. D2D is standardized by 3GPP in Release 12 for proximity-based

services [8]. Some of the challenges in D2D include interference management,

resource allocation, power control, session management, mobility management,

security, location estimation and multi-hop D2D.

4. Dual Connectivity: Release 12 from 3GPP bought the concept of dual con-

nectivity [9]. In this case, a UE can be connected to both Macro evolved NodeB

(eNB) and small cell eNB, and both C-plane & D-plane happen through both

of them. This in turn boosts the throughput of UEs which reside in the cell

edge or coverage region of both Macro and small cell eNBs. In this thesis, user,

device or UE are used interchangeably.

5. Interworking of LTE with Wi-Fi: It is introduced in Release 9 [10]. As Wi-

Fi, which operates on unlicensed bands, has the ability to boost the capacity for

indoor environments, telecom operators consider this for offloading mobile data

from cellular networks. This cellular/Wi-Fi interworking not only improves QoS

of flows but also maximizes the network utilization. Currently in Release 13,

LTE-Wi-Fi aggregation (LWA) is being standardized for efficient LTE/Wi-Fi

interworking at UE/eNB protocol stack level.

6. Machine-to-Machine (M2M) Communication: In M2M communication,

a large number of low power, low cost, low data requirement and resource con-

strained Internet of Things (IoT) devices communicate with a distant server

mostly in uplink. Characteristics of M2M communication are different from

traditional H2H (Human-to-Human) communication in terms of nature of traf-

fic, types of devices, number of devices, delay tolerance and scope. Hence,
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its associated challenges are also different from H2H communication such as,

excess signaling due to large number of devices, support for devices having

long sleeping cycles, power efficient communication and support for small data

transmission. Existing cellular networks were designed for H2H communication.

In Release 11 [11], 3GPP introduced M2M communication where solutions for

RAN overload control (one of the challenges due to excess signaling) have been

discussed. Later, in Release 12 and Release 13, some more advancements have

been achieved in terms of small data transmission, low power and low cost

device specifications.

Table 1.2: Characteristics of heterogeneous cells in LTE

Technology Placement Transmit
Power

Backhaul Charac-
teristic

Number
of Users

Macro BS Outdoor 46 dBm Dedicated wireline 1000-2000
Pico or Micro cell Outdoor 30 dBm Dedicated wireline 100-200
RRH Outdoor or

indoor
30-35 dBm Dedicated wireline 100-200

Relay Outdoor or
indoor

30-35 dBm Wireless out-of-band
or in-band

60-100

Femotcell Indoor 20-23 dBm Residential or enter-
prise broadband

10-30

7. Heterogeneous Networks (HetNets): Presently, cellular network users are

not only those which generate mostly downlink traffic (i.e., web browsing, down-

loading) but also combination of users generating symmetric (both uplink (UL)

and downlink (DL)) traffic (i.e., social networking, gaming) and users generat-

ing uplink traffic (i.e., M2M/IoT). In order to provide better connectivity and

high data rates to these users, low power network nodes, called as small cells,

are being deployed. Presence of such diverse traffic generating users and small

cells with different transmit powers and sizes, has turned cellular networks from

homogeneous to heterogeneous in nature. A heterogeneous network (HetNet)

consists of a Macro cell augmented with various types of small cells to address

the challenge of enhancing system capacity and coverage. Examples of small

cells are micro cell, pico cell, relay, Remote Radio Head (RRH) and Femtocell.

Table 1.2 shows characteristics of various types of cells. Figure 1.2 shows a typ-

ical example of LTE heterogeneous network. The description of various types

of small cells are as follows.
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Figure 1.2: LTE Heterogeneous Network

• Pico or Micro BS: These are deployed in outdoor environment to cover a

radius up to 300 m. The transmission power of the pico BS (i.e., 30 dBm) is

smaller than that of Macro BS. Pico BS has a dedicated X3 backhaul connection

to the Macro BS for co-ordination as shown in Figure 1.2.

• Relay: Relay BS acts as a repeater. It receives the data/signal from the

Macro BS and transmits/boosts the data to the relay connected users. The link

between the relay and Macro BS is also wireless. Normally the relay BS(s) are

the preferred choice of operators in order to extend the coverage region (for e.g.,

Hilly region, rural areas) of the Macro BS.

• RRH: Unlike traditional BS, RRH is a radio transceiver component which per-

forms only the transmission and reception of In-phase Quadrature (IQ) samples.

The remaining BS processing is done at a centralized cloud data center by Base-

band Unit (BBU) pool. By performing centralized processing, the cost of the

BS will come down, which directly reduces CAPEX and OPEX.

The advantage of HetNets are as follows.

1. Cell range expansion (CRE): Increasing or decreasing the transmit power (or

17



 

 

eNB eNB

eNB

MME/S-GW

Internet

X2

X2
X2

S1

S1

S1

S1

UE

E-UTRAN

EPC

P-GW

HSS

S6a

PCRF

S5/S8

Gx

SGi

Figure 1.3: Architecture of LTE Network

coverage region) based on the load in small cells will boost the overall system

throughput.

2. Integrating Macro and small cells: Improving user throughput by dual connec-

tivity (i.e., Macro and one small cell).

3. Self organizing network (SON): In HetNets, small cells are deployed in huge

number. Each small cell can be provided with SON features, which aims to

configure and optimize the network automatically thereby reducing the human

effort. It plays a key role in improving OAM (operation, administration, man-

agement).

As discussed in above paragraphs, OFDM and MIMO helped in evolution from

3G technologies and this evolution is called as long term evolution or LTE. Along

with evolution in technologies, the overall 3GPP network architecture is also being

evolved. This evolution is termed as System Architecture Evolution (SAE). The SAE

can also be termed as LTE network architecture. SAE consists of both core network,

called as Evolved Packet Core (EPC) and radio access network called as Evolved
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UMTS Terrestrial Radio Access Network (E-UTRAN). Figure 1.3 shows LTE network

architecture. Components of EPC are described as follows:

• MME: Mobility Management Entity (MME) is responsible for handover, au-

thentication, paging, security, UE identity and establishment and release of

connection. MME connects to base station through S1 interface as shown in

Figure 1.3.

• Serving GW: Serving Gateway (S-GW) is responsible for data plane (i.e.,

D-plane), bearer establishment and also routes the packets during handovers.

• Packet GW: Packet Gateway (P-GW) is responsible for enforcing policy con-

trol and charging rules. The P-GW acts as a mediator between EPC and

external networks (e.g., Internet).

• Home Subscriber Server (HSS): It is a central repository containing all the

operator’s subscriber information. This functionality has evolved from GSM

and 3G networks. This constitutes a Home Location Register (HLR) part and

Authentication Center (AuC) part. HLR part of HSS takes care of database

management of user subscription information whereas AuC part utilizes the user

identity keys to generates security information and these security information

is communicated to other components in the network.

Components of E-UTRAN are described as follows:

• UE: This is the user terminal which connects to the eNB as specified in the

3GPP standards.

• E-Node B: E-Node B stands for evolved node B or eNB or eNodeB. It is the

evolution of Node B from UMTS technology (i.e., 3G). It is responsible for pro-

cessing the request (from the UEs), resource allocation, handover, interference

management, load balance, etc. Hence, eNB plays a key role in LTE.

1.2.1 LTE Frame Format

LTE supports both Time Division Duplexing (TDD) and Frequency Division Duplex-

ing (FDD). In FDD, uplink and downlink transmissions are performed in different

frequency bands separated sufficiently while in TDD, these are performed in the same

frequency band but in different time slots. LTE also supports half-duplex FDD at UE

side. In half-duplex FDD, sending and receiving at a UE are separated in both time
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Figure 1.4: Frequency and time division duplex in LTE

and frequency domain because of which duplex filters are not required and hence,

terminal complexity is reduced. Figure 1.4 shows examples of FDD, half-duplex FDD

and TDD modes of operation. In both TDD and FDD modes, the higher level frame

structure is same. Each frame is divided into ten sub-frames. Each subframe has

2 slots with a total duration of 1 ms, making 20 slots in a frame as shown in Fig-

ure 1.5. In each subframe, the scheduler running inside the base station allocates to

UEs radio resources in terms of Resource Blocks (RBs) for both uplink and downlink

transmissions.

Table 1.3 shows the LTE parameters. As shown in Figure 1.6, RB is the smallest

unit of radio resources which can be allocated to a UE. If the scheduler allocates

one RB to a UE, it means that 180 KHz bandwidth has been allocated to that UE

for the next TTI. Each RB of 180 KHz bandwidth will contain 12 sub-carriers, each

with 7 OFDM symbols. Hence, it constitutes 84 resource elements. Depending upon

the modulation and coding schemes (QPSK, 16-QAM, 64-QAM), each symbol or

resource element in the RB carries 2, 4 or 6 bits per symbol, respectively. In an LTE

system with 20 MHz bandwidth, there will be 100 RBs available for downlink/uplink

scheduling.

Table 1.3: LTE parameters

Parameter Value
Uplink scheme Single carrier-FDMA (SC-FDMA)
Downlink scheme OFDMA
Possible bandwidth 1.4, 3, 5, 10, 15, 20 MHz
Minimum scheduling time (TTI) 1 ms
Sub-carrier spacing 15 kHz
Modulation schemes QPSK, 16-QAM, 64-QAM

In uplink, SC-FDMA is used as the multiple access scheme to reduce Peak Average
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Figure 1.5: LTE Frame Format

Figure 1.6: Resource Block (RB)

Power Ratio (PAPR) and for uplink transmission, Physical Uplink Control Channel

(PUCCH) and Physical Uplink Shared Channel (PUSCH) are used for communica-

tion. UEs provide their Channel Quality Indicator (CQI) values as feedback to their

attached eNB through PUCCH channel. In downlink, OFDMA is used as the mul-

tiple access scheme and Physical Downlink Control Channel (PDCCH) and Physical

Downlink Shared Channel (PDSCH) are used for communication.

1.2.2 Radio Resource Management

Scheduling of radio resources to the users is done using various schemes depending

upon the objective of the operator. These scheduling schemes include channel un-

aware, channel-aware/QoS-unaware, channel-aware/QoS-aware, semi-persistent and
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energy aware schemes. In this thesis, we have used the well known scheduling al-

gorithm, Proportional-Fair (PF) scheduling [12]. The PF scheduling is a channel

aware-QoS unaware scheme which is the combination of Blind Equal Throughput

(BET) scheduling (channel-unaware scheduling) and Maximum Throughput (MT)

scheduling (channel-aware/QoS-unaware scheduling). The BET scheduling provides

fairness to users in terms of throughput. In this case, users in the cell edge may get

more RBs to have same throughput as that of non cell edge users. The MT scheduling

tries to maximize the spectral efficiency by assigning RBs only to those users which

have best Signal to Interference Plus Noise Ratio (SINR). By considering both BET

and MT, the PF scheduling provides fairness as well as improves spectral efficiency.

1.3 LTE Femtocell Networks

The existing Macro Base Stations (MBS) are unable to satisfy mobile users because

of the very huge data demand and indoor locality of most of the users. Reports

by Cisco [13] tell that 70% of the traffic is generated in indoor environments such

as homes, enterprise buildings and hotspots. Hence, it is very important for mobile

operators to improve coverage and capacity of indoor environments. But the basic

problem with the existing MBS (or outdoor small cells with shorter coverage) is that

they can only boost data rates of Outdoor User Equipments (OUEs). But, they are

not able to do the same for Indoor User Equipments (IUEs), because it is difficult

for electromagnetic signals to penetrate through walls and floors. Owing to many

obstacles in the communication path between MBS and IUEs inside the building,

radio signals attenuate at a faster rate with increase in the distance. Thus, IUEs

receive low signal strength (i.e., Signal-to-Noise Ratio, SNR) compared to outdoor

users. To demonstrate this, we consider a single-floor building with a single MBS

(interchangeably used as MBS, Macro and eNodeB in rest of this thesis) situated at

a distance of 350 meters from the building on its south-west side. By taking into

account path loss due to walls and floors from the MBS, SNR variation inside the

building is shown in Figure 1.7. Hence, it is very important for mobile operators to

improve coverage and capacity in indoor environments.

As a solution, Femtocells are being deployed by both operators and end customers.

Femtocell is a low-cost, low-power consuming cellular base station which operates only

in licensed spectrum and designed for both outdoor and indoor communication. The

range of Femtocell is 100-150 meters for enterprise environments consuming 100 mW

power. A home based Femto (HeNB) can serve 4-5 users whereas an office based
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Femto can serve maximum of 64 users [14]. Each Femto requires a backhaul connec-

tion to EPC. Advantages of using Femtos are described as follows:

Operator Advantages :

• The network capacity can be increased.

• OPEX and CAPEX can be reduced.

• Backhaul cost can be reduced.

• Traffic overload on MBSs can be reduced.

User Advantages :

• Improved QoE.

• Improved energy efficiency/battery life.

1.3.1 Architecture of Indoor LTE Femtocells

Figure 1.8 shows the architecture of LTE HetNet system, where Femtos are deployed

inside the building and are connected to a Femto Gateway (F-GW) over S1 interface.
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F-GW is mainly used to reduce the load on MME. It acts as a virtual core network

to Femtos. The F-GW gets assigned with a eNB ID and thus F-GW is considered

as yet another eNB by the MME. The X2 interface is introduced between Femtos of

enterprise Femtocell networks to avoid inter cell interference and directly route the

data and signaling messages among Femtos, thereby reducing the load on LTE core

network and offering better co-ordination among Femtos.

1.3.2 Access Modes in Femto

Since Femtos are deployed for offering high data rates to indoor (paid) users in en-

terprise and residential buildings, each Femto is configured with a list of subscribers

called Subscriber Group (SG) such that only the users in the SG can access the Femto.

The users not belonging to this list are called Non-SG (NSG) and they may not served

by the Femto even when they are in close proximity to the Femto. Following access

modes are defined for Femtos:

• Open access: The open access mode allows all users (i.e., SG & NSG) to

access the Femto without any restriction.

• Closed access: The closed access mode permits only authorized users (i.e.,

SG) to access the Femto.
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• Hybrid access: The hybrid access is the combination of both open and closed

access. It allows all users (i.e., SG & NSG) by providing preferential access for

SG users over NSG users.

UE1

Macro Serving Macro

Target Femto

Femto

Femto

Femto

UE2

UE3

Femto

Figure 1.9: Femto Handover Mechanism

1.3.3 Handover Mechanism

In enterprise building with large deployment of Femtocells, as users keep moving

from place to place inside the building this triggers many handovers compared to the

traditional Macro to Macro handovers due to shorter coverage area of Femtocells.

There are three different types of handovers between Femto and Macro BSs.

• In-Bound: Figure 1.9 shows handover of UE1 from Macro BS to Femto BS

when it enters inside the building where one Femto is deployed. The UE au-

tomatically detects Femto by its unique physical cell ID and connects to it.

This handover is complex because of the presence of large number of Femtos in

indoor. Macro BS has to decide the Femto to which handover must be made.

• Out-bound: Figure 1.9 shows handover of UE3 from Femto BS to Macro BS

when it comes out of the building.

• Femto-to-Femto Handover: The principle used in Macro-to-Macro handover

is also applied in the case of Femto-to-Femto handover. But, here F-GW handles

handovers. Figure 1.9 shows an example of handover of UE2 between two Femto

BSs.
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1.4 Issues, Existing Solutions and Associated Chal-

lenges

In this section, we discuss various issues and challenges while deploying small cells

in LTE HetNets. Also, we discuss the existing solutions to address these issues and

challenges. Some of the important challenges are discussed below:

1. Interference in HetNet Scenarios

In HetNet systems, the major factor that affects the network throughput is the

interference (between Femtos and between Macro and Femtos). There are two

types of interference possible in the HetNet systems:

(a) Co-tier Interference: Due to reuse one usage of spectrum, interference

from the neighboring small cells is called as co-tier interference. For ex-

ample, in Figure 1.10, UE2 is getting served by the Femto BS (F2) but it

is receiving interference from the neighboring Femto BSs (F1 & F3). The

traditional solution to avoid co-tier interference among BSs is the Inter

Cell Interference Coordination (ICIC) [15–18]. In ICIC scheme, all BSs

cooperatively communicate using X2 interface as shown in Figure 1.8 and

allocate RBs efficiently to the cell edge users, but on the other hand, this

increases the signaling messages.
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(b) Cross-tier Interference: The interference between Macro BS and small

cell is called as cross-tier interference. For example, in Figure 1.10, UE1 is

getting served by the Macro BS but it is receiving interference from small

cells (i.e., Femtocells F1, F3). The traditional solution to avoid cross-

tier interference is enhanced ICIC (eICIC) [19, 20]. In eICIC scheme, the

interference between MBS and Femto BS (FBS) is avoided by muting some

sub-frames (Almost Blank Sub-frame) in MBS during FBSs transmissions.

This in turn reduces the interference and increases the capacity in HetNet

systems.

Though the spectrum efficiency and system capacity could increase due to spa-

tial reuse of the same spectrum in LTE HetNets, SINR (and hence, network

throughput) may get affected because of cross-tier inference among MBS(s)

and small cells and co-tier interference among small cells and obstacles inside

buildings. Also, the signal leaks at the edges/corners of the buildings which in

turn causes cross-tier interference and degrades the performance of OUEs in the

High Interference Zone (HIZone) around the building area, which are connected

to one of the Macro BSs in LTE HetNet. To the best of our knowledge, none

of the existing works addressed the cross-tier interference issue to HIZone UEs

(HIZUEs) in a dynamic fashion based on their occupancy levels in the HIZone.

In this thesis, in chapter 6, we propose a dynamic power control scheme which

is employed at the Femtos in order to reduce cross-tier interference to HIZUEs

in the HIZone.

2. Load Balancing

The other varying parameter that affects the data rates in cellular networks

is the traffic load. This happens due to non-uniform UE traffic distribution in

indoor. In traditional cellular networks, the uplink access and downlink access

are coupled to the same BS as shown in Figure 1.11. The user Ut uses Femto

F2 for both uplink and downlink communication due to high signal strength

from Femto F2 than Femto F1. Suppose a particular Femto is fully loaded

when compared to its neighboring Femtos. Then the traditional offloading or

load balancing algorithms [21, 22] will shift some of the UEs for both uplink

and downlink from the over loaded cell to one of less loaded cells (target cells)

provided that these UEs still could get connected to the target cell. This type

of offloading is a forced handover based on the load but not based on sig-
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Figure 1.11: Load Balance in Enterprise Building

nal strength, because the signal strength when connected to the initial serving

Femto was high compared to the target Femto. For example in Figure 1.11, we

observe that Femto F2 is heavily loaded, so the user Ut can be offloaded to the

neighboring Femto i.e., FemtoBS1. In a coupled access system, as shown in

Figure 1.11, after offloading, Ut uses Femto F1 for both uplink and downlink

communication. But this could increase the uplink transmission power of UE as

it is now connected to the cell which is not the closest one. This in turn drains

the battery of UE at faster rate. In order to address this issue, in chapter 2,

we adopt downlink/uplink decoupling (DUD) based approach [23, 24] in which

UEs connect in the uplink to the shortest path loss Femto and in the downlink

to one of less loaded Femtos.

3. Placement

Due to large scale deployment of Femtocells in enterprise/office environments

and many practical constraints (e.g., lack of space and power), operators will go

for arbitrary deployment. Arbitrary deployment of Femtos will lead to the issues

such as coverage holes, and increased number of Femtos (increased OPEX and

CAPEX) as shown in Figure 1.12. In order to address these issues, placement of

Femtos need to be optimal. Optimal placement of Femtos ensures good SINR
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and thereby improves overall system capacity. But, in some scenarios, operators

may need to go for sub-optimal or arbitrary deployment (due to physical con-

straints) which will lead to deployment of more number of Femtos than that in

the optimal model to ensure that there are no coverage holes inside the building.

In this thesis, in chapter 6, we propose an optimal model for placing Femtos in

large scale enterprise scenarios.

Figure 1.12: Arbitrary Placement of Femtocells

4. Mobility

Another major issue in enterprise Femto building deployments is frequent or

unnecessary handovers (i.e., ping-pong effect), which may happen when UE

moves from one room to another room or within the same room and similarly

in the corridors of the building. For example, in Figure 1.13, the UE1 will

experience unnecessary handovers due to signal strength variation from neigh-

boring Femtos when it moves within the building. This leads to degradation

of performance like service interruption during signaling overhead, decrease in

throughput and increase in number of handovers. Existing works [25, 26] focus

on the hysteresis margin, signal strength and load aware handovers. But, above

approaches lead to more signaling overhead and ping-pong effects as they have
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not considered placement aware handover decisions. In this thesis, in chapter 3,

we propose a handover and SINR optimized deployment of Femtocells in en-

terprise environments which prevents unnecessary handovers (i.e., handovers

happening within the same room or in corridors) and reduced signaling in en-

terprise building, by placing the Femtos with additional handover constraint.

Figure 1.13: An Example Scenario Showing Ping-pong Handovers in Femtocells

5. Scheduling

Femtos that are configured in open access mode do not distinguish between

SG users and non-SG users and hence, they may fail to ensure QoS for SG

users especially during peak traffic loads. Hybrid Access Femtocells (HAFs) are

favored by telecom operators as they can ensure QoS for SG users by giving

them preferential access to radio resources over NSG users and also improve

the capacity of LTE HetNet by serving nearby NSG users. Challenges here are

optimal HAF deployment and efficient splitting of radio resources between SG

and NSG users of HAFs in indoor environments. To the best of our knowledge,

none of the existing works discussed about the fair allocation of radio resources

among SG and NSG users. In this thesis, in chapter 7, we propose a dynamic

bandwidth allocation method which divides the available bandwidth between

the SG and NSG users and also an efficient power control and fair resource

allocation method which allocates the radio resources between SG and NSG

users.
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1.5 Objectives and Scope of the Thesis

The main objective of this thesis is to propose efficient solutions to improve data rates

of users in LTE HetNets. The scope of the work is summarized below.

• To develop efficient Femto placement schemes for enterprise environments which

boost SINR of indoor UEs.

• To develop dynamic power control algorithms at Femtos (deployed in buildings)

for optimally tunning the transmit power based on presence of outdoor users in

the HIZone of the building.

• To make use of free/idle IUEs as D2D relays for improving data rates of Macro

users who are present in the HIZone of the building.

• To modify the traditional radio resource allocation (i.e., scheduling) for effi-

ciently supporting SG & NSG users of Hybrid access Femtos in LTE HetNets.

• To develop a Decoupled Uplink and Downlink (DUD) access scheme such that

users connect in the uplink to the shortest path loss Femtocell and to one of

less loaded Femtocells in downlink in order to efficiently manage user offloading

and reduce uplink transmit power.

• Handover and SINR optimized deployment of Femtocells in enterprise environ-

ments.

• To design efficient distributed resource allocation and interference management

scheme for arbitrary deployed Femtocell environments.

1.6 Organization of the Thesis

In this chapter, we described the outline and contributions of the thesis. Rest of the

thesis is organized as follows. In chapter 2, we describe the advantages of decoupled

access for downlink and uplink in the enterprise Femtocell environments. Then, we

propose an efficient downlink offloading algorithm and study the performance of the

proposed system in both uniform and non-uniform traffic load scenarios.

In chapter 3, to reduce the unnecessary handovers or ping-pong effect in enterprise

building environments, we propose a handover and SINR optimized deployment of

LTE Femtocells and study the performance in terms of throughput by comparing

it with arbitrary and center placement schemes. In chapter 4, we design a efficient
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power control algorithm to reduce the impact of cross-tier interference to OUEs

and in chapter 5, we consider both uplink and downlink interference while Femto

planning. Also we ensure that energy consumption in Green HetNet (uplink) building

is less when compare to center placement. In chapter 6, to improve the SINR in

LTE HetNet system, we adopt the D2D based relay concept to propose a D2D pair

selection algorithm and compare the SINR performance with that of a D2D Mixed

Integer Linear Programming (MILP) model.

In chapter 7, a novel resource allocation and power control mechanism for HAFs

is proposed. Also, we have shown the trade off between the closed access and hybrid

access Femtocell. In chapter 8, we compare the above proposed solutions (described

in chapters 6, 7 and 8) in terms of throughput and operator revenues. In chapter 9, we

propose a distributed resource allocation and interference management algorithm for

LTE Femtocells which dynamically increases or decreases the radius of inner regions to

avoid co-tier interference among Femto BSs. Finally, we summarize the contributions

of the thesis and discuss the possible future extensions in chapter 10.
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Chapter 2

On Femto Placement and

Decoupled Access for Downlink

and Uplink in Enterprise

Environments

2.1 Introduction

Dense deployment of Femtos in enterprise environments [27] necessitates the need

for their optimal placement to guarantee good signal strength to all indoor UEs

and to minimize coverage holes. In this work, we formulate a Mixed Integer Linear

Programming (MILP) model for the optimal placement of Femtos. In a typical indoor

scenario with Femtocells, the uplink load of a cell would more or less be the same

in the entire building, but the downlink load would vary widely from one Femto to

other depending on the number of UEs being served [28,29] and their traffic demands.

In traditional cellular networks (i.e., coupled access systems), the uplink access and

downlink access are coupled to the same cell as shown in Figure 2.1. Here, the

user ut uses Femto2 for both uplink and downlink communication because the signal

strength from Femto2 is higher than that of Femto1. Suppose a Femto is fully loaded

when compared to its neighboring Femtos, the traditional offloading or load balancing

algorithms [30, 31] will shift some of the UEs for both uplink and downlink from the

over loaded cell to one of less loaded cells (target cells) provided that these UEs still

could get connected to the target cell. This type of offloading is a forced handover

based on the load but not based on signal strength, because the signal strength when
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connected to the initial serving Femto will be high compared to the target Femto. For

example in Figure 2.1, we observe that Femto2 is more loaded (by assuming more

traffic load when there are more UEs in a cell) hence the user ut can be offloaded to the

neighboring Femto i.e., Femto1. In a coupled access system, as shown in Figure 2.2,

after offloading, ut uses Femto1 for both uplink and downlink communication. Since

ut and Femto1 are separated by a wall, ut has to transmit with higher power to

achieve good UL SNR in Femto1 compared to when it was connected to Femto2.

By doing this kind of offloading, the overall system throughput will increase but the

uplink power of the shifted UEs would increase and thereby drain their batteries

faster.

Figure 2.1: Coupled Access System before offloading Ut to Femto1

Figure 2.2: Coupled Access System after offloading Ut to Femto1 from Femto2

In order to reduce the battery drain from UEs and to improve the downlink data

rate, one could use the Decoupled Uplink and Downlink (DUD) access method [23]

i.e., uplink connected to the closest Femto and downlink to a less loaded Femto. For

example in Figure 2.3, we observe that user ut connects to Femto1 for downlink and
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Figure 2.3: Decoupled Access System after offloading only downlink of Ut to Femto1
from Femto2

Femto2 for uplink communication. Before doing this, the placement of Femtos should

be optimal inside the building to attain a desirable SNR for indoor UEs.

In the present work, we look into the problem of optimal Femto placement in

indoor environments to obtain a desirable SNR at each location inside the building

with out any coverage holes. Two major parameters that determine the optimal

Femto locations include (i) distance between Femto and the farthest point inside the

building and (ii) the minimum SNR needed by each UE. Solving for optimal placement

of Femtos by considering the above parameters results in a non-convex optimization

problem [32]. We further simplify this non-convex problem to fit into MILP model

and solve it using GAMS tool [33]. After Femtos are placed optimally, to increase the

downlink throughput and reduce battery drain, we propose an offloading algorithm

in DUD access system.

2.1.1 Organization of this Chapter

The rest of the chapter is organized as follows. Section 2.2 presents related work on

Femto placement and decoupled access systems. Section 2.3 describes the proposed

Femto placement model. Section 2.4 presents the proposed efficient offloading algo-

rithm for DUD access systems. In Section 2.5, we show the performance results of the

proposed Femto placement model and offloading algorithm in a two-storey enterprise

building scenario. Finally, Section 2.6 summarizes the work.
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2.2 Related Work

Right from its incorporation, extensive research has been carried out to address Femto

placement problem considering various issues like frequent hand-offs, interference and

Physical Cell ID (PCID) [27]. An effective algorithm for the optimal placement of

Femtos depends on the distance between the first Femto deployed inside the build-

ing and the Macro BS, as given in [34, 35], which reduces the CAPEX and energy

consumption of the cellular network. Works on optimal relay node placement in tun-

nels [36], sensor placement [37,38] in terrain regions and optimal placement of Wi-Fi

APs [39] exist in literature. The algorithm for optimal Femto placement provided

in [32,40] is of limited practical value since it ignores walls inside the buildings while

determining Femto locations. Appending to the above work, we constrained the prob-

lem to be similar to realistic enterprise buildings by considering the path loss due to

walls inside the building. The resulting non-convex optimization model is solved by

approximating it as an MILP.

After placing the Femtos optimally to guarantee good signal strength at the far-

thest points inside the sub-region of the building, the other problem that arises is

load-imbalance across Femtos. Lot of existing literature discuss about the load bal-

ancing in LTE systems by varying the handover hysteresis margin, dynamic BS

power control [41] and centralized load balance using Software Defined Network

(SDN) approaches. In [30] authors proposed a solution framework that considers

QoS-guaranteed scheduling and call admission control. Also this work analyzed the

complexity of the propsed algorithm and proves that it can be adaptable in practi-

cal environments. In [31, 42] authors proposed a multi-objective problem with the

objective of load balance by meeting QoS requirements and the network utility of

services like voice, video and online gaming, but the running time of the proposed

optimization problem is very high. Hence, they proposed a practical algorithm which

considers QoS guaranteed hybrid scheduling, handover of users with and without QoS

requirements and call admission control.

All these traditional load balancing techniques increase the battery power con-

sumption of the UE which is being offloaded from the heavily loaded Femto to a

lightly loaded Femto since the distance for the uplink access is high in coupled access

systems. In order to save energy, decoupling is the efficient solution without degrad-

ing the performance of the UE. Along these lines, in the first work [24, 43], authors

proposed a way in which the uplink connects to one of less path loss small cells and

the downlink connects to a Macro BS, causing a reduction in the uplink power. But
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it also decreases the downlink throughput due to path losses encountered in reach-

ing the UE indoors. But demand in the downlink is more than uplink in indoors so

dual connectivity from small cells in downlink connection plays a key role. In [44],

the authors discussed about dual connectivity with uncoordinated power control in

uplink between Macro and small cells, but, this may reduce the battery life of UEs

and increase the burden on the backhaul. In [45], authors considered joint ICIC and

forced cooperative downlink packet scheduling. Practical deployment of this solution

is challenging due to spectrum sharing issues. This solution also limits secondary cell

resource usage due to forced scheduling by primary cell.

In this chapter, we consider obstacles and shadowing effects by walls and include

them in the system model. We develop a Linear Programming Problem (LPP) model

to place Femtos optimally inside the building by converting convex constraints into

linear ones and solve it using GAMS tool. Also, we extend the work by proposing an

efficient offloading algorithm in DUD access system for addressing load imbalance in

Femtocells.

2.3 Optimal Femto Placement in Enterprise Envi-

ronments

In this section, we present Femto placement in enterprise building environments as

an optimization problem. Table 2.1 shows the notation used in MILP formulation.

Table 2.1: Glossary of MILP Model

Notation Definition

dfijk Farthest distance between Femto f and sub-region (i, j, k)

|F | Number of Femtos
xf , yf , zf x, y and z are the co-ordinates of Femto f

πfijk 1 if Femto f is placed at sub-region (i, j, k), zero otherwise

ρf Represents the room number of Femto f
ρijk Represents the room number of sub-region (i, j, k)
N Total number of rooms in the building
hm Average height of the UE
Pf Femto transmit power
PN Noise power
α Path-loss exponent
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2.3.1 Building Model

RoomWall
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Figure 2.4: Top view of a floor in the building

The enterprise building is considered to be of length L and width W . Let, the

height of each floor be h. Each floor is further partitioned into rooms of equal di-

mensions as illustrated in Figure 2.4. The length and width of each room are δrx and

δry, respectively. Each room is numbered ρzxy, also be denoted as ρzρxρy. The first

digit in three digit numerical scheme signifies the floor number, second digit varies

along X- axis and the third digit varies along Y -axis as shown in Figure 2.5. If the

room number is referred to as ρx, it implies that the room number is varied along the

X − axis only. For example, if ρzxy = 122 and if ρx + 1 operation is applied, then

ρzxy = 132.

We assume that |F | Femtos are available to cover the entire building area and

they are to be placed only on the ceiling of the rooms. ρf denotes the room number

of f th Femto. We further divide each room into sub-regions as shown in Figure 2.6.

The sub-regions are formed to reduce complex calculations. The length and width

of each sub-region are δx and δy, respectively. The sub-regions are numbered with

indices (i, j, k). The first index in the adopted triplet scheme (i, j, k), varies along the

112 122 132

111 131121

212 222 232

211 221 231

z yx

121

132

0+1+1=2

~

Floor 1 Floor 2

Figure 2.5: Numbering of rooms in a two-storey building and calculation of number
of walls between Femto and sub-region
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Figure 2.6: Top view of sub-regions in the building

X − axis, the second index varies along the Y − axis and the third index designates

the floor number as shown in Figure 2.7.

111 311 411 511 611

121 221 421 521 621

131 231 331 431 531 631

141 241 341 441 541 641

 211

321

i j k

Floor 2

Floor 1

142 242 342 442 542 642

132 232 332 432 532 632

122 222 322 422 522 622

112 212 312 412 512 612

Figure 2.7: Numbering of sub-regions on floor #1 and floor #2

2.3.2 System Model

In this chapter, we consider an LTE Femtocell network where Femtos are deployed by

network providers, each operating on a different frequency, i.e., no co-tier interference.

Also the cross-tier interference between Macro BS and Femtos is ignored. We relax

these assumptions later in chapters 6 onwards where we should be studying placement

problem in LTE HetNets with frequency reuse one. We also assume that Femtos are

configured in open access so that all UEs of the network provider are authorized to
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connect with any of the Femtos.

2.3.3 Formulation of Femto Placement Model

Let us suppose that a given Femto f has the co-ordinates xf , yf and zf . Then, the

distance from the Femto to the farthest point in a sub-region defined by (i, j, k) is

given by dfijk (from reference [32], Figure 2).

(dfijk)
2 = (|xf − (i− 1

2
)δx|+

1

2
δx)

2

+(|yf − (j − 1

2
)δy|+

1

2
δy)

2

+((zf − k + 1)h− hm)2

(2.1)

We define a binary variable λfρ as 1 if the f th Femto is in room ρ, and 0 otherwise.

zf co-ordinate of a Femto is an integer indicating the Femto’s residing floor number

and is given by,

zf =
N∑
ρ=1

ρzλfρ (2.2)

where N is the number of rooms in the building. Let us assume that f th Femto

is residing in the room number ρzxy. The x and y co-ordinates of the Femto are

constrained to be within the bounds of the room in which it is contained as shown in

Figure 2.8.

xf

ρyδry

(ρy-1)δry

(ρx-1)δrx ρxδrx

ρzxy
yf

Figure 2.8: Upper and lower bounds for xf and yf
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Equations (2.3) and (2.4) give that the x co-ordinate of the Femto should have

the value greater than the left wall and less than the right wall, respectively.

xf ≥
N∑
ρx=1

(ρx − 1)δrxλfρ (2.3)

xf ≤
N∑
ρx=1

ρxδrxλfρ (2.4)

Similarly, equations (2.5) and (2.6) give that the y co-ordinate of the Femto should

have the value greater than the lower wall and less than upper wall, respectively.

yf ≥
N∑
ρy=1

(ρy − 1)δryλfρ (2.5)

yf ≤
N∑
ρy=1

ρyδryλfρ (2.6)

To ensure that a sub-region is served by only one Femto, we have the following

constraint,

|F |∑
f=1

πfijk = 1 (2.7)

The efficiency of a Femto in serving the UEs in a sub-region depends on the SNR

in that sub-region. We set a constraint that the SNR at the farthest point of the sub-

region should be higher than the threshold SNR, γmin. This would imply that every

point in the sub-region would receive SNR greater than γmin, since SNR decreases

with increasing distance from the Femto. The SNR in the sub-region (i, j, k), γijk is

given by

γijk =
Pf

Lrref (
dijk
rref

)
α
PN

(2.8)

Here dijk is the distance between the sub-region (i, j, k) and the serving Femto,

Lrref is the path loss at the reference distance rref in linear scale and α is the path-loss

exponent. SNR in dB scale is given by,
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γ∗ijk = P ∗f − L∗rref − 10α log10(
dijk
rref

) − P ∗N

where, γ∗ijk, P
∗
F , P ∗N and L∗rref are all in dB scale. Considering the attenuation factors,

the total attenuation is given by,

L∗TAF = L∗FAF + L∗WAF (2.9)

where, L∗TAF is total attenuation factor and L∗FAF and L∗WAF are the losses due to

floor attenuation and wall attenuation, respectively. SNR in dB scale considering

wall and floor losses is given by,

γ∗ijk = P ∗F − L∗rref − 10α log10(
dijk
rref

)− P ∗N − L∗TAF (2.10)

We assume two more variables for the reciprocal of SNR values. Let,

γ′ijk =
1

γijk
(2.11)

γmin is the threshold value of SNR and its reciprocal is γ′min.

γ′min =
1

γmin
(2.12)

Now equation (2.8) can be rewritten as [32]:

(dijk)
αG(ρ)∆ρf∼ρijk − γ′ijk = 0 (2.13)

F (ρ) is a function defined by,

F (ρ) =

K0 =
C0PnLrref
Pf rrefα

, if ρf 6= ρijk

K1 =
C1PnLrref
Pf rrefα

, if ρf = ρijk
(2.14)

Here C0 and C1 are constants depending on the environment. ∆ is also a constant

depending on the environment and ρf ∼ ρijk is calculated in such a way that it gives

the number of obstructions (walls or floors) between the sub-region (i, j, k) and the

f th Femto. This special difference (∼) is the absolute value of the digit wise difference

between ρf and ρijk as shown in Figure 2.5. Few examples are given below.

Example 1) consider ρf = 121 and ρijk = 132.

ρf ∼ ρijk = 121 ∼ 132 = |1 − 1|β1 + (|2 − 3| + |1 − 2|)β2 = 2β2. Here, β1 = TFAF ,
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β2 = TWAF . Hence, the rooms 121 and 132 are separated by two walls.

Example 2) consider ρf = 121 and ρijk = 231.

ρf ∼ ρijk = 121 ∼ 231 = |1− 2|β1 + (|2− 3|+ |1− 1|)β2 = β1 + β2. The co-efficient of

β indicates the number of floors separating the f th Femto and the sub-region (i, j, k).

The co-efficient of β2 indicates the number of walls separating the f th Femto and sub-

region (i, j, k). Hence, the rooms 121 and 231 are separated by one floor and one wall.

Since the SNR received in any sub-region should be greater than the threshold

SNR, we have the following constraint,

γ′ijk ≤ γ′min (2.15)

The above constraint is ensured for all the sub-regions whose user occupant prob-

ability is greater than zero (i.e., pijk > 0). If pijk is the expected peak user density

in sub-region (i, j, k), then the placement of Femtos should be in such a way that

the product, pijkγijk should be the maximum for all the sub-regions. Alternately, the

product pijkγ
′
ijk should be minimum. Hence, our objective is

min
∑
ijk

pijkγ
′
ijk

subject to (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.13) and (2.15).

But equations (2.1) and (2.13) are non-convex equations which cannot be solved

by the available tools [46]. Hence, these equations are first converted to convex equa-

tions and then to linear equations.

Linearization of Equation (2.1):

Let,

Rf
ijk = (dfijk)

2 (2.16)

Xfi = |xf − (i− 1

2
δx)| (2.17)

Yfj = |yf − (j − 1

2
δy)| (2.18)

Without loss of generality, we can convert the equality in the equations into in-

equalities with the help of Lemma 1 [32] as follows,
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Lemma 1. The constraints in Equation (2.1) can be equivalently replaced by,

(Xfi +
1

2
δx)

2

+ (Yfj +
1

2
δy)

2

+ (hzf − ((k − 1)h+ hm))2 − Rf
ijk ≤ 0 (2.19)

Moreover, the inequality in equation (2.19) holds as equality to the optimal solution.

Equations (2.17) and (2.18) are expanded as,

xf −Xfi ≤ (i− 1

2
)δx (2.20)

xf +Xfi ≥ (i− 1

2
)δx (2.21)

yf − Yfj ≤ (j − 1

2
)δy (2.22)

yf + Yfj ≥ (j − 1

2
)δy (2.23)

Let,

Xfi
2 = Bfi, Yfj

2 = Dfj, zf
2 = Ef

The above equations can be written as, (with the help of Lemma 1)

Xfi
2 −Bfi ≤ 0 (2.24)

Yfj
2 −Dfj ≤ 0 (2.25)

zf
2 − Ef ≤ 0 (2.26)

Accordingly, equation (2.19) becomes,

Bfi+Dfj+h
2Ef+δxXfi+δyYfj−2h((k−1)h+hm)zf−Rf

ijk ≤ −
1

4
δx

2−1

4
δy

2−((k − 1)h+ hm)2

(2.27)

Using Piece-wise Linear Approximation (PLAP) [47], the convex constraints (2.24),

(2.25) and (2.26) are transformed into linear constraints, which steers the deduction

of the following equations,

SX∑
S=1

wX1 (XS)2 ≤ B,

SX∑
S=1

wX1 (XS) = X,

SX∑
S=1

wX1 = 1 (2.28)
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SY∑
S=1

wY2 (YS)2 ≤ D,

SY∑
S=1

wY2 (YS) = Y,

SY∑
S=1

wY2 = 1 (2.29)

SZ∑
S=1

wZ3 (ZS)2 ≤ E,

SZ∑
S=1

wZ3 (ZS) = z,

SZ∑
S=1

wZ3 = 1 (2.30)

where, wX1 , wY2 and wZ3 are the positive weights between 0 and 1. The XS, YS and

ZS are the S pieces in their respective domains.

Linearization of Equation (2.13):

Let,

νfijk = (Rf
ijk)

α
2 (2.31)

The above equation can be written (with the help of Lemma 1 [32] ) as,

νfijk ≥ (Rf
ijk)

α
2 (2.32)

Let,

gfρijk = νfijkλfρ (2.33)

Then equation (2.13) can be written as

K1

N∑
ρ,ρ6=ρf

((∆ρ∼ρf )gfρijk) + K0g
fρ
ijk − (1 − πfijk)Γ

f
ijk − γ′ijk ≤ 0 (2.34)

Here, Γfijk is the upper bound of (dijk)
αF (ρ)∆ρf∼ρijk . ν̄fijk is the upper bound for νfijk.

The bilinear equation (2.33) holds good within the bound 0 ≤ νfijk ≤ ν̄fijk if and only

if (from reference [32]):
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gfρijk ≥ 0 (2.35)

gfρijk − ν̄
f
ijk ≤ 0 (2.36)

N∑
ρ

gfρijk − ν
f
ijk = 0 (2.37)

We linearize the convex constraint given in equation (2.32) by PLAP and then

obtain
SR∑
S=1

ws(RS)
α
2 − ν ≤ 0,

SR∑
S=1

ws(RS) = R,

SR∑
S=1

ws = 1 (2.38)

where, ws are the positive weights between 0 and 1. RS (contain S pieces) are

also positive weights to do piece wise linear approximation and they also used as a

decision variable in our optimization.

MILP Model

The optimal Femto placement model can be stated as,

min
∑
ijk

pijkγ
′
ijk (2.39)

Subject to

a) Femto placement constraints: Equations (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.15)

b) Linear equations equivalent to Equation (2.1): Equations (2.20), (2.21), (2.22), (2.23), (2.27),

(2.28), (2.29), (2.30)

c) Linear equations equivalent to Equation (2.13): Equations (2.34), (2.35), (2.36), (2.37), (2.38)

2.4 Decoupled Uplink and Downlink (DUD) Ac-

cess for Efficient Offloading in Femtocell Net-

works

The proposed offloading algorithm in DUD access system will be running in a cen-

tralized Femto-GW to address offloading problem in Femtocells. The SON feature in

Femto-GW can automate the offloading algorithm efficiently. Optimal Femto place-
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Algorithm 1 Offloading Algorithm
Input 1 : F : Set of all Femtos

Input 2 : R̄: Total no. of RBs in a Femto over n TTI

Input 3 : uf : Set of all UEs connected to Femto f

Input 4 : minRB matrix

Input 5 : TotDemandf : Total RB demand in each Femto

Input 6 : TED0: Initial total excess demand

Initialization:
Iteration Count ← 1;

1: Arrange the Femtos in non-ascending order of TotDemand values
2: for f = 1 : |F | do
3: while TotDemandf > R̄ do
4: Using minRB matrix find a pair (u∗, f ∗) such that u∗ ∈ uf , f ∗ ∈ F − {f}

and minRB is the minimum
5: if (TotDemandf∗ +minRBu∗f∗) ≤ R̄ then
6: if minRB is ∞ then
7: Continue; {Go to step 2 to select next Femto for offloading}
8: end if
9: TotDemandf∗ = TotDemandf∗ +minRBu∗f∗

10: TotDemandf = TotDemandf −minRBu∗f

11: uf = uf − {u∗}
12: uf∗ = uf∗ ∪ {u∗}
13: else
14: minRBu∗f∗ ← ∞ {Avoid (u∗f ∗) pair getting selected again}
15: end if
16: end while
17: end for
18: Update TEDCount (using Equation (2.42)).
19: if (TEDCount == TEDCount−1 or TEDCount == 0) then
20: Exit {Load in the network (i.e., Femto f) is balanced}
21: else
22: Count ← Count + 1;
23: Goto Step 1 {Look for offloading some more UEs to achieve load balancing}
24: end if
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ment model (refer Equation (2.39)) presented in the previous section ensures that

there is no coverage hole inside the building and each sub-region > γmin. However,

the next challenge after deploying the Femtos inside the building is load balancing.

In reality, all the Femtos will not be fully loaded at all the times. In order to balance

the load, some UEs which are in the cell edge region are offloaded from the heavily

loaded Femtos to one of less loaded neighboring Femtos. In traditional coupled access

systems, the uplink power of offloaded UEs might increase because the target Femto

after offloading is typically far from the UE than the serving Femto. But DUD access

helps the offloaded UE to get the downlink access from the textittarget Femto while

the uplink access is still from the same serving Femto, thereby decreasing the battery

depletion at UE.

Figure 2.9: minRBuf matrix of UEs in Femtocell Network

2.4.1 Downlink Offloading Algorithm for DUD Access Sys-

tem

The offloading algorithm runs at the Femto-GW every n Transmission Time Intervals

(TTIs). We assume that the channel gain remains static for the next n TTIs. Using

the channel gain, the Femto-GW can calculate SNR of a UE from each Femto. We

use SNRuf to denote SNR of UE u from Femto f . Using SNRuf , Femto-GW can

calculate the amount of data [48] that can be sent in one Resource Block (RB) in

DL to UE u. Based on this information, the minimum number of RBs required to

guarantee the minimum data rate to UE u can be calculated. Let minRBuf be the

minimum number of RBs required from the serving Femto f to maintain the minimum
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data rate for UE u. Then,

minRBuf =
Data Demandu

Data sent in one RB
(2.40)

Where, Data Demandu is the minimum data demand of user u (i.e., product of

required data rate and time period (nTTIs)) and Data sent in one RB can be calcu-

lated using SNRuf . minRBuf matrix can be constructed using minRBuf values as

shown in Figure 2.9.

Before running the offloading algorithm, initially every UE is attached to some

serving Femto. TotDemandf is the total RB demand in Femto f from its UEs and

it can be calculated as,

TotDemandf =
∑
u∈uf

minRBuf (2.41)

Where, uf is the set of UEs connected to Femto f . A cell is heavily loaded if the

TotDemand of the cell is more than R̄, where, R̄ is the total number of available

RBs in a Femto over n TTIs. We also define another variable, TED, which is used to

calculate the total excess demand in the system.

TED =

|F |∑
f=1

max(TotDemandf − R̄, 0) (2.42)

The proposed offloading algorithm is given in Algorithm 1. The Femtos are ar-

ranged in decreasing order based on their TotDemandf values. If TotDemandf is

more than R̄ for a Femto f , then the Femto is picked for offloading some of its UEs.

From the minRB matrix find (u∗, f ∗) such that u∗ ∈ uf , f ∗ ∈ F−{f} and minRBu∗f∗

is minimum. Now check if the total RB demand of Femto f ∗ exceeds R̄ if the user

u∗ is offloaded to f ∗. If it does not exceed R̄, then handover the UE u∗ to Femto

f ∗ and update TotDemandf∗ and TotDemandf . If it exceeds R̄, then assign a large

value (e.g.,∞) to minRBu∗f∗ so that the (UE, Femto) pair is not chosen again. Now

choose the next best (u∗, f ∗) pair and proceed. After transferring a UE if the updated

TotDemandf is less than R̄, select the next Femto. After traversing across all the

Femtos, calculate the TED value. Stop the Algorithm 1 if TED = 0 i.e., every Femto

has sufficient RBs to satisfy the user demand. If TED 6= 0, go to step one to repeat

Algorithm 1. Stop Algorithm 1 if the TED value remains the same for two successive

iterations.
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Table 2.2: Simulation Parameters

Parameter Value

Building dimensions 120 m × 80 m × 6m
Sub-region dimensions 5 m × 5m × 3m
Number of Sub-regions 384
Number of floors in building Two
Indoor path loss (α) 3.5
Number of rooms 48
Femto Transmit Power 20 dBm
Downlink SNR threshold (γmin) -2 dB
UEs distribution in building Uniform
LTE mode FDD
Femto Bandwidth 5 MHz (25 RBs)
Simulation time 100 s

2.4.2 Time Complexity of the Offloading Algorithm

The time complexity of the proposed offloading algorithm is as follows:

Time taken to compute minRB matrix is O(N ∗ |F |), where, N is the total number

of users. Number of users who have to be compared for offloading is O(N2) and

the number of comparisons (with neighboring Femtos) that have to be made for

each user is O(|F |2). Hence, the total time complexity of the offloading algorithm is

O(N2 ∗ |F |2).

2.5 Experimental Setup and Performance Results

The system model described in Section 2.3 has been simulated using MATLAB. Ta-

ble 2.2 shows the simulation parameters used in this experimental setup. The opti-

mal Femto co-ordinates are obtained by solving the proposed MILP model (Equa-

tion (2.39)) with GAMS tool which uses CPLEX solver [33]. The GAMS CPLEX

solver is a high-level modeling system for optimization and utilizes branch and bound

framework for solving MILP based optimization problems. This MILP optimizer has

the capability to solve large and numerically difficult MILP models with features

including settable priorities on integer variables, choice of different branching, and

node selection strategies. Thus the CPLEX solver in GAMS is ideal for our purpose

of solving a large MILP model with many equations and variables.
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Figure 2.10: Two-storey Building
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Figure 2.11: SNR distribution and
Femto locations given by MILP
model for uniform UE distribution
on the floor #1
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model for uniform UE distribution
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2.5.1 Optimal Femto Placement

To represent an enterprise scenario, we have considered a two-storey building of di-

mensions (120 m × 80 m × 6 m) with walls as shown in Figure 2.10. Each of its

sub-regions are of dimensions (5 m × 5 m × 3 m). We present placement results for

both uniform and non-uniform UE distributions inside the building. As UE density

(i.e., pijk) is factored into the proposed optimal Femto placement model, non-uniform

UE distribution case could lead to cover holes inside the building.
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A. Uniform UE Distribution

For this case, the average user density on the floor #1 of the building is 1.2

UEs per sub-region and on the floor #2 is 1.9 UEs per sub-region. The reason for

having different average UE density on different floors is to analyze the performance

of our offloading algorithm. Proposed MILP placement model has given 20 Femtos

as optimal to cover both the floors i.e.,, 8 Femtos to cover the entire floor #1 (|F | =
8 i.e.,, F1, F2, . . . , F8) as shown in Figure 2.11 and 12 Femtos to cover the floor #2

(|F | = 12 i.e.,, F1, F2, . . . , F12) as shown in Figure 2.12. Figure 2.11 also shows SNR

heat map on the floor #1 along with Femtos locations. The darker regions in SNR

heat map represent the Femto locations with high SNR. In Figure 2.11, the Femtos

F1 and F2 are deployed very close to the walls. For users within the boundaries of

the four walls in which the Femto is present, a good SNR in the range of 15 to 35

dB can be guaranteed. But, when the signal has to cross a wall to reach the user,

the range of SNR that can be guaranteed decreases drastically to -2 to 15 dB. This is

because the signal attenuates faster and degrades the signal strength in the presence

of walls. As the distance increases from the Femto, most of the sub-regions on the

floor #1, get only 0 to 5 dB. Similar trend can be observed on the floor #2, refer

Figure 2.12.

Figure 2.13 shows the connectivity region of each of the Femtos on the floor #1.

The same colored sub-regions are connected to the same Femto i.e., UEs in these sub-

regions get connected to the same Femto when we consider high SNR as the criteria
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for association to a Femto. The average number of sub-regions served by a Femto on

floor #1 is more when compare to floor #2, which is due to the large deployment of

Femtos in the latter. Similarly, the connectivity region of the floor #2 is shown in

Figure 2.14.

B. Non-uniform UE Distribution

If the density of UEs is non-uniform (e.g., random), the proposed MILP model for

Femto placement still works and provides placement, however, it may lead to coverage

holes inside the building. To demonstrate this, we took non-uniform distribution of

UEs as shown in Figure 2.15. Here we assumed that there are no UEs in the center

region of a floor in the building (represented by blue color in Figure 2.15). Based on

this UE density, Figure 2.16 shows the total number of Femtos required (i.e., |F |=
8) as per the proposed Femto placement model and their connectivity regions. Fig-

ure 2.17 shows SNR distribution across sub-regions inside the building. The darker

regions in SNR heat map represent the Femto locations with high SNR values. The

SNR observed in the center region of the building is < -5 dB (i.e., coverage hole).

Because our placement model has not considered those sub-regions (i.e., center), it

does not deploy Femtos in center region to guarantee minimum SNR.
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2.5.2 Comparison of Coupled and Decoupled Access Systems

in Uniform Traffic Scenario

In the following, we consider Femto deployment by assuming uniform UE distribution

to avoid coverage holes inside the building and study the performance of the coupled

and decoupled systems in the case of uniform UE traffic demand in the network.

A. Performance of the Proposed Offloading Algorithm

In order to analyze the performance of our proposed offloading algorithm we have

considered the UE distribution as shown in Figures 2.18 and 2.19 for floor #1 and

floor #2, respectively. The placement of Femtos which is based on a uniform dis-

tribution of UEs having same data demand implies that the load across all Femtos

is uniform. To evaluate the efficiency of our proposed offloading algorithm, the as-

sumptions of a uniform UE distribution and an equivalent data demand cannot be

employed. To show the potential of proposed offloading algorithm, we assumed non-

uniform UE distribution with fixed traffic demand (i.e., 400 Kbps) per UE.

(a) UE Connectivity Before and After Offloading

Figure 2.20 shows the user downlink connection before and after offloading on

floor #1. The red lines show the offloaded UEs and their corresponding target Femtos

after offloading. The Femtos F1, F3, F4, F5 and F7 are lightly loaded with lesser user
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count, but the other Femtos (F2, F6 and F8) are heavily loaded. Proposed offloading

algorithm chooses an efficient and closest downlink pair (u∗, f ∗) by checking the load

of all the users from the overlapping neighboring Femtos in such a way that the

throughput and load are well balanced. The reason for the offloading algorithm to

choose the shortest downlink attachment is due to efficient usage of RBs. Otherwise,

it requires more bandwidth (RBs) from the neighboring Femtos due to less SNR. For

example, the Femto F2 is heavily loaded but the neighboring Femtos (F3 and F5)

are lightly loaded. Our offloading algorithm offloads 5 UEs (u1, u2, u3, u4 and u5)

to Femtos F3 and F5. Similarly, F1 chooses one cell edge UE (u6) from F8 for

offloading by the neighboring Femtos. Hence, in this example (i.e., Figure 2.20), the

total number of offloaded downlink user-Femto pair is represented as U1, U2, . . . , U7

respectively.

Figure 2.21 shows the downlink offloading on floor #2. Here, most of the Femtos

(F1, F7, F9, F10, F12) are heavily loaded due to large number of UEs. Observations

similar to the ones made for floor #1 scenario can be made in this case as well.
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(b) Required RBs in each Femto

Figure 2.22 shows the required RBs for each Femto (TotDemandf ) on floor #1

before and after offloading. Before offloading, Femtos F2, F6 and F8 require excess

number of RBs (i.e., 3400000 RBs which is greater than the limit1 R̄, 2500000 RBs)

1The limit depends on spectrum bandwidth allotted for each Femto by the network operator. In
our scenario the total amount of bandwidth is 5 MHz (i.e., 25 RBs). Simulation is done for 100 s.
Hence, the total no. of available RBs is 2500000 RB.
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due to heavy load and less DL SNR. Femto F2 has two overlapping target Femtos

(i.e., F3 and F5) as shown in Figure 2.20. But, the Femtos F3 and F5 are lightly

loaded and require only 400000 RBs and 200000 RBs, respectively, which is lesser than

the limit, 2500000 RBs. Hence, the target Femtos can share the RBs with the heav-

ily loaded serving Femto F2 which brings down F2’s requirement to 2200000 RBs.

Similarly, F6 also needs excess RBs due to heavy load (refer Figure 2.20). The over-

lapping Femto F7 can balance the load by sharing their RBs. Hence, minimum data

rate (i.e., 400 Kbps) is maintained for all users in each Femto. Further, to guarantee

more than the minimum data rate and to ensure fairness among all UEs, the opera-

tor should incorporate scheduling algorithm like proportional fair during offloading.

Similar pattern can be observed on floor #2 for Femtos F12, F7 and F8 (Figure 2.23).

(c) Downlink User Count

Figure 2.24 shows the user count on floor #1 for different Femtos before and after

offloading. If we observe Figure 2.24, the number of users in Femto F2 is very high

before offloading. After offloading with target Femtos F3 and F5, five users have been

offloaded. This reduces the load in the overloaded Femto F2 and the QoS demand

for the remaining connected users in Femto F2 is guaranteed.

Similarly, Figure 2.25 shows the user count on floor #2 for different Femtos before

and after offloading. The load on Femtos F1, F7, F9, F10 and F12 is high due

to higher number of users. Since F2 is closer, more number of users from F12 got

offloaded to F2.
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B. Comparison between Coupled and Decoupled Access Systems

We show uplink SNR of the offloaded UEs when they transmit with full power in

coupled and decoupled access systems. For the fixed uplink SNR, we also show the

advantages in terms of the transmission power when UEs are in coupled and decoupled
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access systems.
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Figure 2.29: Power emitted by UE
in coupled and decoupled access
systems on floor #2 for uniform
traffic pattern

(a) Maximum Achieved Uplink SNR

Figure 2.26 shows the maximum SNR that the UEs can achieve in full power

transmission mode on floor #1 for coupled and decoupled (DUD) systems. Due to

heavy load in F8, the user (u6) got offloaded to F1. The user u6 receives roughly +1

dB SNR during uplink from serving Femto F8 because it has to cross 2 walls. Thus
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for the same uplink transmission power, when it gets connected to the target Femto,

it receives very less i.e., roughly -1 dB SNR because it is located in the cell edge of

Femto F1.

Figure 2.27 shows the maximum SNR achieved on floor #2. As the Femtos are

densely deployed on floor #2, the inter distance between the Femtos is less (refer

Figure 2.21). This assists most of the users to achieve better SNR when compared

to users on floor #1. Even after offloading 9 users, all of them are able to achieve

decent SNR values. Compared to decoupled access system, uplink SNR has decreased

by 52% in coupled access system.
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Figure 2.30: CDF of the maxi-
mum Achievable Uplink SNR in
coupled and decoupled access sys-
tems
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(b) Uplink Power to maintain 0 dB SNR

Figure 2.28 shows the uplink power emitted by the downlink offloaded UEs to

maintain SNR of 0 dB on floor #1. In this scenario, the serving Femto always allows

UEs to transmit with less power due to shorter distance. For example, to maintain

SNR = 0 dB, the UE u6 transmits at 0.09 W to the serving Femto. If the same

UE wants to connect with the target Femto, it has to transmit with power > 0.1 W.

However, according to 3GPP standard, the user cannot transmit > 0.1 W. Hence, user

cannot maintain communication with the target Femto. To maintain communication

with the target Femto, the user has to tune its SNR threshold to less than 0 dB.

Figure 2.29 shows the uplink power emitted by the downlink offloaded UEs to

maintain SNR of 0 dB on floor #2. Due to dense deployment of Femtos and less
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Figure 2.34: TotDemandf of each Femto before and after offloading
on floor #1 and floor #2 for non-uniform traffic pattern

inter distance between them, the uplink power is reduced drastically when compared

to floor #1. For example, most of the UEs are allowed to transmit with less power

(i.e., 0.025 W) in closer Femto. As the UE battery power plays an important role

in wireless communication, we allow the UEs to communicate in uplink to the closer

Femto. Thus DUD access system helps in saving power of UEs. Compared to coupled

access system in uplink power has reduced by 56% in DUD access system.
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Figure 2.35: User count in each Femto before and after offloading
on floor #1 and floor #2 for non-uniform traffic pattern

1 2 3 4 5 6 7
−5

0

5

10

15

20

25

Transferred User #
(a)

S
IN

R
(d

B
)

Floor One

 

 

Decoupled System
Coupled System

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Transferred User #
(b)

S
IN

R
(d

B
)

Floor Two

 

 

Decoupled System
Coupled System

Figure 2.36: Maximum Achieved Uplink SNR in coupled and decou-
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C. Average Performance of the Proposed System

We performed simulations for 30 different scenarios (i.e., UE distribution is varied

arbitrarily by changing seed values) by keeping minimum data rate as 400 Kbps and

the following are the results.

Figure 2.30 shows the CDF of the maximum uplink SNR achieved in full power

transmission mode by the transferred UEs in the DUD access system and the cou-

pled access system. On an average, compared to DUD access system, the maximum

achievable uplink SNR has decreased by 64% in coupled access system. For a fixed

uplink SNR threshold (i.e., 0 dB), on an average, the UE transmission power has

reduced by 70% in DUD access system when compared to the coupled access system.

We then vary minimum traffic rate from 150 Kbps to 550 Kbps in the steps of 50

Kbps in 9 experiments in such a way that all UEs in any given experiment generate

fixed traffic in the above interval of (150 Kbps to 550 Kbps). Each experiment was

ran for 30 seeds. In Figure 2.31, X-axis shows the variation in traffic demand and

Y-axis shows the percentage decrease in achievable uplink SNR in coupled access

system when compared to the proposed DUD access system. It is plotted with 95%

confidence intervals.
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2.5.3 Comparison of Coupled and Decoupled Access Systems

in Non-uniform Traffic Scenario

In the following, we consider Femto deployment given by uniform UE distribution

and compare the performance of the DUD system with coupled system in the case of

non-uniform UE traffic demand i.e., 300 to 500 Kbps.

As in Section 2.5.2, the same optimal placement model is used with the assump-

tion of uniform UE distribution. The UE distribution on floors #1 and #2 is same

as shown in Figures 2.18 and 2.19. We assumed that the traffic rates are varied

from 300 Kbps to 500 Kbps in the steps of 10 Kbps. That means UEs arbitrarily

select some traffic rates in the interval of (300 Kbps to 500 Kbps). Figure 2.32 shows

the user downlink connection before and after offloading on floor #1. Similarly, Fig-

ure 2.33 shows the user downlink connection before and after offloading on floor #2.

Note that all the observations are similar to what had been reported for the uniform

UE distribution and only the offloading UEs will differ based on the traffic load (i.e.,

traffic pattern).

Figure 2.34 (a) and Figure 2.34 (b) show the required RBs for different Femtos

(TotDemandf ) on floor #1 and floor #2, respectively before and after offloading.

Figure 2.35 (a) and Figure 2.35 (b) show the user count on floor #1 and floor #2,

respectively for different Femtos before and after offloading. We show the SNR of

the offloaded UEs when they transmit with full power in coupled and DUD access

systems. For the given fixed uplink SNR, we also show the advantages in terms

of the transmission power when UEs are in coupled and decoupled access systems.

Figure 2.36 (a) and Figure 2.36 (b) show the maximum SNR of the transfered UEs

can achieve in full power transmission mode. Similarly, Figure 2.37 (a) and Figure 2.37

(b) show the uplink power emitted by the transfered UEs to maintain SNR = 0 dB

for floor #1 and floor #2.

2.6 Summary

In this chapter, considering realistic constraints, we have provided an MILP model

for the optimal placement of Femtos based on user occupant probabilities inside an

enterprise building scenario to achieve desirable signal strength for all the users. We

established DuD connections based on the shortest-path loss Femto for the uplink
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access and a less loaded neighboring Femtos for the downlink access. We conducted

extensive experiments in MATLAB based LTE system simulator to demonstrate the

benefits of proposed optimal placement model. On average we observed 70% energy

savings in decoupled access system when compared to the traditional coupled access

system.
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Chapter 3

Handover and SINR Optimized

deployment of LTE Femtocells

3.1 Introduction

In the previous chapter, we proposed an optimal Femto placement model which did

not consider the impact of co-tier and cross-tier interference. Also we assumed the

users are static in nature. In this chapter, we consider co-tier interference among

neighboring Femtos but no cross-tier interference (i.e., Macro and Femtos are assumed

operating in different frequency bands) and formulate two ILP optimization models for

Femto placement: first, Minimize the Number of Femtos (MinNF) model and second,

Optimal Handover (OptHO) model. MinNF model guarantees a certain minimum

SINR for each region inside the building while minimizing the number of Femtos

needed for coverage of the entire enterprise building.

A major issue in enterprise building is frequent or unnecessary handovers (i.e.,

ping pong effect [49]), which may happen when user moves from one room to another

room or within the same room and similarly in the corridors of the building. This leads

to degradation of performance like service interruption during signaling overhead [50],

decrease in throughput and increase in number of handovers [51]. Hence, in order to

avoid the unnecessary handovers (i.e., handovers happening within the same room

or in corridors) in enterprise buildings, Femtos should be placed by considering an

additional constraint. Hence, we add Handover (HO) constraint to the MinNF model

which reduces the number of handovers and at the same time guarantees good SINR

to all UEs inside the building. This MinNF model along with HO constraint is referred

as OptHO model in this chapter.
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3.1.1 Organization of this chapter

Rest of the chapter has been organized as follows. Section 3.2 describes the notable

research literature relevant to our study. Section 3.3 discusses the system model

and proposed ILP formulation for MinNF. Section 3.4 presents experimental setup

and numerical results for MinNF. Section 3.5 explains the user mobility model and

proposed ILP formulation for OptHO. Section 3.6 demonstrates the experimental

setup and numerical results for OptHO. Finally, Section 3.7 summarizes the work.

3.2 Related Work

Considering MBS and Femto-to-Femto interference plays a key role in small cell plan-

ning, in [52], Femtos are placed in a multi-storey enterprise building by not consider-

ing co-tier and cross-tier interferences. Authors of [34,53], considered the interference

among MBSs to achieve better throughput in the system. In [32], the authors investi-

gated a joint Femto placement and power control optimization problem in enterprise

buildings with the aim to prolong UEs’ battery life. They proposed a novel two-step

reformulation approach to convert the original Mixed Integer Non-Convex Problem

(MINCP) into a MILP and then devised a global optimization algorithm by utilizing

the MILP. But their system model did not consider co-tier and cross-tier interferences.

In [53], the locations of the pico cells are moved iteratively. This way they reduce the

interference to maximize the network throughput of the users in outdoor and indoor

environments. However, in that work the placement of pico cells in indoor environ-

ments and the traffic pattern are not considered. In [34,35], Guo et. al. suggested an

automated small cell deployment model which attempts to find the optimal location

of a new cell, subject to knowledge about the locations of existing cells, UEs and the

building environment. A closed-form equation is given for the new cell’s deployment

location which is a function of transmit power, transmission scheme and path loss

parameters.

In [54], the transmission power of randomly placed Femtos is optimized. This is

to avoid interference and guarantee certain minimum SINR threshold for indoor UEs.

But as the available bandwidth gets split into three parts (i.e., because the reuse

factor is three), there could be inefficient usage of the spectrum. And because Femtos

are placed randomly, the number of Femtos to obtain threshold SINR may not be

minimal. Path loss factors such as obstructions (walls) inside the building are also

not considered in the model while solving the optimization problem.
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In [55], a joint Femto placement and power control model was proposed for guaran-

teeing SINR threshold depending on varying user occupancy in each region inside the

building. The efficiency of the spectrum usage is improved by considering reuse factor

one and the number of Femto needed for enterprise deployments also got reduced,

which would reduce the overall cost. User density, interference among Femtos and

MBSs and building obstructions are also given as inputs to the system model. Then

authors studied the joint optimal placement and power control of Femtos to maintain

a certain minimum downlink SINRTh. The joint placement and power control will

help to reduce the energy/power by Femtos and minimize the Femto count. However,

doing so decreases SINR of indoors when compared to the case wherein Femtos are

transmitting at the maximum power.

Large scale deployment of Femtos in enterprise environments could lead to unnec-

essary handovers, [26,51] which decrease the network throughput [56], increase signal

overhead [50,57] and cause delay [56]. Our current literature survey includes various

unnecessary handover reducing mechanisms [58–60]. The authors in [58], proposed an

optimized handover algorithm based on UE mobility state for reducing unnecessary

handovers and also to improve the performance of LTE femtocell network. The au-

thors in [59], proposed a dynamic handover hysteresis margin calculation based on the

UE position within cell coverage region. In [60], the authors proposed a Fuzzy Logic

Controller (FLC) that adaptively modifies handover hysteresis margins for reducing

handovers. The authors in [50] proposed a simplified handover algorithm based on UE

mobility state for reducing unnecessary handovers and signaling overhead in two-tier

LTE femtocell network. In [57], a mobility management scheme is proposed where

the control point of mobility in user plane is shifted from the S-GW to the Femto-GW

so that it will make the handover decision between Femtos. In high density of Femtos

and two-tier LTE HeNB network, UE mobility will produce lot of signaling overhead.

In [56], a SON [61] model was proposed to mitigate unnecessary handovers inside

enterprise environments with the help of building information and estimated user

position information. In [62], the handover decision at FBS is based on energy effi-

ciency and knowledge of interference. Thus handover plays a major role in enterprise

buildings.

3.2.1 Contribution of this Chapter

Suggesting power saving by Femtos is not an appreciable contribution to the research

community. Moreover, it also leads to decrease in average indoor SINR. We place
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the Femtos optimally with all the constraints as mentioned in the system model

(explained later) for MinNF and the Femtos are transmitting at full power to boost

the average indoor SINR. We extend this MinNF model to bring in HO constraint

thereby minimizing unnecessary handovers and boosting the throughput of the users

in the building even while they are moving. To our knowledge, this is the first work

that endeavors at reducing the number of handovers by placing the HO constraint as

one of the input factors for the problem of placement of Femtos.

3.3 Proposed Work

In this section, we present the system model and channel model, and then describe

the proposed MinNF ILP formulation to guarantee SINRTh to all regions inside the

building.

3.3.1 System Model

This chapter considers an LTE HetNet system comprising of MBSs deployed in out-

door environment and FBSs deployed inside the enterprise building. The users inside

the building are assumed to be mobile. We also assume that the location of the UE

is known inside the building and the layout of the building is available to the telecom

operator. The FBS and MBS are assumed to operate in the same frequency band

(i.e., reuse one) in LTE HetNet and therefore may experience high cross-channel

interference. Table 3.1 shows the set of notations and abbreviations used in this

chapter.
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Figure 3.1: An example of enterprise building with rooms, corridors
and entry/exit points
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Table 3.1: Glossary of MinNF ILP Model

Notation Definition

S Set of all sub-regions inside the building
za 1 if Femto is placed at sub-region a, zero otherwise
αja 1 if jth sub-region of the building is associated with the

Femto located at sub-region a, zero otherwise
γja Channel gain between sub-regions j and a
M Set of all Macro BSs

Let us consider a building having dimensions of L × W × H, where L, W and

H are the length, breadth and height of the building, respectively. Each floor of the

building is divided by walls into several rooms (for e.g., R1, R2, . . . , Rn) and corridor

as shown in Figure 3.1. Every IUE is allowed to move freely in the corridor. Every

room has an entry/exit. For the purpose of the study, rooms and corridor are further

divided logically into smaller sub-regions of length δx and width δy, which have been

indexed as shown in Figure 3.2. Walls have been depicted by thick lines and sub-

regions by the small squares in the building grid. Since the size of sub-region is much

smaller compared to the room size, it is assumed that inside every sub-region, the

SINR remains constant.

3.3.2 Channel Model

The path loss (PL) between MBS and Indoor UE (IUE) is given by,

PLMBS = 40 log10

dpl
1000

+ 30 log10 f + 49 + nφ (3.1)

where, dpl is the distance (in meters) between the sub-region of IUE and MBS

and the distance between the centers of two sub-regions is taken as the propagation

distance, n is the number of walls in between MBS and IUE, f is the center frequency

of MBS in MHz, ν is the number of floors and φ is the penetration loss.

The PL between Femto and IUE is given by [54]:

PLFBS = 37 + 30 log10 dpl + 18.3ν
(ν+2)

(ν+1)−0.46 + nφ (3.2)

These two PL models are used in this chapter for calculating the channel gain [54]

between users and various BSs by considering the effects of antenna gain for Macro

and Femtos as 20 dBi and 2 dBi, respectively. The same PL models are used in rest
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Figure 3.2: Sub-region index and dimensions of the enterprise build-
ing

of the thesis.

3.3.3 MinNF Placement Model

To address the optimal Femto placement problem, an optimization ILP model is

formulated. By solving the ILP model, one can determine the following:

• The minimum number of Femtos needed to maintain SINRTh in each sub-region

of the building.

• Optimal Femto locations inside the building.

• Femto to which each sub-region (i.e., UEs present at those sub-regions) is as-

sociated.

Each Femto operates at the maximum transmit power (Pmax) in order to provide

good signal strength to IUEs. Our goal is to minimize the total number of Femtos
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deployed, which is expressed by Equation (4.1).

min
∑
a∈S

za (3.3)

Assuming that each sub-region is allowed to associate with only one FBS (refer

Equation (3.4)) inside the building, we get:∑
a∈S

αja = 1 ∀j ∈ S (3.4)

αja − za ≤ 0 ∀j, a ∈ S (3.5)

Above two constraints ensure that every sub-region is connected to only one FBS.

Another constraint is needed on SINR.

In this ILP model, MinNF, certain minimum SINRTh (λ) is guaranteed for all

sub-regions of the building. SINR received by a particular sub-region j from the

Femto located at sub-region a, is given by the L.H.S. of Equation (3.6). It guarantees

coverage by maintaining a predefined SINR threshold λ in each sub-region.

Inf ∗ (1− αja) + γjaPmaxza

No +
∑
b∈S\a

γjbPmaxzb +
∑
e∈M

γ′jePmacro
≥ λ ∀j, a ∈ S

(3.6)

In Equation (3.6), Inf is a virtual infinite value [54] (a very large value like 106).

The reason for using Inf ∗ (1− αja) is that if αja = 0 then Inf ∗ (1− αja) becomes

a large value and the expression can be ignored safely. Without the virtual infinite

value, Equation (3.6) tries to ensure that all the Femtos meet SINRTh constraint for

each sub-region. But just a single Femto is enough to give SINRTh for any given sub-

region. The ILP will always be infeasible if the virtual infinite value is not used, as not

all Femtos can meet SINRTh constraint for a particular sub-region. Equation (3.6)

can be rewritten as follows:

Inf ∗ (1− αja) + γjaPmaxza ≥ (λNo +
∑
b∈S\a

γjbPmaxzbλ+
∑
e∈M

γ′jePmacroλ) ∀j, a ∈ S

(3.7)

γ′je and γja are the channel gain from Macro and Femto, respectively. The channel

gain can be estimated by using Equation (3.1) and Equation (3.2) and Pmacro is the
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power of Macro. Finally, the MinNF model is formulated as follows,

min
∑
a∈S

za, subject to (3.4), (3.5), (3.7). (3.8)

The above MinNF ILP model is solved using CPLEX solver to obtain the optimal

co-ordinates of the Femtos for deploying indoors. This model is also used in many of

the chapters later for efficient Femto placement.

3.4 Experimental Setup and Numerical Results

3.4.1 Building Setup

In experimental setup, we consider a single floor building within the coverage region

of one MBS. In order to verify the improvement in system’s throughput, we have

chosen the network simulator NS-3, to create a building of dimension 52 m × 52 m

× 4 m with 16 rooms of dimension 12 m × 12 m × 4 m each and two corridors of

dimensions 4 m × 52 m × 4 m and 52 m × 4 m × 4 m running through the center

of the building. The entire building is divided into 169 sub-regions of dimension 4 m

× 4 m × 4 m 1 each as shown in Figure 3.2. The users in the building are served

by Femtos with the transmission power of 20 dBm. In order to consider the effect

of cross-channel interference, a Macro BS with transmission power of 46 dBm at a

height 36 meters is placed at an euclidean distance of 300 m [14] (diagonally from

the center of sub-region 1). Femtos are allowed to be fixed only to the ceilings of the

rooms at a height of 4 meters. The minimum number of Femtos and corresponding

sub-region indices are given by GAMS CPLEX solver [33].

3.4.2 Other Placement Schemes for Comparison

The proposed placement model is compared with the following Femto placement

schemes:

• Random Placement: Femtos are placed randomly inside the building.

1In our work, location of the center of each sub-region is given as input to the ILP CPLEX
solver to find the optimal Femto location. If size of the sub-region is small, SINR remains the same
throughout the sub-region but at the cost of increased time in solving ILP with large number of
sub-regions. If it is large, SINR may not remain the same throughout the building even though ILP
problem could be solved very easily. Hence, after some initial studies, we have taken the sub-region
dimensions as 4m × 4m × 4m in our work.

72



• Center k-Means (CKM) Placement: The co-ordinates of the exact mean loca-

tions of every sub-region are given as input to k-Means clustering scheme [63]

to form five clusters. These mean locations happen to be the centers of the

sub-regions. The Femtos are then placed at the centroid of each cluster.

3.4.3 Performance of Placement Schemes

The metrics that we use to compare the performance of Random, CKM and MinNF

based Femto placement schemes are:

• SINR: The signal strength distribution inside the building.

• Femto connectivity: The collection of sub-regions of the building served by each

Femto.

• Modulation scheme: The modulation scheme used by each UE for its transmis-

sion based on observed downlink SINR value.
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Radio Environmental/Heat Map for CKM and MinNF schemes

MinNF model has given five as the minimum count of the Femtos to achieve

SINRTh (-2 dB) in each sub-region for the building considered. To have a fair

comparison, we took the same count of Femtos (F=5) for CKM placement. Figures 3.3

and 3.4 show REM plots of the CKM placement and MinNF placement, respectively.

They give the SINR distribution across the building and the dark yellow regions

represent the Femto locations. The users located in those sub-regions enjoy the
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highest SINR. In such a setup, as expected CKM placement of Femtos does not

guarantee a SINRTh to all regions inside the building. As a result, certain parts of

the building have coverage holes i.e., SINR dropped to as low as - 10 dB as shown

in Figure 3.3. Moreover, in the CKM placement, UEs can experience a fluctuation

in connectivity due to co-channel interference between Femtos. These issues are

overcome by placing the Femtos optimally in MinNF based placement scheme. The

minimum SINRTh is set as - 2 dB in MinNF model to obtain the optimal sub-regions

for Femto placement. Now, no coverage holes are present in the case of MinNF, as

shown in Figure 3.4.

Modulation Scheme for CKM and MinNF:
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Figure 3.4: REM for MinNF Placement

Figures 3.5 and 3.6 show the modulation schemes that will be used by UEs located

at different locations inside building based on the SINR values. In the CKM place-

ment (Figure 3.5), 64-QAM modulation scheme is used near the Femto positions,

as shown by the yellow regions. As the distance from the Femto BS increases, the

modulation scheme used changes from 64-QAM to 16-QAM and 16-QAM to QPSK

as depicted by the blue regions and the green regions, respectively. This is due to

the wall penetration loss and interference between the neighboring Femtos inside the

building. Also, from the given Figure 3.3 it is evident that some portions of the

building get a very poor SINR which is as low as -10 dB leading to no-data regions

(coverage holes). This is depicted by red colored regions. The users in these regions

completely lose their connectivity to the network. Figure 3.6 shows the modulation

scheme used at different points inside the building based on the SINR from MinNF

placement scheme. In Figure 3.6, it is observed that a good SINR is maintained in
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regions surrounding the Femtos and a reasonable SINR is maintained at other regions

throughout the building, thus guaranteeing a minimum SINRTh of -2 dB. Thus, there

are no coverage holes and there is no possible loss of connectivity to the users inside

the building.

Figure 3.5: Modulation Schemes
in CKM placement

Figure 3.6: Modulation Schemes
in MinNF placement
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Figure 3.7: SINR CDF

SINR CDF of Various Placement Models

Figure 3.7 shows the SINR CDF of users for various placement schemes. Com-

pared to random placement scheme, CKM placement provides better average SINR

and the improvement is 87%. Compared to CKM placement, MinNF placement pro-

vides better average SINR and the improvement is 28%. We compared the SINR
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performance with our Joint Femto placement and power control model [55] (referred

as Joint MinNF) and observed that MinNF performs 8% better than Joint MinNF.

Joint MinNF does not perform better due to less Femto transmission power.

Figure 3.8 represents the percentage of sub-regions using each modulation scheme,

based on SINR mapping to modulation scheme as given by 3GPP [64]. In random

and CKM placements, some percentage of sub-regions have SINR less than -5 dB as

shown in Figure 3.7, and hence they will not be able to transmit any data as shown

in Figure 3.8. Hence, proposed MinNF model is better than these two schemes.
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Table 3.2: Variation of No. of Femtos with SINRTh in MinNF

SINRTh Number of Femtos Required

-2 dB 5
-1 dB 5
0 dB 6
1 dB 7
2 dB 8
2 dB 8

Figure 3.10: Connectivity of Sub-
regions in CKM placement

Figure 3.11: Connectivity of Sub-
regions in MinNF placement

23% of users employ 64-QAM modulation in MinNF for their data transmission.

Table 3.2 shows the variation in Femto count as SINRTh increases in MinNF model.

As expected, the Femto count increases with increase in SINRTh.

3.4.4 Motivation for Optimal Placement Models

Without Joint MinNF and MinNF models, the next best way for placement of Femtos,

in our opinion, is CKM placement scheme. In the CKM scheme, as we do not know

how many clusters/Femtos are required to guarantee minimum SINRTh, we have to

start with an initial guess value for the number of Femtos to be deployed and check

if that count is sufficient for maintaining minimum SINRTh in every sub-region of

the building. If the SINRTh is not met for all sub-regions, then the count of Femtos

has to be increased.

In CKM, as shown in Figure 3.9, to maintain a minimum threshold (- 2 dB) for

all sub-regions as in the case of MinNF model we require 7 Femtos (clusters) for the

deployment. Hence, this motivates us to go for optimization techniques (e.g., MinNF)

to place Femtos.
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3.4.5 Connectivity Region of Femtos inside the building

Figures 3.10 and 3.11 show the connectivity diagrams for CKM and MinNF placement

schemes, respectively. The connectivity diagram is plotted by comparing the RSRP

or SINR (reference signal received power) values offered to each sub-region by all the

Femtos and connecting it to the Femto that offers the largest value. The sub-regions

that are served by the same Femto are shown using the same color. In the connectivity

diagram for the CKM placement (shown in Figure 3.10), it can be verified that the

different sub-regions within the same room are being served by different Femtos. The

sub-regions I47, I48 and I49 in room #R7 (in Figure 3.2) are served by a Femto while

I60,I61, I62, I73, I74 and I75 are served by another (for sub-region numbering refer

Figure 3.2). Similarly, in room #R12, the sub-regions I128, I129 and I130 are served by

one Femto while I102, I103 and I104 are served by another. This increases the number

of handovers even when the user is walking a bit inside the same room. Though

it was previously observed in Figure 3.6 that a good SINR was guaranteed by the

optimal placement of Femtos, it can be seen from Figure 3.11 that the sub-regions I7,

I20 and I33 of the corridor are served by a different Femto from that of the other sub-

regions of the corridor. Also more than one Femto serve the rooms #R7 and #R12

leading to more number of handovers for movement within the rooms. Therefore

this optimal placement leads to more number of handovers than CKM placement

although it guarantees a minimum SINRTh to all the users unlike CKM placement.

This motivates us to look into the handover optimization problem because it is severe

in enterprise office buildings where a large scale deployment of Femtos is necessary.

3.5 Handover Optimized Femto Placement Model

In the previous section, it is seen that users of the same room connecting to the dif-

ferent Femtos. This causes ping pong effect which leads to decrease in throughput

and increase in number of handovers. Such handovers are severe in irregular shaped

buildings with corridors. In order to avoid such handovers inside rooms and corri-

dors, we formulate an optimization model, OptHO (by adding handover constraint

to MinNF model) Femto placement model. Before explaining the formulation in the

subsequent section, we discuss about the user mobility model which is important in

realizing the formulation.
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3.5.1 User Mobility Model

A user mobility model is considered based on the entry/exit points of the rooms which

are indexed as (A-P) in Figure 3.12 and the walls emulate realistic indoor movement of

UEs. The UE movement is constrained by these walls and entry/exit (doors) points.

Free movement (human walk) of the UEs is assumed inside the rooms. Depending

upon the starting point (source) and ending point (destination), the human walk

behavior model is incorporated [65]. This model replicates the real human mobility

in indoor environments. An indoor building mobility model has been simulated by

taking into account the presence of walls and entry/exit points. The existing NS-3

Building Mobility Model has been modified to make the UEs move along the shortest

distance between the rooms and also according to the entry/exit points. When there

are no direct connecting entry/exit between two rooms, the UE reaches its destination

room by moving to the corridor that is reachable at the nearest distance from the

starting position, and then it moves along the corridor to reach the position which

is nearest to the destination room, from there it directly moves into the destination

room.

Corridor

A B C D

E F G H

I J K L

M N O P

Room

Wall Entry/Exit

R1

R11 R12

R13 R14

R9

R5

R10

R2

R6 R7

R15

R3

R8

R16

R4

START

DEST

Figure 3.12: Building Scenario with Simple Flow

Handover Algorithm

Existing A3 handover algorithm of NS-3 [66] is used to perform handovers. A3

algorithm signifies the event where the serving cell’s RSRP goes below the threshold

of -3 dB. This informations is carried out as a measurement report by UE for every

80 ms to the serving eNB.
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3.5.2 OptHO Placement Model

Our goal is to reduce the number of unnecessary handovers inside the building by

using the existing A3 handover algorithm. Once the Femtos are placed optimally

by MinNF model inside the building, SINRTh is guaranteed. But the handover

constraint is not given in MinNF, thus leading to a possibility of large number of

handovers because of free movement of UEs. Our aim is to make sure that there are

no handovers when a user moves from sub-region b to sub-region c i.e., to reduce the

number of unnecessary handovers inside the same room and along the corridor. The

constraint to achieve this is given below.

αab = αac b, c ∈ H and a ∈ S (3.9)

Where H is the set of all sub-regions which belong to the same room or corridor (i.e.,

mostly connected to the same Femto with in the same room). In Equation (3.9) the

constraint is made in such a way that if the sub-region b is connected to the Femto

a then the sub-region c should also get connected to the Femto a, such that when

a UE moves from sub-region b to sub-region c there is no handover. The SINR and

placement constraints are similar to MinNF. Finally, the OptHO model is formulated

as follows,

min
∑
a∈S

za, subject to (3.4), (3.5), (3.7), (3.9).

Like MinNF model, the above OptHO ILP model is solved using CPLEX solver

to obtain the optimal Femto co-ordinates.

3.6 Experimental Setup and Numerical Results

The experimental scenario given in section 3.5 is created in NS-3 and proportional

fair is set as the scheduler to analyze the performance in terms of throughput and

number of handovers.

3.6.1 Setup for OptHO Placement Model

NS-3 simulation parameters are given in Table 3.3. During simulations, the number

of users placed randomly within the building (same randomness is maintained in

MinNF and OptHO model) are increased from 3 to 30. The destination point to
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Table 3.3: NS-3 Simulation Parameters

Parameter Value

Number of Users 30
Application TCP (Bulk Sender)
Scheduling Algorithm Proportional Fair
Simulated traffic Video using TCP
Simulation Time 300s
Number of seeds 10
SINRTh -2 dB
Femto Bandwidth 5 MHz (25 RBs)
LTE Mode FDD
Packet Size 512 Bytes
Mobility 0.2, 0.5, 1m/s
Operating Frequency of BS 2.6 GHz
Mobility Model Building Mobility Model

which each UE is moving to is also selected using a random function. For instance,

if a user from room #R9 (source) wants to reach room #R15 (destination), the path

traveled will be (#R9 → corridor → #R15) as shown in Figure 3.12. In the defined

mobility model, the users move continuously throughout the simulation by selecting

a new random destination on reaching the previously chosen destination well within

the simulation time.

Density of UE: In our experiment, the density of UE represents the number of

mobile users inside the building. Simulations are run for numerous UE densities in

multiples of three( i.e., 3, 6, 9 till 30).

3.6.2 Performance of OptHO Placement Model

The metrics that we use to analyze the performance of OptHO placement scheme are:

• Number of Handovers: The number of handovers triggered compared against

the density of UEs for all the placement schemes (CKM, MinNF and OptHO).

• Throughput: Increase in throughput is compared against the density of UEs for

all the placement schemes (CKM, MinNF and OptHO).

Radio Environmental/Heat Map for OptHO: After solving the OptHO model

in GAMS solver, we obtain the same count of Femtos (F=5) as in MinNF. But for

different handover constraints, it may be difficult to maintain the same Femto count
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as in MinNF. We observe that there is no coverage hole in the building as shown in

Figure 3.13.
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Figure 3.13: REM of OptHO Placement

Modulation Schemes in OptHO: Similar to MinNF, in Figure 3.14, it is observed

that good SINR is maintained in regions surrounding the Femtos and a reasonable

SINR is maintained at other regions throughout the building thus guaranteeing SINR

threshold of -2 dB. Thus, there are no coverage holes and there is no possible loss of

connectivity.

Figure 3.14: Modulation Schemes
in OptHO Placement

Figure 3.15: Connectivity of Sub-
regions in OptHO Placement

Connectivity Region of Femtos in OptHO: Figure 3.15 shows the Femto con-

nectivity of regions in OptHO model. In this connectivity diagram, it can be observed

that no more than one Femto serves any room and the entire corridor is served by

a single Femto. This placement guarantees that there are no coverage holes and a

minimum SINRTh value is given to all the users along with reduction in the number

82



of handovers. Thus this provides a better throughput than the CKM and MinNF

placement models.

In CKM placement, the rooms #R1, #R2, #R5 and #R6 (refer Figures 3.10 and

3.12) are connected to Femto F1 and the rooms #R9, #R10, #R13 and #R14 are

connected to Femto F4. The entire corridor, the rooms #R8 and #R11 and parts of

the rooms #R7 and #R12 are connected to Femto F3. The rooms #R15, #R16 and

parts of the room #R12 are connected to Femto F5 and the rooms #R3 and #R4

and parts of the room #R7 are connected to Femto F2. While there are no handovers

for users moving in the corridors, there is a good chance of handovers within rooms

#R7 and #R12. Also, in MinNF placement, the rooms #R6, #R7, #R10 and #R11

are not connected to the same Femto as that of the corridors thereby, leading to more

number of handovers.

Consider the flow marked by start point START and end point DEST as shown

in Figure 3.12 for all the three placements (CKM, MinNF, OptHO). Then the user’s

travel path will be #R9 → corridor → #R6 → corridor → #R11 → corridor →
#R12. In CKM placement, the handovers are expected to happen when moving out

of room #R9, while entering and exiting rooms #R6 and #R11, and while entering

and exiting room #R12. In addition to this, handovers will happen inside room #R12

as sub-regions within the room are connected to different Femtos. For the same flow,

in the case of OptHO, handovers are expected to happen only while exiting room

#R9 and while entering and exiting room #R12. Therefore, the number of handovers

decrease when compared to the CKM placement model.
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Figure 3.16: Number of Handovers vs UE Density in 0.2 m/s Mobility Case
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Figure 3.17: Number of Handovers vs UE Density in 0.5 m/s Mobility Case
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Figure 3.18: Number of Handovers vs UE Density in 1 m/s Mobility Case

Number of Handovers vs Density of UEs: The number of handovers for different

density of UEs with mobility 0.2 m/s for all the three placement models is shown in

Figure 3.16. In Figure 3.16, X-axis represents the density of UEs with a scaling

factor by 30 and Y-axis represents number of handovers. It can be observed that

the number of handovers is more for CKM and MinNF without handover constraint.

This is because, even though the neighboring rooms are served by the same Femto

in CKM and MinNF, due to the presence of walls the UE mobility is constrained.

Generally, there is a high possibility of UE movement in the corridors or within the
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Figure 3.19: Average Throughput of Users vs UE Density in 0.2 m/s Mobility Case

rooms and it is essential to reduce the handovers in such scenarios. This is not taken

into account in the CKM and MinNF. Whereas in the case of OptHO placement

model, these handover constraints are taken into the system model while placing

the Femtos, which leads to decrease in number of handovers up to 30%. In case

of 0.5 m/s and 1 m/s user mobility, the number of handover decreased compare to

MinNF by 22% and 16%, respectively. Similarly, the number of handovers for CKM

and MinNF increases as the mobility increases in the order of 0.2, 0.5 and 1 m/s as

shown in Figures 3.16, 3.17 and 3.18, respectively because the frequency of handover

increases with mobility.

Throughput Vs Density of UEs: Figures 3.19, 3.20 and 3.21 show the average

throughput plotted against the density of UEs with mobility 0.2, 0.5, 1 m/s for all the

three placement models. As it can be seen from the modulation and coding scheme di-

agram shown in Figure 3.5, the no-data (red spot) regions in the CKM placement lead

to decrease in throughput. Moreover, a lot of handovers happen in order to maintain

connectivity which reduces the throughput. In optimal placement, a good SINRTh

leverages the throughput. Even though the number of handovers is more or less the

same as CKM placement, due to usage of comparatively better modulation schemes

as shown in Figure 3.6, higher throughput is achieved. For 0.2 m/s mobility, OptHO

placement performs 27% better than MinNF placement in terms of throughput as it

combines the advantage of having an optimal placement and reduced handover sce-

nario. Similarly, there is 14% and 20% improvement in throughput for mobility 0.5

m/s and 1 m/s in OptHO placement, when compared to CKM and MinNF place-
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Figure 3.20: Average Throughput of Users vs UE Density in 0.5 m/s Mobility Case
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Figure 3.21: Average Throughput of Users vs UE Density in 1 m/s Mobility Case

ments, respectively.

3.7 Summary

In this chapter, we formulated two ILP optimization models: MinNF and OptHO

to minimize the required number of Femtos and guarantee a threshold SINR for all

users inside enterprise office buildings. This in turn increases the overall system
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capacity and reduces the deployment cost. Our OptHO model reduces the number of

unnecessary handovers in enterprise building environments. When compared to K-

means clustering based placement scheme, proposed MinNF results in average SINR

improvement of 28%. By adding handover constraint in MinNF, OptHO reduces 30%

of unnecessary handovers in enterprise building environments.
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Chapter 4

On Placement and Dynamic Power

Control of Femtocells in LTE

HetNets

4.1 Introduction

In previous chapters, we placed the Femtos optimally inside buildings to boost the

data rates of Indoor UEs (IUEs) but so far we have not analysed the impact on out-

door UEs (OUEs) due to indoor Femtocell deployment. In this chapter, we consider

both co-tier and cross-tier interference and apply the same MinNF model (presented

in chapter 3) to determine the optimal count and the optimal placement of Fem-

tos for reducing operator’s CAPEX and OPEX. Hence, we expect that large scale

enterprises could benefit from MinNF model based deployment. However, in some

scenarios, operator may need to go for sub-optimal or arbitrary deployment (due to

physical constraints) which will lead to deployment of more number of Femtos than

that in MinNF to ensure that there are no coverage holes. Even optimal placement of

Femtos inside a building leads to power leakage at the edges/corners of the building.

This degrades the performance of the OUEs (i.e., Macro connected) in High Inter-

ference Zone (HIZone) around the building area because both Macros and Femtos

operate on the same frequency due to reuse one in LTE HetNets. Setting the Femto

transmission at optimal/low power could solve this problem. But in a real-world sce-

nario, the Macro users may not always be there in the surroundings of the building,

such as at nights. Thus, Femtos need not always transmit at low power as indoor

enterprise users could benefit from the maximum transmission power of Femtos. Our
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goal is to address this problem and come up with a solution which dynamically ad-

justs transmit power based on the occupancy of Macro users around the building. In

this chapter, we specifically refer the OUEs in HIZone as HIZUEs.

Hence, in this chapter, we dynamically adjust the transmit powers of Femtos in

two steps. In the first step, MinNF model (refer Equation 3.8 in chapter 3) guaran-

tees certain SINRTh for each sub-region inside the building with minimum number

of Femtos and in the second step, Optimal Femto power (OptFP) model guaran-

tees threshold SINR of -4 dB for IUEs with the Macro users SINR degradation as

lesser than 2 dB. In the OptFP model, Femto’s transmit power is tuned dynamically

according to the occupancy of OUEs in the HIZone.

4.1.1 Organization of this Chapter

Rest of the chapter is organized as follows. Section 4.2 describes the related works.

Proposed efficient placement and power control algorithm is presented in Section 4.3.

Performance results are explained in Section 4.4. Finally, Section 4.5 summarizes the

work.

4.2 Related Work

Many approaches to placing Femtos have been discussed in literature with sufficient

insight, keeping in mind various parameters such as building dimensions, interference

from Macro BSs and other Femto BSs. In [67], small cell locations are optimized in an

airport environment depending upon the traffic demand. Authors in [54] proposed an

algorithm which gives the optimal transmission power of each of the Femtos deployed

in a HetNet scenario by guaranteeing SINRTh for IUEs and lesser degradation for

HIZUEs. However, Femto power adaptation has not factored in occupancy level of

HIZUEs outside the building.

In [55], an optimization problem is formulated for Femtos deployment which guar-

antees SINRTh inside the building by considering co-tier interference, cross-tier in-

terference and impedance caused by walls. The SINRTh also varied depending on

average user density in each region inside the building. This resulted in improving

spectral efficiency of Femtos deployed in indoors. However, HIZUEs suffered degra-

dation in SINR due to cross-tier interference between Macros and Femtos. In this

chapter, optimal placement of Femtos and dynamic control of their transmit powers

are studied by solving two optimization models, namely MinNF and OptFP. MinNF
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determines the minimum number of Femtos and their respective co-ordinates to guar-

antee a minimum SINRTh of 0 dB for all indoor regions, assuming full transmission

power of the Femtos. Configuration of Femtos at the full transmission power de-

grades SINR values of HIZUEs. To address this issue, OptFP model is used to find

the optimal power of the Femtos to reduce degradation in SINR for the HIZUEs.

The maximum fall in SINR for HIZUEs is limited to 2 dB after the deployment of

Femtos. Since Femto power is reduced, SINRTh of IUEs is also reduced to -2 dB.

This optimal power dynamically changes according to the occupancy of HIZUEs in

the HIZone.

4.3 Proposed Work

In this section, we present architecture of LTE SON, system model, building model

and efficient placement and power control algorithm.

4.3.1 LTE SON and System Model

We planned to design self organization network (SON) function that dynamically

adjusts the Femto power (In our case, we assume a uniform transmission power across

sub-channels) and optimizes the mobile radio access networks and also self heal itself

(but it is out of scope of this thesis). In this chapter, we consider a LTE HetNet system

comprising of Macro BSs in outdoor environment, to which the outdoor users are

associated with and Femto BSs inside an enterprise office building. All these Femtos

are connected to Femto-GW over S1 interface and SON features are integrated in the

Femto-GW to automate the system. We have considered the case where the Femtos

and Macro BSs operate on same frequencies (to enable reuse of the spectrum) and

hence, experience high cross-tier co-channel interference. This affects the performance

in HIZone i.e., the region around the building in which, the Macro users experience

high interference from Femtocells and leads to degradation in performance. In this

work, we propose a solution to avoid high interference in HIZone. Table 4.1 shows

the notations used in this chapter.

4.3.2 Building Model

Consider the dimensions of a building to be L × W × H, where L, W and H

are respectively the length, width and height. Each floor is divided by walls into

several rooms as shown in Figure 6.1. Each room is further logically divided into
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Table 4.1: Glossary of OptFP MILP Model

Notation Definition

Si Set of all inner sub-regions
So Set of all outer sub-regions
wa 1 if Femto is placed at inner sub-region a, zero otherwise
yja 1 if jth inner sub-region of the building is associated with

the Femto located at inner sub-region a, zero otherwise
gja Channel gain between inner sub-regions j and a
bj 1 if user is located at outer sub-region j, 0 otherwise
M Set of all Macro BSs
pa Normalized transmit power of Femto BS a, 0 ≤ pa ≤ 1

smaller inner sub-regions, Sis. For example, a building which is divided logically

into (I1, I2, . . . , I144) is shown in Figure 4.1. The thick lines represent the walls of

the rooms and the small squares are the sub-regions. Similarly, the HIZone region

outside the building is divided into outer sub-regions, Sos. In the example, they are

O1, O2, . . . , O52. As the size of sub-region is much smaller compared to the build-

ing/room size, we can safely assume that within every sub-region, the average SINR

value is almost constant. The PL model given in chapter 3 is used for this work.

4.3.3 Proposed Efficient Placement and Power Control Al-

gorithm

In this chapter, we propose an efficient placement and power control SON algo-

rithm which dynamically adjusts the power of Femtos by employing two optimization

models:- MinNF and OptFP. In the MinNF model, we estimate the minimum num-

ber of Femtos required for placement, so as to provide a SINRTh to every inner

sub-region (-2 dB). Here, we assume that the Femtos transmit at maximum power

owing to which SINR degradation for OUEs in HIZone is high. In the OptFP model,

using the solution of the MinNF optimization problem as the input setup their Femto

power is optimally chosen to make sure that the difference in the SINR for HIZUEs

before and after placement is less than 2 dB. And also a SINRTh value (-4 dB) is

maintained for every inner sub-region. The Femto power changes dynamically (using

SON module) depending upon the user pattern in the outer sub-regions So.
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Figure 4.1: Bird-eye view of floor area inside and outside a single-
floor building

(a) Minimize the number of Femtos (MinNF)

The MinNF formulation (refer Equation (3.8) in chapter 3) guarantees that all the

users inside the building will get a certain SINRTh with minimum number of Femtos.

It is a reasonable approach to boost the SINR in indoor regions when no OUEs in the

surrounding of the building. But if the OUEs present in HIZone of the building, this

method won’t work as the Femtos transmit with maximum transmission power. Since

Femtos and Macros operate on the same spectrum, interference can occur between

the Macro and Femto users which in turn would degrade the signal strengths of the

OUEs in HIZone. To overcome these shortcomings, we propose another optimization

problem, described below, which optimally reduces the Femto transmit power.
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(b) Dynamic transmit power for each Femto (OptFP)

In this scheme, we assume that the OUEs are in the surroundings of the building

and obtain the optimal NFmin using MinNF model. We try to guarantee minimum

SINRTh for IUEs and reduce the SINR degradation of OUEs, by minimizing the

power of the Femtos in such a way that it reduces the interference with the HIZUEs.

The formulation of the OptFP model is described below.

Problem Formulation for OptFP:

The objective of the proposed optimization scheme is to reduce the HIZUEs

SINR degradation. By formulating this MILP, we will:

• Determine the power required by each Femto for maintaining the SINRTh in

each of the inner sub-regions and maintain the SINR degradation at less than

2 dB in HIZone.

• Determine the Femto to which the users in any given inner sub-region have to

be associated with.

The Femtos cannot operate at the highest power because if they do so, the HIZUEs

will experience higher SINR degradation. We can safely assume that if we maximize

the sum of all the transmission powers of Femtos, the transmission powers of individ-

ual Femtos will also be maximized (considering that the Femto BSs are ”greedy” to

keep their transmission power as high as possible) as the power values are obviously

positive.

max
∑
a∈Si

pa (4.1)

pa ≤ wa ∀a ∈ Si (4.2)

Let pmax be the maximum power of the Femto BS. The normalized power pa value

ranges from 0 to 1 and is 0 if wa is 0. If Femto is not located at a given location a,

wa is set to 0. Once the model is solved, the actual power of Femto BS at location

a is determined by pa ∗ pmax. Assuming that each inner sub-region corresponds to a

user, any user is allowed to associate with only one Femto BS:∑
a∈Si

yja = 1 ∀j ∈ Si (4.3)
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yja − wa ≤ 0 ∀j, a ∈ Si (4.4)

The two constraints mentioned above ensure that every sub-region is connected

to one and only one Femto. To maintain the minimum SINR threshold for each inner

sub-region , we add the following constraint:

Inf ∗ (1− yja) + gjaPmaxwa ≥ (λNo +
∑
b∈Si\a

gjbPmaxwbλ+
∑
e∈M

g′jePMacroλ) ∀j, a ∈ Si

(4.5)

Another major concern is minimizing the cross-tier interference from Femtocell

network on the OUEs in HIZone, who are connected to Macro BSs. To meet this

requirement, we restrict the SINR degradation at each outer sub region (So) to be

equal to or lesser than 2 dB:

max
e∈M

(g′jePMacro) + Inf ∗ (1− bj) ≥ (ζjNo +
∑
e∈M ′

g′jePMacroζj +
∑
a∈Si

gjaPmaxpaζj) ∀j ∈ So

(4.6)

M ′ ≡ M \ argmax
e∈M

(g′jePMacro), ∀ j ∈ So

ζj is the minimum SINRTh at outer sub-region j. After the deployment of Femto,

the precomputed ζj would be 2dB lesser than the original SINR. Note that outer sub

region j is assumed to be attached to macro BS argmax
e∈M

(g′jePMacro). Finally, the

OptFP model is formulated as follows,

max
∑
a∈Si

pa s.t, (4.2), (4.3), (4.4), (4.5), (4.6). (4.7)

The above OptFP formulation guarantees a certain minimum SINRTh for IUEs

with less degradation in SINR of HIZUEs. This method is good when HIZUEs

are present in the outer sub-regions but it could be a waste of resources because the

IUEs could benefit from the peak power of Femtos but they are actually receiving

reduced power, even when no HIZUEs is present outside the building. To overcome

the above drawback, the OptFP model is adopted only when HIZUEs is present
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within 15 m range outside the building (HIZone), the users, SINR degradation is

under 2 dB.

Algorithm 2 Efficient Placement and Power Control SON

1: Part 1:
2: Input: Si and So (Sets of inner and outer sub-regions)
3: Run MinNF model;
4: Output: Obtain optimal no. of Femtos (Equation (3.8)) and their co-ordinates
5: Part 2:
6: Input: Su ⊂ So, where Su is set of outer HIZone sub-regions having Macro UEs
7: while true do
8: Occupancy of Macro UEs (HIZUEs) in So as given by Su;
9: if SON.DB contains (Su) then

10: Retrieve Femtos Tx power settings from SON.DB;
11: else
12: Run OptFP model;
13: SON.DB.Add(Su, Femto Tx Powers);
14: end if
15: Output: Configure Femtos with Optimal Tx power settings.
16: Sleep (to)
17: end while

(c) SON Module in Proposed Power Control Algorithm:

A practical way to implement the proposed algorithm (refer Algorithm 2) would be to

use the SON module dynamically such that whenever a OUEs is nearby, the Femto

will reduce its transmission power and increase the transmission power when there are

no OUEs nearby. Depending upon the user mobility, position reference signal (PRS)

and scheduling information, Femto-GW will decide which side of the Femto should

reduce or increase its transmission power (in worst case it might be all the Femtos).

This, in turn, will boost the signal strength for both indoor and outdoor user devices

because increase/decrease of Femto transmission power will guarantee good SINR and

these power values of that pattern are stored in a database. The process is repeated

for most of possible occupancy pattern of users in the outdoor sub regions and the

data patterns are stored. If, in future an old occupancy pattern matches, instead of

running the GAMS tool, we fetch the power values from the database. Otherwise, it

is given as an input to the GAMS tool [33]. The new resultant output data pattern

may also be stored.
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Table 4.2: Simulation Parameters

Parameter Value

Building dimensions 48 m × 48 m × 3 m
Number of Rooms 16
Room dimensions 12m × 12m × 3m
Number of inner Sub-region 144
Number of outer Sub-region 52
Inner Sub-region dimension 4 m × 4m × 3m
Number of Floors One
Floor and Wall penetration losses 8 and 10 dB
Femto transmit Power 20 dBm (0.1w)
Macro transmit Power 46 dBm
Macro BS Height 30 m

4.4 Experimental Setup and Numerical Results

The system model described in Section 4.3.1 is simulated using MATLAB and the

simulation parameters are given in Table 4.2. We have considered a single floor build-

ing and the shortest distance between the building and Macro is 350 m (diagonally

from the center of inner sub-region I1). Femtos are allowed to be placed only to the

ceiling of the building and the minimum number of Femtos with their optimal co-

ordinates and corresponding sub-region indices are obtained by solving MinNF ILP

model using GAMS CPLEX solver [33]. The output (optimal co-ordinates of Femtos)

of GAMS solver is then given as the input to MATLAB based system model. In the

following, we analyze two extreme scenarios: without Macro users and with Macro

users in HIZone.
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4.4.1 Scenario 1: No Macro Users in HIZone

The MinNF model provides the optimal NFmin for four Femtos with corresponding

sub-region indices and they are placed in dark brown region inside the building at

those sub-regions I30, I71, I98, I129 (refer Figure 4.1 for numbering of sub-regions) as

shown in Figure 4.2. At this instant there are no OUEs present in HIZone within a

distance of 15 meters. Hence all Femtos placed at the corner of the building transmit

with their peak power (0.1w) as shown in Table 4.3 (S.NO 17). So the IUEs inside

the building get good SINR. The Figure 4.2 shows the SINR values for all users inside

the building. For example, in the sub-region I98, the users get SINR value of 29.9 dB

as the Femto (F3) is very close to it. Similarly, the sub-regions I6, I29, I79, I51 inside

the building have relatively good SINR values 12.9, 17.2, 5.0, 7.4 dB, respectively.

But if we observe only Macro scenario where there are no Femtos inside the building
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like in Figure 1.7, the sub-regions I6, I29, I79, I51 inside the building have relatively

less SNR values of -8.2, -8.3, -9.2, -8.3 dB, respectively due to poor indoor signal

strength.

As a result of Femtos, the users present inside the building get a maximum SINR

up to 35 dB (as shown in SINR graph of Figure 4.2). But in this case, if some OUEs

enters the outer sub-region (for e.g., O48), they will get an SINR as low as -6.0 dB.

This is a consequence of the Femtos being closer to the corners of the building and

hence, there being a high power leakage (interference) in HIZone. In Figure 4.4, the

Femtos (F1, F2, F3, F4) are transmitting at peak power. Users in the inner sub-

regions of the building, can thus connect to a certain Femto. But, the Femtos are not

placed in a manner that the sub-regions spanned by their transmissions are uniform.

Hence the users in some sub-regions in the neighboring rooms also can connect to

another Femto based on the factors like the distance from the Femto and number

of obstructing walls. For example, although the transmission power of Femto F1

(I30) crosses more number of walls than Femto F2 (I71) to the sub-region I43, its

distance from the sub-region (represented by B) is lesser. Hence, the sub-region I43

gets connected to the Femto F1. Similarly, the Femto located in I98 (F3) is closer to

the sub-region I112 (represented by A). Hence, the sub-region I112 gets connected to

Femto F3.

4.4.2 Scenario 2: Macro Users in HIZone

When a OUE enters an HIZone, the Macro BS provides users Mobility, PRS and

scheduling information to Femto-GW from which we can decide if some OUE is

present in an HIZone. At this instance the OUEs are present at all sides of the

building, and thus all the Femtos at the corners I30, I71, I98, I129 of the building have

to reduce their transmission power values optimally to 0.036, 0.021, 0.027, 0.022 W as

shown in (Table 4.3 S.NO 5). Now, if we observe Figure 4.3 the users in the outer sub-

regions O48, O51, O36, O28, O20, O1, O25, O37, O44 have their respective SINR values

as -2.7, -2.48, -1.9, -2.3, -1.7, 3.5, 1.0, 0.1, -1.0 dB. This shows a better improvement

in SINR values when compared to the method of maximum transmission power Femto

as in Figure 4.2. As a result of this, the users inside the building get lesser SINR

35 dB to 30 dB as can be observed in Figures 4.2 and 4.3. The minimum SINRTh

(-4 dB) is maintained in all sub-regions inside the building. The inner sub-region

I98, I6, I29, I79, I51 inside the building have the respective SINR values of 23.9, 9.6

14.4, 0.9, 2.3 dB, hence showing a slight degradation of SINR values when compared
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Table 4.3: Optimal Femto Transmission Power

S.No Pattern in Outer
Sub-regions

I30(W ) I71(W ) I98(W ) I129(W )

1 West:(O1,O2,..,O14) 0.038 0.1 0.1 0.1
2 North:(O14,O16,..,O52) 0.1 0.0211 0.1 0.1
3 South:(O1,O15,..,O39) 0.1 0.1 0.0229 0.1
4 East:(O39,O40,..,O52) 0.1 0.1 0.1 0.0223
5 All Sides of Building 0.036 0.021 0.027 0.022
6 O18,O20 0.1 0.0344 0.1 0.1
7 O24,O26 0.1 0.0211 0.1 0.1
8 O6,O7 0.0380 0.1 0.1 0.1
9 O2,O3 0.0675 0.1 0.1 0.1
10 O1,O2 0.0828 0.1 0.1 0.1
11 O6,O7, O2,O3 0.0380 0.1 0.1 0.1
12 O29,O31 0.1 0.1 0.0229 0.1
13 O21,O23 0.1 0.1 0.0432 0.1
14 O29,O31, O21,O23 0.1 0.1 0.0229 0.1
15 O18,O20,O23,O24,O26 0.1 0.0212 0.0432 0.1
16 O47,O48, O49 0.1 0.1 0.1 0.0223
17 No Macro users 0.1 0.1 0.1 0.1

to a maximum transmission power Femto. Owing to that, the pattern of serving

area of a Femto changes slightly when compared to maximum transmission power

Femto connection, as shown in Figure 4.5. This is because when the transmission

power of Femtos is reduced, some of the sub-regions can not maintain the minimum

SINRTh. Hence, a UE trying to get connected to a certain Femto might now connect

to a neighboring Femto in such a manner that minimum SINRTh is maintained. As

shown in Figure 4.5, the encircled regions B1, C1, D1 are the sub-regions where the

threshold SINR value cannot be maintained by Femtos F2 and F3, so the users in

those sub-regions will get connected to the neighboring Femto F1 to maintain an

SINRTh. Although the delay to is large in Algorithm 2 because for most of the

combinations of Macro occupancy pattern, power values remains the same (for e.g.,

Table 4.3 SNO 8,11), the Femto transmission power need not always be constant. All

the patterns and their results in Table 4.3 are stored in the database of the Femto-

GW and whenever, the pattern matches, the corresponding solution is retrieved from

the database. Otherwise GAMS tool is run again. The running time of GAMS tool

is less than 5 secs as shown in Figure 4.6. It would thus take even lesser time, on a

machine in a Femto-GW (which has high computing resources).

Whenever the Femto power is dynamically increased (if there is no OUE outside
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the building and close by to it), it is advantageous to an IUE and whenever the

Femto power is dynamically decreased it is advantageous to a HIZUE situated in

HIZone. Largely, this solution aims at ensuring good SINR to both indoor and out-

door users. If we observe all the outer sub-region in both Figures 1.7 and 4.3, the

SINR degradation for HIZUEs connected to MBS is under 2 dB.

4.5 Summary

In this chapter, we designed an SON based efficient Femto placement and power con-

trol algorithm which dynamically adjusts its transmit power and guarantees SINRTh

(-4 dB) for IUEs with the HIZUEs connected to MBS SINR degradation as lesser

than 2 dB. This in turn increase the over all system throughput by reducing the

impact of cross-tier interference to HIZUEs.
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Chapter 5

Energy-efficient Femtocell

Placement in LTE Networks

5.1 Introduction

Femto placement models proposed in previous chapters only addressed the problem of

SNR/SINR improvement in the downlink in the LTE HetNets. As these optimization

models did not consider uplink SINR improvement, in this chapter, we propose two

optimization models which together guarantee a certain minimum downlink SINR

threshold (DSINRTh) and uplink SINR threshold (USINRTh) for each user inside

the building and at the same time minimize the number of Femtos to be deployed

and the total uplink power spent.

In the enterprise scenario, the signal strength in cell-edge areas may be very low,

and so the users in those regions may still need to spend more uplink power to

connect with a Femto BS. To demonstrate the aforementioned interference problem,

we considered a single-floor building with dimensions of 48 m ×48 m ×3 m and placed

the Femtos (N=6 and N=11, where N is the number of Femtos) using center-K-means

(CKM) placement. CDF of UE uplink power is plotted in Figure 5.1. We can observe

from the plot that as the Femto count increases, the uplink power transmitted by

the UE gets reduced. This motivates us to look into an optimization problem by

choosing the optimal Femto count and reducing the uplink power. At the same time

we are also considering downlink interference in the optimization because the uplink

and downlink interference influences the pattern of Femto placement.
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Figure 5.1: CDF of UE uplink power.

5.1.1 Organization of this Chapter

Rest of the chapter is organized as follows. Section 5.2 describes the related works.

Proposed efficient uplink and downlink placement model is presented in Section 5.3.

Performance results are explained in Section 5.4. Finally, Section 5.5 summarizes the

work.

5.2 Related Work

Earlier mobile operators were concerned about saving power consumed by Macro BSs.

This was accomplished by switching off few BSs [68] during period of less traffic,

using renewable energy sources [69], cell zooming [70], etc. The concern, however,

has now shifted to UEs because most of the mobile phone batteries get drained faster

with the advent in increased data usage. According to 3GPP in LTE networks, the

uplink transmission power [64] is tuned based on the feedback from Macro/Femto

BS until desired SINR value is achieved. However, this tuning is more complex in

heterogeneous networks due to cross-tier interference. In [71], the power for each

frequency is tuned in an iterative manner. Since, the placement of Femtos was not

optimal, high co-tier interference and a subsequent increase in power consumption

would be observed.

The study [32] provided a solution to the joint optimal Femto placement and up-

link power control problem. But their system model did not consider some realistic

issues like uplink and downlink interference and building obstructions. In [34] the

Femtos are placed inside a building to maximize the capacity of the users by con-
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sidering only downlink interference. However, the placement of Femtos will change

if we consider the uplink interference and obstructions in their model. In our pre-

vious chapter 4, the Femtos are placed optimally and the transmission power was

dynamically adjusted to boost the SINR, by considering downlink interference and

obstructions like walls and floors in the system model. To the best of our knowledge,

this is the first study, where Femtos have been placed optimally by considering both

uplink and downlink interference and the physical obstructions.

5.3 Proposed Work

In this section, we present system model, uplink power control and uplink & downlink

placement optimization model.

5.3.1 System Model

The system model consists of an enterprise building with length (L), breadth (B),

and height (H), respectively. The floor is further partitioned into several rooms by

the walls. Indoor users are served by one of Femto BSs deployed inside the building.

In this study, we consider an LTE HetNet system comprising of Macro and Femto

BSs. They are configured to operate on same frequency (i.e., reuse one), which leads

to high co-channel interference. The building in which the rooms are separated by

thick walls and the grids in each room depict the sub-regions of length δx and width

δy to avoid complex formulation. We assume that SINR value does not vary within

a sub-region (as the sub-regions are small). The objective of this work is to find

the optimal sub-regions for placing the Femtos so that the Uplink SINR Threshold

(USINRTh) and Downlink SINR Threshold (DSINRTh) are good for indoor UEs

and the uplink power of the UE is also minimized.

The same PL models given in chapter 3 are used in this work and these PL models

are applicable for both uplink and downlink transmissions.

5.3.2 Uplink Power Control

Power control refers to the exercise of optimally setting the output power levels of the

UEs for uplink transmission. The 3GPP specifications [64] define this setting of the

UE transmit power for Physical Uplink Shared Channel (PUSCH) by the following

equation.
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Ptx = min{Pmax, Px} (5.1)

Px = PUE + αPL+ 10log10(N
′
) + fb(t)

Where, Pmax is the maximum transmit power level of the UE in uplink, α ∈
{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} is the path loss compensation factor signaled by higher

RRC layers, PL is obtained from chapter 3, PUE is a parameter to control UE SINR

target. In LTE, the bandwidth of each Resource Block (RB) is 180 KHz. Each

RB consists of 12 sub-carriers and seven OFDM symbols. N
′

is the number of RBs

allocated in uplink and fb(t) is the UE-specific correction value at TTI t, calculated

from the transmit power control command in an accumulated or absolute manner.

This value is transmitted by Macro/Femto BS through Downlink Control Information

(DCI) channel to UEs.

5.3.3 Optimization Problem Formulations

In order to maintain good USINRTh and DSINRTh and to reduce the uplink power

while guaranteeing the deployment of a minimum number of Femtos, we formulate

a two-step optimization model. In the first step, we formulate a Minimize Femto

and Uplink Transmission Power (MFUTP) MILP model to guarantee USNRTh and

DSINRTh. The objective of the above model is to minimize both, the number of

Femtos required for deployment and the uplink transmission power of UEs. In the

second step, we formulate a LP model with the goal to maintain Uplink SINR above

a certain USINRTh and to reduce the total uplink transmission power. We named

this model as Uplink SINR Transmission Power (USTP). Table 5.1 shows the set of

notations used in this work.

Table 5.1: Glossary of MFUTP MILP Model

Notation Definition

SR Set of all sub-regions inside the building
Uj Set of all users in sub-region j
xa 1 if Femto is placed at sub-region a, zero otherwise
zja 1 if jth sub-region of the building is associated with

the Femto located at sub-region a, zero otherwise
Gja Channel gain between sub-regions j and a
MBS Set of all Macro BSs
SRB Set of all RBs
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Step 1: MFUTP MILP Model

To address the optimal Femto placement problem, optimization model using MILP

is formulated. The MFUTP MILP model is formulated in such a way that the

DSINRTh is maintained. It is very difficult to determine the uplink SINR, un-

less the serving Femto or connectivity region is known. In order to place the Femto

with both uplink and downlink constraints, the USNR is considered instead of the

USINR and the Femtos are placed accordingly.

Our goal is to minimize the total number of Femtos deployed and total uplink

power, which is expressed by Equation (5.2).

min(β1
∑
a∈SR

xa + β2
∑
j∈SR

∑
m∈Uj

P u
m/P

u
max) (5.2)

In Equation (5.2), if β1= 0 then the optimization problem is fully based on reduction

in total uplink power consumption and if β2 = 0 then minimizing the Femto count

is the optimization problem. Thus, β1 and β2 can be varied depending upon the

operator/customer necessity. P u
m represents power emitted by user m at sub-region j,

P u
max represents the maximum power emitted by UE and P u

m/P
u
max is the normalized

transmit power of UE. These two objectives can be met by solving a multi-objective

problem but that is beyond the scope of this work. The below constraint in Equa-

tion (5.3) ensures that every sub-region is connected to exactly one Femto.

∑
a∈SR

zja = 1 ∀j ∈ SR (5.3)

If a Femto is placed at a sub-region a, xa = 1 else xa = 0. The constraint in

Equation (5.4) ensures that UE present in a sub-region j can be connected to a sub-

region a only if xa = 1 (i.e., zja = 1 only if xa = 1). There is no case where a UE

in sub-region j can connect to a sub-region a when the Femto is non-existent there.

However, there can be a case where zja = 0 when xa = 1. This happens when there

is a Femto placed at sub-region a but the sub-region j is so far away or separated by

walls in such a way that the Femto at sub-region a will not be able to serve the users

at sub-region j.

zja − xa ≤ 0 ∀j, a ∈ SR (5.4)
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Each Femto operates at the maximum transmit power (P f
max) in order to provide

reasonably good signal strength to indoor UEs. Since all the Femtos use the same

frequency, DSINR degrades because of the adverse impact of the co-channel inter-

ference. Certain minimum DSINRTh needs to be guaranteed for all sub-regions of

the building. DSINR of a particular sub-region j due to the Femto located at sub-

region a, is given by the L.H.S. of Equation (5.5). To guarantee optimum downlink

coverage, DSINR of sub-regions must be maintained above the predefined threshold

DSINRTh (λd), which is given by Equation (5.5).

Inf ∗ (1− zja) +GjaP
f
maxxa

Nd
o +

∑
b∈SR\a

GjbP
f
maxxb +

∑
e∈MBS

G′jePmacro
≥ λd ∀j, a ∈ SR

(5.5)

Where G′je and Gja are the channel gain from Macro and Femto, Nd
o is the downlink

system noise and PL calculated from chapter 3, respectively and Pmacro is the power

of Macro BS. In Equation (5.5), Inf is a virtual infinite value [41] (a very large value

like 106). The reason for using Inf ∗ (1− zja) is that if zja = 0 then Inf ∗ (1− zja)
becomes a large value and the expression can be ignored safely. Without the Virtual

Infinite value, Equation (5.5) tries to ensure that all the Femtos meet the DSINRTh

constraint to a particular sub-region. But a single Femto is enough to give DSINRTh

for any given sub-region. The MILP will always be infeasible if the virtual infinite

value is not used, as not all Femtos can meet DSINRTh constraint for a particular

sub-region. Equation (5.5) can be rewritten as follows:

Inf ∗ (1− zja) +GjaP
f
maxxa ≥ {(λdNd

o +
∑

b∈SR\a

GjbP
f
maxxbλd+

∑
e∈MBS

G′jePmacroλd)}

∀j, a ∈ SR
(5.6)

Similar to downlink, certain minimum USNRTh is guaranteed for all the users in

the building. USNR of a particular user at sub-region j due to the Femto located at

sub-region a, is given by the L.H.S. of Equation (5.7). To guarantee coverage, USNR

of users must be maintained above the predefined threshold USNRTh (λu), which

is given by Equation (5.7). Here Inf is used to ensure that only the users who are

connected to the Femto located at sub-region a receive the threshold USNR.
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Inf ∗ (1− zja) +GjaP
u
m

Nu
0

≥ λu ∀j, a ∈ SR, ∀m ∈ Uj (5.7)

Where Nu
o is the uplink system noise. The Equation (5.7) can be rewritten as follows,

Inf ∗ (1− zja) +GjaP
u
m ≥ λuN

u
0 ∀j, a ∈ SR, ∀m ∈ Uj (5.8)

Finally, the MFUTP is formulated as follows,

min(β1
∑
a∈SR

xa + β2
∑
j∈SR

∑
m∈Uj

P u
m/P

u
max) s.t, (5.3), (5.4), (5.6), (5.8).

By solving this MFUTP MILP formulation, the following values can be ascer-

tained:

• The minimum number of Femtos needed to maintain DSINRTh in each sub-

region of the building.

• The minimum uplink power each UE has to transmit out to maintain USNRTh.

• The optimal locations of Femtos inside the building.

• The Femto to which the IUEs in any given sub-region will be associated with.

Step 2: USTP LP Model

Once the Femto co-ordinates and Femto serving region is known from step one,

we can estimate the USINR. Further, the uplink power transmitted by UEs can

be optimized by adding USINR constraint. Our goal is to find the optimal value

of uplink power in such a way that the USINRTh is guaranteed for each UE in the

building. Figure 5.2 shows a building with Femtos (F1, F2,. . . ,F6) and UEs (U1,

U2,. . . , U6). The users (U1, U2, U3, U4) are connected to Femtos (F1, F2, F3, F4),

respectively and are allocated the same RB1 from their respective Femtos (F1, F2,

F3, F4). This will create an uplink interference as represented by the dotted lines for

F1 in the diagram. If we observe UE U1, it faces interference from UEs (U2, U3, U4).

This is different in the case of Femtos (F5, F6) due to allocation of different RBs.

Each Femto has Nb number of RBs and these are allocated to the users by the

scheduling algorithm. For each RB, the power value can vary dynamically depending
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upon the impact of interference offered by the neighboring UEs to each other. The

step-two (LP) model runs (in a polynomial time [72]) for every TTI of the LTE frame

and dynamically varies the transmit power of each RB in such a way that it guarantees

USINRTh and thus the total uplink power is minimized.

Figure 5.2: Uplink Interference Scenario in Indoor Building

USINR of a particular user connected to a Femto located at sub-region a is

given by the L.H.S of Equation (5.9). Depending upon USINR needs of users in

sub-region, SINRTh must be maintained above the threshold (λi) which is given by

Equation (5.9).

GifiP
u
i

Nu
o +

∑
j∈Vr\i

GjfiP
u
j

≥ λi ∀i ∈ Vr (5.9)

Where, Vr represents the set of users who are using RB r, where r ∈ SRB, uplink

SINR threshold (λi) varies based on the requirement of users in sub-regions, fi is

the Femto to which user i is connected. Here, P u
i is the power emitted by UE i to

maintain the λi. Gifi and Gjfi are the channel gain from serving UE to Femto BS

and interfering UE, respectively. The Equation (5.9) can be rewritten as follows,

GifiP
u
i ≥ λiN

u
o + λi

∑
j∈Vr\i

GjfiP
u
j ∀i ∈ Vr (5.10)

Finally, the USTP LP model is formulated as follows,

min
∑
i∈Ur

P u
i s.t, (5.10) ∀r ∈ SRB
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Table 5.2: Simulation Parameters

Parameter Value

Number of floors One
Building dimensions 48 m × 48 m × 3 m

Room dimension Non-uniform
Total number of sub-regions 144
Sub-region dimensions 4 m × 4 m
Total number of rooms 15
Macro transmit power 46 dBm
Macro BS height 30 m
Femto transmit power 20 dBm
UE maximum transmit power 0.2 W
LTE Mode FDD
Users distribution One UE in each sub-region
Operating Frequency 2.6 GHz
DSINRTh 0 dB
β1 1
β2 1

5.4 Experimental Setup and Numerical Results

The building setup along with Macro and Femtos BSs as elucidated in the system

model given in section 6.3.2 is created in MATLAB. The Macro BS is placed at 300

m [41] Euclidean distance from the center of the sub-region 1. MFUTP is solved using

GAMS CPLEX [33] solver. Femtos are then placed on the ceiling of the corresponding

sub-regions. Table 5.2 contains simulation parameters.

In order to gauge the benefits of proposed MFUTP MILP model, it has been

compared with CKM Placement scheme. CKM Placement scheme uses K-Means

clustering algorithm which takes the mean position of each sub-region as input, forms

appropriate clusters and determines the center of each cluster. In our case for each

sub-region, the mean of the sub-region and the center of the sub-region are the same.

Hence, the center of the sub-regions are given as input to the algorithm to form

clusters. The Femtos are then placed at the centroid of each cluster.

5.4.1 Performance Results in Downlink

Center (CKM) Placement: To accurately compare CKM approach with the pro-

posed model, we formed five clusters in the CKM placement. UE gets connected to a

Femto BS which provides a good DSINR value when compared to the other Femtos.
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sociation for CKM Placement
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Figure 5.4: DSINR (in dB) for
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It is assumed that all the UEs present inside a sub-region will get connected to the

same Femto. Figure 5.3 shows the Femto serving sub-regions for CKM placement of

Femtos. The sub-regions marked with the same color are being served by the same

Femto BS. For example, sub-regions colored in yellow as shown in Figure 5.3 are

connected to the F5 Femto.

Figure 5.4 shows DSINR values of the sub-regions for the center placement. The

color scale shown on the left side of figure maps the DSINR value pertaining to each

color. The deepest shade of red in the color scale is mapped to the maximum DSINR

value. The Femtos are placed in the sub-regions denoted by A to E and have deep

red color. Due to path loss, the sub-regions that are farther from the position of the

Femtos within the same room experience low DSINR values. For example, the region

I inside room #R5 has a low DSINR value as it is relatively at a greater distance

from the serving Femto located at position A. The DSINR value also degrades with

the increase in the number of walls that obstruct the signal from the serving Femto.

This can be seen from regions (F,G) which have a DSINR value of 10 to 15 dB when

compared to regions (H, J) that get a DSINR value lesser than -10 dB. This is because

regions (F,G) are closer to the serving Femto and the signal strength is eroded by

a single wall while regions (H, J) are deployed at relatively farther away from their

serving Femtos and obstructed by two walls instead of one. Consequently, the users

in the regions (H, J) cannot communicate with the Femto BS. This is the drawback

of the center placement where all the users are not guaranteed a threshold DSINR

value.

MFUTP MIP Model based Optimal Placement: Similar to the Femto serv-

ing sub-regions in Figure 5.3, Figure 5.5 is the Femto serving sub-regions for the

110



optimal positioning of Femtos. Figure 5.6 shows DSINR values in the optimal place-

ment. From the color scale shown on the left side of figure, it can be observed

that the minimum DSINR value which is guaranteed to all the users is 0 B (i.e.,

DSINRTh = 0dB) in contrast to the -10 dB in case of the center placement. Re-

gions (A1, B1, C1, D1, E1) show the optimal locations of the Femtos. (F1, G1, H1)

are the regions where the users get the minimum DSINR of 0 dB. The users in these

regions can still communicate with the Femto BS. Based on the path loss and wall

loss described earlier, the users closer to the Femtos and within the same room as the

Femtos experience a better DSINR value in comparison to the users away from them.

For example, the DSINR is better to the users inside the rooms (R3, R5, R8, R9, R13)

because the Femtos are placed within them. Thus, the optimal placement guarantees

a DSINRTh of 0 dB.
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5.4.2 Performance Results in Uplink

CKM-Restricted Power Control (CKM-RPC): In this case, Femtos are placed

as per CKM placement with the restriction that the users have to transmit at an

uplink power of at most 0.2 watt (i.e., 23 dBm).

CKM-Non Restricted Power Control (CKM-NRPC): Here also Femtos are

placed as per CKM placement. We allow all the users to maintain USINRTh = -2

dB and measure the uplink power required, i.e., there is no standard uplink power

limit (0.2 W).

Uplink power in CKM-RPC and (MFUTP, USTP) Placement: In order to

make a fair comparison, the uplink power of the every UE is to be maintained at - 2
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dB USINRTh for these placements (CKM-RPC, (MFUTP, USTP)). Figure 5.7 shows

the uplink power in CKM-RPC placement. We have to compare Figure 5.3, Figure 5.4

and Figure 5.7 to observe the serving sub-regions of Femtos, the placement of Femtos

and uplink power metrics of the users in CKM-RPC placement. The users in the

room (R5, R7, R8, R9, R12) transmit at low power (0.02W ) as shown in color scale of

Figure 5.7 to meet the USINRTh = - 2 dB because the Femtos are deployed in those

rooms. But some users in the sub-regions (A2, B2, C2) must transmit at a higher

power (0.2W ) to maintain the USINRTh as the Femtos are farther from them (path

loss) and the number of walls obstructing the signal from the Femto (F2, F3, F4) in

Figure 5.3 is more than the former. Also, some percentage of users are not able to

maintain the USINRTh in CKM-RPC placement. This has well explained in terms

of CDF graphs.
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Similarly, we compare Figure 5.5, Figure 5.6 and Figure 5.8 to observe the serving

sub-regions of Femto, placement of Femtos and uplink power in (MFUTP, USTP)

placement. The users in the rooms (R5, R3, R8, R9, R13) transmit at low power

(0.005W ) as is evident from the color scale of Figure 5.8 to meet the USINRTh.

As the Femtos are deployed in those rooms, the users in the regions (A3, B3, C3)

transmit at a higher power (0.045W ) to maintain the USINRTh. The (MFUTP,

USTP) placement uplink power values are considerably lesser than in CKM-RPC

placement.

CDF in terms of uplink power and SINR: The two graphs shown in Figure 5.9

and Figure 5.10 give an insight into the comparison of all the three placements (CKM-

RPC, CKM-NRPC, (MFUTP, USTP)) with respect to the uplink power and SINR.

The Figure 5.9 shows the CDF of users versus USINR for all the placements. It can

be seen that the USINR value goes up to -5 dB in CKM-RPC, whereas the optimal

(MFUTP, USTP) placement maintains the USINRTh at -2 dB for all the users so

that there are no connectivity issues. In CKM-NRPC too, USINRTh is maintained

at -2 dB but the transmitted uplink power is greater than 0.2 watt. It is further well

explained in Figure 5.10.

In Figure 5.10, it can be perceived that the CKM-NRPC requires up to 0.4 W

to achieve the USINRTh, which is practically impossible as the UE can transmit

upto a maximum of only 0.2 W. This implies that 2% of the users are in high uplink

transmission power. Similarly in CKM-RPC placement, if the UEs want to maintain

-2 dB USINRTh they have to transmit at 0.2 Watts. Whereas in optimal (MFUTP,
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USTP) placement, the same threshold can be obtained with lesser power than the

permitted value of 0.2 Watts for the UE. The USINRTh can be achieved with less

than 0.05 Watts. By using optimal (MFUTP, USTP) placement, energy consump-

tion for the entire building is 47% lesser than in CKM-RPC placement. Thus, the

(MFUTP, USTP) placement saves more uplink energy and reduces CO2 emissions in

the Green HetNet system.

Variation of uplink SINRTh across sub-regions in (MFUTP, USTP) place-

ment: We repeated the same experiment for random variations of USINRTh (-2 to

1 dB). Figure 5.11 shows the color scale variation of SINRTh from -2 to 1 dB across

the sub-regions. Figure 5.12 shows the variation in the uplink transmission power.

The circled region A4 should maintain roughly a SINRTh of -1 dB (refer Figure 5.11

as shown on the left side of color scale) but the region A4 is connected to the Femto

F1, placed in room R5 as shown in Figure 5.5. As the signal would need to cross one

wall from the Femto F1, the user in region A4 should transmit nearly at (0.06W ) to

maintain the SINRTh -1 dB. Similar is the case in regions (B4, C4, D4, E4).

5.5 Summary

In this work, Femtos were optimally placed considering both uplink and downlink

interference in LTE Femtocell Networks. We ensured that energy consumption in

uplink is 47% lesser than CKM-RPC placement. In addition to that, we also assure

a reasonably good SINRs for uplink and downlink.
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Chapter 6

On improving SINR in LTE

HetNets with D2D Relays

6.1 Introduction

In previous chapter 4, we proposed an algorithm for optimal placement and dynamic

power control of the Femtos. The dynamic power control algorithm tunes the trans-

mission power of the Femtos based on the presence of OUEs close to the building. By

introducing dynamic power control of the Femtos, it is able to alleviate the interfer-

ence issue for the OUEs at this HIZone. And at the same time it also guarantees a

certain minimum SINRTh for the IUEs. Though the interference issue is addressed,

fairness for IUEs and HIZUEs is not maintained. Even when there is only one

HIZUE present at the HIZone, the power of the Femto which is serving IUEs at

that side of the building has to be reduced to ensure certain minimum SINRTh for

that HIZUE. This would reduce the SINR of many IUEs who are served by that

Femto. This is clearly not fair to the IUEs connected to the Femtos.

In this chapter, to guarantee certain minimum SINR to both IUEs and HIZUEs,

we apply the concept of D2D communication in LTE HetNets. In D2D, devices (i.e.,

UEs) communicate directly with each other while the serving BS assists in setting

up of D2D links and managing the control plane, authentication, handovers, etc.

D2D helps in improving the cellular network capacity and power efficiency. In this

chapter, we make use of idle IUEs as relays between Femtos and HIZUEs through

D2D as an underlay to the LTE HetNet. We formulate a MILP optimization model

which efficiently establishes D2D pairs between free/idle cell-edge IUEs and HIZone

users by guaranteeing certain SINRTh for both IUEs and HIZone users. As D2D
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MILP model takes more computation time, it is not usable in real-world scenarios

for establishing D2D pairs on the fly. Hence, we propose a two-step D2D heuristic

algorithm for establishing D2D pairs. In step one, we find the sub-optimal D2D pairs

and assign the radio resources for them. In step two, a Linear Programming (LP )

model is used to determine the transmit power for D2D pairs.

6.1.1 Organization of this Chapter

Rest of the chapter is organized as follows. Section 6.2 describes the related works.

Proposed LTE HetNet system architecture with D2D links is presented in Section 6.3.

In Section 6.4, proposed placement ILP model which minimizes number of Femtos

to be deployed, D2D MILP model and D2D heuristic algorithm are discussed. Per-

formance results are explained in Section 6.5. Finally, Section 6.6 summarizes the

work.

6.2 Related Work

D2D is one of the most promising and challenging aspects towards 5G. In D2D com-

munication, two UEs communicate directly with each other by means of data plane

(D-plane) transmission using E-UTRA technology [73,74]. BS controls and optimizes

the use of shared radio resources for cellular and D2D sessions. D2D is standard-

ized by 3GPP in Release-12 for proximity-based services [64]. Some of the challenges

in D2D include interference management, resource allocation, power control, ses-

sion management, mobility management, security, location estimation and multi-hop

D2D [8,75,76]. Session management [77,78] in D2D is controlled by BS. Core network

is used for authentication, control channel establishment and policy control. Authors

of [79] proposed a resource allocation scheme to share RBs among D2D pairs and

traditional cellular users. In [80], the authors proposed an accurate model of the

system and applied approximate dynamic programming model to do a fast resource

scheduling in a HetNet system with D2D support. In [81] Phantom cell concept

(UE-like BS) was proposed as a solution using D2D links to offload the traffic but

different frequencies for the C-plane and D-plane were used. In [82], a holistic ap-

proach to efficiently offload with D2D was proposed and it incorporated a two-time

scale scheduling solution with joint uplink and downlink scheduling between D2D

pairs. It was shown that reuse of spectrum using Fractional Frequency Reuse (FFR)

is limited but has not adapted any dynamic power control in the solution. In [83], the
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authors studied different techniques to expand the cell edge coverage. They showed

that using D2D for cell edge users decreases the overall power consumption. Authors

of [84] proposed an optimization problem based on practical link data model with the

objective of minimizing power consumption while meeting user data requirements. To

solve it in a polynomial time, the authors proposed a joint mode selection, channel

allocation and power assignment for D2D pairs by using a heuristic algorithm, but

they predetermined and fixed the number of D2D pairs.

Multi-hop D2D communication [85–87] has applications for military communica-

tion and disaster management. The multi-hop can be applied to the problem where

the UE with poor direct link to the MBS will forward data to a nearby UE over a high

quality D2D link in uplink communication [88]. Here the receiving UE uploads its

own data and relayed data to the MBS over its good uplink. This decreases the trans-

mission time of the UE when compared to poor direct link to the MBS. Similarly,

other work in uplink communication [89] describes the multi-hop D2D networking

and resource management scheme for M2M communication to enhance end-to-end

connectivity. In [90], the authors have proposed a novel distributed utility function

for maximizing the D2D power control scheme which enables to balance spectral ef-

ficiency and resource allocation constraints that are essential in a given integrated

cellular-D2D environment. During mode selection the impact of interference with

other devices has not been considered. Also it is to be noted that the allocation of

resources are random, which leads to inefficient D2D pairing.

6.2.1 Our Contributions

In this chapter, to ensure fairness and improve achievable data rates for both IUEs

and HIZUEs, we apply the concept of D2D communication wherein IUEs act like

UE-relays (i.e., UE-like BS, forwarding data-plane traffic for some of the outdoor

UEs). We first formulate a D2D MILP model to guarantee a certain SINRTh for

both IUEs and HIZUEs. To reduce the computation time, we propose a two-

step heuristic algorithm. In step one (called as hDPRA), we efficiently choose the

potential D2D based relay pairs and allocate radio resources to them. In step two

(called as hDPA), an LP model is formulated for power control of D2D links. We have

conducted extensive evaluations to show that our proposed D2D heuristic algorithm

is very close to the D2D MILP model.
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6.3 Proposed LTE HetNet System with D2D Re-

lays

In this section, we present architecture of LTE HetNet system with D2D relays,

system model, building model and channel model.

6.3.1 HetNet Architecture with D2D Relays

In traditional cellular networks, UEs communicate with each other only through BSs

(e.g., Macros, Picos, and Femtos). But in D2D [76], UEs communicate directly with

each other for exchanging data traffic (D-plane) and the serving BS only assists in the

establishment and maintenance of D2D links as shown earlier in Figure 1.1. In our

HetNet architecture with D2D relays, Femtos make use of free/idle IUEs (FIUEs)

in their cells as UE-relays for forwarding downlink data traffic (D-plane) of HIZUEs

by setting up D2D links (i.e., FIUE → HIZUE). Hence, HIZUEs are going to be

served in downlink by one of Femtos deployed inside the building by using FIUEs

(typically located at Femtocell-edge regions) as relay nodes. However, HIZUEs

always communicate with MBS for their uplink communication. The control traffic

(C-plane) for the HIZUEs is still delivered by the MBS [74] for better reliability

and reducing the number of handovers for HIZUEs which are typically more mobile

than indoor UEs.

The architecture of proposed HetNet system with D2D based relays is shown in

Figure 6.1. The data traffic (D-plane) for the HIZUEs is first sent to FIUEs from

the Femto by normal cellular communications. The FIUEs act as UE-relays and

forward the data traffic to the HIZUEs. All the Femtos are connected to a F-GW

over S1 interface. SON features (e.g., optimally choosing D2D links and tuning their

transmit power levels) can be integrated into the F-GW to automate the network

operation. Broadly there are two approaches for choosing D2D links and fine tun-

ing of their transmit power levels: distributed one which could be implemented at

FIUEs and centralized one which could be implemented at the F-GW/SON. Both

these approaches require the knowledge of distance/channel state information between

FIUEs and HIZUEs for establishing D2D links with the required transmit power.

But, it is very challenging and costly to acquire this information at FIUEs and choose

D2D links by themselves in a distributed manner. Hence, in our work, we consider

the centralized approach (i.e., Network assisted mode [91, 92]) by implementing the

proposed D2D heuristic algorithm at the F-GW/SON. MBS periodically provides the
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Figure 6.1: Architecture of Proposed HetNet System with D2D
based Relays

list of potential HIZUEs (through C-plane messages) to the F-GW/SON. Femtos

also provide the list of potential FIUEs to the F-GW/SON periodically (eg., 10 ms

which is equal to one LTE frame duration). The downlink channel (from FIUEs to

HIZUES) quality can be estimated at HIZUEs by overhearing the uplink sounding

reference signals (SRSs [64, 93–95]) of the FIUEs. Note that SRSs are sent period-

ically by FIUEs in the uplink to the serving Femtos for estimating uplink channel

state. HIZUEs listening to these SRSs could estimate their downlink channel state

and convey the same to F-GW/SON via MBS. If FIUEs are configured not to send

SRSs, then the F-GW/SON needs to go for default power setting for D2D links.

The D2D heuristic algorithm which is implemented at the F-GW/SON determines

D2D links and their respective transmit power levels for communicating the same to

respective FIUEs via their respective serving Femtos.

The D2D connection setup process involves choosing one of the FIUEs as UE-

relay through D2D candidate indication message sent from the corresponding Femto

via F-GW (refer Figure 6.2). Similarly the same D2D candidate indication message

sent from MBS via F-GW informs the corresponding HIZUE. The FIUE and

HIZUE then initiate the D2D connection setup procedure [96, 97] by sending ACK

from FIUE to F-GW via Femto. Similarly, an ACK is sent from HIZUE to F-GW
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via MBS. After D2D connection setup is established, D2D data transfer (D-Plane)

procedure will take place.
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Figure 6.2: Call flow diagram for D2D based communication in pro-
posed HetNet system

6.3.2 System Model

In this chapter, we consider an LTE HetNet system of MBSs in outdoor environment,

to which the OUEs are associated, and Femtos inside an enterprise office building as

shown in Figure 6.1. We have considered the case where Femtos and MBSs operate

on the same frequency band (i.e., reuse of one) to improve system’s capacity. But,

this can lead to high co-channel interference and affect HIZUEs′ performance. We

also assume that Femtos are all configured in open access i.e., UEs are authorized to
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connect with any of the Femtos of an operator. IUEs are connected to one of the

Femtos deployed inside the building. There are two types of IUEs: legacy IUEs

(LIUEs) represented by l1, l2, l3,. . ., lm and free/idle IUEs (FIUEs) represented by

f1, f2, f3,. . ., fn as shown in Figure 6.1. HIZUEs are represented by o1, o2, o3,. . .,

op. LIUEs are IUEs who send/receive data to/from a Femto at a particular TTI for

their own communication. FIUEs are IUEs who can act as UE-relays between their

respective serving Femtos and one of HIZUEs. FIUEs can either be idle UEs or

the UEs who are not going to be scheduled to receive any downlink data of their own

from their serving Femtos for some TTIs. We assume that list of FIUEs is available

at the F-GW/SON and it is updated dynamically.

The default scheduling algorithm is assumed to be running at each Femto for

serving IUEs. The scheduling for downlink data of HIZUEs connected using D2D

relays is also done at the Femtos. The D2D pairs are chosen such that they could be

held for quiet sometime, hence they will not be changing in every TTI. This can be

assured if appropriate D2D Device Discovery mechanism [98] is used for choosing the

FIUEs. We assume that the transmission power across RBs for the Femtos are equal

whereas for that of the FIUEs the power is varied accordingly to each RB. The D2D

based relays (FIUEs) do not face severe battery issues because the FIUEs transmit

at lower power. The FIUEs can also be provided with incentives by the operator for

acting as D2D based UE-relays.

A variety of scenarios can co-exist in this HetNet system model for the D2D links

as shown in Figure 6.1. A D2D link can be established by an FIUE to serve one or

more HIZUEs. A single FIUE can also serve multiple HIZUEs using D2D links.

In the worst case, when it is impossible to establish any D2D link due to high load

at the Femto or lack of FIUEs, the F-GW/SON can opt for dynamic Femto power

(OptFP) model (refer Equation (4.7) in chapter 4) in order to reduce interference to

HIZUEs from the Femtos (explained later in Section 6.4.4). The PL model given in

chapter 3 and building model given in chapter 4 are used for this work

6.4 Femto Placement and D2D Pair Selection Mod-

els in LTE HetNets

In this section, MinNF model (refer Equation 3.8 in chapter 3) is used first for optimal

placement of Femto. Then we formulate D2D MILP model which establishes D2D

based relay pairs between FIUEs and HIZUEs and also guarantees certain SINR
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threshold (SINRTh) for both IUEs and HIZUEs. As D2D MILP model takes more

computation time, it is not usable in real-world deployments for establishing D2D

pairs dynamically. To address this issue, we propose a two-step heuristic algorithm

for establishing D2D pairs.

6.4.1 D2D MILP Model

In order to achieve the required SINRTh for both IUEs and HIZUEs in the HetNet

system, we need to optimally choose D2D links, effectively allocate the RBs to the

D2D links and adjust power for these links. We formulate a MILP model to address

this problem. The notations used in this model are listed in Table 6.1.

Table 6.1: Glossary of D2D MILP Model

Notation Definition

K Set of all Resource Blocks (RBs)
F Set of all Free Indoor UEs (FIUEs)
L Set of all Legacy Indoor UEs (LIUEs)
O Set of all Outdoor UEs in HIZone (HIZUEs)
M Set of all MBSs
Dfo A binary variable whose value is 1 if f is connected to o

for D2D else 0, where fεF, oεO
Ck
fo A binary variable whose value is 1 if f is connected to o

for D2D using RB k else 0, where fεF, oεO, kεK
hkf A binary variable whose value is 1 if f is using RB k for

D2D link else 0, where fεF, kεK
Gxy Channel gain between two nodes x and y, where nodes

can be IUEs, HIZUEs, MBSs or Femtos
pkf Normalized power emitted by f in RB k, 0 ≤ pkf ≤ 1,

where fεF, kεK

In order to minimize battery drain of FIUEs, one of the main objectives1 is to

minimize the overall power consumed by the D2D links as expressed in Equation (6.1):

min
∑
fεF

∑
kεK

pkf (6.1)

Equation (6.2) sets an upper bound on the number of HIZUEs that can be served

by each FIUE. Similarly, Equation (6.3) restricts the number of FIUEs serving

each HIZUE.
1Another alternate optimization goal can be minimization of the maximum power (min(max(pkf ))

consumed by D2D links where all the constraints are identical to the proposed D2D MILP model.
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∑
oεO

Dfo ≤ α ∀fεF (6.2)∑
fεF

Dfo ≤ β ∀oεO (6.3)∑
fεF

∑
oεO

Dfo = ψ ∀oεO (6.4)

In order to limit the total number of D2D links that would be established in a

TTI, we introduce Equation (6.4). The values of α, β and ψ can be fine tuned as

per the requirements of the operator. The binary variable Ck
fo is 1 when FIUE f

and HIZUE o are communicating by using RB k. Hence, Ck
fo can never be 1 when

there is no D2D link between f and o. This is ensured by Equation (6.5). Here, η

represents the maximum number of RBs that can be assigned to each D2D link.

∑
kεK

Ck
fo ≤ η ×Dfo ∀fεF, oεO (6.5)

Equation (6.6) ensures that the maximum number of times a particular RB k can be

reused by an FIUE f is 1.

∑
oεO

Ck
fo ≤ 1 ∀fεF, kεK (6.6)

hkf is set to be 1 if FIUE f is using the RB k. This is ensured by Equation (6.7).

hkf = Ck
fo ∀fεF, oεO, kεK (6.7)

The constraint in Equation (6.8) ensures that the normalized power emitted by FIUE

f in a particular RB k is 0 when it is not used by f .

pkf ≤ hkf ∀fεF, kεK (6.8)

The P d
max is the maximum power of a D2D link. Once the MILP model is solved,

transmission power of an FIUE f in a RB k is calculated as pkf × P d
max. Gfl gives

the gain from the FIUE f to the LIUE l. Skl is an input parameter whose value

is 1 when l is connected to its serving Femto (downlink) using RB k, else 0. The
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constraint in Equation (6.9) ensures that the maximum interference power that is

received by l is less than the allowed threshold value (Il). Il is computed for a given

value of SINRTh of IUEs.

∑
fεF

(Gfl × Skl × pkf × P d
max) ≤ Il ∀lεL, kεK (6.9)

The L.H.S. of Equation (6.10) is the SINR received by HIZUE o from FIUE

f . To ensure good connection, the SINR of each D2D link is maintained above a

predefined threshold λo which could vary across HIZUEs.

Inf ∗ (1− Ck
fo) +Gfop

k
fP

d
max

No +
∑
mεM

GmoPmacro +
∑
aεBk

GaoP
f
max +

∑
f ′εF\f

Gf ′o
pk
f ′
P d
max

≥ λo ∀fεF, oεO, kεK

(6.10)

Here, Bk is the set of all Femtos using the RB k in a given TTI. Similarly, Gao is the

channel gain from Femto a to o, Gfo is the channel gain from f to o and Gmo is the

channel gain from MBS m to o, calculated by using PL model (shown in chapter 3).

The need to use Inf ∗ (1 − Ck
fo) is that if Ck

fo = 0 then Inf ∗ (1 − Ck
fo) becomes

a large value and the expression can be ignored safely. Without the virtual infinite

value, Equation (6.10), ensures that all the FIUEs provide a minimum SINRTh to

a particular HIZUE. The MILP will always be infeasible if we do not use the virtual

infinite value, as not all FIUEs can maintain a SINRTh (λo) for an HIZUE. The

Equation (6.10) can be rewritten as follows,

Inf ∗ (1− Ck
fo) +Gfop

k
fP

d
max ≥ {(λoNo + λo

∑
mεM

GmoPmacro + λo
∑
aεBk

GaoP
f
max+

λo
∑
f ′εF\f

Gf ′o
pk
f ′
P d
max)} ∀fεF, oεO, kεK

(6.11)

Finally, the D2D MILP model is formulated as follows,

min
∑
fεF

∑
kεK

pkf s.t, (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.11).
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By solving this MILP model, we achieve the following:

• Get best FIUEs as relays for establishing D2D links

• Assign RBs to each of the D2D links established

• Adjust the transmit power for each of the D2D links and minimize the overall

power emitted by guaranteeing SINRTh for LIUEs and HIZUEs served by

FIUEs.

As shown later in Section 6.5, the above D2D MILP model ensures fairness for

both indoor and outdoor users by assuring certain minimum SINR for all IUEs and

HIZUEs. But the computation time of this D2D MILP model is high and it may

not converge in real-time for any practical usage by Femtocells. For some cases, the

problem can be infeasible. To overcome this shortcoming, we propose a two-step D2D

heuristic algorithm in the next sub-section.

6.4.2 D2D Heuristic Algorithm

D2D heuristic algorithm has two steps: one step for selecting D2D pairs and allocating

RBs, and other step for setting the powers of D2D pairs. Below we present these two

steps.

Step 1: Heuristic D2D Pair and Resource Allocation (hDPRA)

Proposed hDPRA (refer Algorithm 3) checks whether a particular FIUE f can

connect to an HIZUE o using an RB k. For this we define a parameter, Win-

to-Loss (W2L) Ratio (γ) for all possible (f , o, k) combinations, as expressed in

Equation (6.12).

γkfo =
Gfo∑

o′εOk

Gfo′ +
∑
l′εLk

Gfl′ +
∑
f ′εFk

Gf ′o
(6.12)

Here, Ok (⊂ O) represents the set of HIZUEs receiving data using the RB k, Lk(⊂ L)

represents the set of LIUEs receiving data from Femto using the RB k and Fk(⊂ F )

represents the set of FIUEs transmitting data to HIZUEs using the RB k. The

numerator in the R.H.S. of Equation (6.12) represents the gain between f and o, hence

it acts as an approximate measure (since the transmission power is not considered)

for signal strength. The values Gfo′ , Gfl′ and Gf ′o, in the denominator represent

the channel gain between f and o
′
, f and l

′
, and f

′
and o, respectively and they act

as an approximate measure of the interference caused by the interfering links. The
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Algorithm 3 Heuristic D2D Pair and Resource Allocation (hDPRA) Algorithm

Input 1 : F , O, L

Input 2 : Optimal Femto Locations (Obtained by solving MinNF model)

Input 3 : γ, α and β values

Output : Dfo, C
k
fo, h

k
f

Initialization ();

1: Dfo ← 0 ∀ fεF , oεO
2: Ck

fo ← 0 ∀ fεF , oεO, kεK

3: Compute γkfo ∀fεF, oεO, kεK and store in γ matrix
4: αf ← 0 ∀ f ∈ F { Count for number of HIZUEs connected to each FIUE }
5: βo ← 0 ∀ o ∈ O { Count for number of FIUEs serving each HIZUE }
6: σ∗ ← { }
7: while size(γ) 6= 0 do
8: (fmax, omax, kmax) ← max(γ);
9: if Updated W2L values of entries in σ∗ > γ then

10: Dfmaxomax ← 1
11: Ckmax

fmaxomax
← 1

12: αfmax + +
13: βomax + +
14: if αfmax == α then
15: Remove γkfmaxo ∀ oεO, kεK
16: end if
17: if βomax == β then
18: Remove γkfomax ∀ fεF, kεK
19: end if
20: Remove γkmaxfmaxomax

21: if Updated γkmaxfo < γ then

22: Remove γkmaxfo {Removes all f and o pairs using RB kmax from γ matrix }
23: end if
24: σ∗ ← σ∗ U (fmax, omax, kmax)
25: else
26: Remove γkmaxfmaxomax

27: end if
28: end while

126



numerator and denominator are two opposing parameters to the W2L ratio. Hence,

larger the value of γkfo, higher the possibility of the particular combination (f , o) to

have a D2D link using RB k. W2L ratio will be higher in case RB k is not used

by some Femtos for serving their UEs in a given TTI i.e., the value of
∑
l′εLk

Gfl′ will

reduce in Equation (6.12).

σ∗ is the set that contains the triplet (f ∗, o∗, k∗) if f ∗ and o∗ are having a D2D

link using RB k∗. Every element in σ∗ should have its W2L ratio greater than γ,

an operator defined parameter which gives control over the number of D2D links

that can be formed. Initially σ∗ is a null set. We start by computing the W2L

ratio for each (f, o) pair for all possible RBs and store them in the γ matrix. From

this set, the maximum W2L ratio is found and this gives the corresponding triplet

(fmax, omax, kmax). On adding this particular triplet to σ∗, there will be additional

interference (Gfmaxo∗) to the existing (f ∗, o∗) pairs who are using RB kmax for their

data transmissions. Hence, γkmaxf∗o∗ values have to be recalculated and checked whether

they remain greater than γ. If all of these values remain greater than γ, the triplet

(fmax, omax, kmax) is added to σ∗ and the recalculated γkmaxf∗o∗ values are stored in the

γ matrix, otherwise triplet (fmax, omax, kmax) is not added to σ∗. In case triplet

(fmax, omax, kmax) is added to σ∗, the αfmax and βomax values are incremented, where

αfmax is the count for the number of HIZUEs connected to FIUE fmax and βomax

is the number of FIUEs connected to HIZUE omax. If αfmax value reaches the

maximum limit α, then all the γkfo values for FIUE fmax are removed from the γ

matrix. Similarly if βomax reaches the maximum limit of β, then all the γkfo values for

HIZUE omax are removed from the γ matrix. W2L ratio in the γ matrix is updated

∀ f , o which are using RB kmax. If any of the updated γkmaxfo is lesser than γ, then that

value is removed from the γ matrix and is not considered during the next iteration.

Finally, it removes γkmaxf∗maxo
∗
max

from the γ matrix and continues to the next iteration

until all the entries are removed from the γ matrix.

Step 2: Heuristic D2D Power Allocation (hDPA)

Using outputs of the hDPRA from the Step 1 Algorithm 3, namely Dfo, C
k
fo, h

k
f ,

as the input in the Step 2 we solve an LP model which adjusts the power for each of

the D2D links. The LP model is formulated similar to D2D MILP model presented

earlier but with fewer constraints as given below.

min
∑
fεF

∑
kεK

pkf (6.13)
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pkf ≤ hkf ∀fεF, kεK (6.14)∑
fεF

(Gfl × Slk × pkf × P d
max) ≤ Il ∀lεL, kεK (6.15)

Inf ∗ (1− Ck
fo) +Gfop

k
fP

d
max ≥ {(λoNo + λo

∑
mεM

GmoPmacro + λo
∑
aεBk

GaoP
fem
a +

λo
∑
f ′εF\f

Gf ′o
pk
f ′
P d
max)} ∀fεF, oεO, kεK

(6.16)

Finally, the LP model for D2D power control is formulated as follows,

min
∑
fεF

∑
kεK

pkf s.t, (6.14), (6.15), (6.16).

The proposed two-step D2D heuristic algorithm is fair to both the IUEs and

HIZUEs by choosing the D2D links, allocating resources to the D2D links and

adjusting their transmission power levels.

6.4.3 Time Complexity

The proposed D2D MILP model takes more computation time. To reduce the running

time complexity of D2D power selection, we have proposed a two-step D2D heuris-

tic algorithm. The running time complexity for hDPRA (Step 1 of D2D heuristic

algorithm) is shown below,

• The time taken to compute maximum value in the γ matrix is O(f ∗ o ∗ k)

• The running time for the while loop is O(f ∗ o ∗ k)

• The total running time is O(f 2 ∗ o2 ∗ k2)

Since the Step 2 of D2D heuristic algorithm (hDPA, an LP model) has a polynomial

running time algorithm [72], our proposed D2D heuristic algorithm runs in polynomial

time and its low running time makes it usable at F-GW/SON.

6.4.4 Optimal Femto Transmit Power (OptFP) MILP Model

Under some circumstances, when it is not possible to establish D2D links due to lack

of FIUEs (for example: if we observe Figure 6.1, there are no FIUEs present in

east side of the building to establish D2D link with HIZUEs (o5, o6, o7 and o8)),
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the F-GW/SON can be directed to reduce the Femto transmission power, thereby

reducing the interference toHIZUEs from it. The arbitrary tuning of Femto transmit

power may degrade the performance of total IUEs connected to that Femto and

also cause coverage issues. We propose a means to optimally control the Femto

transmit power whenever there are HIZUEs present outside the building but no

FIUE is inside, thereby guaranteeing a minimum SINRTh for IUEs and reduce the

interference to HIZUEs. The corresponding HIZUE can then connect with MBS

for D-plane communication. We used the same OptFP MILP model (explained in

previous chapter 4) and by solving it we can,

• Determine the optimal power required by each Femto for maintaining the SINRTh

in each of the inner sub-regions and maintain the SINR degradation at less than

2 dB for HIZUEs.

• Determine the Femto to which the users in any given inner sub-region have to

be associated with.

The above OptFP model guarantees a certain minimum SINRTh for IUEs and

less degradation for HIZUEs.

Algorithm 4 Joint D2D Heuristic and OptFP (JDHO) Algorithm

Input 1 : Set of all inner and outer sub-regions

Input 2 : Potential HIZUEs in HIZone

1: All Femtos are configured to transmit at their peak power by default.
2: All HIZUEs (O) are connected to one of MBSs for their C-Plane.
3: Find the set of all HIZUEs, O

′
, for whom it is not possible to establish D2D

based relays by using FIUEs. O
′ ⊂ O.

4: Find the set of Femtos, B
′
, who are causing interference to O

′
HIZUEs. B

′ ⊂ B.
5: Apply the OptFP model [41] on B

′
to reduce their transmit powers so that inter-

ference to O
′

is reduced.
6: The O

′
HIZUEs are then allowed to connect to one of MBSs even for their D-plane

(i.e., no D2D links, it is the traditional cellular communication).
7: Apply D2D Heuristic Algorithm (Algorithm 3) on (O−O′) HIZUEs to establish

D2D based relays by using FIUEs

6.4.5 Joint D2D Heuristic and OptFP (JDHO) Algorithm

In most of the cases, the F-GW/SON might not be able to establish D2D links in

all sides of the building. It is also equally probable that D2D links are established

129



more readily in some sides of the building and not in the other sides due to lack of

FIUEs (For e.g., east and west sides of the building given in Figure 6.1). Hence, the

F-GW/SON has to reduce the transmit power of Femtos optimally so as to allow the

HIZUEs to connect with one of MBSs. This can be achieved by the combinatorial

utilization of both D2D heuristic algorithm and OptFP model (called as JDHO algo-

rithm), that would allow some HIZUEs which do not have any FIUE to get connected

to one of MBSs and the remaining HIZUEs through D2D links. The proposed JDHO

algorithm is given in Algorithm 4.

6.4.6 Cost Analysis

In our system model, two-hop communication cost is essentially the additional re-

sources incurred by the proposed system over the existing traditional system. It can

be classified as resource utilization, energy consumption and additional interference

due to the reuse of spectrum.

1. Resource Utilization: In the first-hop communication (Femto to LIUEs/FIUEs),

the radio resources (RBs) allocated for the data demanded by HIZUEs are the

additional cost incurred by the proposed system. If the downlink scheduler at

the Femto has excess resources (even after fulfilling the demand of the IUEs in

a TTI) then the additional cost incurred is zero. But, if the Femto lacks excess

resources, then the cost to the system is the resources allocated to the FIUEs to

receive HIZUEs data from the Femto. These resources could have otherwise

been scheduled to the LIUEs. In the second-hop (FIUE to HIZUE (D2D link)),

there is reuse of radio resources which increases the interference (explained in

next paragraph). Hence, the cost can be expressed as given in Equation (6.17),

when the downlink scheduler at Femto does not have excess resources.

Radio Resource Cost =

NF∑
i=1

No of RBs allocated to FIUEi by Femto. (6.17)

Where NF is the number of FIUEs participating as D2D based relays for Femto

to HIZUE communication.

2. Interference: In the first-hop there is no new interference source introduced

to the traditional system, whereas in the second-hop (due to reuse of Femto

RBs by D2D links) there is additional interference for the IUEs present in the
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Table 6.2: Simulation Parameters

Parameter Value

Building dimensions 48 m × 48 m × 3 m
Number of Rooms 16
Room dimensions 12 m × 12 m × 3 m
Number of inner Sub-regions 144
Number of outer Sub-regions 52
Inner Sub-region dimension 4 m × 4 m × 3 m
SINRTh for IUEs (MinNF Model) 0 dB
Number of Floor One
Floor and Wall loss 10 and 8 dB
Macro Transmit Power (Pmacro) 46 dBm (39.8 W)
Femto Transmit Power (P f

max) 20 dBm (0.1 W)
Macro BS Height 30 m
D2D Max Transmit Power (P d

max) 20 dBm (0.1 W)
Number of IUEs 109
HIZUE SINRTh -2 dB
α (FIUE D2D links limit) 1
β (HIZUE D2D links limit) 1
γ (W2L Threshold) 5

system. This could degrade SINR of IUEs and this reduction in SINR is the

additional cost incurred in the proposed system.

3. Energy Consumption: In our work, the transmission power of the Femto (first-

hop communication) is kept as P f
max (0.1 W) to study the system performance

in the worst case scenario. In second hop communication, the power consumed

for the transmission from FIUE to HIZUE, which varies based on distance

between HIZUE and FIUE, is the cost to the system.

6.5 Performance Results

The system model described in Section 6.4 has been simulated using MATLAB. The

simulation parameters are given in Table 6.2. We considered a single-floor building

with a single MBS placed at a distance of 350 m from the south west side of the

building. Further, we considered the scenario where all Femtos and MBS are con-

figured to use the same 5 MHz channel (i.e., 25 RBs). Femtos are allowed to be

attached only to the ceiling of the building and we did not consider the user mobility
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in our simulation experiments as we focused only on indoor scenarios. We show the

performance of the LTE HetNet system in the worst case scenario where all RBs of

all Femtos are in use in every TTI. Also we assume that channel state information

of links between FIUEs and HIZUEs is available at the F-GW/SON for the fine

tuning of D2D link transmission power. For the performance evaluation, we generate

different topologies by varying number of UEs (i.e., IUEs and HIZUEs) and their

positions in such a way that in each of the topologies that we considered there always

exist one or more FIUEs for forming D2D links for each of the HIZUEs.
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Figure 6.3: REM plot of sub-regions inside building after placing
Femtos by using MinNF

6.5.1 MinNF Model: Performance Results

The four Femtos with their optimal co-ordinates are obtained by solving MinNF ILP

problem with GAMS CPLEX solver [33]. The Femtos are placed in dark brown regions

inside the building at sub-regions I30, I71, I98, I129 (refer Figure 4.1 for numbering

of sub-regions) as shown in Figure 6.3. All the Femtos transmit at their peak power

(0.1 W). Figure 6.3 also shows SINR distribution for inner and outer sub-regions. For

example, UEs in the sub-region I98 get SINR of 29.9 dB as the Femto (F3) is very

close to it. Similarly, the sub-regions I6, I29, I79, and I51 inside the building have

relatively good SINR values 12.9, 17.2, 5.0, 7.4 dB, respectively. But if we consider

Macro only scenario, where there are no Femtos inside the building like in Figure 1.7,

the sub-regions I6, I29, I79, and I51 inside the building have relatively less SNR values

of -8.2, -8.3, -9.2, -8.3 dB, respectively due to poor indoor signal strength.
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Due to addition of Femtos, the UEs present inside the building get improved SINR

up to 35 dB (refer Figure 6.3). But in this case, the outer sub-regions (e.g., O48), get

SINR as low as -6.0 dB. This is a consequence of Femtos being closer to the corners

of the building and hence there being a high power leakage (interference) in HIZone.

6.5.2 Performance Results of D2D MILP Model and D2D

Heuristic Algorithm

In this section, we compare the performance of proposed D2D MILP model and D2D

heuristic algorithm with the following three different schemes.

• Macro only: No Femtos are placed inside the building. No HIZone exists around

the building, but the MBS has to serve even IUEs with poor signal quality.

• Full Power Femto: Femtos are optimally placed inside the building by MinNF

model, but Femtos are configured to emit at their full transmission power. In

this scheme, HIZone exists around the building and therefore affects perfor-

mance of HIZUEs.

• Optimal Femto Power (OptFP): Femtos are optimally placed inside the building

by MinNF model, but transmission power of all the Femtos are reduced by

OptFP model to decrease the interference to HIZUEs. Since such reduction

at all the Femtos is not needed, this scheme affects performance of IUEs.
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Figure 6.4: hDPRA D2D links in instance #1
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instance #2
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Figure 6.6: hDPRA D2D links in
instance #3

D2D Heuristic Algorithm: Performance Results

In this section, we show the formation of efficient D2D links and SINR CDF of UEs.

Also, we studied the effect of SINRTh on SINR of IUEs and effect of IUE density on

FIUEs transmission power. Finally, we have shown the average performance of D2D

heuristic algorithm by considering 500 different combinations of IUEs and HIZUEs

locations.

Formation of D2D links and their effects on SINR of UEs:

In this section, we describe the hDPRA which efficiently chooses the potential

D2D based relay pairs and allocates radio resources to them. Then we discuss about

the performance of hDPA for power control of D2D links.

(a) hDPRA Results:

The optimal Femto locations given by the MinNF model are shown as the circled

regions in Figure 6.4. The red, green and blue marked locations are the positions

of the deployed HIZUEs, LIUEs and FIUEs, respectively in this topology # 1.

These UEs locations at a particular instance (TTI) along with other parameters are

given as input to the proposed heuristic algorithm. In Figure 6.4, D2D connectivity

diagram shows the number of D2D links in the instance #1. On one hand, there are

relatively less number of HIZUEs at the south side of the building, but on the other

hand, at the east, west and north sides of the building, there are some HIZUEs not

served by FIUE in a particular TTI. It has to be kept in mind that a HIZUE can
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connect to only one FIUE in a given TTI as shown in all sides of the building. The

reason for the other HIZUE to not connect is that even when there are certain free

RBs that are not used by other D2D links, there is a possible interference between

the LIUEs or the possibility of guaranteeing an SINR threshold only by increasing

the transmission power for D2D links above the 3GPP standards [66,79]. Hence, the

HIZUE that does not get paired in the given TTI, get paired in subsequent TTIs.

Figures 6.5 and 6.6 show the pending D2D link connections to be made in subsequent

instances. The output from hDPRA is given as the input to GAMS CPLEX solver [33]

through an interface between MATLAB and GAMS to solve the hDPA LP model.

Solving the hDPA model yields the transmission power for the D2D links.
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(b) hDPA Results:

Figures 6.7 and 6.8 show the SINR CDF of HIZUEs and IUEs, respectively. In

Only Macro scheme (shown by red curve) the HIZUEs receive good SINR values but

the IUEs receive very less SINR values, less than -5 dB, which is due to the signal

degradation caused by the walls. In our evaluation, we considered the worst case

scenario where the Full Power Femto scheme (shown by blue curve) has increased

SINR for the IUEs but at the cost of the SINR of HIZUEs. To overcome this issue,

Femtos are made to transmit at lower power in the OptFP [41] i.e., OptFP scheme

(shown by purple curve) thus alleviating the interference issues of HIZUEs, although

this declines the SINR value of IUEs. However in D2D heuristic algorithm scheme

(shown by brown curve) HIZUEs receive good SINR values and the IUEs also re-

ceive SINR values close to that of Full Power Femto scheme (worst case scenario).
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The straight line in Figure 6.8 represents the SINR value of HIZUEs using D2D

heuristic algorithm maintained at -2 dB constraint (to ensure basic voice call commu-

nication for all suffering HIZUEs) of outdoor (HIZone) region. This is achieved by

minimizing total transmit power of FIUEs, and thus the minimum power required to

guarantee SINRTh ensures that all the HIZUEs achieve SINRTh. The small devia-

tion in the IUEs SINR values is because of the interference caused by the D2D pairs.

The overall degradation in SINR for IUEs is 2% in the D2D heuristic algorithm as

compared to the Full Power Femto scheme. But in comparison to the OptFP [41]

scheme the SINR of IUEs improves by 39% for the D2D heuristic algorithm. Thus

D2D heuristic algorithm is able to provide a good signal strength to the HIZUEs

without affecting the IUE performance.

Effect of SINRTh on SINR of IUEs:

We studied the variation in SINR of IUEs by varying SINRTh values. We also

measured the variation in average D2D transmission power for topology # 1. As

shown in Table 6.3, the average transmit power of D2D links increases gradually with

increasing SINRTh. This increases the interference to the IUEs and hence causes a

fall in average IUE SINR with increase in SINRTh of HIZUEs. We note that even

with changes in SINRTh the degradation of IUEs SINR is not very significant. This

validates the efficiency of our D2D heuristic algorithm.

Table 6.3: SINRTh vs IUEs SINR

Metric SINRTh = -3 dB SINRTh = -2 dB SINRTh = -1 dB SINRTh = 0 dB

Average Transmission
Power of D2D links

0.03 W 0.04 W 0.05 W 0.06 W

Average IUEs SINR 12.78 dB 12.75 dB 12.72 dB 12.68 dB

Effect of IUE density on FIUEs transmission power:

In our work, we studied the variation in D2D transmission power. Here we consider

topology # 1 as above but vary the number of FIUEs for a fixed HIZUE location

(shown in Figure 6.4). Initially, the total number of IUEs is 110 (i.e., LIUEs = 100

(constant) and FIUEs = 10) and we gradually increase only the FIUEs count to

15, 20, 25, 30 and 35. Table 6.4 shows that as the number of FIUEs increases, the

average transmit power of FIUEs decreases. This is due to the increased possibility
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of forming shorter D2D based relay links with increasing FIUE density levels. Once

the FIUEs density level is very high, the transmission power of the FIUEs will get

saturated due to marginal decrease in D2D relay link distance.

Table 6.4: Number of FIUEs vs Average D2D transmission power

S.NO No. of FIUEs Average D2D
transmission power
(W)

1 10 0.061
2 15 0.054
3 20 0.051
4 25 0.043
5 30 0.042
6 35 0.041

Average performance of D2D heuristic algorithm:

In order to obtain average performance of proposed D2D heuristic algorithm, we

have evaluated its performance for 500 different topologies by varying the number of

IUEs in the range of 110 to 135 and HIZUEs in the range of 1 to 30 and measured

the SINR of IUEs and HIZUEs. Figure 6.9 shows SINR CDF of IUEs over var-

ious scenarios for different schemes. When compared to the Optimal Femto Power

scheme, D2D heuristic algorithm improves the SINR of IUEs by 40% as shown in

Figure 6.9. However, the degradation in SINR of IUEs is only 1.6% when com-

pared to the Full Power Femto scheme. Similarly, Figure 6.10 shows average CDFs

of HIZUEs over various scenarios for different schemes. If we observe Figure 6.10,

the minimum SINRTh of -2 dB is maintained for all HIZUEs in the HIZone.

D2D MILP Model: Performance Analysis

In the proposed D2D heuristic algorithm, we cannot set the number of D2D links

in each TTI. To make a fair comparison with the D2D MILP model, we have given

the number of D2D links obtained from the D2D heuristic algorithm in each instance

as an input for the D2D MILP model. For example, for the instance #1 shown in

Figure 6.4 the number of D2D links given by the heuristic algorithm is six. Hence

in the D2D MILP model the number of D2D links that have to be formed at the

instance #1 is fixed to be six, i.e., ψ = 6.
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Figure 6.9: Average SINR CDF of
IUEs for various schemes in 500
topologies
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Figure 6.11: MILP D2D links in
instance #1
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Figure 6.12: MILP D2D links in
instance #2

In Figure 6.11, D2D connectivity diagram shows the number of D2D links in the

instance #1. As in the heuristic algorithm, there are some HIZUEs which are not

served by FIUEs in a particular TTI. The pending HIZUEs served by FIUEs based

on the D2D MILP model are shown in Figure 6.12 and Figure 6.13. In the instance

#1, the algorithm mostly tries to form all D2D links with the closer HIZUEs to

minimize the total D2D transmission power. In the next TTI, it tries to form the

remaining D2D links with the farther HIZUEs. Hence the FIUE needs to transmit

high transmission power to maintain these D2D links, which increases the possibility

of interference between LIUEs and HIZUEs. Figure 6.14 shows the SINR CDF

of IUEs. The advantage of forming optimal D2D link is that D2D MILP model

achieves SINR close to that of Full Power Femto because the power value is optimal.
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Similarly, the SINR CDF of HIZUEs in optimal approach (D2D MILP) is also

maintained SINRTh = −2dB as in the heuristic approach (Figure 6.8). The SINR

CDF of HIZUEs using MILP model will be same as that of the heuristic algorithm

(Figure 6.8) because the same SINRTh is maintained in both D2D heuristic algorithm

and D2D MILP model. The overall degradation in SINR for IUEs is 0.5% in the

D2D MILP model compared to the Full Power Femto scheme. On the other hand,

when compared to OptFP scheme the SINR of IUEs improves by 52% in the D2D

MILP model. Thus D2D MILP model is able to provide lesser degradation in signal

strength to the IUEs than the D2D heuristic algorithm with the cost of more running

time (explained further in Section 6.5.3).
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Figure 6.13: MILP D2D links in
instance #3
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Figure 6.14: SINR CDF of IUEs
using MILP Model

6.5.3 Comparison between D2D MILP Model and D2D Heuris-

tic Algorithm

To compare D2D MILP model and D2D heuristic algorithm, we have taken the seven

different topologies, where the HIZUE placement and the number of HIZUEs vary

as shown in Figure 6.15, Figure 6.16, Figure 6.17, Figure 6.18, Figure 6.19, Figure 6.20

and Figure 6.21. Table 6.5 shows indices of outer sub-regions having HIZUEs in these

seven topologies.

SINR of IUEs

In MILP model, the average power transmitted by the D2D links is lower than that in

the heuristic algorithm. This helps to reduce the interference to IUEs. Figure 6.22
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Figure 6.15: UE distribution in Topology 1
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Figure 6.16: UE distribution in Topology 2
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Figure 6.17: UE distribution in Topology 3
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Figure 6.18: UE distribution in Topology 4
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Figure 6.19: UE distribution in Topology 5
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Figure 6.20: UE distribution in Topology 6
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Figure 6.21: UE distribution in Topology 7

shows the average SINR achieved by IUEs in different topologies. The average SINR

achieved in the heuristic algorithm is very close to that in the D2D MILP model.

Table 6.5: Topologies having varying distribution of HIZUEs in
HIZone

Topol-
ogy

No. of
HIZUEs

Indices of Outer Sub-regions having HIZone UEs

1 12 (O5,O9,O15,O21,O27,O28,O29,O30,O34,O40,O45,O46)
2 15 (O3,O5,O10,O12,O14,O18,O23,O25,O30,O32,O41,O44,

O45,O46,O48)
3 7 (O1,O6,O13,O27,O35,O43,O45)
4 10 (O17,O23,O29,O6,O9,O13,O22,O26,O35,O46)
5 10 (O1,O21,O31,O37,O10,O13,O22,O26,O45,O5)
6 13 (O15,O21,O31,O41,O45,O8,O10,O14,O20,O22,O26,O5)
7 9 (O9,O23,O35,O45,O13,O20,O24,O26,O4)

Running Time

Figure 6.23 shows the average running times of D2D MILP model and D2D heuristic

algorithm for different topologies. These run times are obtained on a workstation

having the following configuration: 12 GB RAM, 8 Cores of 2.40 GHz each. We ob-

serve that the running time for D2D heuristic algorithm showed an average decrease

of up to 87% when compared to D2D MILP model in different topologies of HIZUE

placement. In each topology, depending on the position of the HIZUEs, the running

time of GAMS optimization solver changed. For example, when HIZUEs are very

close to each other it demands efficient spectrum allocation and power control between
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FIUE and HIZUE in all instances without creating interference to IUEs. There-

fore, on a few occasions many D2D links may not be possible within the HIZone at

a particular TTI instance which indirectly increases the average running time. As we

discussed earlier in the system model, the D2D heuristic algorithm will be running at

the F-GW/SON which will have abundant computing resources to handle the load of

so many Femtos [99,100]. Therefore, the run time of D2D heuristic algorithm is only

a few ms and usable in practical deployments of Femtos.
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Figure 6.22: Average SINR of
IUEs
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Figure 6.23: Running Time of
D2D MILP and heuristic algo-
rithm

Energy Consumption

Figure 6.24 shows the average power transmitted by the D2D links for different topolo-

gies with the SINRTh of -2 dB. The average power transmitted by the D2D links (for

example, it is 0.043 W and 0.047 W in D2D MILP model and D2D heuristic algo-

rithm, respectively) are lower than the maximum allowed D2D link power of 0.1 W.

We can clearly observe that the average transmission power of the D2D links in the

heuristic algorithm is close to that in the MILP model and the difference between

them is marginal.

6.5.4 Cost Analysis

In our work we assumed that the downlink scheduling algorithm [101] (e.g., propor-

tional fair or priority set scheduler) will allocate only one RB to the selected Femto to

FIUE links or FIUE to HIZUE links in every TTI. Using this, we have simulated
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Figure 6.24: D2D Average Transmission Power

500 different possible combinations for IUEs and HIZUEs locations and observed

that an average of five D2D links are formed in a TTI. Hence, five RBs will be used

for the first-hop i.e., Femto to FIUE link to get the data for HIZUEs. This means

that these five RBs are the radio resource cost.

The D2D based relay links will reuse these five Femto RBs in the second-hop

transmission (FIUE to HIZUE) [102–104]. The interference introduced in the sys-

tem by these D2D based relay links leads to decrease in the SINR of IUEs by 1.6%

(averaged over 500 scenarios). This is the cost of using the proposed system in terms

of interference.

As shown in Figure 6.24, the transmission power of the D2D links is adjusted in

order to maintain the SINRTh of -2 dB for HIZUEs. Because of power adjustment,

D2D links are able to reuse the same RBs and thereby improve the spectral efficiency

of the HetNet system. Hence, the total energy consumption [105] in the two-hop

communication is 0.1 W + D2D based relay transmission power.

6.5.5 JDHO Performance Analysis

Unlike the previous Section, here we study the performance of JDHO algorithm by

considering a topology where some of the HIZUEs could not able to make D2D links

due to lack of FIUEs. As seen in Algorithm 4 (Step 6), these O
′
HIZUEs connect to

the MBS for their D-plane communication. The remaining HIZUEs (i.e., (O−O′))
form D2D links with FIUEs by using proposed D2D heuristic algorithm. Consider

the topology shown in Figure 6.25, where one can see that there are no FIUEs in the

vicinity of HIZUE A. D2D heuristic algorithm which is running at F-GW cannot
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Figure 6.25: hDPRA D2D links
in instance #1
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Figure 6.26: hDPRA D2D links
in instance #2
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Figure 6.27: hDPRA D2D links
in instance #3
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Figure 6.28: hDPRA D2D links
in instance #4

able to form any D2D link for serving the HIZUE A. In order to reduce interference

at this HIZUE in the HIZone, JDHO algorithm controls the transmit power of the

Femto which is serving the parts of the building closest to this region. By doing so, the

HIZUE A can maintain a minimum SINRTh in HIZone. Figure 6.26, Figure 6.27

and Figure 6.28 show the pending D2D links established in the subsequent instances.

When compared to Full Power Femto scheme where the degradation of IUEs SINR is

found to be 2% as obtained in the previous case (shown in Figure 6.7), in the current

JDHO algorithm scenario as shown in Figure 6.29 the degradation of IUEs SINR

was found to be 9%. This is because, to maintain the communication (D-Plane) for

HIZUE A from MBS, the corresponding/particular Femto has to optimally decrease

its transmission power further to reduce the SINR of IUEs. Figure 6.30 shows that

HIZUEs maintained SINRTh when JDHO algorithm is used. In previous scenario
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(shown in Figure 6.8) we maintained a constant SINRTh to all HIZUEs. But in the

present scenario, in JDHO algorithm by using the OptFP model, the SINRTh for

HIZUE A is maintained at more than -2 dB (as shown in circle region).

6.6 Summary

In this chapter, we showed that D2D when adopted to LTE HetNets increases the

spectrum efficiency by guaranteeing good SINRTh for all the users even when the

Femtos are transmitting at their full power. By introducing Femtos, a fair distri-

bution for both IUEs and HIZUEs with minimal interference can be observed.

Additionally, SINR of IUEs is increased by 40% when compared to the OptFP [41]

scheme was noted in D2D heuristic algorithm. On the other hand, the decrease in

the SINR of IUEs compared to the Full Power Femto scheme is only 1.6%. We also

observed that the average running time of the proposed D2D heuristic algorithm was

87% lesser when compared to D2D MILP model.
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Chapter 7

A Novel Resource Allocation and

Power Control Mechanism for

Hybrid Access Femtos in LTE

HetNet

7.1 Introduction

In the previous chapter, we solved the HIZone problem by employing D2D based

relays for serving HIZUEs. Unlike in the previous chapter, in this chapter we

solve the same HIZone problem by efficient resource allocation and power control at

Femtocells which are configured in hybrid access mode of operation.

Since Femtos are deployed for offering high data rate services to indoor (paid)

users in enterprise and residential buildings, each Femto is configured with a list

of subscribers called Subscriber Group (SG) so that only the users in the SG can

access them. The users not belonging to this list are called Non-SG (NSG) and

they are served by MBSs deployed in outdoor environments even when they are in

close proximity to a Femto deployed in indoors. This type of restricted access is

called the closed access [106], [107] and [108]. Unlike Closed Access Femtos (CAFs),

Femtos configured in open access do not distinguish between SG and NSG users

and serve all users like the way MBSs serve them. Open Access Femtos (OAFs) are

typically deployed in public hotspots like airports and shopping malls. If this access

mechanism is employed in enterprise and residential buildings, QoS of SG users is

affected as the number of NSG users increases in indoors. Hybrid access mechanism

146



Figure 7.1: An example of LTE HetNet with MBS, OAF, CAF, and
HAF Cells

integrates the principles of both closed and open access mechanisms. It lets some of

NSG users in indoors to connect with Hybrid Access Femtocells (HAFs) and share its

radio resources along with SG users. This mechanism provides a trade-off between

maximizing overall HetNet capacity and maximizing the throughput of SG users.

Figure 7.1 shows an LTE HetNet system comprising of one Macro cell and three

Femtocells: one OAF, one CAF and one HAF. Here the OAF is serving both SG and

NSG users located in its coverage area. But, in CAF case all of the NSG users located

in the CAF’s coverage area are forced to connect with the MBS. As a compromise,

HAF serves two of NSG users along with SG users and rest of NSG users are served

by the MBS.

HAFs partially address the issue of signal degradation faced by the NSG users in

the closed access mechanism. They provide lesser throughput to SG users as com-

pared to CAFs as they also serve the NSG users but the overall HetNet throughput

improves. On the other hand, the SG throughput obtained in HAFs is better than

that obtained in OAFs. Nevertheless, this is at the cost of overall HetNet through-

put which is highest in the open access mechanism. Hybrid access is a compromise

between the two extreme cases of closed and open access mechanisms. More impor-

tantly, HAFs provide service to NSG users when they are inside the building where

they experience low signal from MBSs. And, because OAFs are not a favorite in large

private buildings, HAFs are a welcome relief to the NSG users who would otherwise

be deprived of even basic data rates when they are indoors in CAFs. Hybrid access

mechanism needs to be effectively promoted as the SG users are usually reluctant to
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share resources they have paid for, with unknown NSG users who visit their buildings.

This mechanism can be made attractive by rewarding the SG users for sharing their

resources with the NSG users [109], [110].

Optimal arrangement of Femtos with minimum overlapping regions is necessitated

by the need to save the cost of deploying Femtos and reduce co-tier interference due to

frequency reuse one in LTE HetNets. If Femtos deployment is not optimal, it increases

Femtos count and so does co-tier interference. [111] deals with the optimal placement

of CAFs with minimum overlapping areas and reduced co-tier interference. Optimal

placement of Femtos operating in hybrid access is equally important so that users in

the high interference zone HIZone can connect to one of HAFs for receiving good

signal strength and lower cross-tier interference from MBSs. After optimally placing

the HAFs, one needs to look into how to serve both SG and NSG users efficiently.

Care needs to be taken to ensure QoS of SG users by dynamically splitting radio

resources between SG and NSG users. Dynamic power control at HAFs reduces the

cross-tier interference experienced by the HIZone users served by an MBS when a

near-by HAF is not able to maintain the minimum QoS requirement for its users. As

the interfering HAF reduces its transmission power, the HIZone users can connect

to one of MBSs with lower SINR degradation. The reduction in transmission power

may affect the IUEs who now get reduced signal strength but the HAF can use the

additional resources, previously reserved for the HIZone users, to serve the IUEs.

Having a dynamic power control mechanism also adds advantage to the IUEs at

times when there are no users in the HIZone, especially at nights. During such times,

HAFs may be tuned to operate at the maximum transmit power thereby serving the

IUEs with high data rates.

7.1.1 Organization of this Chapter

The rest of this chapter is organized as follows. Related work and our contributions

are given in section 7.2. Section 7.3 introduces our system model and enumerates the

assumptions made in this chapter. We elaborate the proposed work in section 7.4.

This section describes the optimal placement of the HAFs, the Bandwidth Allocation

(BWA) and the optimal and the sub-optimal power control mechanisms. This is

followed by section 7.5 where we present the simulation results and then provide

insights into the working of our scheme. Finally, Section 7.6 summarizes the chapter.
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7.2 Related Work

Besides scheduling, optimal placement and power control techniques improve net-

work performance [112–114]. Optimal placement of and power control by CAFs in

a two-tier LTE network overcome co-tier and cross-tier interference at the cost of

reduced CAF transmission power to the SG users [111]. In order to assure minimum

degradation to NSG users in outdoors, SG users suffer from lower throughput values.

SG users are affected by the presence of even a single NSG user in the HIZone since

the Femtos lower their transmit power to reduce cross-tier interference. [112] studies

the effects of the user-deployed co-channel Femtos on the call drop probability of the

macro users in residential areas. The results show that the use of co-channel Femtos

is efficient but to make it financially viable the Femtos should have auto-configuration

abilities. The main aspect of this auto-configuration is tuning the Femto transmit

power to reduce the number of dropped calls by a NSG user. The authors of [113]

provide an analysis of the co-tier interference in CAFs. They point out that coverage

holes appear in the downlink of MBS cells in the vicinity of CAFs. Results show an

improvement when Femtos use a transmit power adjustment mechanism and operate

on an adjacent channel. The survey on transmit power control techniques in Femto

networks presented in [114] discusses and compares several power control techniques

focusing mainly on distributed transmit power control techniques due to decentralized

nature of Femtos.

Scheduling radio resources between SG and NSG in the downlink shared access

Femtos is addressed in [107]. Here the authors propose access control of Femtos de-

pending on their distance from a MBS. Home users associate with either a Femto

or MBS depending on the signal strength. Cellular users associate with a nearby

Femto only when it is far away from the MBS. Packet scheduling mechanisms play an

important role in cellular networks when the MBS and Femto share radio resources

by operating in the same spectrum. The key features and challenges for designing

a scheduler and comparison of existing popular schemes have been detailed in [101].

The main objective of a scheduler should be to achieve an optimal trade-off between

spectral efficiency and throughput of user. In a particular hybrid spectrum manage-

ment and interference mitigation scheme [115], the CAFs identify themselves as either

inner or outer Femto depending on their distance from the MBS. Hence, they oper-

ate in either dedicated-channel or co-channel spectrum. The scheme is called hybrid

because the outer Femtos (situated closer to cell edge) use the entire spectrum, the

MBS operates on one part of the spectrum and the inner Femtos (closer to the MBS)
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operate on the remaining part. The interference from the CAFs experienced by the

NSG users closer to the cell edge is severe and of particular concern. In [116], radio

resources are allocated in hybrid environment. Each Femto independently selects a

mutually exclusive subset of radio resources where selection of any resource has equal

probability. This decentralized mechanism which aims to reduce the cross-tier inter-

ference is not scalable. The number of radio resources that a Femto can select keeps

decreasing as the Femtos count increases. The number of Femtos thus cannot be

increased beyond a certain limit. Another solution to radio resource management in

hybrid access is presented in [109]. The authors propose a four-stage radio resource

management mechanism where base stations perform access control, radio resource

allocation and channel allocation and the users perform power control. Interference

mitigation is performed by maintaining dedicated channels for each Femto based on

minimum QoS requirement of users and additional channels as an incentive to serve

cellular users. The drawback of the proposal is that the authors consider a system

with one MBS and one Femto. Channel allocation becomes a problem in practical

situations when multiple Femtos are deployed, since the MBS and the Femto operate

on different channels to avoid co-channel interference for the NSG.

Newer technologies focus on other aspects such as communication between prox-

imity devices, high frequency transmission and ICIC to increase network capacity.

The problem of HIZone users can be solved by device-to-device (D2D) communica-

tions [8] between nearby users in two ways. Firstly, two users can use radio resources

obtained from the MBS to communicate directly without routing through the MBS.

Secondly, when a MBS wants to offload a user, it transmits the data to another nearby

user. The offloaded user can then receive the data via single or multi-hop D2D com-

munication. The HIZone users may communicate with a nearby NSG user without

using the Femtos radio resources. As a result the MBS has to allocate lesser radio

resources than when it connects to the MBS. While [117] allows the D2D pairs in the

network and sets their transmitting powers to admissible values, [118] proposes a joint

mode selection (cellular and D2D modes) and radio resource allocation scheme for the

D2D pairs so that network throughput is maximized. In [119], the authors propose

three communication modes for D2D systems. The users can switch between cellular,

dedicated and reuse modes which give a higher spectral efficiency than a single mode.

While D2D solutions seem promising, the introduction of D2D pairs gives rise to new

interference patterns. Moreover, D2D communication makes handover, scheduling,

security of user information and interference management more complex. In D2D,

apart from leasing the radio resources to two devices, the MBS does not provide any
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other service. In case the number of D2D links is more than one, monitoring all D2Ds

becomes difficult for MBSs. Therefore, for a network operator, designing a pricing

model to support large number of D2D links becomes cumbersome. [120] talks about a

relatively new technology where mobile networks make use of the untapped millimeter

waves (mm-wave) in backhaul links and RAN links. Due to the small wavelength of

mm-waves, penetration becomes difficult. This may prove to be a boon for the IUEs

since there would be a very thin (1 m or 2 m) or no HIZone. But, [121] points out

that in mm-wave technology, attenuation increases exponentially with link distance

(more relevant for links exceeding 100 m). When the size of obstacles is of the order

exceeding tens of cm, the obstacles act as reflectors causing severe losses exceeding

30 dB.

To address the dominant interference scenarios where NSG users comes close to

a building having Femtos, enhanced (eICIC) techniques are developed [97]. In time

domain eICIC mechanism, MBS periodically blanks its sub-frames so that the inter-

ference to the co-channel Femtos is lower. According to 3GPP, the blank sub-frames

are called almost blank sub-frames (ABS) indicating that the sub-frames may still be

used to transmit L1/L2 signaling messages in C-plane. In frequency domain eICIC

mechanism, the C-plane messages of the Femtos are scheduled in reduced bandwidths

so that the control information transmission of the Femtos is orthogonal to one an-

other. Power control techniques in eICIC allow the MBS as well as the Femtos to

operate all times but the Femtos operate at reduced transmit power levels when they

interfere with the nearby NSG users.

Rewarding extra radio blocks to Femtos deployed extensively under a MBS, for

serving NSG users is a new and solution for improving the network performance.

The SG users who own the Femto can benefit from the extra radio blocks it receives

from the MBS to serve the nearby NSG users who are far away from the MBS to

receive a good signal. This Femto and MBS symbiosis strikes a balance between

spectral efficiency and SG satisfaction and is discussed in [122–124]. [122] proposes

an economic solution for mobile operators and SG users based on game theory by

analyzing the existence of the Nash Equilibrium of the game. They use the concept of

revenue sharing to provide a positive cycle to sustain the Femto service by maximizing

operator’s benefits and satisfying the users’ service requirements. [123] motivates the

MBSs to lease a part of their spectrum to the Femtos and the Femtos to open a part

of the above obtained spectrum to serve the NSG users. The framework is modeled as

a three-stack Stackelberg game where the Femtos and MBS determine the spectrum

leasing ratio, its price and the open access ratio to maximize the utilities of both
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Femtos and MBSs. The authors of [124] have proposed an optimal as well as a sub-

optimal mechanisms to implement a reverse auction framework for a fair and efficient

access permission transaction. This work further motivates SG to use HAFs. Most

recent work in the area of cross-tier and co-tier interference mitigation when both

Femtos and MBS operate in the same frequency is [125]. The scheme deals with

CAF located at the cell edge where power control is done for each radio resource.

Therefore, an interfering Femto may serve a subscriber with a radio resource Ri at

higher transmit power while serving another subscriber at a lower transmit power

with a radio resource Rj if MBS serves a nearby NSG user with Rj. The authors

adopt static allocation of radio blocks. The power control for each radio resource is

executed under the assumption that each user will have the same radio resource in

the next iteration. There is a need for HAFs to serve a NSG user inside a building

who receives highly degraded signal strength from the MBS or when a SG or NSG

user is in the HIZone of the building.

7.2.1 Our Contributions

Our contributions in this paper are enumerated as follows.

• An optimal placement of Femtos (OPF) mechanism which is used for placing

Femtos optimally by ensuring good SINR for both IUEs and HIZUEs.

• A decentralized dynamic bandwidth allocation (BWA) which divides the avail-

able bandwidth in the network between the two sets of user groups, SG and

NSG.

• Dynamic power control is done by an optimal power control (OPC) mechanism

which tunes the transmit power of the Femto to a reduced value whenever the

users in the HIZone cannot be served by the Femtos. So that they could connect

to the MBS instead. Since, the OPC is hard to solve in polynomial time we

present a sub-optimal power control (SOPC) mechanism.

• An enhanced priority (EP) scheduling mechanism that uses two schedulers

which implement proportional fair (PF) algorithm. While one scheduler main-

tains fairness among the SG users, the other fairly schedules radio blocks among

the users of NSG. We justify the need of two schedulers and the use of power

control in Femtos in Section 7.4.3. Our EP scheduling mechanism works better

than the legacy PF scheduler as well as the legacy Priority Set (PS) sched-
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uler [101] by prioritizing SG users over NSG users and maintaining fairness

within both user groups.

7.3 Preliminaries and Assumptions

We describe the system model considered in this work. The building and channel

models along with the associated assumptions necessary for the system setup are also

detailed.

7.3.1 System Model

The system is modeled on downlink LTE HetNet consisting of MBSs in the outdoor

environment and HAFs inside an enterprise building which is located in the cell edge

of an MBS as shown in Figure 7.2. Frequency reuse one is employed in HetNet

to improve the capacity of the system. HAFs are connected to Femto-Gateway (F-

GW) over S1 interface. The F-GW has Self Organizing Network (SON) feature which

makes the system self-configurable, self-optimizing and self-healing. SON helps HAFs

to dynamically adjust their transmit power.

Here we assume that the radio resource requirement of SG users, RS, can always be

satisfied by the available radio resources in the HAF before power control. Otherwise,

the HAF will be unable to maintain a minimum throughput for SG users at full

transmit power even in the absence of NSG users. Also, a user is connected to the

HAF which gives the maximum SINR. We classify the users on two parameters -

priority and location. The user groups formed on basis of priority are SG and NSG

where the former gets higher priority than NSG when connected to HAFs. IUEs and

HIZone users are determined by their locations by using Position Reference Signal

(PRS) [126–128].

The HAFs send downlink control/data plane (C/D plane) to the NSG users in

the HIZone. At each periodic time interval T (comprising of a number of transmis-

sion time intervals (TTIs)), the HAFs split their radio resources between the NSG

users and SG users before running the EP scheduler. When an HAF operates in full

transmit power and the number of radio resources required to serve all the HIZone

and IUEs at the minimum QoS exceeds the available radio resources, the F-GW

tunes the HAF’s transmit power. Hence, the HIZone users previously connected to

the HAF are now connected to the MBS above a threshold SINR, SINRPC
Th . The

transmit power is tuned so that these HIZone users can connect to the MBS with

153



Figure 7.2: HAF based LTE HetNet System Model

minimum cross-tier interference.

For example, if HAF1 transmits at full transmit power, there are not enough radio

resources to serve with a minimum throughput all the users (both SG and NSG) with

some minimum guaranteed throughput. Hence, the HAF1 reduces its transmission

power to allow the users in the HIZone to get their D-plane and C-plane from the

MBS with better SINR. The radio resources of HAF1 can then be exclusively used

to serve the IUEs. Since the BWA is done between the two user groups, priority of

the SG users is not compromised. Similarly, the SG users in the HIZone experiences
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better throughput when connected to the MBS than when connected to HAF1 which

has insufficient radio resources for serving both indoor and HIZone users. The PL

model given in chapter 3 and building model given in chapter 4 are used for this work.

7.4 Proposed Work

In this section, we will describe in detail the optimization problems and propose a

sub-optimal mechanism which runs in polynomial time and is appropriate for dynamic

scheduling. A list of notations used in this paper is presented in Table 7.1. Initially,

the HAFs are placed inside the building by using an optimal placement model. This

is a one time process after which the SOPC mechanism handles the SG and NSG

user connections by a power control model. The set ISR has the list of all the HAFs

for which RS + RNS ≤ R does not hold. In a situation where ISR 6= NULL, a new

set OCCU is formed which consists of all the HIZone users (SG and NSG) under the

coverage of HAFs in the ISR. EP scheduler then schedules the radio blocks among

all the users in each group. We describe each of the above steps, in detail, in the

following subsections.

7.4.1 Optimal Placement of Femtos (OPF) Model

The first step deals with an efficient placement of HAFs inside the building by em-

ploying an optimization model. Our objective is to ensure optimal placement of the

HAFs, operating at full transmit power Pmax, inside the building so that a user sit-

uated anywhere in the building or the HIZone connects to the HAF giving highest

SINR, and, is ensured a minimum SINR, SINRTh from the HAF.

The OPF model is formulated with the objective to minimize the number of HAFs

deployed in the building, as expressed in Equation (7.1), such that the HAFs operate

at Pmax to provide good SINR to all indoor and HIZone users.

min
∑
i∈I

vi (7.1)

Equation (7.1) is subject to the following constraints. Since we want each indoor and

HIZone sub-region to associate with only one HAF, we ensure it by adding constraints

given by Equations (7.2), (7.3), (7.4) and (7.5).
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Table 7.1: List of notations used in the problem formulations

Notation Definition

F Set of all HAFs inside a building
M A set of MBSs
H Set of all HIZone sub-regions
I Set of all indoor sub-regions
T Periodic time interval of duration equal to n TTIs
R Number of radio resources available in a HAF in a single TTI
RS Number of radio resources required by SG from a HAF in a single TTI
RNS Number of radio resources required by NSG from a HAF in a single TTI
Pf Transmitting power of a HAF, f
Pmax Maximum transmitting power of HAF
PM Transmitting power of MBS, M
No System Noise
SINRP

Th Threshold SINR to be maintained in all indoor and HIZone sub-regions
during placement of HAFs inside the building

SINRPC
Th Threshold SINR to be maintained in all indoor and HIZone sub-regions

during power control of HAFs in SOPC mechanism
vi 1 if HAF is placed in indoor sub-region i, 0 otherwise
sji 1 if indoor sub-region j is connected to HAF located in indoor sub-region

i, 0 otherwise
tji 1 if HIZone sub-region j is connected to HAF located in indoor sub-region

i, 0 otherwise
g′ja/g

′′
ja Channel gain between indoor sub-region or HIZone sub-region j and

indoor sub-region a
gif/giM Channel gain of indoor sub-region i from HAF f or MBS M
ghf/ghM Channel gain of HIZone sub-region h from HAF f or MBS M
di/dh Demand of user in indoor sub-region i or HIZone sub-region h for time

interval T
mcs(sinrif )
or
mcs(sinrhf )

Amount of data transmitted in one radio resource based on the MCS
value of indoor sub-region i or HIZone sub-region h (a function of the
sub-region’s SINR value of Opt from HAF f)

xif 1 if indoor sub-region i is connected to HAF f , 0 otherwise
yhf 1 if HIZone sub-region h is connected to HAF f , 0 otherwise
zh 1 if HIZone sub-region h is connected to a HAF, 0 if it is connected to

MBS M
qi/qh 1 if indoor sub-region i or HIZone sub-region h is occupied by a user, 0

otherwise
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∑
i∈I

sji = 1 ∀j ∈ I (7.2)∑
i∈I

tji = 1 ∀j ∈ H (7.3)

sji − vi ≤ 0 ∀j, i ∈ I (7.4)

tji − vi ≤ 0 ∀i ∈ I, j ∈ H (7.5)

The following constraints fulfill our requirement that every indoor and HIZone sub-

region should have SINR above the pre-defined threshold of SINRP
Th. The SINRP

Th

is set as λi and λh for indoor and HIZone sub-regions, respectively, to ensure good

coverage. The L.H.S. of Equation (7.6) and Equation (7.7) are the SINR values of

indoor and HIZone sub-regions, respectively obtained from HAF located at indoor

sub-region, a.

Inf ∗ (1− sja) + g′jaPmaxva

No +
∑
b∈I\a

g′jbPmaxvb + g′jMPM
≥ λi ∀j, a ∈ I (7.6)

Inf ∗ (1− tja) + g′′jaPmaxva

No +
∑
b∈I\a

g′′jbPmaxvb + g′′jMPM
≥ λh ∀a ∈ I, j ∈ H (7.7)

g′ja and g′jM are the channel gains from HAF and MBS to indoor sub-region j,

respectively. Similarly, g′′ja and g′′jM are the channel gain from HAF and MBS to

HIZone sub-region j, respectively. If there are multiple macro cells (the set M has

more than one MBS), then summation of the channel gains from all MBSs gives the

total interference. No is the thermal noise. Inf is a virtually infinite value (a large

value like 106) used to ensure that the every indoor/HIZone sub-region gets at least

SINRP
Th (λi for indoor sub-regions and λh for HIZone sub-regions), from only one

HAF. Otherwise, all HAFs would try to assure the SINRP
Th to every sub-region and

render the optimization problem infeasible.

7.4.2 Optimal Power Control (OPC) Model

After placement of the HAFs, each HAF allocates its radio blocks to every active user

connected to it in every periodic time interval, T . If the radio resource demand is

greater than the available radio blocks R, the F-GW performs OPC to tune transmit
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powers of HAFs. The objective of OPC model is to maximize the sum of transmission

powers of all HAFs so that resource demand at each HAF from its connected users can

be satisfied. It chooses HIZone users (SG and NSG) who will be served by the MBS

when the transmission powers of the HAFs, to whom they are connected currently,

are reduced from Pmax. In such a case, the selected HIZone users must be ensured at

least a SINRPC
Th from the MBS in order to be served by it.

OPC Formulation: F is used to denote the set of all HAFs in the building and

M is the set of MBSs. All the sub-regions in the HIZone and indoor form the sets

H and I, respectively. Di and Dh are the demand of ith IUE and hth HIZone user,

respectively, in T time interval. PM denotes the transmission power of the MBS. We

use the following variables to determine the connectivity of each sub-region to an

HAF and to determine whether a sub-region is occupied.

• Indoor HAF connectivity variable x = {xif |xif = {0, 1}; i ∈ I; f ∈ F}, i.e.,

xif = 1 if indoor sub-region i is connected to HAF f , 0 otherwise.

• HIZone HAF connectivity variable y = {yhf |yhf = {0, 1};h ∈ H; f ∈ F}, i.e.,

yhf = 1 if HIZone sub-region h is connected to HAF f , 0 otherwise.

• HIZone Macro connectivity variable z = {zh|zh = {0, 1};h ∈ H}, i.e., zh = 1 if

HIZone sub-region h is connected to a HAF f , 0 if connected to M .

• Indoor sub-region occupancy opi = {qi|qi = {0, 1}; i ∈ I}, i.e., qi = 1 if indoor

sub-region i is occupied by a user, 0 otherwise.

• HIZone sub-region occupancy oph = {qh|qh = {0, 1};h ∈ H}, i.e., qh = 1 if

HIZone sub-region h is occupied by a user, 0 otherwise.

To ensure that every HAF can serve the users connected to it with minimum

number of radio resources, the OPC maximizes the total transmission power of all

the HAFs, that is,

max
∑
f∈F

Pf (7.8)

To ensure that every indoor sub-region, i, is connected to exactly one HAF and that

any HIZone sub-region, h, if not connected to the MBS is associated with only a single
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HAF, Equation (7.8) is subject to the connectivity constraints (7.9) and (7.10).∑
f∈F

xif = 1 ∀i ∈ I (7.9)∑
f∈F

yhf = zh ∀h ∈ H (7.10)

We use the SINR constraint given in Equation (7.11) to make sure that all the

indoor sub-regions, which are connected to HAF, f , get at least SINRPC
Th which is

equal to λi for indoor sub-regions.

Inf ∗ (1− xif ) + gifPf

No +
∑

f ′∈F\f

gif ′Pf ′ +
∑
m∈M

gimPm
≥ λi ∀i ∈ I, f ∈ F (7.11)

In order to ensure SINRPC
Th , λh, to HIZone sub-regions from their respective

HAFs, constraint given in Equation (7.12) is used.

Inf ∗ (1− yhf ) + ghfPf

No +
∑

f ′∈F\f

ghf ′Pf ′ +
∑
m∈M

ghmPm
≥ λh ∀h ∈ H, f ∈ F (7.12)

where, ghf and ghm are the gains from HAF, f , and MBS, m, to the HIZone sub-

region h, respectively. For a HAF f , Equation (7.12) uses Inf to filter the HIZone

sub-regions not connected to f to prevent the problem from becoming infeasible.

The constraint given in Equation (7.13) is adopted to make sure that all HIZone

sub-regions connected to an MBS, m ∈M get SINR greater than λh.

Inf ∗ zh + ghmPm

No +
∑
f∈F

ghfPf
≥ λh ∀h ∈ H (7.13)

Like earlier, Inf filters the HIZone sub-regions not connected to the MBS.

∑
i∈I

⌈
diqi

mcs(sinrif )

⌉
xif +

∑
h∈H

⌈
dhqh

mcs(sinrhf )

⌉
yhf ≤ nR ∀f ∈ F (7.14)

where, R is the number of radio resources available per TTI and n is the number

of TTIs in the time interval T . The first summation in Equation (7.14) determines

the maximum number of radio resources required by the IUEs connected to HAF f

which depends on the user’s individual data requirement di for time interval T and
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their MCS obtained from their SINR value (mcs(sinrif )). Similarly, the second term

is the summation of the maximum number of radio resources required by the HIZone

users connected to f . The constraint gives an upper bound of nR to the net required

radio resources obtained from both the summation terms for the time interval T .

Thus, the OPC takes care of BWA for any combination of SG and NSG user

locations by tuning the transmit power of HAFs whenever the demand in a HAF

exceeds R. The demand from the IUEs (SG and NSG) itself can exceed R in a HAF

operating at Pmax due to presence of large number of indoor NSG users. Then the

BWA is in proportion of the radio resource demand between the SG and NSG (refer

Equation (7.15) and Equation (7.16)) as the OPC is not feasible in such a situation.

R′S =
RS

RS +RNS

R (7.15)

R′NS =
RNS

RS +RNS

R (7.16)

The OPC problem (refer Equation 7.8) is a Mixed Integer Non-linear Program-

ming (MINLP) problem and is very hard to solve in polynomial time. Hence, we

propose an effective heuristic power control mechanism to solve the above MINLP

power control problem in polynomial time.

7.4.3 Sub-Optimal Power Control (SOPC) Mechanism

The flowchart in Figure 7.3 provides a basic idea of our proposed SOPC mechanism.

The first step is the optimal placement of the HAFs which takes as input the layout

of the building and gives the co-ordinates where the HAFs are to be placed. This

placement is such that a minimum SINRP
Th is guaranteed to all indoor and HIZone

sub-regions. At the start of each time interval, T , the demand of the SG and NSG

in terms of RS and RNS is computed in each HAF transmitting at Pmax (refer Al-

gorithm 5) and the radio resources are split between the two user groups (SG and

NSG). A set ISR is maintained which lists all the HAFs for which the constraint

RS + RNS ≤ R does not hold. When RS + RNS < R (i.e., when ISR = NULL),

the excess radio resources are used by the SG to further improve their throughput

(refer Algorithm 6). After this the BWA is performed where the available bandwidth

is divided between the two groups (SG and NSG).

When one or more HAFs have insufficient resources to meet the minimum through-

put requirement of all connected users (i.e., when ISR 6= NULL), a new set OCCU

is formed. OCCU comprises all the HIZone users (SG and NSG) connected to HAFs
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Figure 7.3: Flowchart of the proposed SOPC mechanism
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belonging to the set ISR (refer Algorithm 6). The F-GW then tunes the power of

the HAFs such that the total transmission power is maximized. Hence, the HIZone

users in the set OCCU connect to the MBS with a signal strength greater than or

equal to the threshold SINR, SINRPC
Th . The radio resource requirement in each HAF

is computed for the new transmit power values P ′. If the new resource requirement

can be fulfilled by R, the radio resources are split in the same way as it is done when

ISR = NULL. Otherwise the radio resources are divided in proportion of the radio

resource demand of SG and NSG in each HAF. Thereafter the BWA is performed

where the entire bandwidth is divided between the SG and the NSG in each HAF

in proportion to RS and RNS. The EP scheduler then schedules the radio resources

among all the users in each group.

Algorithm 5 Radio Resource Demand Computation at Pmax
Input: List of SG and NSG users in each HAF, list of indoor and HIZone users.
Let ISR be the set of all HAFs with insufficient radio resources.
Output: RS and RNS for each HAF before power control.

1: Initialize ISR← NULL
2: for each HAF f ∈ F do
3: Compute RS { RS : Radio resources required by SG users connected to HAF f

at Pmax for the current time interval T}
4: Compute RNS {RNS : Radio resources required by NSG users connected to

HAF f at Pmax for the current time interval T}
5: if RS +RNS > R then
6: ISR← ISR ∪ f
7: end if
8: end for

The SOPC mechanism is comprised of two algorithms which are outlined as fol-

lows:

• Algorithm 5: Computation of radio resource demand at Pmax.

• Algorithm 6: BWA when HAFs can satisfy the user demand with the R radio

resources available at each HAF and BWA when the radio resource demand by

users exceeds the radio resources available at HAF.

At the beginning of each time interval T , the set of active users is determined by the

PRS and fed as input to Algorithm 5. This algorithm computes the radio resource

demand of SG and NSG under each HAF operating at Pmax. If for a HAF f , the

total radio resources required by SG and NSG in a TTI exceeds R, then f is added
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Algorithm 6 BWA Algorithm
Input: ISR, initial RS and RNS for each HAF obtained from Algorithm5
Output: Final RS and RNS for each HAF
Let P ′ be the set of new transmit powers of HAFs & OCCU be set of HIZUEs connected to MBS

1: if ISR = NULL then
2: for each HAF f ∈ F do
3: RS ← RS + (R−RS −RNS) {The leftover radio resources are given to the SG users}
4: Perform Bandwidth Allocation (BWA) for f
5: end for
6: else
7: {ISR 6= NULL}
8: OCCU ← NULL
9: for each HAF f ∈ ISR do

10: for each NSG user in f do
11: if NSG user is in HIZone then
12: OCCU ← OCCU ∪NSG
13: end if
14: end for
15: for each SG user in f do
16: if a SG user is in HIZone then
17: OCCU ← OCCU ∪ SG
18: end if
19: end for
20: end for
21: if OCCU 6= NULL then
22: {There is at least one HIZone user}
23: Initiate PC (i.e., Equation (7.17)) and obtain new power values, P ′ {PC problem is

solvable in polynomial time}
24: Compute new SINR REM and connectivity map
25: for each HAF f ∈ F do
26: Compute R′S and R′NS {with the new SINR values}
27: end for
28: else
29: P ′ ← Pmax {New transmit power values remain same as maximum values}
30: R′

S ← RS

31: R′
NS ← RNS {Radio resource count is same as that obtained at Pmax}

32: end if
33: for each HAF f ∈ F do
34: if R′

S +R′
NS ≤ R then

35: RS ← R′
S + (R−R′

S −R′
NS) {The leftover radio resources are given to the SG users of f}

36: RNS ← R′
NS

37: else
38: Compute radio resource requirement at reduced transmit power by proportional

split

39: R′
Sreduced

←
⌊ R′

S

R′
S+R′

NS
R
⌋
{We take floor so that atleast one radio resource is given to the NSG}

40: RS ← R′
Sreduced

41: RNS ← R−RS

42: Perform Bandwidth Allocation (BWA) for f
43: end if
44: end for
45: end if
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to the set ISR. The output of this algorithm is the set ISR which forms the input

of Algorithm 6.

After Algorithm 5, Algorithm 6 is performed in each time interval T . If ISR =

NULL, Algorithm 6 performs BWA after the final RS and RNS counts for the SG

and NSG in each HAF are computed. If the total demand is less than R, the RS is

recomputed by adding the remaining radio resources to it.

Algorithm 6 also performs the BWA in accordance with the final count of radio

resources required by the SG and NSG in each HAF if ISR 6= NULL. In this

case, first the OCCU set is formed by adding all the HIZone users (consisting of

both SG and NSG users) who are connected to the HAFs in the set ISR. If the

insufficiency in bandwidth is due to the presence of at least one HIZone user, that is,

if OCCU 6= NULL, the linear programming (LP) power control (PC) is performed.

This PC has the following objectives:

• To maximize the total transmission power of all HAFs

• To maintain SINRPC
Th for HIZone users in the set OCCU who are connected to

the MBS

The PC in SOPC mechanism maximizes the sum of transmission power of all HAFs

given by Equation (7.17).

max
∑
f∈F

Pf (7.17)

where, Pf is the transmitting power of each HAF, such that Equation (7.18) is satis-

fied.
Inf ∗ zh + ghMPM

No +
∑
f∈F

ghfPf
≥ λh ∀h ∈ H (7.18)

This constraint maximizes the total transmission power by selecting only those HI-

Zone users to be connected to the MBS who if connected to a HAF increase the radio

resource demand to greater than the available radio resources, that is, zh = 0 for

all HIZone sub-regions to which the SG and NSG in OCCU belong, where, OCCU

is the set of all HIZone users initially connected to HAFs belonging to the set ISR

when operating at Pmax.

The values Pf obtained from the above optimization problem form the set P ′. This

problem is a LP optimization problem with the set P ′ containing Pf , the variables,

and the SINRPC
Th being the constraint and can be solved in polynomial time [72].

The new SINR REM and connectivity maps are determined with the new trans-

mit power values. The radio resource requirements of SG, R′S, and NSG, R′NS, are
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computed with the new SINR values. If the new radio resource demand of SG and

NSG connected to a HAF can be satisfied by R, the process similar to the case where

ISR = NULL is performed. After the power control co-tier interference from neigh-

boring HAFs reduces allowing the HAF edge users to receive better signal thereby

requiring lesser radio resources. The demand for radio resources for the users sit-

uated closer to a HAF increases when its transmission power is reduced. However,

after power control, a HAF allocates the radio resources previously reserved for the

HIZone users, to the IUEs. Thus, the total demand from a HAF may still be sat-

isfiable even if the HAF reduces its transmit power. The power control may not

necessarily reduce the demand for radio resources. There may arise a situation where

on reducing the transmission power of a HAF, a significant number of the HAF cell

edge users shift their connectivity to a neighboring HAF. If this increase is such that

the radio resource demand from the neighboring HAF exceeds R, the algorithm di-

vides R between SG and NSG so that the allotted radio resources are in proportion

to the actual requirement.

If OCCU = NULL, it means that there are no HIZone users and the radio

resource requirement of the IUEs itself is very high. Thus, the HAFs continue to

operate at Pmax and the radio resource requirement remains same for SG and NSG.

The BWA is done by proportionally splitting the the spectrum with respect to the

radio resource demand of the SG and NSG users in the building.

We now justify the need for the Enhanced Priority (EP) scheduler. A legacy PF

scheduler maintains fairness among all users. The scheduler dynamically selects the

active users in the current time interval of T with priority based on traffic character-

istics. The PF scheduler cannot distinguish between SG and NSG users which may

be unacceptable to the SG. A legacy PS scheduler might serve as an alternative, but,

a PS scheduler gives the NSG users extra radio blocks which ought to be given to the

SG.

We make use of two PF schedulers to serve the SG and NSG jointly by dividing

the radio resources between the two groups. The schedulers maintain the required

minimum throughput for both group of users when available resources in a HAF are

sufficient to satisfy the total radio resource demand of all users of the HAF. The

throughput of the SG users is maximized by allocating NSG users with the exact

radio resource needed to meet their minimum throughput and using the rest for the

SG users. We name this two-scheduler scheme as an EP scheduling scheme since

it enhances the priority of the SG over NSG at the same time maintaining fairness

among users of the individual groups.
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We analyze the time complexity of the SOPC mechanism to determine its poly-

nomial nature. In Algorithm 5 the radio resource requirement for every SG and NSG

is calculated and added to RS and RNS, respectively. This process is repeated for all

HAFs. If the total number of SG users and NSG users are S and NS, then the radio

resource computation takes (O(S)+O(NS)) time. The ISR is formed in O(|f |) time,

where |f | is the cardinality of the set of HAFs. Since |f | is very less compared to

S and NS, the time complexity of Algorithm 5 is dominated by the time taken for

radio resource computation, that is, (O(S) +O(NS)).

If Step 1 (if ISR = NULL) of Algorithm 6 is true, the RS and RNS for each HAF

is recomputed by adding extra radio resources to RS. The radio resources required

by individual user, however, need not be recomputed. Here time complexity is O(|f |)
If Step 1 of Algorithm 6 is false, to form the OCCU set, the for loop takes

(O(S) + O(NS)) time to check every SG and NSG user. The power control is a

LP optimization problem which will take O(n3.5L) time, where n is the number of

variables (here, |f | ) and L is the number of bits needed to store the input. The radio

resource computation from the new SINR values will take (O(S)+O(NS)) time. The

final radio resource computation runs once for each HAF thereby taking time O(|f |).
Thus, the total running time is (O(S) +O(NS) +O(n3.5L)).

Thus, summing up, the total running time of the SOPC is:

• O(S) +O(NS) if Algorithm 5 and Step 1 of Algorithm 6 is true.

• O(S) + O(NS) + O(n3.5L) if Algorithm 5 and Step 1 of Algorithm 6 is false

with LP PC due to HIZone UEs.

• O(S) + O(NS) if Algorithm 5 and Step 1 of Algorithm 6 is false with out LP

PC due to lack of HIZone UEs.

7.4.4 Analysis of Occupant Locations

The different combinations of occupant locations are given in Table 7.2, where, PC

is the power control optimization adopted in Algorithm 6 of the SOPC mechanism.

An entry with value 1 in Table 7.2 represents the scenario where SG/NSG users are

present in Indoor/HIZone. The first four row entries are the scenarios without any

HIZone users. These scenarios occur in reality especially during the night time. The

IUEs can take benefit of HAFs operating at Pmax by being served at higher data

rates. Here power control is not required since there are no HIZone users. Even if

there is a spike in the radio resource demand from the IUEs, the HAF continues
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Table 7.2: Truth table showing combinations of user occupant loca-
tions

HIZone Indoor
SG NSG SG NSG

P
C

n
ot

re
-

q
u
ir

ed

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

P
C

m
ay

b
e

re
-

q
u
ir

ed
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

to operate at Pmax but the IUEs are served at a lower data rate. This may occur

in three cases. First, when the building is occupied by NSG users only (refer to

the second entry of Table 7.2) and say, everyone is simultaneously making a voice

call or downloading a video. Since NSG users are not subscribed, the HAFs may

be designed to either provide no service at all or provide best-effort service. Second

case is when the building has only SG users. As mentioned in the system model, we

assumed that the HAFs can handle all types of demands from indoor SG users. If

however, the demand shoots up, it can be taken care of by load balancing between

HAFs as has been done in [129, 130] to solve localized congestion problems or D2D

communication which improves spectral efficiency as devices use lower radio resources

in direct communication [76,80,81,84,96]. The third case is when the indoor demand

increases due to increase in demand of both SG and NSG users. This may also be

solved by load balancing or D2D communication.

Power control may be required however in the next 12 scenarios when the radio

resource requirement in a HAF exceeds R and the HAF tunes its transmit power in

order to revoke the radio resources initially set aside for the HIZone users and use

them to serve the IUEs. This ensures that the HIZone users can get service at least
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from the MBS while the HAFs serve the IUEs. In worst cases, for example, where the

indoor radio resource requirement itself exceeds R, then, even after power control and

shifting of HIZone users to the MBS, the SG users will not receive their minimum

required throughput even after power control. Here, the HAFs may be allowed to

operate at Pmax by proportionally splitting the radio resources between the SG and

NSG if the SG get more radio resources than they get when the HAFs operate at

reduced transmit power.

7.5 Simulation Setup and Performance Results

The system model described in Section 7.3 is simulated using MATLAB. First, we

describe the simulation parameters used for setting up the environment. Then we

present the performance of our model under different use cases.

7.5.1 Simulation Environment

We have enumerated the simulation parameters in Table 7.3. The network topology

in our simulation consists of a single MBS with one building (dimensions specified in

Table 7.3) having multiple HAFs. The lower leftmost indoor sub-region of the building

is at a distance of 350 m from the MBS. The HIZone around the building is chosen

to be 10 m wide. The SG and NSG users in and around the building are uniformly

randomly positioned without any mobility. The power control optimization (refer

Equation (7.17)) which is used to obtain the new tuned transmit power values runs is

solved using GAMS CPLEX solver. For simplicity we have considered minimum data

rate to be same among all users in SG and NSG, respectively, that is, 400 kbps for

SG and 200 kbps for NSG. All the users have infinite traffic demand and the HAFs

with R radio resources try to guarantee at least the above mentioned data rates to

the SG and the NSG. For the user locations in indoor and HIZone sub-regions, we

have considered one user in each sub-region.

The number of HAFs and their co-ordinates inside the building are determined

by the OPF model (refer Equation (7.1)) solved using GAMS CPLEX solver [33].

All the HAFs are placed on the ceiling of the building. The minimum number of

HAFs required and their optimal locations inside the building when all the HAFs

are operating at Pmax as obtained from the OFP model are depicted in Figure 7.4.

The dark red colored indoor sub-regions which are encircled and marked are the sub-

regions where the HAFs are positioned on the ceiling. The co-ordinates of the HAFs
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Table 7.3: Simulation Parameters

Parameter Value
Building dimensions 48m× 48m× 3m
Number of rooms 16
Room dimensions 12m× 12m× 3m
HIZone width 10m
Number of indoor sub-regions 144
Number of HIZone sub-regions 52
Indoor sub-region dimensions 4m× 4m× 3m
Number of floors One
SINRP

Th -2 dB
SINRPC

Th -4 dB
Floor and wall loss 8 and 10 dB
HAF transmit power (Pmax) 0.2W (23 dBm)
Macro transmit power (PM) 39.8W (46 dBm)
MBS height 30m
Transmission time interval (TTI) 1 ms
Simulation time (T ) 100s
Number of RBs (R) 25
Minimum average data rate of SG users 400 Kbps
Minimum average data rate of NSG users 200 Kbps

are the center of the encircled sub-regions. This placement ensures that every indoor

and HIZone sub-region gets above SINRP
Th. As can be seen from the figure, the

weakest signal received by a sub-region is above -2 dB. Here, some sub-regions, like

sub-regions at co-ordinates (3,2) and (2,7) named SR(3,2) and SR(2,7), are lighter than

the others like SR(12,2), SR(8,8), SR(4,13) and SR(13,12) because these sub-regions with

lighter shade experience greater co-tier interference than the others.

The connectivity map in Figure 7.5 shows the coverage area of each HAF inside

the building and in the HIZone when operated in Pmax. The sub-regions in the cell

edge of the HAFs are the ones which receive lower SINR values. This occurrence

can be observed by comparing an indoor sub-region SR(2,8) and HIZone sub-regions

SR(2,14) and SR(5,14) in Figure 7.4. Sub-regions which receive direct interference from

the MBS (i.e., those situated outside the building) have lower SINR values than

those inside the building. This is illustrated as follows. The signal from HAF3 has

to cross just one wall to reach the sub-region SR(2,8). The same holds for the signal

coming from HAF6 to the sub-regions SR(2,14) and SR(5,14). However, the cross-

tier interference from the MBS to the sub-region SR(2,8) is lower when compared

169



to the sub-regions SR(2,14) and SR(5,14). This is because the signal from the MBS

has to penetrate through the building wall to reach sub- region SR(2,8). The sub-

region SR(4,13), above which HAF6 is located is darker compared to SR(2,7) above

which HAF3 is located, that is, sub-regions close to HAF6 experience lower co-tier

interference than the ones near to HAF3. But, still, the SINR of SR(2,8) is higher

than that of both SR(2,14) and SR(5,14). This shows that the cross-tier interference is

dominant over co-tier interference outside the building yet, the SINRP
Th is maintained

in indoor and HIZone which reinforces the need for using OPF model for placement of

HAFs. Optimally placed HAFs reduce not only co-tier interference but also cross-tier

interference inside the building and as well as in HIZone.
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Figure 7.4: REM across sub-regions for HAFs at Pmax

7.5.2 Performance Analysis

We provide a detailed assessment of the SOPC mechanism and how it handles different

situations with the help of four scenarios. The scenarios are selected from Table 7.2.

We first consider a simple scenario where the SG users are indoors and NSG users are

in the HIZone (seventh entry in Table 7.2). Another scenario is where SG and NSG

users occupy both indoor and the HIZone (last entry in Table 7.2). Our objective is

to study how the SOPC works in both the scenarios like when all HAFs can serve

their users and when most of the HAFs cannot serve the HIZone users. The fate of

the HIZone users who connected to the MBS after power control is also discussed

later.
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The PF metric is obtained from Equation (7.19).

MetricPFi (t) =
Ti(t)

TP PF
i (t− 1)

(7.19)

where, Ti(t) is the achievable throughput of the ith user in a particular TTI t in the

simulation interval of T and TP PF
i (t − 1) is the throughput at time (t − 1). The

Priority Set (PS) Scheduler discussed in [101] can be used to distinguish between SG

and the NSG. We altered the PF metric so that a user is prioritized on the basis of

its past average throughput as well as its minimum required data rate per T , that is,

dSG for SG user and dNSG for NSG user. The altered PF metrics for SG and NSG

users are given by Equation (7.20) and Equation (7.21), respectively.

MetricPSSSGi
(t) =

Ti(t)

TP PSS
i (t− 1)

dSG (7.20)

MetricPSSNSGj
(t) =

Tj(t)

TP PSS
j (t− 1)

dNSG (7.21)

Scenario I

In this case we look into the performance of the SOPC mechanism when the SG users

are present indoors and NSG users are present in the HIZone and all the HAFs can

serve its users at the minimum data rate with R resource blocks. To explain this case,

we arbitrarily place as many SG and NSG users as possible such that the resource
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requirement for all HAFs remain within R. There are 43 SG users in the building

and 16 NSG users in the HIZone in this case as illustrated in Figure 7.6. Since all the

HAFs have sufficient radio resources and are operating at Pmax, the REM plot and

UE connectivity are same as in Figures 7.4 and 7.5, respectively.
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Figure 7.6: Scenario I: Building with SG users in indoor sub-regions
and NSG users in HIzone sub-regions
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Figure 7.7: Average throughput
per user in each HAF using a
legacy PF scheduler

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t 
p
e
r 

u
s
e
r 

(i
n
 K

b
p
s
)

HAF ID

 

 

SG

NSG

Figure 7.8: Average throughput
per user in each HAF using a
legacy PS scheduler

From Figures 7.7, 7.8 and 7.9 we can compare the performance of proposed EP

scheduler with respect to legacy PF and PS schedulers. The PF scheduler if used to
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Figure 7.9: Average throughput per user in each HAF using EP
scheduler

schedule the available radio resources among all users does not distinguish between

the SG and NSG users and every user is treated with equal fairness. We can conclude

from Figure 7.7 that the scheduler in each HAF is almost equally fair to both groups.

The throughput of the SG is slightly better than the NSG because the NSG users

are located far away from the HAF and are served at a weaker signal strength as

compared to the indoor SG users.

Though PS scheduler serves the purpose of providing differentiated service, it

does not limit the radio resource allocation to the NSG users. As a result, NSG

users receive radio resources even after their required throughput is met. These radio

resources could be used to serve only the SG users to maximize their throughput.

We can see in Figure 7.8 that the NSG users get a throughput above their minimum

requirement. Even though the difference of average throughput per user for SG and

NSG in each HAF is greater than that in Figure 7.7, it is still quite small. This in

realistic cases will not be appreciated by the SG users who would want to have as

many radio resources at their disposal as possible. Therefore, we use EP scheduler

in such a way that the PF scheduler for NSG is configured with minimum of RBs

required to guarantee their required data rate. The PF scheduler of SG on the other

hand is configured with remaining radio resources. For instance, in a HAF with 25

RBs in a TTI, the SG and NSG demand is 17 and 5 RBs, respectively in a TTI. The

SOPC mechanism would give 20 (3 excess radio resources in addition to the required
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17) radio resources to the scheduler of the SG while the scheduler of NSG would

schedule only 5 radio resources among its users. We observe from Figures 7.7, 7.8

and 7.9 that the average throughput per user of all the SG users under HAF4 remains

constant. This is because there are no NSG users under HAF4 and the number of

users served in each case remains the same.

Our use of two separate PF schedulers for the two groups in the EP scheduler

gives the SG users a higher throughput whenever there are excess RBs. The per-

centage gain in throughput for the SG with EP scheduler over the legacy PF and PS

scheduler for the building scenario in this case is greater than 40%. The throughputs

achieved by SG users improve significantly with the lowest being 500 Kbps (as shown

in Figure 7.9). This is a striking contrast to throughputs obtained from PF or PS

schedulers where the maximum average throughput achieved by a SG user is just

above 400 Kbps. The values of per user average throughput is different for all HAFs

because of the fact that the number of SG users and NSG users served by a HAF

differs from one HAF to another. From Figure 7.9, we can interpret that the average

throughput per user of SG is lowest in HAF2 because it has the highest number of

users, 13. The throughput of the users is also dependant on the number of users

being served, i.e., more number of users brings down the average throughput of each

user. Therefore, we analyzed the performance of the EP scheduler using the Jain’s

fairness index. The Jain’s fairness index is a well-known indicator used to measure

the level of throughput fairness among users [131]. The value of the Jain’s fairness

index ranges from 0 to 1, where value close to 1 means that the radio resources are

fairly allocated to the users. Results showed that the EP scheduler maintains fairness

index above 0.99 for both the SG and NSG.

In order to maintain the QoS for different traffic classes of SG, the PS scheduling

algorithm can be incorporated in the EP scheduler. We use PF scheduler for simplic-

ity. We have considered all SG users to have the same minimum data requirement

and similarly for the NSG users. From here on, all the scheduling is performed by

the EP scheduler.

Figure 7.10 gives an idea of how the throughput per user for SG and NSG changes

with increasing NSG users in the HIZone for as long as all HAFs have sufficient radio

resources to serve all its users above or at their minimum data rate. The result shown

here is for 24 SG users inside the building with the number of NSG users ranging from

5 to 35. We have taken an average of 4 SG users per HAF because we want to study

the effect of increasing HIZone users on the otherwise lightly loaded HAF. The HAFs

have only 25 RBs and the SG and NSG users have infinite buffers. As the number of
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Figure 7.10: Average throughput per user connected to HAF as a
function of NSG users in the HIZone

NSG users goes above 37 there is one HAF which has insufficient radio resources. We

can derive from the figure that the NSG users always get just the required minimum

data rate. In the first case, the throughput of the SG users is slightly above 200 Kbps

because the users might have required only a fraction of the radio resources. But,

radio resources are not allotted in fractions therefore the throughput is slightly better.

The SG users enjoy high data rates when the NSG users are very less in number. The

achieved data rate keeps decreasing as more NSG users occupy the HIZone. Since the

HAFs have sufficient radio resources at all instances the average throughput remains

well above the minimum required rate.

Scenario II

As in the previous scenario here also the SG users are located indoors and the NSG

users are located in the HIZone sub-regions as shown in Figure 7.11. The number of

SG and NSG users are 51 and 18, respectively. The number of SG and NSG users

are chosen so that at least one HAF has insufficient radio resources for serving the

required demand. The NSG users in the HIZone sub-regions connected to the MBS

(red circle marker) after power control in SOPC are differentiable from those who are

connected to the HAFs (green star marker).
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ing, Case2: When the HIZone users are connected to HAFs operat-
ing at Pmax, Case3: When the HIZone users connect to MBS after
the HAFs tune their transmit power to P ′, Case4: When the HIZone
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Since HAF1 and HAF5 have radio resource demand greater than what is available,

according to the SOPC mechanism, Algorithm 6 is executed. The power control

ensures that all the HIZone users which were previously connected to HAF1 (4 NSG

users) andHAF5 (5 NSG users) can now connect to the MBS. The new transmit power

values of the set P ′ are as given in Table 7.4. Even though HAF1 and HAF5 are the

ones which needed to reduce their transmit power in order to reduce interference to

the HIZone users, we observe that HAF2 and HAF4 also reduce their transmit powers.

HAF2 reduces its transmit power in order to reduce the cross-tier interference to the

nearby HIZone users who are now trying to connect to the MBS. HAF4 reduces its

transmit power to reduce the co-tier interference to the IUEs located close to HAF5

which is now operating at a very low transmit power. If HAF4 was to operate at

Pmax, the IUEs connected to HAF5 would experience high co-tier interference from

HAF4. The signal from HAF4 at Pmax would be strong enough to create interference

but not strong enough to serve them.

Table 7.4: New transmit power values after power control

HAF1 HAF2 HAF3 HAF4 HAF5 HAF6

0.0853W 0.11798W 0.2W 0.18722W 0.02W 0.2W

Figure 7.12 compares four CDF plots of SINR received by the victim HIZone

users. The victim HIZone users are those users who if connected to the HAFs, will

bring down the minimum data rate of all the users of that HAF. Case1 assumes that

there are no HAFs in the building. The HIZone users receive good SINR from the

MBS without any cross-tier interference. Case2 is the ideal case where the HIZone

users receive signal from the nearby HAFs. Though the cross-tier reference is absent

in Case1, the CDF plot of Case2 is better because the HAFs are located close to the

HIZone users as compared to the MBS and therefore the signal strength received from

the HAF is higher than that received from MBS in the absence of HAFs. The CDF

plot for Case3 is obtained from the SINR values that the HIZone users receive when

connected to the MBS after power control. This in comparison with the CDF plot in

Case4, where the HIZone users connect to MBS as HAFs operating at Pmax in closed

access mode, shows that the HIZone users can now at least make a connection. In

Case4 all victim HIZone users would be unable to connect to the MBS because none

of the users receive SINR greater than -4 dB. The CDF plot in Case1 seems better

than the plot in Case3. But, in the former the HIZone users get throughputs lower

than the minimum required rate even with better SINR values due to insufficiency
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of radio blocks in the HAF. Also, the HIZone bring down the throughput of the SG

users connected to the same HAF like them.
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Figure 7.13: Connectivity of sub-regions to HAFs, where same col-
ored sub-regions are connected to a single HAF, HAFi

The connectivity of sub-regions (indoor and HIZone) to the HAFs changes (refer

Figure 7.13) from what is observed when all the HAFs operate at Pmax. While

the HAFs which have reduced transmit power now have smaller coverage areas, the

HAFs operating at relatively higher transmit power spread their coverage areas to

neighboring sub-regions. As the coverage area of the HAFs change after power control,

some HAF cell edge users may reconnect to a neighboring HAF offering better signal

strength. The HAFs reducing their transmit power may thus lose some of their edge

users to a neighboring HAF. The radio resource demand of users closer to a HAF

increases if the HAF operate at reduced transmission power. Since it does not have

to serve the HIZone users any more, the said HAF has extra radio resources at its

disposal which can be used by the IUEs. Some HAFs which serve more users because

of the shift in user connectivity, experience increased radio resource demand. If the

number of users shifting connectivity is high or an edge user is connected to a HAF

with relatively low transmit power, then the radio resource requirement goes up. If

this demand becomes greater than R then the HAF splits R between SG and NSG

in proportion to their demands. For HAFs with less number of HAF cell edge users,

the users experience higher SINR than before. This is apparent in the HAFs which

are still operating at Pmax. As the neighboring HAFs decrease their transmit power,
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the co-tier interferences experience by all the HAFs reduce and the users experience

better signal strength from the closest HAFs.
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Figure 7.14: Average throughput
per user in each HAF after power
control in SOPC mechanism
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Figure 7.15: Average throughput
per user in each HAF without
power control

Figure 7.14 shows the per user average throughput in each HAF after the power

control. Figure 7.15 on the other hand shows the per user average throughput in each

HAF for the situation when the power control is not employed. If the power control

is not employed, a HAF will try to serve all users in its coverage area even if it cannot

guarantee the minimum data rate thereby lowering the average throughput of all its

users. This will be unacceptable to the SG users who are unwilling to share radio

resources with NSG users at the expense of their own throughput. Instead of making

all SG users belonging to HAF1 and HAF5 suffer lower throughputs (less than 400

Kbps), the SOPC assures a minimum of 400 Kbps to all SG users and a minimum of

200 Kbps to all NSG users connected to the HAFs. The average throughput of SG

users in HAF4 is lesser in SOPC mechanism because the number of users under the

HAF increases by 2, but it remains above 400 Kbps. On the other hand, the average

throughput of SG users in HAF5 increases by almost 180% as the number of users

to be served drops from 6 SG users and 5 NSG users to only 4 SG users after doing

power control by the SOPC mechanism.

Scenario III

Here, the indoor and HIZone users are a mix of SG and NSG users. All the HAFs have

sufficient radio resources to serve all the users, they operate at Pmax and maintain

at least the minimum data rate for all the users. This scenario resembles the first
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scenario in terms of meeting the minimum data requirements with the difference

being in the user distribution. While previously we restricted the location of SG

and NSG to indoor and HIZone sub-regions respectively, here we allow NSG users

to access the HAFs from inside the building and the SG users to enjoy the HAFs’

service from the HIZone. We select the number of SG and NSG users such that the

total radio resource demand in each HAF is at most R resources. The SINR REM

and connectivity maps of the building and the surrounding HIZone are similar to

Figures 7.4 and 7.5, respectively as all the HAFs operate at Pmax.

Scenario IV

The users are located in a fashion similar to Scenario III in Subsection 7.5.2 - a mix of

SG and NSG users occupy the indoor and HIZone sub-regions. This scenario differs

from the previous in the transmitting power of the HAFs. For all the HAFs R radio

resources per TTI may not be enough to serve all the users at their minimum data

rate due to presence of more HIZone users or more NSG users inside the building.

Refer to Figure 7.16 for the user location setup that we shall consider for this scenario.

In total there are 41 indoor SG users, 10 indoor NSG users, 5 HIZone SG users and

17 HIZone NSG users. The number of users are chosen arbitrarily so that they satisfy

the resource demand. The figure also shows the location of each user and their status

after power control, that is, whether the user is connected to a HAF or the MBS. As

can be discerned from the figure, HAF1, HAF2, HAF5 and HAF6 have high radio

resource demand due to which the HAF service to the HIZone users is cut off.

We provide the CDF plot which shows that the SINRPC
Th is maintained for all the

HIZone users closer to HAF1, HAF2, HAF5 and HAF6 but are to be served by the

MBS. The CDF plot for Case3 in Figure 7.17 shows that all HIZone users connected

to the MBS after the power control in the SOPC mechanism get SINR value of at

least -4 dB from the MBS. Though Case2, where the HIZone users connect to HAFs

operating at Pmax, is the best choice (with 85% of users getting a positive non-zero

SINR), it is not opted during situations when the radio resource demand in HAF is

more than what is available otherwise the throughput of the IUEs will be degraded.

Case4 is the worst case which occurs when the HAFs operate at Pmax and do not

serve the HIZone users. Case1 is the base case where there are no HAFs in the MBS

cell and the users experience no cross-tier interference.

The SINR REM and connectivity maps are shown in Figures 7.18 and 7.19, re-

spectively, for the new power values which can be referred from Table 7.5. Unlike

HAF4 in Scenario II (refer 7.5.2), in this case both HAF3 and HAF4 (having radio
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Table 7.5: New transmit power values after power control

HAF1 HAF2 HAF3 HAF4 HAF5 HAF6

0.09134W 0.05436W 0.2W 0.2W 0.02042W 0.03896W
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regions for HAFs after power con-
trol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

 

X Sub−region Number

 

Y
 S

u
b

−
re

g
io

n
 N

u
m

b
e

r

HAF
1

HAF
2

HAF
3

HAF
5

HAF
6

HIZone

HAF
4

connected to MBS

Figure 7.19: Connectivity of sub-
regions to HAFs, where same col-
ored sub-regions are connected to
a single HAF, HAFi

resource demand less than R) operate at Pmax. This may be explained by the presence

of lesser number of indoor cell edge users. Cell edge users are more affected by the co-

tier interference from neighboring HAFs after reduced power transmissions. With the

new power values we can now compare the REM plots in Figures 7.4 and 7.18. The

signal values from the HAFs are very low in the HIZone sub-regions. For sub-regions

like SR(8,1), SR(12,14), SR(14,6) and SR(14,10), the SINR from the nearest HAF is be-

low SINRPC
Th (-4 dB threshold). However, for those connected to the MBS, marked

in brown in Figure 7.19, like the sub-regions SR(1,1) and SR(14,1), the SINR is lower

than that received from HAF but is above SINRPC
Th . The SINR for indoor sub-regions

increases due to lower co-tier interference from the neighboring HAFs operating at re-

duced power. This can be seen by comparing the SINR values of sub-regions SR(2,8),

SR(5,6) and SR(8,10) in Figures 7.4 and 7.18. The coverage areas of HAF1, HAF2,

HAF5 and HAF6 reduce on power control with the effect more prominent in HAF5

which has the least transmit power. The HIZone sub-regions not occupied by any

users are shown to be connected to a HAF. However, from the REM map we can

observe that some of these sub-regions, especially those near to HAFs operating at

low transmit power, have SINR lower than SINRPC
Th (sub-regions SR(8,1), SR(12,14),
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SR(14,6) and SR(14,10)). This simply means that, in the event that sub-regions were

occupied by users, they would be connected to the MBS to receive improved signal

strength.
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Figure 7.20: Average throughput
per user in each HAF after power
control in SOPC mechanism
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Figure 7.21: Average throughput
per user in each HAF without
power control

Table 7.6: Radio resource requirement in each HAF before power
control

Number of
SG users

Radio re-
source
demand RS

Number of
NSG users

Radio re-
source
demand
RNS

Total de-
mand

9 1608700 5 1236300 2845000
8 2420500 7 1245100 3665600
6 1053200 3 1190700 2243900
9 1335200 0 0 1335200
7 1853000 5 1204100 3057100
7 1772700 7 1566500 3339200

The radio resource demand shown is for T = 100sec

Figures 7.20 and 7.21 compare the per user throughput of all the users connected

to the HAFs with and without power control, respectively. The average throughput

of each user is way below the minimum data rate for those connected to HAFs HAF1,

HAF2, HAF5 and HAF6 if no power control is employed. After the power control,

the throughput of the users connected to these HAFs improve. HAF2 gives highest

average throughput since it now has to serve only 9 users (5 SG and 4 NSG users) as
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Table 7.7: Radio resource requirement in each HAF after power
control

Number of
SG users

Radio re-
source
demand RS

Number of
NSG users

Radio re-
source
demand
RNS

Total de-
mand

8 1452500 2 395300 1847800
5 436300 4 1268100 1704400
7 1258600 3 938000 2196600
11 2474300 2 521500 2995800
5 1173200 0 0 1173200
5 1137500 2 439800 1577300

The radio resource demand shown is for T = 100sec

opposed to 15 users (8 SG and 7 NSG users) prior to the power control. But, as seen in

Figure 7.20 the users connected to HAF4 suffer from low throughput values. This can

be explained from Tables 7.6 and 7.7 by comparing the radio resource requirement of

each HAF before and after the power control. The combined radio resource demand

from SG and NSG in HAF1, HAF2, HAF5 and HAF6 is greater than the available

2500000 RBs in a HAF for 100 seconds of simulation interval. After the power control,

the total demand decreases as the number of users under these HAFs decrease and the

average throughput gain for the SG users in each of these HAFs is almost 65%, 294%,

179% and 135%, respectively. The decrease in the number of users can be due to two

reasons. Firstly, it can be because of handovering the HIZone users to the MBS and

secondly because of handovers as a result of change in the HAF coverage areas. The

radio resource demand of NSG users in HAF2 increases. This can be explained by

the fact that some NSG users connected to HAF2 are situated at the HAF cell edge

and need more radio resources as the HAF reduces its transmission power. There is

a handover of one SG user to HAF3 as a result of which the radio resource demand

of SG users in HAF3 increases. But, the minimum throughput for the SG as well as

NSG users is maintained with the average throughput per user for the SG reducing

by only 3% when compared to that obtained without any power control. The average

throughput in HAF4 reduces by 55% after doing power control using SOPC. The

number of users in HAF4 increases by 4. Since the new users joining HAF4 were

cell edge users of neighboring HAFs, they are located at the cell edge of HAF4. In

order to serve these new users, the HAF experience an insufficiency in radio resources

and is therefore unable to maintain the minimum data rate for the users connected
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to it. Henceforth, it may be possible that a HAF initially having sufficient radio

resources before the power control has insufficient radio resources after it. This may

be because the HAF now has to accommodate some cell edge users of neighboring

HAFs or because the HAF which reduced its power has all or most of its users near its

cell edge. If in an extreme case we find that even after power control the insufficiency

in most of the HAFs is increasing, we may allow the HAFs to operate at Pmax if that

provides the SG users with greater number of radio resources.

Analysis of throughput of Macro users

Here, we provide an analysis of the throughput of the Macro users, that is, any SG or

NSG user connected to the MBS from outside the building (including the HIZone), by

varying the number of Macro users in the system and compare the average throughput

curves thus obtained for the following four cases:

• Case1: When the HIZone users are connected to the MBS and there are no

HAFs. All the users in the system connect to the MBS.

• Case2: When the HIZone users are connected to HAFs operating at Pmax. The

MBS provides service to all the outdoor users in the cell except those in the

HIZone and inside the building.

• Case3: When the HIZone users connect to the MBS after the HAFs tune their

transmit power by using the SOPC mechanism. Here the MBS may also serve

some users in the HIZone, that is, those HIZone users who cannot be served by

the nearest HAF.

• Case4: When the HIZone users try to connect to the MBS with the HAFs

operating at Pmax. The HAFs act as closed access points for the HIZone users.

The MBS serves those HIZone users who have SINR greater than a threshold

value. The other HIZone users get no service from either the HAFs or MBS due

to high cross-tier interference.

• Case5: When time domain eICIC technique based on Almost Blank Subframe

(ABS [132, 133]) is used. Here, the HAFs mute their transmissions for 1/8

of each time interval, T (simulation time), so that the MBS can schedule the

HIZone users experiencing strong interference from HAFs.

In Figure 7.22, Case2 apparently seems the best choice as all the HIZone users

are always served by the HAFs which transmit at Pmax such that the number of

185



10 20 30 40 50 60 70 80 90 100

50

200

400

600

800

1,000

1,200

Number of macro users

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t 
p
e
r 

u
s
e
r 

(i
n
 K

b
p
s
)

 

 

Case
1

Case
2

Case
3

Case
4

Case
5

Minimum data rate line

Figure 7.22: Average throughput plot for users connected to the
MBS for video sessions
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Figure 7.23: Average throughput plot for users connected to the
MBS for voice sessions

users that the MBS has to serve goes down and their throughput is boosted. A

point worth noting is that though the Macro users enjoy high throughput values,

the throughput of the HIZone users connected to the HAFs degrades since, the min-

imum data requirements are not met. The performance of the Macro users under
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the proposed SOPC mechanism is recorded in Case3. The curve in Case4 also shows

a better performance than the SOPC mechanism but, Case4 has the possibility of

having some HIZone users with zero throughput. Case4 is when the HIZone users

are denied access to the HAFs. As a result they try to connect to the MBS. Since the

HAFs operate at Pmax in this particular case, the HIZone users experience very strong

cross-tier interference and almost 40% of the sub-regions cannot connect to the MBS

due to the received SINR being lower than SINRTh. Although the IUEs enjoy high

throughput values from HAFs operating at Pmax, there may be users in the HIZone

with zero throughput. Case3 provides a trade-off between the Case4 (where IUEs

have a high priority at the cost of no signal to around 40% HIZone sub-regions) and

Case2 (where the Macro users enjoy uninterrupted service at the cost of degraded

service to the IUEs). In Case2, if all the HAFs are able to meet the minimum user

data rate, then the MBS does not have to serve the HIZone users. If, however, any

HAF is unable to meet the minimum data rate, the power control allows the HIZone

users of these HAFs to be served by the MBS. As a result, all users are served at all

times without greatly affecting any particular group of users. The curve obtained for

Case1 is lower than the one obtained from the SOPC mechanism, Case3, because, in

the former, the MBS has to serve all the users irrespective of their locations. Case3

improves over Case1 by almost 30% when there are 50 Macro users and 61% in case

of 100 Macro users in the system. There is no interference from any HAFs and all

users are served fairly in Case1 and unlike in previous cases, the HIZone users cannot

be offloaded to the nearby HAFs. The curve in Case5 shows the average throughput

per user when eICIC is employed. Our SOPC mechanism performs better than eICIC

offering a gain of almost 48% and 82% in case of 50 and 100 Macro users, respectively.

The curve obtained in the SOPC mechanism provides a per user average throughput

greater than 50 Kbps with 100 Macro users and can therefore could support flows

requiring higher guaranteed data rates. The curves become flatter and come closer

to each other as the number of users increase because the user density served by the

Macro increases at a much faster rate than the user density in the HIZone.

As voice calls can be made with low data rate requirements, in Figure 7.23 we vary

the number of Macro users till 300. The average throughput per user obtained in our

SOPC mechanism in Case3 is at an acceptable data rate of 26 Kbps, which is almost

62% greater than that obtained in eICIC mechanism in Case5.
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7.6 Summary

In this chapter, we motivated the hybrid access control in Femtos so that the SG users

can benefit from the re-use of spectrum by the HAFs and in return the NSG users can

get a minimum service when they are in the HIZone of buildings. The importance of

optimal placement of HAFs in the building was explained and an optimal placement

model was formulated. We proposed an optimal and a sub-optimal power control

mechanisms that split radio resources between the SG and NSG and tune the transmit

power of the HAFs whenever the radio resources available are insufficient to serve all

the users connected to them. Simulation results showed that our use of power control

and EP scheduler not only improved the throughput of the SG users but also provided

service to NSG when they were in the HIZone or inside the building where the signal

from the MBS was insufficient to obtain any service. The SOPC mechanism provides

a gain of almost 82% over the eICIC mechanism when there are 100 Macro users in

the system. Dynamic transmit power control in hybrid access mode is shown to be

advantageous for both SG and the NSG with the MBS throughput being comparable

to the MBS throughput in CAFs with fixed transmission power.
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Chapter 8

Comparison of Proposed Solutions

Over the last few chapters, various solutions that can be used to improve the data

rates of IUEs without much affecting the data rates of HIZUEs have been proposed.

In this chapter, we compare the performance of different solutions, and highlight their

merits and demerits. More specifically, we analyze the throughput variation of IUEs

and HIZUEs in each of the solutions. In the following, we briefly describe each of

the solutions.

• CKM placement: The co-ordinates of the every center sub-region of the

building are given as the input. By K-Means clustering algorithm [63], the

required number of clusters are formed using these co-ordinates of sub-regions.

The Femtos are then placed at centroid of each cluster inside the building.

• MinNF Model: In this solution, the MinNF model minimizes the number of

Femtos by determining optimal locations for their deployment inside the build-

ing. The Femtos transmit with full/ transmit power. The model is formulated

as an ILP problem (chapter 3).

• OptFP Model: In this solution, the Femtos which are optimally placed us-

ing MinNF model transmit with optimal power obtained using OptFP model.

The OptFP model is formulated as an MILP problem which tries to reduce

interference to HIZone users who are connected to an MBS (chapter 4).

• D2D MILP Model: In this solution, the IUEs serve as D2D based relays

and provide downlink connectivity to the HIZUEs. The selection, resource

block allocation and power control of the D2D links are performed with the

help of MILP optimization model (chapter 6).
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• D2D Heuristic Algorithm: In this solution, the IUEs serve as D2D based

relays and provide connectivity to the HIZUEs. The selection, resource block

allocation and power control of the D2D links are performed with the help of

two-step D2D heuristic algorithm. The D2D heuristic algorithm is formulated

as an LP problem (chapter 6).

• JDHO: This can be achieved by the combinatorial utilization of both D2D

heuristic algorithm and OptFP model (called as JDHO algorithm), that would

allow some HIZUEs which do not have any FIUE to provide downlink access

to get connected to one of MBSs and the remaining HIZUEs through D2D

links (chapter 6).

• OPF & OPC: In this solution, the HIZUEs connect to the nearby hybrid

access Femtos instead of the Macro BS. The RB allocation and user selection

are performed using HAF Optimal model (chapter 7).

• OPF & SOPC: In this solution, the HIZUEs connect to the nearby hybrid

access Femtos instead of the Macro BS. The RB allocation and user selection

are performed using HAF sub-optimal PC algorithm (chapter 7).

• DUD: In this solution, to reduce the battery drain from UEs and to improve

the downlink data rate, we use the DUD access method i.e., uplink connected

to the closest Femto and downlink to a less loaded Femto (chapter 2).

• VR: In this solution, to reduce the co-tier interference between neighboring

Femtos, Femtos dynamically increase or decrease the cell edge/non-cell edge re-

gion of Femtos and efficiently allocate the radio resources among cell edge/non-

cell edge region of Femtos (chapter 9).

The characteristics of above mentioned proposed solutions are compared in Table 8.1.

8.1 Scheduling Algorithms

In No Femto, MinNF, and OptFP models, the MBS and Femto schedule the users

using PF scheduling algorithm. In each TTI t, the PF algorithm determines the PF

metric for all the UEs using Equation (8.1).

PFmetricti =
IAT ti
AAT t−1i

(8.1)
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Table 8.1: Characteristic of Proposed Solutions

Solutions Optimal
Place-
ment

Power
Control

Femto Ac-
cess Mode

Load Bal-
ance

DL/UL Interference
Management

CKM 7 7 Open 7 DL 3

MinNF Model 3 7 Open 7 DL 3

OptFP Model 3 3 Open 3 DL 3

D2D MILP Model 7 3 7 3 DL & UL 3

D2D Heuristic Algo-
rithm

7 3 7 3 DL & UL 3

JDHO Algorithm 3 3 Open 3 DL 3

OPF & OPC 3 3 Hybrid 3 DL 3

OPF & SOPC 3 3 Hybrid 3 DL 3

DUD 3 7 Open 3 DL & UL 7

VR Algorithm 7 7 Open 7 DL 3

In above equation, PFmetricti and IAT ti are the PF metric and Instantaneous

Achieved Throughput of UE i at TTI t, respectively. AAT t−1i is the Average Achieved

Throughput of UE i till TTI (t− 1). The calculation of IAT ti and AAT t−1i is shown

below.

IAT ti = Bt
i ∗ SE(SINRt

i) (8.2)

AAT t−1i = β ∗ AAT t−2i + (1− β) ∗ IAT t−1i (8.3)

where, Bt
i is the RBs assigned to UE i at TTI t, SE(SINRt

i) is the Spectral

Efficiency corresponding to the SINR of UE i at TTI t. The SE can be calculated

using the LTE/CQI table [134]. IAT ti will be 0 if the UE i is not scheduled in TTI

t. β is a weighting factor which lies between 0 and 1. In our simulation, we set the

value of β as 0.99.

In D2D heuristic algorithm, the Femto and MBS use PF scheduling algorithm.

For scheduling the D2D links, PF algorithm cannot be used, because the D2D se-

lection is done as part of our D2D heuristic algorithm. But proposed D2D heuristic

algorithm does not perform time domain scheduling of D2D links (i.e., from the po-

tential HIZUEs set our algorithm only selects the D2D links, assigns resources and

allocates power to each of the link, but it does not update the set as time progresses).

For example, the set of HIZUEs which are scheduled at TTI t should be removed

from the potential HIZUE set in TTI (t + 1), otherwise, the heuristic algorithm

may keep choosing the same D2D pairs repeatedly and hence the other D2Ds will

not receive any data. Our D2D heuristic algorithm does not update the potential

HIZUE set continuously. We have used a Round Robin (RR) scheduling algorithm

to schedule the D2Ds. The RR algorithm keeps removing those HIZUEs which are
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already scheduled and maintains a list of those HIZUEs which are not scheduled

yet. Once all the HIZUEs receive data from the FIUEs, RR adds all HIZUEs back

to the potential HIZUE set and repeats the scheduling process. Of course, unlike

PF algorithm, RR does not guarantee throughput fairness among the D2Ds. Also the

Femto must send the HIZUE data to the FIUE before D2D scheduling takes place

which is not considered in PF scheduling algorithm. In future, we consider developing

a scheduling algorithm which accounts for the above stated challenges.

The scheduling algorithm (i.e., EP scheduler) used by the OFP and SOPC has

already been discussed in Section 7.4. In each scenario, UE scheduling occurs for

100000 TTIs (i.e., 100 seconds).

8.2 Experimental Setup and Comparison Results

The LTE HetNet system model is simulated using MATLAB as given in chapter 6.3.

A single floor building is considered where one MBS is located at a distance of 350

m from the south-west side of the building of dimensions 48 m × 48 m × 3 m.

The transmission power of MBS and Femto are 46 dBm and 20 dBm, respectively.

The MBS and the Femtos share the same 5 MHz spectrum (i.e., frequency reuse

one). 200 UEs are uniformly distributed around the MBS. Out of this 200 OUEs,

20 UEs are HIZUEs and 100 UEs are uniformly distributed inside the building. For

the D2D based relays, 15 UEs out of 100 IUEs, act as FIUEs. We assume that the

UEs have infinitely backlogged data. The results provided in this chapter show the

performance of different solutions over 50 different UE placement scenarios. Other

important simulation parameters are same as in Table 7.3. In the rest of the chapter,

we discuss the throughputs of IUEs and HIZUEs obtained using different solutions.

8.2.1 Throughput Comparison

Figures 8.1 and 8.2 show the throughput CDF IUEs and HIZUEs in different solu-

tions. In both the figures, the legend name is associated with SINRTh for IUEs and

HIZUEs, respectively (for example -4 dB and 0 dB in case of D2D heuristic algo-

rithm). In No Femto method, since there is no cross-tier interference from Femtos, the

throughput of HIZUEs is high. Since the MBS is not able to maintain a minimum

SINRTh inside the building, most of the IUEs will experience negligible throughput

in No Femto method. In CKM placement method, the Femtos are deployed inside

the centroid (the building) of each cluster hence, it does not create any interference to

192



the HIZUES in HIZone. Thus it is more similar to No Femto method. But at the

same time the IUEs performance got degraded due to non-optimal way of placement

of Femtos inside the building.

Figure 8.1 shows that MinNF model provides high data rate for the IUEs. This

is mainly because of the high SINR guaranteed by the Femtos which are optimally

placed inside the building. In MinNF model, no SINRTh is set for the HIZUEs,

only the IUEs have SINRTh (-2 dB). Since the Femtos transmit at their full power

in MinNF model, HIZUEs experience cross-tier interference, leading to their SINR

degradation. This SINR degradation leads to decrease in throughput of HIZUEs in

MinNF model. Also, we can observe that 18% of HIZUEs receive zero throughput

from the MBS.
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OptFP model reduces the transmission power of the Femtos to ensure that the

SINR degradation of the HIZUEs (compared to the value obtained when there were

no Femtos) is not more than 2 dB. Since the Femto power is reduced in OptFP

model, the SINRTh of IUEs is reduced to - 4 dB. Figure 8.2 shows the improvement

in HIZUEs throughput in OptFP model when compared to MinNF model. Also, it

is closer to the throughput obtained in No Femto method. Due to decrease in Femto

transmit power, the SINR of IUEs decreases. This leads to a drastic decrease of IUEs

throughput (i.e., 44%) in the OptFP model. Note that setting a higher SINR, drop

value for the HIZUEs increases the Femto transmit power, and thereby SINR and

throughput of IUEs can be improved but it can affect the HIZUEs performance.

Using D2D heuristic algorithm, Femtos can transmit with peak power without af-

fecting the HIZUEs performance. To compensate for the D2D interference, SINRTh

of IUEs is set as -4 dB. Since the performance of the HIZUEs highly depends on

the SINRTh, we have analysed the throughput of IUEs and HIZUEs by fixing two
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different thresholds for HIZUE (i.e., - 2 dB and 0 dB). From Figure 8.1, we can

observe that the throughput of IUE obtained in D2D heuristic algorithm is close to

the throughput obtained in MinNF model. A slight decrease in the throughput is due

to the additional D2D interference. From Figure 8.2, we can observe that for higher

SINRTh, the throughput of HIZUEs is higher. This is because of the increase in

MCS as the SINR increases. The narrowness of the throughput of HIZUEs CDF

lines in No Femto, MinNF, and OptFP show that the MBS which uses PF scheduling

algorithm has indeed ensured throughput fairness to all its UEs. Since D2D heuristic

algorithm uses RR algorithm, the throughput fairness is not guaranteed.

Table 8.2: SINRTh vs Average D2D Transmission Power

Metric SINRTh =
- 2dB

SINRTh =
0dB

SINRTh =
2dB

Average D2D Tx Power (W) 0.026 W 0.048 W 0.076 W
Data received by HIZUEs 3.42% 5.41% 7.49%

Table 8.2 shows the variation in average D2D transmission power (i.e., transmis-

sion power of the FIUEs) with change in HIZUEs SINRTh. As expected, the

average D2D transmission power increases with increasing SINRTh. One would ex-

pect the throughput of IUEs to decrease with increase in D2D transmission power

because of the increased D2D interference. But we can clearly see from Figure 8.1

that the throughput of IUEs has not decreased much (only 0.84%) for SINRTh of

0 dB case when compared to SINRTh of -2 dB case. Even though the power has

increased significantly with increasing SINRTh, the interference to the IUEs is not

significant. This explains the efficiency of our proposed D2D pairing and resource

allocation algorithm (hDPRA) (chapter 6.4.2). Table 8.2 shows the percentage of the

data received by HIZUE as compared to the total received data by FIUEs. Since

the D2Ds operate in higher MCS in higher SINR, the amount of data received by

the HIZUEs increases with increasing SINRTh. Comparison of different solutions

is done in Table. 8.3.

Remarks: In order to compensate for this loss of data (i.e., when the number of

IUEs traffics are high and in that case if some RBs are used for HIZUEs data

transfer we call this state as loss of data) for the FIUEs, the Femto scheduler has to

increase the scheduling (resource allocation) frequency for the FIUEs. As mentioned

earlier, a future approach could be designing such a scheduler which compensates for

the data loss in FIUEs, ensures fairness to all the HIZUEs, and provides required
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Table 8.3: Comparison of different solutions

Solution No. of
Femtos

Avg. data
rate of IUEs
(in Kbps)

Avg. data
rate of
HIZUEs
(in Kbps)

Remarks

No Femto 0 0 34 Coverage hole inside the building
CKM 4 327 34 Coverage hole inside the building
MinNF (-2 dB) 4 397 27 No coverage hole but huge

throughput degradation for
HIZUEs

OptFP (-4 dB, drop < 2
dB)

4 224 33 Less degradation for HIZUEs at
the cost of decrease in more IUEs
throughput.

D2D Heuristic Algorithm
(-4 dB, 0 dB)

4 384 46 No coverage hole but additional
overhead for operators to monitor
more D2D pairs

D2D Heuristic Algorithm
(-4 dB, -2 dB)

4 387 29 No coverage hole but additional
overhead for operators to monitor
more D2D pairs

OPF and SOPC (-2 dB, -2
dB)

6 577 57 No coverage hole but increase in
Femto count (i.e., CAPEX)

HIZUE data to the FIUE before the D2D transmission (data transmission between

HIZUE and FIUE) begins.

Compared to all other solutions, the throughput of IUEs is very high in OPF

and SOPC. This is mainly due to the increased Femto count in OPF and SOPC. Six

HAFs are required to provide coverage to the entire building (including the HIZone)

in OPF and SOPC based solution whereas in all other solutions only four Femtos are

required. Also the throughput of HIZUEs is higher in OPF and SOPC, because the

HAFs use dedicated resources to schedule the HIZUEs.

8.2.2 Operators’ Revenue: An estimate

In large scale planned deployments, usually for a building of 10 floors, we require

approximately 60-70 Femtos (each Femto BS costs around $100) and it incurs huge

investment cost for operators. But, they can save 20-30% of money (i.e., CAPEX)

by adapting MinNF model. To further improve the capacity, operators may think of

solutions based on D2D based relay model. Operators could provide incentives (like

free call service, discount in data plan, free SMS service) for the FIUEs to act as D2D

based relays. For a single building, it will cost around $0.33 per year. And this cost

is not fixed as it will not come as direct investment from the operator side because

of infra structureless communication (i.e., D2D communication). Hence, depending

upon the scenarios or UEs demand operators can decide efficient schemes to achieve

more revenues.

Another alternative to increase the operators revenue could be by deploying Fem-
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tos based on OPF and SOPC model. This model will increase the overall system

performance by allocating more dedicated spectrum compared to D2D heuristic al-

gorithm at the cost of increased Femto count.
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Chapter 9

Enhanced Distributed Resource

Allocation and Interference

Management in LTE Femtocell

Networks

9.1 Introduction

In above chapters, placement of Femtos is optimized to reduce co-channel co-tier

interference among neighboring Femtos and transmit power of Femtos is optimized to

reduce cross-tier interference between MBSs and Femtos. But, for arbitrary deployed

Femtos, Inter Cell Interference Coordination (ICIC) techniques could be employed to

address co-tier interference problem among Femtos which are connected with each

other over X2 interface. Hence, in this chapter, we propose an ICIC technique,

Variable Radius (VR) algorithm which dynamically increases or decreases the cell

edge/non-cell edge regions of Femtos and efficiently allocates radio resources among

cell edge/non-cell edge regions of Femtos so that the interference between neighboring

Femtos can be avoided.

9.1.1 Organization of this Chapter

Rest of the chapter is organized as follows: Section 9.2 describes the related work.

Proposed VR algorithm is discussed in Section 9.3. The simulation methodology and

results are presented in Section 9.4. Finally, Section 9.5 summarizes the work.
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9.2 Related Work

In this section, we review existing works addressing the interference issues due to

incorporation of Femtos into LTE systems. In Release 8 [64], X2 was introduced for

direct communication between Macro BSs. This X2 could be used by ICIC mecha-

nisms to reduce inter cell interference due to reuse one. In Release 11 [64], X2 interface

is introduced between Femtos of enterprise femtocell networks to avoid interference

and directly route the data and signaling messages among Femtos, thereby reduc-

ing the load on MME of LTE core network and offers better coordination among

Femtos. Cross-tier interference can be avoided by dividing the spectrum between

macro and Femtocells orthogonally [135, 136]. In these schemes, radio resources are

shared between Femtos in a distributed manner by using F-ALOHA scheme, which

introduces slotting and contention amongst Femtos. In [137], three cross-tier inter-

ference management schemes are proposed. First scheme divides spectrum between

macros and Femtos, but as number of Femtos increases the spectrum allocated to

macros decreases considerably. Second scheme allocates the whole spectrum to both

macros and Femtos which can lead to high interference. In third scheme, some part

of the spectrum is shared by Femtos and macros. The remaining spectrum is divided

between macros and Femtos. But, this scheme is efficient only if UEs count is low.

Two types of frequency reuse techniques can be applied to reduce co-tier inter-

ference. Fractional Frequency Reuse (FFR) [138] has frequency reuse three, which

means that only one third of the spectrum is used in a particular cell and therefore

leads to inefficient usage of spectrum resource. The other approach is Soft Frequency

Reuse (SFR) [139, 140]. In SFR, the cell area is divided logically into two regions

based on spectrum allocation: an inner region where major portion of spectrum is

available and a cell edge area where a small fraction of the spectrum is available.

Since the capacity at cell edge may be low, it can be increased by allocating higher

power carriers to UEs in this region, where as lower power carriers are allocated to

UEs in the inner region. But, SFR was studied only for Macros. To improve the

spectrum efficiency and throughput of the indoor UEs, SFR technique can also be

adapted to enterprise Femto networks. But the drawback of implementing SFR in

Femtos is that it can lead to high interference due to overlap of coverage regions

of Femtos. Hence, we propose an efficient interference management technique (VR:

Variable Radius algorithm) which dynamically increases or decreases the width of

cell edge region inside the Femto coverage area to overcome the drawback of SFR for

Femtos.
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9.3 Proposed VR Algorithm

Outer region (Cell Edge)

Inner region

  F

Figure 9.1: Regions inside Femto coverage area

Every Femto communicates about the RBs allocated to its cell edge UEs with

neighboring Femtos through X2 interface. Femto allocates RBs to its UEs in outer

region such that same RBs are not allocated in the outer regions of its neighboring

Femtos, thus avoiding the interference. Such an allocation is known as restricted RB

allocation. But, since the delay to get the required number of RBs increases, the

average throughput of cell edge UEs decrease. For the UEs of inner region, there

is no such restriction on RB allocation, unlike cell edge users. Any free RB can be

allocated to them by respective Femtos without any coordination with neighboring

Femtos through X2 interface.

Let us consider an enterprise Femto deployment scenario with six Femtos namely

F1-F6 randomly placed UEs as shown in Figure 9.3 for describing the proposed VR

algorithm. The two scenarios of it are given below.

9.3.1 Interference Scenario 1

Initially, the width of outer region is zero for all of the Femtos as shown in Figure 9.2.

In this case, interference occurs if the cell edge UEs in overlapping regions of neigh-

boring Femtos use the same RBs. This results in decrement of CQI due to poor SINR

and hence leads to low data rates. According to 3GPP TS [36.301], the CQI values

vary from 1 to 15 [142] gives the mapping of SINR to CQI. Active UEs provide CQI

feedback to Femto at regular intervals. Femto transmits data with higher modulation

scheme like 64-QAM if the UE has higher CQI value. In consummate circumstances

caused by very high interference, CQI becomes very low and the UE may not able to

transmit any data.
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Algorithm 7 Variable Radius Algorithm

Input CQI Threshold : Handover CQI threshold

Input FR Threshold : Threshold Fail Ratio

Input R : Radius of Femto

1: r ← R {Initialize Radius of Inner Region}
2: while true do
3: CQI ← CalculateCQIInnerRegion(); {Calculates average CQI for a given in-

ner region }
4: if ( CQI < CQI Threshold ) then
5: DecreaseRadius ← true;
6: else
7: DecreaseRadius ← false;
8: end if
9: FR ← CalculateFRUEsOuterRegion(); {Calculates Fail Ratio of UEs in cell

edge region }
10: if ( FR > FR Threshold ) then
11: IncreaseRadius ← true;
12: else
13: IncreaseRadius ← false;
14: end if
15: if ((IncreaseRadius) && (DecreaseRadius)) || ((!IncreaseRadius) && (!De-

creaseRadius)) then
16: Continue;
17: else
18: if ( DecreaseRadius && !IncreaseRadius ) then
19: CQI array ← Sort(CQI inner region)
20: γ ← Search(CQI array) {finds threshold distance γ of the first UE whose

AVG CQI along circumference of circle with radius d > CQI Threshold }
21: r ← (r + γ)/2 ; { where δ is the width of the region containing users whose

AVG CQI < CQI Threshold}
22: PFScheduling(); {Proportional Fair Algorithm}
23: else
24: r ← r + δ′ ; { (where δ′ will bring RR-(AR/2) unsatisfied users of outer region

nearest to the boundary between inner and outer regions into inner region)}
25: PFScheduling();

26: end if
27: end if
28: end while
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Figure 9.2: Intial inner regions of Femtos

To reduce this interference, the radius of the inner region is decreased which in

turn increases the width of the outer region as shown in Figure 9.3. To determine the

average CQI of a UE at a distance d from the Femto center, firstly an inner and an

outer circle are drawn with the radius as (d - δ) and (d + δ), respectively as shown

in Figure 9.4. The width of the resultant strip is 2δ. Secondly, the average of the

CQI of all UEs within this strip is calculated and this value is assigned to the UE

at distance d. The average CQI is calculated and assigned similarly to every UE at

any distance from the Femto within the radius of inner region. Thirdly, the average

CQI of all UEs is sorted in increasing order. Fourthly, the first UE whose average

CQI value is greater than a threshold CQI value is identified. The distance of this

identified UE from the Femto is the threshold distance and is named γ. Finally,

bisection method is used to calculate the mean of the inner region radius r and the

threshold distance γ as r = (r + γ)/2.

This mean value (r) is the radius of the inner region. By using X2 interface

the interference is avoided in the outer regions by exchanging signaling messages

between neighboring Femtos for restricted RB allocation. Bisection method is used

in general to find the roots of a polynomial. Here bisection method is used to find

the approximate radius value for which the average CQI value at the given radius is
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equivalent to the threshold value.

Using mean value helps us to decrease the effective inner radius of the Femto from

R (cell radius) to r. The advantage of calculating the mean over considering the

threshold distance γ, as radius, is that when the threshold distance is very small, a

large number of UEs reside in outer region which may lead to unfair allocation of

RBs to the cell edge UEs, as very less amount of RBs are catered to cell edge UEs,

due to restricted allocation. The threshold CQI value for contraction is the CQI used

for indoor data traffic handover i.e., less than -3 dB in terms of SINR.

Outer Region (−−−) : High TX Power

Inner Region(white) : Low TX power
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Figure 9.3: Reducing the inner regions of Femtos
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Figure 9.4: Calculating Avg CQI value in the strip
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9.3.2 Interference Scenario 2

When the number of UEs in the outer region increases drastically, due to restricted

RB allocation, many RB requests from UEs of the outer region may not get satisfied.

This leads to dramatic decrease in the system throughput. In order to overcome this

problem, the inner region has to be expanded to accommodate the excess UEs of the

outer region as shown in Figure 9.5.
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Figure 9.5: Increasing the Inner regions of Femtos

Depending upon the Fail Ratio (FR) the radius increases, where FR is defined as,

FR = RejectedRequests(RR)
AcceptedRequests(AR)

, where RR is the number of unsatisfied requests coming from

outer region due to restricted RB allocation and AR is the number of requests coming

from outer region that can be satisfied in some subframe. Due to unavailability of

RBs certain requests cannot be satisfied in a particular subframe and these requests

are excluded in AR. The radius of inner region will remain the same if FR is less

than or equal to the threshold value (FR-Threshold) and this value can be set by the

network operator. If FR is greater than threshold value, the radius of inner region is

increased. The radius is incremented by δ′ such that RR − (AR/2) unsatisfied UEs

from outer region are brought into the inner region. Thus, the excess UEs of outer

region are brought into the inner region and the FR reduces below FR Threshold.

Hence, the UE load in the outer region reduces and the throughput increases. The
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Table 9.1: Simulation Parameters

Parameter Value

Number of Femtocells 6
Number of UEs per Femto 10, 15
UE Deployment Random
Femto coverage range 70 m
Femto Bandwidth 5 MHz (25 RBs)
Duplexing Mode FDD
Scheduling Algorithm PF, VR+PF
Simulated Traffic Downlink (Video)
Mobility of Mobile UEs 1m/s
Mobility of Static UEs 0.1m/s
Mobility Model Building Mobility Model
δ 0.5 m
CQI threshold 4
UDP Application Data Rate 4 Mbps

proposed VR algorithm (refer Algorithm 7) will therefore reduces the interference

efficiently in a large scale deployment of Femto networks.
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Figure 9.6: Positions of six Femtos and 90 UEs inside a building

9.4 Simulation Setup and Performance Results

In NS-3 simulator six apartment buildings scenario is created and in each apart-

ment one Femto is placed randomly. Figure 9.7 shows the REM plot for the Femto

placement. Simulation parameters are given in the Table 9.1. The VR algorithm
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Figure 9.7: REM for Femto Locations
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Figure 9.8: CDF of throughput of
UEs: Static, 60 UEs
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Figure 9.9: CDF of throughput of
UEs: Static, 90 UEs
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Figure 9.10: CDF of throughput
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Figure 9.11: CDF of throughput
of UEs: Mobile, 90 UEs

is implemented in NS-3 on top of the Proportional Fair (PF) scheduling algorithm

to ensure fairness to all the UEs. We modified the building mobility model in NS-3

to introduce limited mobility for indoor UEs. We restrict the users from entering
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into the other room, as we are not dealing with handovers in this chapter. In real

life, even static users will have some mobility. In order to replicate the same sce-

nario in the simulator, we assigned the mobility rate as 0.1 m/s even for the static

users. In our scenario, there is no cross-tier interference hence no Macro considered

in these experiments. Each UE has single downlink flow from its connected Femto.

The CQI Threshold is the CQI value used for indoor data traffic handover. It varies

between 4 and 6 and it is less than -3 dB in terms of SINR. The FR Threshold is set

as 0.5. The metrics used for performance evaluation are area spectrum efficiency in

b/s/hz/m*m and system throughput in Mbps. The results shown in this chapter are

the averaged values after running simulations for 10 different seed values. Figure 9.6

shows the positions of 90 indoor UEs (6 Femtos and 15 UEs in each Femto).
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Figure 9.13: Area Spectrum Ef-
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9.4.1 Throughput Results

In Figures 9.8 and 9.9, average throughput of VR+PF algorithm is compared against

classic PF scheduling and FFR for 60 and 90 static UEs (i.e., one flow per UE),

respectively. Average throughput of 60 static UEs is increased by 27% when VR

algorithm is employed with PF. For 90 static indoor UEs, the average throughput is

increased by 29% when VR algorithm is employed with PF. In Figures 9.10 and 9.11,

achieved throughput of VR+PF algorithm is compared against PF and FFR for 60

and 90 mobile UEs, respectively. Average throughput of 60 mobile UEs is increased

by 37% when VR+PF algorithm is used. For 90 UEs the average throughput is

increased by 38% when VR+PF algorithm is used. Since the inner region radius

changes dynamically more number of UEs can be served by the inner region and thus
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it increases the average throughput. Bisection method makes sure that UEs who are

supposed to be in the outer region will come inside the inner region, even though

they have interference with neighboring Femtos. It is observed that proposed VR

algorithm also performs better in mobile scenarios because of UEs mobility there is

enough potential for interference management and load balancing in outer regions

and the average CQI values of UEs with high mobility vary at much faster rate when

compared to UEs with low mobility.
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9.4.2 Area Spectrum Efficiency Results

In Figures 9.12 and 9.13, area spectral efficiency of VR+PF, PF and FFR are com-

pared for 60 and 90 static UEs, respectively. In Figures 9.14 and 9.15, area spectral

efficiency of VR+PF and PF are compared for 60 and 90 mobile UEs, respectively.

In order to be more precise, area spectral efficiency of each of six Femto is plotted

separately in the graphs. Area spectral efficiency of Femtos for 60 and 90 static UEs

is increased by 20% and 30%, respectively when VR algorithm is employed with PF

because the interference is avoided in the outer overlapping regions of Femtos by

restricted RB allocation with the help of communication over X2 interface.

9.5 Summary

In this chapter, we proposed an VR algorithm on top of PF scheduler in NS-3 simula-

tor which dynamically increase or decrease the radius of inner regions to avoid co-tier
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interference among Femto BSs. Our experiment shows for 90 UEs the proposed tech-

nique (VR +PF) achieved 29% and 38% improvement in average throughput for static

and mobile scenarios, respectively when compared to classic PF algorithm without

any interference management. Also all Femtos need not increase/decrease their inner

region radius by same amount at the same time as VR algorithm depends on the user

count and overlap with neighboring Femtos.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

Advent of smart phones and applications led to drastic increase in data demand from

telecom networks. Small cells could address this challenging but suffers from co-tier

and cross-tier interference problem. One of the main solutions to tackle this is opti-

mal placement of Femtos in HetNets. In this thesis, we performed a planned Femto

placement with DUD connections based on the shortest path loss Femto for the uplink

access and the less loaded neighboring Femtos for the downlink access. We proposed

an OptHO placement model to reduce the number of unnecessary handovers in enter-

prise building environments. To reduce battery drain at UEs a two-step optimization

model was formulated which guarantees USINRTh and minimizes the total uplink

transmit power. We developed an efficient Femto placement and power control al-

gorithm which dynamically adjusts the transmit power levels at Femtos in order to

reduce the HIZone interference to HIZUEs. We showed that D2D communication

when adopted to LTE HetNets increases the spectrum efficiency by guaranteeing good

SINRTh for all the users in LTE HetNet even when the Femtos are transmitting at

their peak power. We also addressed various challenges involved in deployment and

operation of HAFs in indoor environments by proposing an OPF model, a dynamic

BWA scheme for splitting radio resources between SG and NSG users, a dynamic

power control mechanism to mitigate co-tier and cross-tier interference in HetNets

and an EP scheduling mechanism. Finally, to reduce co-tier interference in dense

HetNet scenarios, we proposed a VR algorithm which dynamically increases or de-

creases the radius of inner regions of Femtos.
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10.2 Future Research Directions

In the following, we enumerate some potential topics for further study:

• In our current system model we have not incorporated scheduling algorithm

for IUEs and HIZUEs. In order to analyze the fairness for both IUEs and

HIZUEs, we plan to design a centralized scheduling algorithm for D2D based

relay in LTE HetNet system.

• Optimization of the HIZone are based on the upcoming D2D standards (i.e.,

maximum D2D link distance and transmit power) is also a future task.

• We would like to study Dual-strip model of 3GPP [143] the effects on the

HIZone users by introducing another building very close to the first. As the

HIZone between the two closely placed buildings will be prone to high inter-

ference both co-tier and cross-tier and the optimal placement of the HAFs in

the buildings will be independent of each other, the power control will become

more complex. The SOPC mechanism proposed in chapter 7 dynamically ad-

justs power in every time interval. This may lead to ping-pong effects. We

would like to subject our SOPC mechanism to extra constraints so that the

handover is minimum and there is proper load balancing within the building.

• The proposed VR algorithm can be further extend to determine the optimal

value of FR. We also have to define a function to vary δ based on UE density.

• In Full Duplex (FD) communications, a BS is capable of transmitting (in the

DL to users) and receiving (in the UL from users) signals at the same time on

the same channel. Theoretically the FD communication is capable of reducing

the spectrum demand by half when the BSs perform FD operation in each

transmission time interval (TTI) in LTE/LTE-A. Hence, optimal power control

and scheduling in full-duplex small cell networks is an important problem. In

our work, we plan to design a efficient user selection and power control algorithm

which in turn boost the system capacity.

• Adapting the eICIC mechanism in LTE HetNets, wherein instead of muting

the whole sub-frame of an LTE frame we sub-mute it (i.e., Femto transmits

in the sub-frame with very minimal power). To boost the capacity of HetNet

system, we plan to establish D2D communication links during these sub-muted

intervals.
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[127] C. Gentner, E. Muñoz, M. Khider, E. Staudinger, S. Sand, and A. Dammann,

“Particle filter based positioning with 3GPP-LTE in indoor environments”, in

Proc. of IEEE PLANS, pp. 301–308, 2012.

224



[128] I. Sharp and K. Yu, “Enhanced least-squares positioning algorithm for indoor

positioning”, IEEE Transactions on Mobile Computing, vol. 12, no. 8, pp. 1640–

1650, 2013.

[129] J. M. R. Avilés, S. Luna-Ramirez, M. Toril, F. Ruiz, I. De la Bandera-Cascales,

and P. Munoz-Luengo, “Analysis of load sharing techniques in enterprise LTE

femtocells”, in Proc. of WiAd, pp. 195–200, 2011.

[130] Z. Liu, P. Hong, K. Xue, and M. Peng, “Conflict avoidance between mobil-

ity robustness optimization and mobility load balancing”, in Proc. of IEEE

GLOBECOM, 2010.

[131] R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems”, Eastern

Research Laboratory, Digital Equipment Corporation Hudson, vol 38, 1984.

[132] Z. Chen, T. Lin, and D. Din, “Multi-tone almost blank subframes for enhanced

inter-cell interference coordination in LTE HetNets”, in Proc. IEEE ICNC,

pp. 1014–1018, 2015.

[133] X. Wang, C. Wang, R. Cai, S. Huang, C. Wang, and W. Wang, “Reduced power

centralized eICIC for LTE-advanced heterogeneous networks”, in Proc. of IEEE

ICCC, pp. 743–747, 2014.

[134] 3GPP, “Evolved universal terrestrial radio access (E-UTRA); Physical layer

procedures”, Tech. Rep. TS 36.213, Feb 2013.

[135] V. Chandrasekhar and J. Andrews, “Spectrum allocation in tiered cellular net-

works”, IEEE Transactions on Communications, vol. 57, no. 10, pp. 3059–3068,

2009.

[136] J. Yoon, M. Y. Arslan, K. Sundaresan, S. V. Krishnamurthy, and S. Banerjee,

“A distributed resource management framework for interference mitigation in

OFDMA femtocell networks”, in Proc. of ACM MOBIHOC, pp. 233–242, 2012.

[137] M. Andrews, V. Capdevielle, A. Feki, and P. Gupta, “Autonomous spectrum

sharing for mixed LTE femto and macro cells deployments”, in Proc. of IEEE

INFOCOM, 2010.

[138] P. Lee, T. Lee, J. Jeong, and J. Shin, “Interference management in LTE fem-

tocell systems using fractional frequency reuse”, in Proc. of ICACT , vol. 2,

pp. 1047–1051, 2010.

225



[139] Y. Yu, E. Dutkiewicz, X. Huang, M. Mueck, and G. Fang, “Performance analysis

of soft frequency reuse for inter-cell interference coordination in LTE networks”,

in Proc. of ISCIT 2010, pp. 504–509, 2010.

[140] M. Al-Shalash, F. Khafizov, and Z. Chao, “Interference constrained soft fre-

quency reuse for uplink icic in lte networks”, in Proc. of IEEE PIMRC,

pp. 1882–1887, 2010.
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