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Abstract 

 
The pharmacological targeting of cholesterol levels continues to draw interest due to 

the vast success of therapeutics such as statins in extending life expectancy by 

modifying the prognosis of diseases associated with the impairment of the lipid 

metabolism. Advances in our understanding of mitochondrial dysfunction in chronic 

age-related diseases of the brain have unveiled an emerging role for mitochondrial 

cholesterol (mChol) in their pathophysiology, thus delineating an opportunity to provide 

mechanistic insights and explore strategies of intervention. This review draws attention 

to novel signalling mechanisms in conditions linked with impaired metabolism 

associated with impaired handling of cholesterol and its oxided forms (oxysterols) by 

mitochondria. By emphasising the role of mChol in neurological diseases we here call 

for novel approaches as well as new means of assessment. 
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Abbreviations 
 

mChol Mitochondrial cholesterol 

ER-MAM endoplasmic reticulum-mitochondria associated membrane 

ER endoplasmic reticulum 

mtDNA mitochondrial DNA 

AD Alzheimers disease 

ROS reactive oxygen species 

7β-OHC 7β-hydroxycholesterol 

7-KC 7-ketocholesterol 

CNS central nervous system 

IMM Inner mitochondrial membrane 

ATAD3 ATPase family AAA domain-containing protein 3 

APOE4 apolipoprotein isoform 4 

LDLr low density lipoprotein receptor 

AßPP amyloid ß precursor protein 

Aß amyloid ß peptide 

StAR steroidogenic acute regulatory protein 

VDAC1 voltage-dependent anion selective channel 1 

ACBD1/3 Acyl-coenzyme A binding domain containing 3 

TSPO translocator protein 

OMM Outer Mitochondrial Membrane 

ANT adenine nucleotide transporter 

CYP11A1 Cytochrome P450 Family 11 Subfamily A Member 1 

PD Parkinson’s Disease 

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MPP+ 
1-methyl-4-phenylpyridinium 

HD Huntington’s Disease 

HTT huntingtin protein 

ALS amyotrophic lateral sclerosis 

24-OHC 24-hydroxycholesterol 

27-OHC 27-hydroxycholesterol 

4α-OHC 4α-hydroxycholesterol 

4β-OHC 4β-hydroxycholesterol 

α-epoxy C α-epoxy cholesterol 

β-epoxy C β-epoxy cholesterol 

25-OHC 25-hydroxycholesterol 

7α-OHC 7α-hydroxycholesterol 

SOD1 superoxide dismutase 1 

LXR liver-X receptor 

MitoQ 
10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl 
triphenylphosphonium methane sulfonate 

CoQ10 Coenzyme Q10 

SkQ1 10-(6'-plastoquinonyl) decyltriphenylphosphonium 



 

Introduction 
 
 

Cholesterol has emerged as a keystone lipid in mammalian cellular physiology and 

pathology since it was identified as bile solid in gallstones in 1769 by François 

Poulletier de la Salle. Cholesterol promotes an increase in lipid conformational order 

thus providing protection to animal cells (Simons & Ikonen, 1997) besides being a 

precursor for steroid hormones, bile acids and vitamin D. The insertion of cholesterol 

into various organellar membranes lends rigidity to these and offers protein-tethering 

platforms such as in the case of synaptic lipid rafts or ER-MAM (Endoplasmic 

Reticulum-mitochondria associated membrane) structures (Fujimoto, Hayashi & Su, 

2012; Lajoie, Goetz, Dennis & Nabi, 2009). 
 

Cholesterol is loaded differently among organelles and intracellular compartments. For 

instance, the plasma membrane contains cholesterol 40-fold higher than the ER and 

mitochondria (Horvath & Daum, 2013). In the mitochondria cholesterol is a: (i) 

structural component of the inner and outer mitochondrial membranes; (ii) precursor 

of steroidogenesis (of which the first steps are conducted in the mitochondrial lumen); 

(iii) core to a platform of interaction with ER, lysosomes and other compartments; as 

well as (iv) a tethering element for mitochondrial DNA (mtDNA). As a consequence, 

alterations in mChol occur in several diseases amongst which Alzheimer’s disease 

(AD) and neurodegenerations (Desai et al., 2017; Elustondo, Martin & Karten, 2017). 

The juxtaposition of mChol with the respiratory chain complex where reactive oxygen 

species (ROS) are produced, creates ideal conditions for the production of auto- 

oxidative products of cholesterols: the oxysterols (Zerbinati & Iuliano, 2017) which are 

implicated in brain diseases too. Some oxysterols are intermediates of cholesterol 

metabolism, enzymatically transformed into bile acids, steroid hormones and vitamin 

D. Auto-oxidation of cholesterol by ROS also results in the formation of oxysterols 

implying a pro-pathological positive feedback which amplifies mitochondrial 

dysfunction and hence severity of the condition. 

7-hydroxycholesterol (7β-OHC), 7-ketocholesterol (7-KC) and 5,6-epoxides as well 

as the secosterols are all produced under oxidative stress. In keeping with this, the 

levels of several species of oxysterols reflect the degree of pathology in chronic 

Central Nervous System (CNS) conditions (Zerbinati & Iuliano, 2017). It remains 

unclear though, how these processes can be pharmacologically modulated to inform 

therapeutic protocols or re-purposing existing cholesterol targeting chemicals. Here 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4352
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we overview our current knowledge of mChol homeostasis and its link to 

neurodegeneration to stem interest and encourage further exploitation of this lipid in 

mitochondrial physiopathology. 

 

 
 

Role of cholesterol in Mitochondrial DNA maintenance 
 
 

mtDNA is associated with nucleic acid binding proteins forming complexes known as 

nucleoids (Spelbrink, 2010). Mutations in mtDNA as well as in nuclear-encoded 

mitochondrial genes cause primary mitochondrial diseases (Gorman et al., 2016). 

Cholesterol rich patches in the mitochondrial inner membrane tether the mtDNA to the 

inner mitochondrial membrane (IMM) via nucleoprotein complexes called nucleoids. 

These patches and their components enable mtDNA processing, protein synthesis 

and replication (Gerhold et al., 2015; He et al., 2007). While the lipid composition of 

mitochondria has been described (Fleischer, Rouser, Fleischer, Casu & Kritchevsky, 

1967), dynamics of distribution and regulation remain fairly unexplored. Mitochondria 

are ‘cholesterol-poor’ organelles with a cholesterol to phospholipid ratio as low as 0.1 

(van Meer, Voelker & Feigenson, 2008). This low level of cholesterol is unlikely to form 

classical lipid rafts with close association with sphingolipids (Zheng, Berg & Foster, 

2009). However, from what is known about the behaviour of bilayer membranes and 

lipid movement, it can be inferred that cholesterol is restricted to nanodomains in the 

strict curvatures of the IMM (Rukmini, Rawat, Biswas & Chattopadhyay, 2001). This 

implies that rather than cholesterol-poor mitochondria they are cholesterol-vital 

organelles. The majority of primary mitochondrial diseases caused by mutations in the 

mtDNA associates with neurological deficits, ranging from mild ataxia to severe early 

onset of neurodegeneration (Carelli & La Morgia, 2018). Explorations into the mChol 

modulating proteins suggest that they directly impact mtDNA and hence associated 

mutations cause severe primary mitochondrial disorders. 

One of the components of nucleoprotein complex associated with mtDNA is the AAA+ 

ATPase protein ATPase family AAA domain-containing protein 3 (ATAD3), which has 

mtDNA binding properties (He et al., 2012; He et al., 2007). ATAD3 was found to affect 

the rate of steroidogenesis by facilitating cholesterol transport from ER to mitochondria 

(He et al., 2012; He et al., 2007; Issop et al., 2015). Mutations in the ATAD3 family of 

proteins which alter cholesterol metabolism, cause severe neurodegeneration, 

mitochondrial cristae defects and impaired mtDNA segregation (Desai et al., 2017; 



 

Peralta et al., 2018). Pharmacologically interfering with cholesterol shuttling in ATAD3 

deficient human fibroblasts via U18666A or by altering cholesterol biosynthesis via 

statins (e.g. pravastatin), results in exacerbated mtDNA de-segregation. Aggregation 

and disorganization imbalance are also observed in the Niemann-Pick type C disorder, 

further supporting the critical role of cholesterol inserts in mitochondria by controlling 

the tuned segregation of the organelle DNA (Desai et al., 2017). 

More recently, it has been also shown that deficiency in ATAD3 affects the formation 

of mitochondrial cristae (Peralta et al., 2018) suggesting that the optimum level of 

cholesterol inserts into the IMM is equally crucial in maintaining membrane structure 

as well as mtDNA integrity. Dysregulation of mChol may therefore result in primary 

mitochondrial dysfunction perturbing mtDNA homeostasis leading to deficits in the 

energy balance (Figure 1). 

 
 
 
 

Mitochondrial cholesterol and oxysterols in neurodegeneration 
 
 

Several studies have reported dysregulated cholesterol metabolism in AD and the E4 

variant of cholesterol gene apolipoprotein E(APOE) is a common risk factor for familiar 

AD  [as  comprehensively  reviewed  in  (Arenas,  Garcia-Ruiz  &  Fernandez-Checa, 

2017)]. However, less is understood about mChol in the disease. In a model of 

hypercholesterolemia, where low density lipoprotein receptor (LDLr-/-) mice are fed a 

high cholesterol diet, the mice develop cholesterol loading in the mitochondria and 

subsequent cognitive deficiencies and AD mimicking neurodegeneration. The cerebral 

cortex of LDLr-/- mice fed with cholesterol-enriched diet showed a (i) decrease in the 

activities of mitochondrial complexes I and II (ii), glutathione levels (iii), imbalance 

between the peroxide-removing-related enzymes (glutathione peroxidase and 

glutathione reductase) (de Oliveira et al., 2011). 

Del Prete et al studied a mutant form of Amyloid- precursor protein (A-PP) and found 

that there was an increased incidence of ER-MAM structures, which in turn captured 

more of the secretase-processed metabolites of the mutant A-PP in this micro-region 

thus interfering with MAM functions (Del Prete et al., 2017). 

This adds to the growing evidence that ER-MAM interactions are key platforms of AD 

aetiology (Area-Gomez et al., 2018). The AD peptide Amyloid-ß (Aß), when targeted 

to mitochondria, is thought to be crucially involved in associated toxicity. Aß induces 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2953
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4865
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ER stress leading to the increased synthesis of cholesterol and loading into the 

mitochondria via ER-MAM structures. Additionally, enrichment of cholesterol in 

mitochondrial membranes is reported in AD pathology. 

Mitochondria from a mouse model of cholesterol overload exhibit-increased 

susceptibility to Aß-induced oxidative stress and consequent cytochrome c release 

(Fernandez, Llacuna, Fernandez-Checa & Colell, 2009). Coupled with this 

observation, loading of mitochondrial cholesterol is increased in AD mouse model 

(Fernandez, Llacuna, Fernandez-Checa & Colell, 2009), accompanied by an 

overexpression of the Steroidogenic Acute Regulatory (StAR) protein (Barbero- 

Camps, Fernandez, Baulies, Martinez, Fernandez-Checa & Colell, 2014; Hashimoto 

et al., 2018). StAR is a lipo-protein that transports cholesterol from the ER to 

mitochondria regulating the intra-organelle distribution of the lipid. 

Components of the “transduceome” are known to affect cholesterol processing in the 

mitochondria and steroidogenesis -including neurosteroidogenesis- making them an 

attractive target for pharmacological regulation of these important biological processes 

(Rone, Fan & Papadopoulos, 2009; Rone et al., 2012; Strobbe & Campanella, 2018). 

The transduceome, which has been studied more extensively in non-neuronal cells, is 

a complex of cholesterol binding proteins that orchestrate movement of cholesterol 

into the mitochondria. It comprises, the Voltage Dependent Anion Channel 1 (VDAC1) 

along with interacting partners, ACBD1/3, and, under steroidogenic conditions, 

Translocator Protein (TSPO) and StAR on the outer mitochondrial membrane (OMM). 

They connect with ATAD3 on the IMM via adenine nucleotide translocase (ANT) to 

deliver cholesterol to the processing enzyme Cytochrome P450 Family 11 Subfamily 

A Member 1 (CYP11A1) to generate pregnenolone - the first step of steroidogenesis 

(Rone, Fan & Papadopoulos, 2009; Rone et al., 2012). Under conditions of stress, 

such as neuroinflammation and neurodegeneration, the 18kDa TSPO is over- 

expressed to fuel the cholesterol processing machinery (Figure 1). Although the 

precise function of TSPO remains unresolved and likely boarder (Gatliff et al., 2014), 

the protein presents two validated cholesterol binding sites (Fantini, Di Scala, Evans, 

Williamson & Barrantes, 2016; Jaipuria et al., 2017; Jaremko, Jaremko, Giller, Becker 

& Zweckstetter, 2014). When bound to cholesterol TSPO changes confirmation 

(Jaipuria et al., 2017) implying that it has a key function in regulating intra-organellar 

distribution of cholesterol. As a result of a druggable structure (Jaremko, Jaremko, 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=919&amp;2879
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=919&amp;2879
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1358
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1358
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1358
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2376


 

Giller, Becker & Zweckstetter, 2014) and temporally regulated expression, (Gavish & 

Veenman, 2018) TSPO has been a target of several generations of chemical PET 

tracers (positron emission tomography) and pharmaceutical ligands (Veenman, 

Vainshtein, Yasin, Azrad & Gavish, 2016) (see Table 1). 

In our opinion this represents an opportunity for exploration of potential protective 

effects by disrupting the transduceome with TSPO regulators (Gatliff & Campanella, 

2016). A better understanding of TSPO function, and its role of the steroidogenic 

transduceome in neuronal dysfunction is therefore necessary to lay a foundation for 

foreseeable therapeutic interventions. While cholesterol synthesis inhibitors such as 

the “blockbuster” statins (Cholesterol Treatment Trialists et al., 2015) occupy an elite 

place in cholesterol modulation, it is perhaps time to look beyond this strategy and turn 

to more subtle and selective mechanisms of cholesterol shuttling. The TSPO ligands 

are indeed exploited for anti-inflammatory and neuroprotective effects (Qiu et al., 

2016; Scholz et al., 2015). 
 

In a rat model of hypercholesterolaemia, ischemia-reperfusion injury results in 

mitochondrial sterol (both cholesterol and oxysterol) accumulation in mitochondria 

(Paradis, Leoni, Caccia, Berdeaux & Morin, 2013), which can be ablated by TSPO 

ligands SSR180575 (benzodiazepine), 4′-chlorodiazepam or TRO40303. This 

methodology may prove useful in diseases of the CNS where mitochondrial sterol 

levels are altered and the range of TSPO ligands (annotated in Table 1) can be a 

useful toolkit to explore this. 

Within the context of mitochondrial dysfunction, classically, the research on 

Parkinson’s disease (PD) has focussed on the deficiencies in quality control regulation 

of mitochondria by autophagy (Larsen, Hanss & Kruger, 2018). However, studies have 

shown that disrupted cholesterol dynamics associate with established molecular 

features of PD [reviewed in (Arenas, Garcia-Ruiz & Fernandez-Checa, 2017)]. One of 

the earliest evidence was in PD patients derived human fibroblasts which showed 50% 

reduction in cholesterol biosynthesis (Musanti, Parati, Lamperti & Ghiselli, 1993). 

Lim et al found that a cholesterol precursor lanosterol was 50% lower in a neurotoxin- 

induced mouse model (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) of PD. 

This evidence was recapitulated in vitro where it was observed a redistribution of 

lanosterol synthase from the ER to mitochondria in dopaminergic neurons exposed to 

1-methyl-4-phenylpyridinium (MPP+) thus implying a survival effect via mitochondria 
 

(Lim et al., 2012). Similarly, in neuroblastoma cells treated with MPP+ there was 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2746
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2434
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2434
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568
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marked accumulation of cholesterol in lysosomes (Eriksson, Nath, Bornefall, Giraldo 
 

& Ollinger, 2017). When this effect was mimicked by cholesterol blocking agent 

U18666A, cell death was reduced, hinting that lysosomal cholesterol accumulation 

may be an adaptive stress response. Furthermore, cholesterol synthesis inhibitor 

lovastatin reduced MPP+- induced cell death by lowering ROS production without 

preventing the accumulation of cholesterol into lysosomes (Eriksson, Nath, Bornefall, 

Giraldo & Ollinger, 2017). This argues for further functions for mtChol: alike the ER- 

MAM communication also the lysosome-mitochondria communication is cholesterol 

dependent and the delicate balance of membrane lipid composition critical for healthy 

CNS. 

A recent publication by Lin et al (Lin et al., 2018), has shone light on the transcriptomic 

changes accompanying the isoform change of Apolipoprotein (APOE3  APOE4) 

which has for long been the largest genetic risk factor acknowledged for late onset 

sporadic AD. The authors dissected the transcriptomic changes in different types of 

derived CNS cells discovering that astrocytes, neurones, and microglia regulate 

different pathways to compensate for the loss of APOE4. Most notably, APOE4 

astrocytes have altered cholesterol metabolism, this is of particular interest because 

astrocytes are known to supply cholesterol to neurons. The gene-edited CNS cells 

exhibit other features of AD such as compromised A- clearance, altered synaptic 

formation, immune activation, increased A- production and hyperphosphorylated tau. 

Lin et al present in dish modelling of AD and a scientific validation for exploring 

cholesterol shuttling as a target for therapy. Perhaps, this balance of cholesterol at 

interorganellar interactions is key to mitochondrial network dynamics that ultimately 

define cellular health, especially in neurones, which are highly dependent on oxidative 

phosphorylation. In the case of familiar PD, in which deficiency impacts mitochondrial 

quality control by autophagy to the extent of dysfunction and ultimately death of the 

dopaminergic neurones, the ability to modulate mitophagy can prove critical. 

Mitochondrial cholesterol protein TSPO has an anti-mitophagy effect when 

overexpressed (Gatliff & Campanella, 2015; Gatliff et al., 2014). 

By disrupting the activity of TSPO via its ligands or changing its residence time on the 

mitochondria, efficient mitophagy could be restored and so cellular health. Intriguingly, 

modulation of mChol may allow the same beneficial outcome. This is supported by 

observations in pre-clinical as well as clinical studies, in which TSPO expression 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2739


 

correlates with longitudinal progression of neurological conditions (Cumming & 

Borghammer, 2012; Maia et al., 2012). 

Unlike AD, other neurodegenerative diseases do not have such straightforward 

evidence of mChol involvement in their pathophysiology. We nonetheless know that 

Huntington’s disease (HD), the HTT (huntingtin protein)-induced mitochondrial fluidity 

can be rescued by olesoxime, a cholesterol-like product (Eckmann et al., 2014) which 

bears also neuroprotective effects in amyotrophic lateral sclerosis (ALS) (Martin, 

2010). 
 
 
 
 
 
Oxysterols – Schrodinger’s cat of mitochondrial cholesterol related dysfunction 

 

 
 

Cholesterol is present at the site of mitochondrial ROS production and susceptible to 

auto-oxidation into oxysterols making of these a metaphorical Schrodinger’s cat of 

neurodegeneration. Heightened oxysterol levels are being used as biomarkers for 

neurodegenerative diseases and lysosomal storage disorder progression (Griffiths et 

al., 2017; Testa et al., 2016). Cholesterol can be enzymatically broken down into  24- 

hydroxycholesterol (24-OHC) and  27-hydroxycholesterol (27-OHC), or auto-oxidised 

by ROS to products like 7-KC, 4α-hydroxycholesterol (4α-OHC), 4β- 

hydroxycholesterol (4β-OHC),  7β -OHC, α-epoxy cholesterol (α-epoxy C) and β-

epoxy cholesterol    (β-epoxy    C),    while     25-hydroxycholesterol    (25-OHC)    

and     7α- hydroxycholesterol (7α-OHC) can occur in both ways. When tested in AD 

(Alzheimer’s disease) patients, all of the above tested oxysterols are found elevated 

in late stage of  the condition  except  for  the enzymatic 24-OHC,  which  reduces  

with  disease progression (Testa et al., 2016). 

ALS is a primary target of exploited oxysterol signalling. Since the discovery that 

mutation in the mitochondrial anti-oxidant enzyme superoxide dismutase 1 (SOD1) 

can cause ALS (Ince, Shaw, Slade, Jones & Hudgson, 1996), mitochondrial oxidative 

stress in motor neurones has become a key research interest in the field. Recent 

studies have revealed that liver x receptors  and  (LXR and LXR-) are key 

players in ALS aetiology. LXRs are nuclear receptors of oxysterols, which regulate 

cholesterol synthesis amongst other cellular processes (dependent on the cellular 

type). A recent study  identified  two  single  nucleotide  polymorphisms  of  LXRα,  

rs2279238  and 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5199
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8542
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2750
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2750
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2750
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2752
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4352
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2885
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4351
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4351
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=602
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=601
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rs7120118 associated with delayed age of ALS onset amongst a cohort of 330 ALS 

patients (Mouzat, Raoul, Polge, Kantar, Camu & Lumbroso, 2016). Moreover, male 

LXR-–/– mice develop severe motor impairment closely resembling ALS at 7 months 

which later progresses to hind-limb paralysis (Andersson, Gustafsson, Warner & 

Gustafsson, 2005). 

If autoxidative forms of oxysterols produced in the mitochondria are acknowledged 

contributing factors in ALS, beneficial are the antioxidant protocols adopted to 

ameliorate the condition. Miquel et al assessed the therapeutic benefit of a 

mitochondrially targeted anti-oxidant MitoQ (10-(4,5-dimethoxy-2-methyl-3,6-dioxo- 

1,4-cyclohexadien-1-yl) decyl triphenylphosphonium methane sulfonate) in a mouse 

model of familial ALS  in which decline of mitochondrial function was slowed down, in 

both the spinal cord and the quadriceps muscle (Miquel et al., 2014). 

While the preclinical data are substantive, no anti-oxidant therapy has, hitherto, proved 

to modify ALS or any other neurodegenerative condition. Intriguingly though, there are 

some reports of long term statins usage causing ALS, which is attributed to the parallel 

reduction of mitochondrial antioxidant Coenzyme Q10 (CoQ10) by the inhibition of 

HMG-CoA reductase enzyme (Edwards, Star & Kiuru, 2007). 

Testing other anti-oxidants such as 10-(6'-plastoquinonyl) decyltriphenylphosphonium 

(SkQ1), MitoQuercetin, Mitocurcumin, Mitoresveratrol, MitoHonokiol, Mitoapocynin, 

AntiOxCIN4, AntiOxBEN2, could anyway prove beneficial in ALS, more importantly in 

the models where the anti-oxidant system is disrupted (Teixeira, Deus, Borges & 

Oliveira, 2018). 

After almost 2 decades since the approval of Riluzole for ALS, only recently Edaravone 

was approved by the FDA (May 2017), showing benefit in a randomized double-blind 

clinical trial (Rothstein, 2017; Writing & Edaravone, 2017). While Edaravone has other 

effects, such as reducing inflammation, its main activity is anti-oxidant. While it is not 

mitochondrially targeted, there is a possibility that by quenching ROS it facilitates the 

modulation of oxysterols and mChol for therapeutic benefit. This strategy has not been 

tested in neurological conditions but warrants further investigation on this. 

The interest in LXRs as therapeutic targets has steadily increased for a multitude of 

diseases ranging from vascular to metabolic and the neurological ones. Potent and 

selective LXR ligands continue to emerge from screening of small molecule libraries, 

rational  design  and  empirical  medicinal  chemistry  approaches.  In  spite  of  this, 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5346
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7000
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8741
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2326


 

challenges remain in minimizing undesirable effects of LXR activation on lipid 

metabolism (Komati, Spadoni, Zheng, Sridhar, Riley & Wang, 2017) for which a 

mitochondrial health assay approach may prove useful to implement drug screening 

(Figure 2). 

 
Conclusions and Perspectives 

 

All these evidences indicate that mChol has been well studied in the context of 

steroidogenesis but largely ignored in neurodegeneration. While there are the known 

functions of (i) precursor to steroids (ii) ER-MAM and (iii) Mitochondrial-Lysosomal 

interaction, as well as (iv) mtDNA tethering, there are other biochemical or 

mechanobiological processes that involve homeostasis of the cholesterol in the 

mitochondria which remain il-defined. 

With the revelation that ER-MAMs are important in AD (i), the mitochondria-lysosomal 

interaction is compromised in PD (ii), and disruption of oxysterol signalling can lead to 

ALS (iii), mChol stands as a logical target to inform and treat these conditions. 

Furthermore, a dissection of oxysterol signalling could per se lead to identification of 

potential therapeutic avenues in neurodegeneration. The genetic evidence in ALS 

advocate for this to be the case as equally strong are those from studies with SOD1 

mutants as well as LXR-–/– mice: lack of ROS neutralization as well as dysregulated 

oxysterol signalling lead to motor neuron degeneration (Abdel-Khalik et al., 2017; 

Mouzat et al., 2018; Mouzat, Raoul, Polge, Kantar, Camu & Lumbroso, 2016). Most 

notably, increasing anti-oxidant levels improve the tone of cholesterol signalling via 

LXR leading to a beneficial outcome in neurodegeneration (Bond, Bernhardt, Madria, 

Sorrentino, Scelsi & Mitchell, 2018; Sandoval-Hernandez, Restrepo, Cardona-Gomez 

& Arboleda, 2016; Stachel et al., 2016). Along with the need to continue gathering 

evidences on the beneficial effect of cholesterol modulating agents on 

neurodegeneration, it is therefore pivotal assessing novel means of measure of 

neuroprotection such as handling of the lipid by mitochondria. 

 
 
 
 
Nomenclature of Targets and Ligands 

 

 
 

Key protein targets and ligands in this article are hyperlinked to corresponding entries 

in http://www.guidetopharmacology.org,  the  common  portal  for  data  from  the 

http://www.guidetopharmacology.org/
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IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and are 

permanently archived in the Concise Guide to PHARMACOLOGY 2017/18 (Alexander 

et al., 2017). 
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Figure 1. The pivotal role of cholesterol in cellular physiology and pathology 
Cholesterol (green) serves multiple purposes in the mitochondria (i) As a structural 
component of the inner and outer mitochondrial membrane (OMM, IMM) (ii) As a precursor 
of steroidogenesis, of which the first steps are conducted in the mitochondrial lumen (iii) As 
providing the platform for interorganellar interaction with endoplasmic reticulum (ER), 
Lysosomes (LY) and other intracellular compartments, and (iv) as the tether for mitochondrial 
DNA (mtDNA). 
 

 



 

Figure 2. Cholesterol interplay between mitochondria and cytosol 
The picture depicts the prominent mechanisms of cholesterol import (e.g. TSPO) in the 
mitochondria exploited by the intracellular accumulation of APOE. The two isoforms of the 
transcription factor liver X receptor (LXRα and LXRβ) activated and hence translocated in the 
nucleus by the oxidized derivatives of cholesterol (oxysterols), which are formed by the high 
redox stress produced by malfunctioning mitochondria are also highlighted in the scheme. 
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The table lists the ligands of the Translocator Protein (TSPO), their chemical structure, pharmacological 

effect, clinical or pre-clinical use. 
 
 

Class Compound Structure Properties 
 
 
 
 

 
 

 

4‐Phenylquinazoline‐2‐ 

carboxamides 
ER176

 
 

 
 
 
 
 
 
 
 
 
 

Benzodiazepines Ro‐5‐4864 

Aza‐isosteres of PK11195. In particular, PET 
radioligands with sensitivity to robustly 
image all three TSPO genotypes in human 
brain 

 
 
 
 
 
 
 

Sedative, neuroprotective, Agonist or partial 
agonist of TSPO with nanomolar binding 
affinity 
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Benzoxazines Etifoxine 
Anxiolytic effects, anti- neurodegenerative 
effects mediated by TSPO, PET ligand 

 
 
 
 
 
 
 

 
 

 

Cholest-4-en-3-one TRO40303 
Agonist, used in cardioprotection, ALS, 
Putatively interrupts the formation of 
mitochondrial transition pore 

 
 
 
 
 
 
 
 

Imidazopyridineacetamides DPA Ligand used for in vivo imaging of TSPO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 
 
 
 
 
 

Indoleacetamides FGIN‐1‐27 
TSPO ligand characterized by steroidogenic 
and pro‐apoptotic activities 

 

 
 
 
 
 
 
 
 
 
 

 
 

Isoquinoline carboxamides PK11195 
 
 
 
 
 
 
 
 
 
 
 

 
N,N‐Dialkyl‐2‐phenylindol‐3‐ 

ylglyoxylamide (PIGA) 
PIGA 1128

 

TSPO antagonist with nanomolar affinity, 
widely used for characterizing expression and 
function in various tissues and cells, Widely 
used PET ligand 

 
 
 
 
 
 
 
 

Used to modify steroidogenic activity of 
TSPO, specifically in relation to 
neurosteroids. Developed for anxiolytic 
activity. 
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Phenoxyphenylacetamides PBR28 
Developed as PET ligands for TSPO, 
specifically used for neuroinflammation. 
Brain penetrant. 

 
 
 
 
 
 
 

Phenylpurines Emapunil Ligand with rapid anxiolytic effects 
 
 
 
 
 
 
 
 

Pyrrolobenzoxazepines OXA‐17 
Developed as anti-cancer therapies, some 
activity for cannabinoid receptors. 

 
 
 
 
 
 

Quinoline carboxamides VCM198M             Used as radioligand for TSPO imaging 
 

 
 
 
 



 

 
 
 
 
 
 

 

Vinca alkaloids Vinpocetine 
Ligand with neuroprotective activity that 
binds TSPO and other receptors such as 
adrenergic receptors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


