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Abstract: Cardiovascular diseases, including atherosclerosis, now account for more deaths in the
Western world than from any other cause. Atherosclerosis has a chronic inflammatory component
involving Th1 pro-inflammatory cytokines such as IFN-γ, which is known to induce endothelial cell
inflammatory responses. On the other hand CNP, which acts via its receptors to elevate intracellular
cGMP, is produced by endothelium and endocardium and is upregulated in atherosclerosis. It is
believed to be protective, however its role in vascular inflammation is not well understood. The aim
of this study was to investigate the effects of CNP on human endothelial cell inflammatory responses
following IFN-γ stimulation. Human umbilical vein endothelial cells were treated with either IFN-γ
(10 ng/mL) or CNP (100 nm), or both in combination, followed by analysis by flow cytometry
for expression of MHC class I and ICAM-1. IFN-γ significantly increased expression of both
molecules, which was significantly inhibited by CNP or the cGMP donor 8-Bromoguanosine
3’,5’-cyclic monophosphate (1 µm). CNP also reduced IFN-γ mediated kynurenine generation by the
IFN-γ regulated enzyme indoleamine-2,3-deoxygenase (IDO). We conclude that CNP downmodulates
IFN-γ induced pro-inflammatory gene expression in human endothelial cells via a cGMP-mediated
pathway. Thus, CNP may have a protective role in vascular inflammation and novel therapeutic
strategies for CVD based on upregulation of endothelial CNP expression could reduce chronic
EC inflammation.

Keywords: C-type natriuretic peptide; endothelium; inflammation; cardiovascular; interferon gamma;
indoleamine-2,3-dioxygenase

1. Introduction

According to the latest statistics published by the American Heart Association cardiovascular
disease (CVD) is the largest cause of death worldwide and accounts for over 750,000 deaths in the
USA annually [1,2]. The importance of the endothelium is well established for the initial development
and subsequent advancement of CVD, having a large influence on maintenance of blood vessel tone
via production of nitric oxide and other vasoactive factors. Furthermore, a healthy endothelium is
responsible for the maintenance of an anti-thrombotic environment via the production of tissue factor
pathway inhibitors and thrombomodulin [3,4]. There is now compelling evidence that chronic systemic
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inflammation also has a major impact on progression of CVD, with accelerated secondary CVD being
noted in obese individuals, and as a risk factor for patients with diabetes or autoimmunity [1].

There is very strong evidence that CD4+ T helper type 1 (Th1) cells are present in early
atheromatous lesions and contribute to lesion progression [5], including production of the
pro-inflammatory cytokine, interferon gamma (IFN-γ). IFN-γ has many pro-inflammatory effects on
vascular endothelial cells (EC), most notably enhancing the expression of adhesion molecules involved
in firm adhesion of both monocytes (VCAM-1), and other leukocyte populations (ICAM-1 [6]). It also
increases expression of MHC class I and MHC Class II in human EC [7], which may lead to further
activation of antigen specific CD8 and CD4+ T cells, thus contributing to plaque progression.

IFN-γ also has a number of immuno-regulatory functions, one of the most well described is its
upregulation of indoleamine-2,3-deoxygenase (IDO), an inducible enzyme that reduces tryptophan
availability by catalyzing its breakdown to kynurenine for reviews see [8–11]. This reduction in
bioavailable tryptophan in the local microenvironment of the inflamed vasculature could potentially
reduce the activity of highly metabolic cells such as T lymphocytes and myeloid cells and therefore
reduce the chronic immune response.

Atrial- and B-Type natriuretic peptides (ANP and BNP, respectively) are well characterised
hormones that exert profound effects on the cardiovascular system, as well as having established
anti-inflammatory roles in the endothelium and other tissues [12–15]. C-type natriuretic peptide (CNP)
is a 22 amino acid peptide, the third member of the natriuretic peptide family, identified first in extracts
from porcine brain [16]. It is known to have actions on central regulation of vasoactive hormones such
as vasopressin and adrenocorticotrophin hormone release, but has also been shown to have direct
vasodilatory effects, in particular on smooth muscle relaxation. Coupled with the finding that it is
less well expressed in heart than other family members and its abundance in endothelium, it has been
hypothesized to be a third, so called, endothelial derived hyperpolarizing factor (EDHF), alongside
nitric oxide and prostacyclin [17,18]. CNP has also been described to have broadly “anti-inflammatory”
effects on endothelial cells in vitro [19–21], to be anti-fibrotic [22–24] and to be cardioprotective [25–28].

We hypothesized that as CNP has been shown to be abundantly expressed in endothelial cells
and to have broadly anti-inflammatory effects on EC it can act as a protective brake, specifically acting
on pro-inflammatory molecule expression to limit leukocyte emigration and IDO expression to limit
subsequent activation after an inflammatory insult. We measured the effect of CNP administration on
endothelial pro-inflammatory gene expression including ICAM-1, MHCI, MHCII and IDO activity
after treatment of human umbilical vein endothelial cells with IFN-γ.

2. Materials and Methods

2.1. Materials

All reagents were from Sigma (Poole, UK) unless otherwise stated. All tissue culture reagents were
from Sigma or Gibco (ThermoFisher, Loughborough, UK), and plastics were from Nunc (ThermoFisher;
Loughborough, UK).

2.2. Cell Culture

Umbilical cords were collected from The Royal London Hospital with approval from the East
London Research Ethics Committee and according to the Declaration of Helsinki. Human umbilical
vein endothelial cells (HUVEC) were isolated according to a modified method of Jaffe [29] and
maintained as described previously [30]. Cells were seeded onto plates pre-coated with gelatin
at 2 × 105 cells/well (6 well) or 5 × 104 cells/well (24 well) plates as appropriate. They were
allowed to adhere overnight before treatment with IFN-γ 10 ng/mL (Insight Biotech, Wembley,
UK), 100 nm CNP (Sigma, Poole, UK) for up to 72 h, 1 µm 8-bromo-cGMP (Sigma, Poole, UK) or
100 µm 8-(4-Chlorophenylthio)-guanosine 3’,5’-cyclic monophosphate (8-CPT-cGMP; Sigma, Poole,
UK), for 48 h.
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2.3. Flow Cytometry

HUVEC were treated on 24 well plates for up to 72 h as above. The supernatants were removed
and snap frozen at −80 ◦C for further analysis. Cells were harvested by trypsinization. Cells were
centrifuged and the pellet resuspended in 2 mL PBS divided between four 5 mL FACS tubes and
re-centrifuged. Pellets were resuspended in 50 µL PBS and primary antibodies added at predetermined
concentrations (anti-human ICAM-1 clone 6.5B5 (a gift from Professor DO Haskard, Imperial College
UK); anti-MHC class I clone W6/32 (ATCC); MHC class II clone L243 (ATCC)). Cells were held on
ice for 30 min, washed with 2 mL ice cold PBS, centrifuged, pellets were resuspended in 50 µL cold
PBS with predetermined concentration of FITC-conjugated Goat anti-mouse-Ig antibody (Jackson;
Stratech Luton, UK) and incubated on ice for 30 min followed by a wash with 2 mL ice cold PBS,
and centrifugation. Pellets were resuspended in 0.5 mL PBS/0.5% formaldehyde and held at 4 ◦C
before analysis by flow cytometry using a FACS CANTO II with FACS DIVA software (BD Biosciences;
Oxford, UK). The flow cytometer was calibrated daily with CS&T beads (BD Biosciences) according
to the manufacturer’s instructions. Cell populations were gated on FSC/SSC and using a negative
control of FITC-conjugated secondary antibody alone.

2.4. cGMP Assay

Cells were treated with CNP in quadruplicate in 24 well plates for 30 min at 37 ◦C before removal of
culture medium and lysis and fixation with 750 µL 100% Ethanol for 5 min at RT before freezing at−20 ◦C
until analysis using cGMP EIA (R&D, Oxford, UK) according to the manufacturer’s instructions.

2.5. Mass Spectrometry for Tryptophan Metabolites

Four metabolites of tryptophan were prepared at 1 mg/mL for use as standards Kynurenine
(K), 2,3-Pyridinecarboxylic acid (PCA), 3 Hydroxy DL Kynerenine (HDLK) and 3 Hydroxyanthranilic
acid (HAA) (All from Sigma). K, PCA and HAA were dissolved in 500 µL of water and 500 µL
methanol. HDLK was dissolved in 600 µL methanol, 400 µL water and 1 µL formic acid. Standards
were; 10 µg/mL, 100 ng/mL and 10 ng/mL.

Samples were thawed at room temperature and 10 µL of each sample was diluted with 495 µL of
water and 495 µL of methanol.

A Shimadzu LCMS8040 was used—a triple quadruple mass spectrometer with high sensitivity,
high speed and high reliability. Analysis of both positive and negative ions is possible in the same
experiment due to the ultrafast polarity switching capabilities. LabSolutions software was used for
the acquisition and analysis of data. A Phenomenex (Macclesfield, UK) Kinetex PFP (50 × 2.1 mm
i.d., 2.6 µm, 100 Å) with mobile phases A (0.1% formic acid in water, v/v) and B (0.1% formic acid in
Methanol, v/v) was used. The column was kept at 40 ◦C. All analytes were detected in positive ion
multiple reaction monitoring (MRM) mode. The flow rate, at all times, was 0.25 mL/min. The column
effluent was delivered to the mass spectrometer with no split. If not otherwise noted, an injection
volume of 1 µL was used. All MS parameters were optimized by the auto optimization program.
The ESI source was operated under standard conditions of Nebulising Gas at 3 L/min, DL temperature
at 250 ◦C, a heat block temperature at 400 ◦C and drying gas flow at 15 L/min.

2.6. Data Analysis

Post-acquisition analysis of flow cytometry data was using FACS DIVA II software (BD Biosciences,
Oxford, UK), FloJo v10 (FLoJo LLC, Ashland, OR, USA) and Flowing Software v2.5.1 (University of
Turku, Finland) and data is presented as fold increase in median fluorescence intensity over untreated
cells; mean ± SEM. All statistical analyses were performed using Prism 7 (GraphPad Software Inc.,
CA, USA). One-way ANOVA followed by Bonferroni post-test or Independent T tests were used as
appropriate, with p < 0.05 (*) considered as statistically significant. Mann–Whitney tests were used to
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analyze data that were not normally distributed. All experiments were performed on at least three
separate isolates of HUVEC and data are presented as mean ± SEM.

3. Results

3.1. CNP Reduces IFN-γ Mediated Expression of Pro-Inflammatory Molecules on the Surface of HUVEC.

As shown in Figure 1, and as has been described previously in the literature [31,32] IFN-γ induced
4.9 ± 1.2-fold increase in ICAM-1 expression above basal levels in HUVEC after 24 h treatment,
increasing to 7.4 ± 0.9-fold after 48 h and maintained for at least 72 h. Alone, CNP had no effect on
ICAM-1 cell surface expression; however, it caused a significant reduction in the IFN-γ mediated
response at both 24 h (to 2.6 ± 0.06-fold, p < 0.05) and 48 h (to 4.3 ± 0.7-fold, p < 0.05) with the trend
continuing out to 72 h treatment (3.7± 1.0-fold, p = 0.24). Similarly, CNP did not affect basal MHC class
I expression when administered alone to HUVEC for up to 72 h (Figure 2) but significantly reduced
IFN-γ mediated increased surface expression after 48h co-treatment (6.4 ± 1.2-fold vs. 3.2 ± 0.6-fold,
p < 0.05) and 72 h (7.8 ± 2.5-fold vs. 3.3 ± 0.6-fold p < 0.05). In contrast (Figure 3), although IFN-γ
increased the expression of MHC class II on the surface of HUVEC at each time-point (2.8 ± 1.1-fold,
5.5 ± 1.4-fold, 17.2 ± 6.0-fold, at 24 h, 48 h and 72 h, respectively), CNP failed to significantly alter
these responses.
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Figure 1. ICAM-1 expression in HUVEC after incubation with IFN-γ alone or in combinations with 
CNP for up to 72 h. (A) Representative flow cytometry histograms for ICAM-1 after incubation of 
HUVEC alone (Red) or with IFN-γ (Blue), CNP (Orange) or IFN-γ and CNP (Green) for the indicated 
times. (B–D) Mean Fluorescence Intensity (expressed as fold increase over MFI of untreated cells, 
which range from 820 to 3089; mean ± SEM) for ICAM-1 on untreated HUVEC or after 24 h (B), 48 h 
(C) or 72 h (D) treatment with IFN-γ alone or in combination with CNP; n = 3 HUVEC isolates (* p < 
0.05, ** p < 0.01, significantly different from IFN-γ alone). 

Figure 1. ICAM-1 expression in HUVEC after incubation with IFN-γ alone or in combinations with
CNP for up to 72 h. (A) Representative flow cytometry histograms for ICAM-1 after incubation of
HUVEC alone (Red) or with IFN-γ (Blue), CNP (Orange) or IFN-γ and CNP (Green) for the indicated
times. (B–D) Mean Fluorescence Intensity (expressed as fold increase over MFI of untreated cells,
which range from 820 to 3089; mean± SEM) for ICAM-1 on untreated HUVEC or after 24 h (B), 48 h (C)
or 72 h (D) treatment with IFN-γ alone or in combination with CNP; n = 3 HUVEC isolates (* p < 0.05,
** p < 0.01, significantly different from IFN-γ alone).
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of HUVEC alone (Red) or with IFN-γ (Blue), CNP (Orange) or IFN-γ and CNP (Green) for the 
indicated times. (B–D) Mean Fluorescence Intensity (expressed as fold increase over MFI of untreated 
cells, which ranged from 2079 to 6549; mean ± SEM) for MHC-I on untreated HUVEC or after 24 h 
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Figure 2. MHC class I expression in HUVEC after incubation with IFN-γ alone or in combinations
with CNP for up to 72 h. (A) Representative flow cytometry histograms for MHC-I after incubation of
HUVEC alone (Red) or with IFN-γ (Blue), CNP (Orange) or IFN-γ and CNP (Green) for the indicated
times. (B–D) Mean Fluorescence Intensity (expressed as fold increase over MFI of untreated cells,
which ranged from 2079 to 6549; mean ± SEM) for MHC-I on untreated HUVEC or after 24 h (B),
48 h (C) or 72 h (D) treatment with IFN-γ alone or in combination with CNP; n = 3 HUVEC isolates
(* p < 0.05, ** p < 0.01, significantly different from IFN-γ alone).
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Figure 3. MHC class II expression in HUVEC after incubation with IFN-γ alone or in combinations
with CNP for up to 72 h. (A) Representative flow cytometry histograms for MHC-II after incubation of
HUVEC alone (Red) or with IFN-γ (Blue), CNP (Orange) or IFN-γ and CNP (Green) for the indicated
times. (B–D) Mean Fluorescence Intensity (expressed as fold increase over MFI of untreated cells,
which ranged from 187 to 216; mean ± SEM) for MHC-II on untreated HUVEC or after 24 h (B), 48 h
(C) or 72 h (D) treatment with IFN-γ alone or in combination with CNP; n = 3 HUVEC isolates.

3.2. CNP Induces cGMP Release in HUVEC

CNP exerts the vast majority of its effects via the guanylyl cyclase B (GC-B) receptor and cGMP
generation [33,34]. We therefore measured cGMP accumulation in HUVEC stimulated with 0 or 100 nm
CNP in the presence of 1 mm IBMX. As shown (Figure 4A), CNP stimulated total cGMP accumulation
in HUVEC isolates, to 2.5 ± 0.3-fold above basal (*p = 0.015). To determine whether the observed
effects of CNP on IFN-γ-induced ICAM-1 and MHC class I expression in HUVEC were mediated via
cGMP, we used a cell permeable cGMP agonist (8-Br-cGMP) to mimic the observed cGMP increase
in response to CNP. As shown (Figure 4B,C), 1 mm 8-Br-cGMP caused an identical inhibition of the
IFN-γ-mediated increases in ICAM-1 (7.6 ± 1.04-fold vs. 2.4 ± 0.4-fold, p < 0.001) and MHC class I
expression (6.6 ± 0.8-fold vs. 2.5 ± 0.5-fold, p < 0.001). However, similar to CNP, 8-Br-cGMP failed to
alter the effects of IFN-γ on MHC class II expression (Figure 4D). 8-CPT-cGMP also reduced IFN-γ
mediated increase in MHC class I (Supplementary Figure S1). Collectively, these data support a role
for GC-B/cGMP signaling in attenuating the effects of IFN-γ in HUVEC.
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Figure 4. cGMP mediated effects on cell surface receptor expression in HUVEC. (A) CNP-stimulated
cGMP accumulation in HUVEC isolates, after 30 min stimulation with 100 nm CNP in the presence of 1
mm IBMX. Data shown are means ± SEM pooled from 6 independent isolates (n = 6), each performed
in duplicate (* p = 0.015, significantly different from Basal). (B–D) Effect of 8-bromo-cGMP on IFN-γ
mediated ICAM-1 (B), MHC-I (C), and MHC-II (D) expressed as fold increase over MFI of untreated
cells expression after 48hr treatment (which ranged from 572 to 819, 1313 to 2012, 176 to 230, for ICAM-1,
MHC-I and MHC-II, respectively). n = 3 HUVEC isolates (* p < 0.05, *** p < 0.001, significantly different
from IFN-γ alone).

3.3. CNP Inhibits IFN-γ Induced Upregulation of Tryptophan Metabolism

IFN-γ has previously been shown to upregulate expression of indolamine 2,3-dioxygenase (IDO),
an inducible enzyme found at sites of immune privilege and thought to be important for exerting the
anti-microbial effects of IFN-γ [11]. The enzyme works to reduce tryptophan availability, catalyzing
the first step of the pathway to kynurenine, which can be measured by mass spectrometry in vivo
in plasma or in vitro in cell culture medium. As shown in Figure 5, IFN-γ stimulation induced a
significant increase in kynurenine in the culture supernatant and this was significantly reduced by
co-treatment with CNP after 48 h (100.0 ± 5.3% vs. 24.5 ± 2.4%, p < 0.01). This suggests that as well as
potentially downregulating leukocyte adhesion and trans-endothelial migration during endothelial
inflammation it may have an opposing effect of maintaining function of those leukocytes which are
able to adhere and migrate at inflammatory sites in the vasculature.
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Figure 5. CNP downregulates IFN-γ-mediated tryptophan metabolism in HUVEC. (A) Representative
chromatogram of kynurenine production following IFN-γ treatment. (B) Kynurenine production from
untreated HUVEC or after 24 h and 48 h treatment with IFN-γ alone or in combination with CNP.
Data shown are representative from a single HUVEC isolate, expressed as % IFN-γ -stimulated
kyunurenine production), and performed in duplicate. (** p < 0.01, significantly different from
IFN-γ alone).

4. Discussion

Here, we have shown that CNP, a natriuretic peptide shown to be broadly cardioprotective [35]
and known to be highly expressed by the endothelium [36] is able to downregulate IFN-γ-mediated
gene expression in human endothelial cells in vitro. In particular, we have shown that CNP significantly
inhibited the IFN-γ increase in ICAM-1 expression on the cell surface of HUVEC. ICAM-1 is an
adhesion molecule involved in firm adhesion and trans-endothelial migration of leukocytes including
neutrophils, monocytes and both T and B cells, and is also important for immunological synapse
formation during T cell activation (for review see [37]), so by downregulating expression to basal
levels CNP may prevent leukocyte accumulation during vascular inflammation, that could lead
to the early stages of fatty streak formation. Likewise, by reducing ICAM-1 expression on the
endothelium, immunological synapse formation will be compromised which could limit T cell
accumulation. Thus, development of the pro-inflammatory environment leading to lesion formation
will be reduced by some degree. ICAM-1 is a ligand for β-2 integrin family members, including
αx/β2 (CD11c/CD18), the α-subunit (CD11c) having recently been shown to be upregulated in
IDO/ApoE−/− mice [38]. However, VCAM-1 has been shown to be an alternative ligand for
CD11c [39], which Polyzos et al. [40] recently demonstrated was upregulated in ApoE−/− mice
and aortic endothelial cells treated chronically with 1-MT to inhibit IDO. Polyzos et al. [40] also
showed that CCL2 was increased. Taken together these could explain the increased macrophage
accumulation after IDO blockade in these two animal models. Interestingly, CNP has previously been
shown to downregulate secretion of CCL2 from THP-1 human macrophage cell line in vitro [41] and
there are differences in expression patterns of VCAM-1 in murine and human endothelial cells [7,42].
Future work should examine the effect of CNP on other IFNγ-mediated responses including expression
of VCAM-1 and CCL2, or the effects of CNP on leukocyte adhesion and trans-endothelial migration.

We have also demonstrated that CNP reduced IFN-γ-mediated increases in MHC I expression.
This could additionally contribute to a brake on CD8+ T cell immune responses in the inflamed
environment. Cytotoxic T cells have been identified in advanced atherosclerotic lesions and may
contribute up to 50% of the lymphocyte population [43]. Activated CD8+ T cells have been shown
to efficiently migrate into the intima of both healthy and diseased arteries in vitro [43]. Interestingly,
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we did not see an effect of CNP on IFN-γ induced MHC class II expression, suggesting that CNP
exerts a selective inhibition of CD8 T cell/NK cell accumulation, whilst allowing CD4+ T cell activity.
There is evidence that certain subsets of CD4+ T cells (Th2-like, Treg) may be beneficial in reducing
atherosclerotic lesion formation [3], thus it could be argued that a selective reduction in CD8 vs. CD4 T
cell accumulation via CNP’s reduction in gene expression mediated by IFN-γ is an early protective
response by the endothelium.

CNP exerts the vast majority of its effects via the GC-B receptor, and the generation of cGMP [33,34].
In our current study, not only did we confirm the presence of functional GC-B receptors in HUVEC,
as described previously [44], but were able to mimic the dampening effects of CNP on IFN-γ
responsiveness by using the cell permeable analogue, 8-Br-cGMP and with an additional cGMP
analogue 8-CPT-cGMP, which is a more membrane permeant molecule. Interestingly, 8-CPT-cGMP
only partially recapitulated the effects on MHC-I and ICAM-I seen in the presence of either CNP or
8-Br-cGMP. It is unclear as to why 8-CPT-cGMP failed to inhibit INF-y-stimulated ICAM-1 expression
in HUVECs. However, previous studies suggest that the sub-cellular localisation of cGMP generation
in cardiomyocytes and HUVEC can influence biological responsiveness [44,45]. Therefore, it is possible
that CNP, 8-Br-cGMP and 8-CPT-cGMP treatments lead to spatially distinct increases in cGMP within
HUVECs that may alter endothelial cell responsiveness.

HUVEC also express the NPR-C receptor, which has been strongly implicated in the role
that CNP performs to maintain vascular homeostasis [46]. Even though NPR-C lacks intrinsic
guanylyl cyclase and, therefore, does not directly enhance cGMP production, previous studies
have shown that activation of NPR-C by natriuretic peptides may also stimulate nitric oxide
production, leading to cGMP generation via soluble guanylyl cyclase [47]. Therefore, although our
data implicate GC-B/cGMP signaling as a mechanism for the anti-inflammatory effects of CNP in
HUVEC, it is perfectly conceivable that additional, NPR-C-mediated mechanisms may also contribute
to these effects.

We have used HUVEC as model human endothelial cells in this study because umbilical cords are
a readily available, ethically uncontroversial source of human vascularized tissue. HUVEC have been
used for more than 40 years and their responses to a range of stimuli including IFN-γ are very well
characterized and have been shown to be comparable to adult human large artery endothelium [48].

In conclusion, CNP is able to downregulate IFN-γ-mediated gene expression in the endothelium,
which could limit vascular inflammation by directing specific T cell subsets into developing
atherosclerotic lesions, ultimately affecting atheroma progression. Further work is required to
determine whether modulation of endogenously expressed endothelial CNP or addition of exogenous
CNP is of potential therapeutic value to treat atherosclerosis in vivo.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6374/8/3/86/s1,
Figure S1: ICAM-1 and MHC Class I expression in HUVEC after incubation with IFN-γ alone or in combinations
with 8-CPT cGMP for 48 h.
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