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Abstract

Boundary value problems for a softening material su�er from loss

of uniqueness in the post-peak regime. Numerical solutions to such

problems shows mesh dependency due to lack of internal length scale

in the formulation. A regularization method which introduces a char-

acteristic length is required to get mesh independent results. A sec-

ond gradient model introduces a characteristic length by taking into

account the second gradient of the displacement in the principle of

virtual work and thus regularizing the solution of the boundary value

problem. In this work a second gradient �nite element model has been

developed. The regularization property of the method has been stud-

ied for elastoplastic and damage constitutive laws. It has been shown

that mesh independent results can be achieved in this model. Even

though unique solution is not achieved a �nite number of solutions

have been obtained from the proposed model.

Keywords Localization, Regularization Methods, Second Gradient Model,
Damage Mechanics, Quasi Brittle materials
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1 Introduction

Strain softening is the characteristic behaviour of concrete and rock materials
during which the material shows decrease in stress with increase in strain or
the material tangent sti�ness matrix ceases to be positive. After establishing
the constitutive behaviour in thermodynamical framework the next challenge
is to solve the boundary value problem to get a �nite number of responses.
These softening models now lead to loss of uniqueness which leads to the loss
of ellipticity of the corresponding boundary value problem [1].

Conditions for loss of uniqueness are derived using bifurcation theory. In
bifurcation theory we explore the existence of non-unique stress states which
correspond to localised deformation in bands [2]. The loss of ellipticity of
the boundary value problem can be manifested as the existence of a line
in two-dimensional continuum or a plane in three-dimensional continuum in
which strain is discontinuous. This leads in the context of fracture or damage
mechanics to failure with zero energy dissipation which is not physical [6].
If we try to solve numerically the boundary value problem the results are
mesh dependent [4]. The introduction of characteristic length will provide a
numerical solution which is independent of mesh [5].

Rice and Rudnicki [2],Rice [3] studied the formation of shear bands and
concluded that the material localization is an instability phenomenon ow-
ing to its constitutive behaviour which leads to mesh dependent results in a
numerical analysis. The main result of their analysis is that the correspond-
ing boundary value problem looses ellipticity and the bifurcated solution is
localized in to deformation bands when,

det(Q) = 0 (1)

where Q = n̄.
¯̄̄̄
C.n̄ is called the acoustic tensor,

¯̄̄̄
C is the tangent sti�ness

matrix and n̄ is the unit normal to the deformation band. The numerical
solutions then show spurious mesh dependency and become meaningless as
they imply that the material fails with out any energy dissipation [6].

In order to solve this problem Bazant [7] introduced energy based approach
and later in [8] he proposed non-local models. Gradient plasticity models
are also proposed by Vordoulakis and Aifantis [10], Fleck and Hutchinson
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[12] re�ning the constitutive behaviour. Instead of re�ning the constitutive
behaviour law another idea is to re�ne the kinematics of the continuum using
theory of materials with micro structure Aifantis [9]. Borst [11] re�ned the
classical continuum using Cosserat models and achieved mesh independent
results. Recently a new trend in this idea was proposed by chambon et al.,
[13�19], Fernandes [21] called local second gradient models. The advantage of
these models is that a second gradient of the displacement �eld is introduced
in to the kinematics of the continuum but not as a thermodynamic variable
as done in gradient models by Peerlings [20]. So we can use the algorithms
for classical constitutive laws to model �rst grade part and a second gradient
constitutive law to model second gradient part. [18]. Later Chambon [13]
gave the closed form solutions for a one-dimensional bar in traction in a
second gradient setting. The results were also compared to a �nite element
discretization. However, since second order derivative are present in the
weak formulation of a second gradient problem, C1 continuity elements were
used. Later in [15] a 2D second gradient �nite element method was developed
using mixed �nite elements with C0 continuity for deformation �eld and its
gradient. The bifurcation analysis for a second gradient model was performed
by Chambon et al., [14] using random initialisation technique.

In this work we present a local second gradient �nite element model. The
regularization property of the method is studied for elastoplastic and damage
constitutive laws. The mesh dependency is studied using the distribution of
the strains in case of elastoplastic constitutive law and the damage variable
for the case of damage constitutive law. The paper has been organized as
follows, in section 2 we present the second gradient model. In section 3 we
present the �nite element implementation of the second gradient model. In
section 4 we present the constitutive laws for the elastic plastic framework. In
section 5 we present the numerical results obtained from the present model.

2 SECOND GRADIENT MODEL

Second gradient theory can be derived from the theory of continua with
microstructure which is derived �rst by Mindlin [22]. Later Germain [24] de-
veloped a framework taking in to account the microstucture in the principle
of virtual work. In micromorphic continuum theory the microscopic structure
of the continuum is taken in to account along with the macroscopic structure
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thus enhancing the kinematic �eld. By imposing a constraint on the micro
kinematic �eld we can derive wide subclasses of theories like Cosserat theory,
second gradient theory from the theory of micromorphic media. The key fea-
ture of the second gradient theory that enables it to introduce length scale
is the additional degrees freedom that are added to the classical kinematic
�eld. Di�erent constraints on the kinematic �eld are considered by di�erent
workers [for example see the works of Fernandes [21], Chambon [13]]. In
this paper the work of Chambon [13] is followed and a full decoupling be-
tween classical part and the second gradient part is considered. Neglecting
the double body forces the principle of virtual work as in the general case
of micromorphic continuum of degree 1 with domain Ω and boundary Γ is
written as,∫

Ω

((σij + sij)
∂u∗i
∂xj
− sijv∗ij + Σijk

∂v∗ij
∂xk

)dΩ =

∫
ρfiu

∗
i dΩ +

∫
Γ

(piu
∗
i + Tijv

∗
ij)dΓ

(2)
where u∗i is the virtual classical macro deformation �eld, v∗ij is the virtual
micro deformation �eld σij is the classical macro stress tensor, sij is the dual
stress tensor, Σijk is the double stress tensor, pi classical surface traction
and Tij double surface traction. By considering that the micro deformation
�eld is same as the gradient of macro deformation �eld, we are imposing a
constraint on the kinematic �eld which leads to the second gradient theory
as follows,

vij =
∂ui
∂xj

(3)

Finally the principle of virtual work in the case of second gradient theory is
written as,∫

Ω

(σij
∂u∗i
∂xj

+ Σijk

∂v∗ij
∂xk

)dΩ =

∫
ρfiu

∗
i dΩ +

∫
Γ

(piu
∗
i + PiDu

∗
i )dΓ (4)

where, Du∗i is the normal derivative of u
∗
i and pi, Pi are the two variables on

which the boundary conditions are imposed. Using integration by parts we
obtain the strong form of the equilibrium equation as,

∂(σij −
∂Σijk

∂xk
)

∂xj
+ ρfi = 0 (5)
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Assuming that the boundary is regular which means existence and uniqueness
of the normal for every point of the boundary, after one more integration by
parts, we get boundary conditions as,

σijnj−nknjDΣijk−DkΣijknj−DjΣijknk+DlnlΣijknjnk−DknjΣijk = pi (6)

and
Σijknjnk = Pi (7)

where, D is the normal derivative of any quantity and Dk is the tangential
derivative of any quantity q is de�ned as,

Dk =
∂q

∂xj
− ∂q

∂xk
nknj (8)

For the case of a one dimensional bar in traction the analytical solution (as

derived in [13]) contains a characteristic length de�ned by lc =

√
−B
A2

where

A2 is the softening modulus of �rst gradient part and B is the modulus of
second gradient part.

3 SECOND GRADIENT FINITE ELEMENT

FORMULATION

Chambon [13] formulated 1D �nite element method using C1 continuity el-
ements due to the presence of second order derivatives in the weak form or
principle of virtual work. But it is very di�cult to formulate 2D and 3D cases
using C1 continuity elements. So the solution proposed by Matsushima [15]
is to introduce the Lagrange multipliers in to the weak form and expressing
the kinematic constraint in weak form.

3.1 Basic Equilibrium

Starting from the principle of virtual work for second grade micromorphic
continua with virtual displacement �eld u∗i ,∫

Ω

(σij
∂u∗i
∂xj

+ Σijk
∂2u∗i
∂xj∂xk

)dΩ− P ∗
e = 0 (9)
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where P ∗
e is a virtual work by external forces (surface force and body force)

P ∗
e =

∫
Γ

njσiju
∗
i dΓ +

∫
Ω

ρfiu
∗
i dΩ +

∫
Γ

nj(Σijk
∂u∗i
∂xk
− ∂Σijk

∂xk
u∗i )dΓ (10)

=

∫
ρfiu

∗
i dΩ +

∫
Γ

nj(σij −
∂Σijk

∂xk
)u∗i dΓ +

∫
Γ

njΣijk
∂u∗i
∂xk

dΓ (11)

Using divergence theorem and addition theorem the strong form :

∂σij
∂xj
− ∂2Σijk

∂xj∂xk
+ ρfi = 0 (12)

We introduce Lagrange multiplier in the constraint equation to avoid C1

continuity. Now introducing Lagrange multiplier, λij the above equation is
transformed to the following two equations:

∂σij
∂xj
− ∂λij
∂xj

+ ρfi = 0 (13)

∂Σijk

∂xk
− λij = 0 (14)

weak form of the above equations with the virtual displacement �elds, u∗i
and v∗ij : ∫

Ω

(
∂σij
∂xj
− ∂λij
∂xj

+ ρfi)u
∗
i +

∫
Ω

(
∂Σijk

∂xk
− λij)v∗ijdΩ = 0 (15)

weak form of the equilibrium equations :∫
Ω

(σij
∂u∗i
∂xj

+ Σijk

∂v∗ij
∂xk

)dΩ−
∫

Ω

λij(
∂u∗i
∂xj
− v∗ij)dΩ− P ∗

e = 0 (16)

where,

P ∗
e =

∫
Γ

njσiju
∗
i dΓ +

∫
Ω

ρfiu
∗
i dΩ +

∫
Γ

nj(Σijk
∂u∗i
∂xk
− ∂Σijk

∂xk
u∗i )dΓ (17)

we need the following constraint to make the perfectly equivalent form to
the original one:
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∂ui
∂xj
− vij = 0 (18)

weak form of the above equation:∫
Ω

λ∗ij(
∂ui
∂xj
− vij)dΩ = 0 (19)

In order to avoid any boundary layer e�ects at the surface we impose
Σijk = 0 this assumption leads to∫

Γ

nkΣijkv
∗
ijdΓ = 0 (20)

3.2 1-D Formulation

Combining the eqn.(17) and eqn.(19) we obtain,∫
Ω

(σij
∂u∗i
∂xj

+Σijk

∂v∗ij
∂xk

)dΩ−
∫

Ω

λij(
∂u∗i
∂xj
−v∗ij)dΩ−

∫
Ω

λ∗ij(
∂ui
∂xj
−vij)dΩ−P ∗

e = 0

(21)
where owing to the eqn.(20),

P ∗
e =

∫
Γ

njσiju
∗
i dΓ +

∫
Ω

ρfiu
∗
i dΩ (22)

So the variables to be considered are:

[U ]T ≡ [
∂u1

∂x1

∂v11

∂x1

v11 λ11 ] (23)

Let the constitutive relations be:

σij = cijkl
∂uk
∂xl

(24)

Σijk = dijklmn
∂vlm
∂xn

(25)

In the case of one dimensional problem,

σ11 = c
∂u1

∂x1

(26)
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Σ111 = d
∂v11

∂x1

(27)

Hence the eqn.(21) can also be written in matrix notation as,∫
Ω

[U∗T ][E][U ]dΩ = P ∗
e (28)

where,

[E] =


c 0 0 −1
0 d 0 0
0 0 0 1
0 0 −1 0



In order to enforce the mathematical constraint eqn.(19),penalisation pa-
rameter along with lagrange multipliers is introduced and the corresponding
element sti�ness is modi�ed as below,∫

Ω

(σij
∂u∗i
∂xj

+Σijk

∂v∗ij
∂xk

)dΩ−
∫

Ω

λij(
∂u∗i
∂xj
−v∗ij)dΩ−

∫
Ω

[λ∗ij(
∂ui
∂xj
−vij)−r(

∂ui
∂xj
−vij)(

∂u∗i
∂xj
−v∗ij)]dΩ−P ∗

e = 0

(29)
with r being the penalisation constant. The corresponding [Epen] matrix is
given by,

[Epen] = [E] +


r 0 −r 0
0 0 0 0
−r 0 r 0
0 0 0 0


3.3 Discretisation in 1-D Formulation

3.3.1 Shape function and Mapping function

We use linear elements which has 3 nodes for u1, 2 nodes for v11 and one
node for λ11. The parent element is denoted by s(-1 < s < 1), and all the
variables are de�ned as the functions of these parent coordinates.

In the parent element the di�erent polynomial shape function is assumed
for di�erent variables considering its physical dimension.
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As for u1 we adopt the quadratic shape function,

u1(s) = [ φ1(s) φ2(s) φ3(s) ]

u1|(s=−1)

u1|(s=0)

u1|(s=1)


where,

φ1(s) = 0.5s(s− 1)

φ2(s) = 0.5s(s+ 1)

φ3(s) = 1− s2

(30)

As for vij we adopt the linear shape function,

v11(s) = [ ψ1(s) ψ2(s) ]

[
v11|(s=−1)

v11|(s=1)

]
where,

ψ1(s) = 0.5(1− s)
ψ2(s) = 0.5(1 + s)

(31)

For λ11

λ11(s) = λ11|(s=0)

As for the mapping function from x1 to s, we assume the same function
as the shape function for u1(s) that is,

x1(s) = [ φ1(s) φ2(s) φ3(s) ]

x1|(s=−1)

x1|(s=0)

x1|(s=1)


3.3.2 Transformation matrix

In order to transform the set of variables U used in discretised equation, we
use the following relation considering that all the variables are the functions
of the parent coordinates,

9



∂u1

∂s
=
∂u1

∂x1

∂x1

∂s
(32)

Similarly for vij,
∂v11

∂s
=
∂v11

∂x1

∂x1

∂s
(33)

To connect with nodal variables,

[U ] = [T ][U(s)] (34)

[U(s)] = [B][Unode] (35)

where,

[T ] =


t 0 0 0
0 t 0 0
0 0 1 0
0 0 0 1


and

t = [
∂x1

∂s
]−1

and

[B] =


∂φ1

∂x1

0
∂φ2

∂x1

0
∂φ3

∂x1

0

0
∂ψ1

∂x1

0
∂ψ2

∂x1

0 0

0 ψ1 0 ψ2 0 0
0 0 0 0 0 1


[U(s)]

T ≡ [
∂u1

∂s

∂v11

∂s
v11 λ11 ] (36)

[Unode] = [ u1(−1) v11(−1) (37)

λ11(0) (38)

u1(1) v11(1) ] (39)

(40)
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3.3.3 Element Sti�ness Matrix

Using the above equations,

∫
Ωelem

[U∗]T [Epen][U ]dΩ = [U∗
node]

T
∫ 1

−1

∫ 1

−1
[B]T [T ]T [Epen][T ][B]

∂x1

∂s
ds[Unode]

= [Unode]
T [k][Unode] (41)

The external body force is not considered here and as the surface orienta-
tion does not change during the deformation the external surface forces are
applied at each node.

4 CONSTITUTIVE LAWS

4.1 First grade part

4.1.1 Elastoplastic framework

With in the Elastoplastic framework we consider,

1. Decomposition of strain,

∂u̇1

∂x1

= (
∂u̇1

∂x1

)e + (
∂u̇1

∂x1

)p

2. Elastic part is de�ned by,

˙σ11 = A1(
∂u̇1

∂x1

)e

3. Yield condition,

f(σ) = σ11 − σmax + (
∂u1

∂x1

)p
A1A2

A2 − A1

= 0

with σmax = A1 elim,
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4. Consistency condition,

∂ ˙σ11

∂x1

+
∂u̇1

∂x1

A1A2

A2 − A1

= 0

Finally, if f(σ) <= 0 and ḟ(σ) < 0 then ˙σ11 = A1
∂u̇1

∂x1

, otherwise ˙σ11 =

A2
∂u̇1

∂x1

. For small strain assumptions the constitutive equations are

integrated as,

1. If
∂u1

∂x1

< elim

σ11 = A1
∂u1

∂x1

(42)

2. If elim <
∂u1

∂x1

< elim(1− (A1/A2))

σ11 = A2
∂u1

∂x 1
+ (A1 − A2)elim (43)

3. If
∂u1

∂x1

> elim(1− (A1/A2))

σ11 = 0 (44)

4.1.2 Damage mechanics framework

With in the Damage mechanics frame work we consider scalar local damage
model by Mazars [25], lemaitre and chaboche [26]. In this model, the material
is supposed to behave elastically and to remain isotropic. The loading surface
takes the following form:

f(ε,D) = εeq − εd0 (45)

where εeq is de�ned as,

εeq =
√

Σ2
1 < ε >2

+ (46)

εdo is the damage threshold. For the case of pure traction (which we consider
here) the evolution law for damage in tension is given by,

D = 0 if f < 0 (47)
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D = 1 − εd0

εeq
(1− A ) − Aexp(−B (εeq − εd0)) if f > 0 (48)

A,Band εd0 are material parameters. Finally the constitutive relation is given
by,

σ11 = (1−D)ε11 (49)

4.2 Second Grade Part

For the second grade part a linear elastic relationship as proposed by Mindlin
[22] is assumed as,

Σ111 = d
∂2u1

∂x2
1

(50)

5 NUMERICAL RESULTS

5.1 Using elastoplastic constitutive law for �rst grade

part

5.1.1 Mesh Independency

A simple bar of length 1 m in traction is studied using second gradient model.
Finite element calculations are done using MATLAB. The parameters of
the constitutive equation chosen are A1 = 150, A2 = −75, d = 0.8 and
elim = 0.01. Fig.(1) illustrates the mesh dependency of the classical �nite
element method. Mesh independency is studied using 50, 100, 150, 200
elements for an applied displacement U = 15.0E-3. Fig.(2) demonstrates
clearly the mesh independency of the second gradient model. In all the cases
an imperfection length of 0.2 m is introduced and corresponding localised
solution obtained is hard-soft-hard. Fig.(3) shows the evolution of global
reaction against the applied global displacement at the end of the bar.

5.1.2 Non-Unicity

Another technique to trigger localisation is random initialisation. In this
technique we initialise the newton-raphson method at particular step with
random solution other than the previously converged one. With di�erent
initialisations we obtain di�erent localised solution and thus the bifurcation
phenomenon is studied. Totally there are three types of solutions achievable

13



Figure 1: Mesh Dependency (U = 15.0E-3)
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Figure 2: Mesh Independency (U = 15.0E-3)
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Figure 3: global reaction vs. global displacement (U = 15.0E-3)
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for the considered problem. Fig.(4) demonstrates the non-unicity of solutions
and Fig.(5) shows the bifurcation phenomenon.

Figure 4: Non-Unicity

5.1.3 E�ect of the Penalisation Term

It is observed that the �elds v11 and
∂u1

∂x1

are not equal along the element

or in other words the constraint is not exactly imposed with out the penal-
isation term. For example take an arbitrary element (say tenth element),
Fig.(6) shows the distribution of both the �elds along the element and the
penalisation term of 1.0E+04 corrects the distribution as shown in Fig.(7).

5.1.4 Using Mazars damage law for �rst grade part

Here Mazars law with parameters as εd0 = 1.0e-4, At = 0.5,Bt = 2.0e-05 are
used as constitutive driver for the �rst gradient part and for second gradient
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Figure 5: Bifurcation
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Figure 6: Constraint with out penalty
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Figure 7: Constraint with penalty
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part d = 200 is used . Fig.(8) shows the mesh independent damage distribu-
tion for 50 and 100 elements and Fig.(9) shows the Force vs. Displacement
curve for both meshes for applied displacement U = 15E-05.

Figure 8: Damage distribution (U = 15E-05)
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Figure 9: global reaction vs. displacement (U = 15E-05)
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6 CONCLUSION

The characteristic length introduced using material properties in second
gradient model can regularise the solution and mesh independency can be
achieved. A second gradient model does not ensures uniqueness of the solu-
tion boundary value problem but instead of in�nite number of solutions by
using a classical model we get �nite number of solutions for a second gradient
model.
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