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Abstract

The aim of this thesis is the study of electronic transport and mechanical properties of materials
using computer simulations. In particular, we dealt with the charge transport in semiconduc-
tor and metallic samples and with the peeling of a graphene layer from bulk graphite. The
computational methods used to investigate the samples are (i) the Monte Carlo (MC) statis-
tical method to simulate the transport of electrons in solids and (ii) the molecular dynamic
(MD) approach to study the mechanical characteristics. A relevant part of this thesis is focused
on carbon-based material, such as diamond and graphite, and the stable two-dimensional al-
lotrope, graphene. The response of diamond and graphite to external electromagnetic pertur-
bations, due to e.g. an impinging electron beam, was investigated by calculating reflection
electron energy loss (REEL) spectra with MC simulations. By comparing the calculated spec-
tra, obtained using different dielectric models, and in-house recorded experimental results, the
most effective dielectric model better describing the plasma losses was identified. Moreover,
an extension to these models to describe the anisotropic response of graphite to an external
electromagnetic perturbation was developed and included in the MC approach. Owing to the
central role of carbon for future electronic and technological applications, also its mechanical
properties were investigated by means of MD simulations. In particular, the peeling process
of a layer of graphene from a bulk of graphite was investigated. This process is exploitable
for graphene production and for adhesive applications of this material. Moreover, the MC
approach, employed for calculating REEL spectra, was tested and compared to other com-
putational techniques based on the solution of the Ambartsumian-Chandrasekhar equations.
This consistency test was realized by considering three metals (copper, silver and gold) as tar-
get materials. Further studies were carried out on these materials by calculating secondary
electron emission yields as a function of the electron beam energy. A remarkable good agree-
ment with experimental data was obtained. The MC approach was also used to investigate the
growth of particles in a W(CO)6 layer deposited on a SiO2 substrate upon irradiations by an
electron beam in the context of the focused electron beam induced deposition technique. In
particular, by applying the MC method, the radial distribution of emitted secondary electrons
was calculated and then utilized as input data for further MD simulations. Moreover, the study
of electron transport in an organic polymer (P3HT) was performed in order to understand how
the molecular ordering affects the secondary electron emission. This aspect is of paramount
importance to construct efficient organic electronic devices.
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Chapter 1

Introduction

To completely understand complex physical phenomena, the role of modelling and simula-
tions are becoming more and more fundamental. These procedures lay in the middle of theory
and experiments. Indeed the modelling represents the transfer of the theory to the real phe-
nomena under study, while the simulation is an in silico experiments, realized by following
the statements of the theory. By comparing the results obtained from these virtual experiments
and the real experimental outputs a theory can be verified and even developed. In this thesis
the implementation of modelling and simulations methods is presented in the study of two dif-
ferent phenomena: (i) the electron transport in solid targets and (ii) the peeling of a graphene
layer from a bulk of graphite. The first topic was addressed by statistical Monte Carlo (MC)
model and relative simulations. The code developed to treat different materials and exper-
imental situations. The peeling process was studied by means of Molecular Dynamic (MD)
simulations and by the implementation of computational tools in order to analyze atom coor-
dinates and record significant observables of the process. These computational methods are
described in details in the first chapter.
The electron transport is a central topic, given the fact that electron motion is involved in a
myriad of processes. Actually given the relative simplicity of handling electrons, electron mi-
croscopy and spectroscopy techniques are increasingly widespread. The use of electron beams
is made in the fabrication of electronic devices and in materials characterizations. Other pecu-
liarities are that the electrons can be detected, counted and their energy can be easily measured.
As a result of inelastic interaction between traveling electrons and electron atomic clouds, sec-
ondary electrons can be generated with lower kinetic energy. They also travel inside the mate-
rial, if they reach the surface with a sufficient energy, they can be emitted outside the sample.
For example, in particle accelerators the electrons which remain in the proximity of the vacuum
tube walls are accelerated by radio frequency waves, thus causing an avalanche of secondary
electrons. This phenomenon, called multipacting effect, can produce detrimental effects on the
machine stability that might result in beam loss [1, 2]. Thus, the study of electron transport
is of paramount importance to well understand the mechanisms of electron interactions with
different samples [3, 4, 5].

The first materials taken into account for the study on these phenomena are carbon-based
materials, given their importance for future applications. Actually carbon-based materials
present outstanding properties that make them optimal candidates to become constituent ma-
terials for electronic devices [6, 7]. There are different stable forms of carbon, as diamond,
graphite and multi-layer graphene that can be exploited in this field. Diamond shows wide
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band gap, optical isotropic structure, high thermal conductivity and charge mobility and ro-
bustness [8]. Graphite presents a layered structure, with strong two dimensional sp2-hybridized
lattice bonds in layers and softer interplanar bonds which make layers easily divisible. The
anisotropy of its structure affects both mechanical and electronic properties. Indeed graphite
shows higher thermal and electrical conductivity along the plane than across the plane [9, 10].
The most attractive carbon 2D material is graphene, which is composed by a honeycomb net
of sp2 bonds of carbon atoms. In this layer, electrons behave like fermions, with an extremely
high mobility so that graphene can be exploited for optical and electronic devices [11]. More-
over, graphene shows attractive mechanical properties: it is characterized by superior strength,
high in-plane stiffness and high Young Modulus [12]. Thus graphene shows the desired char-
acteristic to be employed in the construction of wearable and folding systems. Moreover, in
order to spread this technology, the production procedure of the material has to be efficient and
scalable. Therefore for future exploitation of these carbon-based materials in the production
of electronic devices both optical, electrical and mechanical properties have to be understood.
In the second chapter the study about electron transport in diamond and graphite with MC
simulations is presented. First of all effects of different dielectric models on reflection elec-
tron energy loss (REEL) spectra were examined. Then a model to consider the influence of
the anisotropic structure of graphite was developed and the obtained results are shown. In
particular, the outputs achieved with the simulations are compared to experimental results
recorded at the laboratories of the LISC (Interdisciplinary Laboratory of Computational Sci-
ence - ECT * - FBK) group and of the University of Sheffield. These studies were published in
two research papers (Refs. [5, 13]). In the third chapter graphene and graphite are considered
for mechanical tests carried out by means of MD simulations. In particular the peeling of a
layer of graphene from a bulk of graphite was simulated and studied. Actually this process
can constitute a new technique to produce free-standing graphene without involving chemical
treatments. As a first step in the investigation, the behavior of graphene subjected to deforma-
tions under different conditions was analyzed. The adhesion energy between the two layers
was calculated by realizing dedicated MD simulations. The classical theory of the peeling of
an elastic layer from a solid substrate by Kendall [14] was tested for this nanoscale system and
the conditions for its applicability are discussed.

The second group of materials considered as samples for our studies is metals. They are
characterized by a high electron mobility and therefore by a high electron conductivity. This
feature is largely exploited in electronics, where constituent elements of devices are mainly
chosen among these materials. Moreover metals are also employed in the construction of par-
ticle accelerators and satellites. For these reasons, the knowledge of the electron transport
properties of these materials is of paramount importance. In the fourth chapter the electron
transport in three metals (copper silver and gold) is carefully investigated. Given the large lit-
erature regarding these samples, they were taken as standard targets to test our MC procedure
with another computational tool the numerical solution of the Ambartsumian - Chandrasekhar
equations using the Invariant Embedding Method [15]. This second method was developed
by the computational group at the National Research University of Moscow. In particular, the
methods were applied to calculate the REEL spectra of the three samples. The same input data
were considered, concerning elastic and inelastic interaction, in order to significantly compare
the results. A notably good agreement was found between two methods and the available
experimental data [16]. The complete investigation was reported in Ref. [17]. The agreement
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between calculated and experimental REEL spectra ensures that the description of the elec-
tron transport in these samples, achieved by the methods, is almost correct. Starting from this
point, in the second part of the fourth chapter, the secondary electron emission yield calcu-
lation is performed. When the metal surface is irradiated by primary electrons, avalanches
of secondary electrons are generated. A fraction of these secondary electrons is emitted from
the surface and collected. In scanning electron microscopy [18, 19] and in electron multiplier
based detectors [20, 21], the emission of secondary electrons is exploited in order to acquire
sample’s images. In these applications, the secondary electron emission yield should reach
high values in order to guarantee images with good resolution. There are other circumstances,
such as in particle accelerators, where the secondary electron emission has to be reduced or
even suppressed, in order to prevent damages in the machinery [1, 2]. Some treatments [22]
or creation of pattern [23] are realized on the target surfaces in order to reduce the risk of de-
structive effects due to secondary electrons emission. Our MC approach allows to carefully
calculate the secondary electron emission yield and to predict the tendency of a specific metal
to emit secondary electrons for given conditions. The optimal conditions for the employment
of these materials, according to the desired yield, can be established. The simulation outputs
were compared with experimental data acquired by the experimental INFN group in Frascati.
This study was also reported in the published research paper (Ref. [24]).

Electron beams are also used in the fabrication of 2D and 3D nanostructures. Actually, the
focused electron beam induced deposition (FEBID) technique employes a high-energy electron
beam impinging on precursor adsorbed molecules on a given substrate. The beam electrons,
given their high-energy, interact mainly with the substrate by producing the emission of pri-
mary and secondary electrons from the substrate. These electrons are transferred to adsorbed
molecules. These additional charges involves molecules dissociation. The resulting free atoms
arrange together forming nanostructures deposited on the substrate. In collaboration with the
theoretical and computational group at the Univeristy of Murcia and of Alicante we intend to
achieve a complete model of the FEBID process. The study is performed by combining two
simulation techniques: MC simulation for the transport of the primary and secondary elec-
trons through the substrate [5] and the irradiation driven molecular dynamics (IDMD) for the
fragmentation, dynamics and reaction of precursor molecules on the substrate [25]. As a case
study, 30 keV electron irradiation of W(CO)6 molecules on silica (SiO2) surface was chosen,
since experimental results are available to compare to the simulations outputs. In the fifth
chapter the first part of this complex model is reported by considering as a substrate, for the
FEDIB technique, a bulk of SiO2. First of all the MC method was tested in the calculation of
SiO2 REEL spectra by comparing the calculations with experimental data [26, 27]. Simulations
with a high energy beam were performed and the electron energy spectra at several annular
patches around the beam center were calculated. The electron energies and fluxes will be used
to determine fragmentation rates for precursor molecules, to be used in IDMD.

The sixth chapter is devoted to the illustration of the study carried out in collaboration
with the experimental group headed at the University of Sheffield, about the evaluation of the
molecular ordering in a poly(3-hexylthiophene) (P3HT) sample via secondary electron emis-
sion spectroscopy measurements. This polymer material represents an element to be exploited
in the construction of organic electronic devices. We considered an irradiated region composed
by amorphous and crystalline regions. Their different electronic properties can be described
by different values of electron affinity. We found out that electrons coming from regions with
different molecular ordering are emitted with different energy distributions. The results are
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published in Ref. [28].
Each chapter reports details about the initial conditions and the evaluations of input data.

In the end, further remarks and conclusions will be provided.
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Chapter 2

Computational methods

2.1 Monte Carlo simulation of electron transport
The Monte Carlo statistical method can be exploited to evaluate the transport of electron beam
in solid samples. This method is based on the knowledge of characteristic probability distribu-
tions, about the interactions of the electrons with the sample, and on the generation of random
numbers. Each step of the electron trajectory is determined by comparing the distribution with
a random number. By performing a statistically significant number of trajectories, character-
istic features of the electron transport in the sample can be obtained. In our research group, a
computational tool based on the Monte Carlo method was developed in order to approach this
problem. The electrons are followed from their entrance in the solid, along their entire path
inside the solid till they are absorbed or emitted. When the electrons reach the surface and
escape, they are collected and recorded as a function of their kinetic energy or their emission
angle [1]. In the simulation, an electron beam impinges on a target surface inclined with an
angle q0 with respect to the surface normal, with an assigned initial kinetic energy. The beam
electrons interact with the scattering centres present in the solid. The calculation of trajectories
is based on the evaluations of probability distributions and then on the comparison of these
with random numbers uniformly distributed in the interval between 0 and 1. Here and after r
is implied as a new random number for each sampling. The initial kinetic energy is sampled
by considering a Gaussian distribution or the experimental distribution of the electron gun,
centred at the desired initial kinetic energy. Usually, a Gaussian distribution with a full width
half maximum equal to 0.4 eV is employed. Where the experimental distribution is used, it
will be underlined. When the electron enters in the material, its kinetic energy is increased by
the work function c, to transfer it to the energy reference system of the solid.
Then, the electrons interact with the specimen, and different kinds of electron interactions are
taken into account in the simulation. In particular:

• elastic scattering between electrons and atomic nuclei. It produces an angular deviation
of the electron trajectory.

• inelastic scattering between travelling electrons and target electrons. It causes an energy
loss by the travelling electron and an angular deviation of its trajectory. Moreover, the
energy loss of the travelling electron can be transferred to an atomic electron, and if this
energy is high enough a secondary electron is emitted and also its trajectory is simulated.
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• electron-phonon interaction involves a fixed energy loss (Wph) by the travelling electrons
and an angular deviation of its trajectory.

• trapping phenomena which ends the trajectory. All the electron energy is locally deposited.

Each interaction is quantified by the corresponding cross section. These quantities will be
denoted as sel for the elastic scattering, sinel for the inelastic scattering, sph for the electron-
phonon interaction and strap for the trapping phenomena. The scattering cross section are
related to the corresponding mean free path (l) by this simple relation:

l =
1

N s
, (2.1)

where N is the scattering centres density (number of scattering centres for unit volume).
The electron path is assumed to be described by a Poisson-like law, so the step length (Ds)
between two subsequent collisions is given by:

Ds = �ltot ln(r), (2.2)

where ltot is the total mean free path, which depends on the kinetic energy of the travelling
electron, and its calculated as:

1
ltot

=
1

lel
+

1
linel

+
1

lph
+

1
ltrap

. (2.3)

The electron takes a step Ds. Then the kind of the interaction has to be chosen. This decision is
performed in the calculation by comparing the probabilities to undergo each kind of interaction
with a random number. The interaction probabilities are computed as:

pi =
ltot
li

, (2.4)

where i stands for the different interaction kind. By this definition the sum of these probabili-
ties is normalized to one and the 4 numbers [ pel, pel + pinel, pel + pinel + pph, 1] are considered.
The value of the random number r is compared to these numbers and depending on which seg-
ment it belongs, the kind of interaction is identified. At this point the trajectory and the energy
of the electron are modified according to the kind of the interaction suffered by the particle.
After a series of interactions, the electron can reach the target surface and can be emitted from
the target surface, provided that the emission condition is fulfilled. This emission condition is
related to the target-vacuum interface, which represents by all means an energy barrier to be
overcome. This condition is formulated as:

E cos2 q̄ � c, (2.5)

where ¯theta is the angle inside the target between the electron trajectory and material the nor-
mal to the surface, E is the electron kinetic energy and c the work function of the specimen.
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FIGURE 2.1: System considered in the simulation and experimental layout of a typical
reflection electron energy loss measurement [3].

The surface emission probability is evaluated by comparing a random number with the trans-
mission coefficient t. This is obtained by solving the problem of a step potential [1]:

t =
4
p

1 � c/(E cos2 a)
h
1 +

p
1 � c/(E cos2 a)

i2 . (2.6)

If r > t, the electron is reflected back to the solid continuing its path inside the target; other-
wise, it is emitted from the surfaced and its kinetic energy is diminished by c. The ensemble
of trajectories used in MC simulations of emission spectra is assessed so to reach statistical
significance and low noise of the simulated data. Further details on the MC approach can be
found in Refs. [1, 2]. In Fig. 2.1 a graphical layout of the simulated system is illustrated.

The following sections report a detailed description of each kind of interaction and of tra-
jectory variations due to different collisions.

2.1.1 Elastic scattering: Mott theory
The elastic scattering between the travelling electron and the atomic nuclei is described by the
Mott theory [1, 4, 5, 6]. This approach is based on the Partial Wave Expansion Method to solve
the Dirac equation: this procedure therefore considers the quantum nature of the electron.
Indeed, in this case, the use of the Rutherford cross section is not allowed, since we are consid-
ering electron with a kinetic energy lower than 5 keV. In this energy region the Born approxi-
mation, which requires that E >> e2Z2

2a0
, is not satisfied (with e the electron charge, Z the atomic

number of the specimen and a0 the Bohr radius). In particular, the Dirac equation describes
the motion of charged particle with spin. In this case we consider the electrons subjected to a
central spherical potential. The Dirac equation is given by:
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df±
l (r)
dr

=
k±

r
sin[2f±

l (r)] � cos[2f±
l (r)] + W � V(r). (2.7)

There the distances are given in unit of h/(2pmc) , with h the Planck constant, m the electron
mass, c the speed of light. The energy is reported in unit of mc2.
In the Eq. (2.7) W = E+mc2

mc2 , with E the kinetic energy of the electron. k± are quantum numbers:
in particular k+ = �l � 1 and k� = l where l is the angular momentum quantum number. The
functions obtained solving the previous equations are employed in the calculation of the phase
shifts between the incoming and outcoming waves:

tan d±l =
Kjl+1(Kr) � jl(Kr)[(W + 1) tan f±

l + (1 + l + k±)/r]
Knl+1(Kr) � nl(Kr)[(W + 1) tan f±

l + (1 + l + k±)/r]
, (2.8)

jl and nl are the regular and irregular Bessel functions, K is defined as K2 = W2 � 1 and
f±

l = lim
r!•

f±
l (r) . The differential cross section can be computed as:

dsel
dW

= | f |2 + |g|2, (2.9)

where the direct scattering amplitude is defined as:

f (q) =
1

2iK

•

Â
l=1

{(l + 1)[e2id+
l � 1] + l[e2id�l � 1]}Pl(cos q), (2.10)

with Pl the Legendre polynomials, while the spin-flip scattering amplitude is computed as:

g(q) =
1

2iK

•

Â
l=1

{�e2id�l + e2id+
l � 1]}P1

l (cos q), (2.11)

where P1
l (x) = (1 � x2)(1/2) dPl(x)

dx [7]. The total elastic scattering cross section is calculated as:

sel =
Z dsel

dW
dW = 2p

pZ

0

dsel
dW

sin(q)dq (2.12)

Evaluation of angular deflection due to an elastic interaction

The cumulative elastic probability is then defined, for any given kinetic energy E and fixed
scattering angle q̄ , as

Pel(q̄, E) =
1

sel
2p

q̄Z

0

dsel
dW

sin(q0)dq0 (2.13)

A database is constructed and filled by the values of Pel, calculated for different values of the
electron kinetic energy and for different values of angles q̄ (the upper limit of the integral).
The angular deflection of the trajectory is evaluated by generating a random number r, and by
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finding the value of the upper extreme of integration q̄ in Eq. (2.13) that produces a value of
Pel equal to r.

Ganachaud and Mokrani correction

For low kinetic energy, the total elastic cross section sel reaches high values, involving a too
low value of the elastic mean free path lel (lower than the characteristic lattice parameter of
the target crystal structure). Therefore, when this condition occurs, a correction to the Mott
cross-section at low energy is applied [8]. The sel is multiplied by the cut-off function R(E)
proposed by Ganachaud and Mokrani [9]:

R(E) = tanh
⇣

a E2
⌘

(2.14)

where a is a parameter to be determined. Thus, by applying the Ganachaud and Mokrani
empirical correction, the pure elastic scattering is turned off gradually, so that the main quasi
elastic interaction is the electron-phonon one.

2.1.2 Inelastic scattering: Ritchie Dielectric theory
The travelling electron in the solid is slowed down by single interaction with orbital electrons.
The energy loss can be calculated by evaluating the dielectric function e(~q, W) of the target
material as a function of the momentum ~q and energy W transferred. The dielectric function
measures the capability of a medium to be polarized or to absorb energy given the action
of electromagnetic waves (that could arise from an applied field or by a travelling charged
particle) [10]. Within the dielectric theory developed by Ritchie [11], the key ingredient is the
energy loss function (ELF), which is defined as the imaginary part of the negative reciprocal
dielectric function:

ELF = Im

� 1

e(~q, W)

�
. (2.15)

In the optical limit, where the transferred momentum tends to zero (~q �! 0), the ELF can be
fitted by a sum of Drude–Lorentz (D–L) oscillators as follows [12]:

Im

� 1

e(~q = 0, W)

�
= Â

n

AnGnW
(E2

n � W2)2 + W2G2
n

, (2.16)

where An is the excitation strength of the n-th oscillator, Gn the damping constant character-
izing the finite life-time of the quasi-particle excitation, and En the plasmon excitation energy.
The optical ELF is then extended to finite transferred momentum by applying the following
dispersion law [13]:

En(~q 6= 0) = En(~q = 0) +
h̄2q2

2m
, (2.17)
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where m is the electron mass and h̄ is the reduced Planck constant.
Moreover, from the ELF, the differential inverse inelastic mean free path (DIIMFP) can be com-
puted as:

dl�1
inel

dW
=

1
pEa0

q+Z

q�

dq
q

Im

� 1

e(~q, W)

�
, (2.18)

where a0 is the Bohr radius and E the electron kinetic energy. The limits of integration of the
integral in Equation (2.18) are set to q± =

p
2mE ±

p
2m(E � W) (momentum conservation).

Finally, the inelastic mean free path (IMFP) can be obtained by integrating the DIIMFP in the
energy loss interval:

l�1
inel =

(E+Eth)/2Z

Eth

dl�1
inel

dW
dW. (2.19)

As bottom value of the integration interval the (Eth) energy threshold is considered. Depend-
ing on the electronic structure of the sample it is set equal to 0, to the binding energy or to the
energy band gap. As upper limit of the integral is set the half of the sum of the kinetic energy
and the energy threshold, due to the indistinguishability between the two electrons involved
in the interaction. Moreover it is assumed that the travelling electron remain the most ener-
getic after the inelastic interaction. Given the fact that the electrons are indistinguishable, we
assume that the traveling electron is the one wich loses loss energy in the collision, so we set
the maximum value of the integration interval to its

Evaluation of energy loss and angular deflection due to an inelastic interaction

The energy loss W of an inelastic scattering is evaluated by calculating the inelastic cumulative
distribution Pinel(E, W) .

Pinel(E, W) = linel

WZ

0

dl�1
inel

dW 0 dW 0 (2.20)

which depends on the kinetic energy E and on the energy loss W . A database composed by
its values, for different kinetic energies and energy losses is constructed. The energy loss W is
then determined by generating a random number r and by finding the value of Pinel equal to
r. The angular deviation b is computed as sin2(b) = W/E (energy and momentum conserva-
tion), with E the kinetic energy of the travelling electron.

Generation of secondary electrons

If a travelling electron loses an energy W higher than the threshold energy < B >, the energy
is transferred to an orbital electron, which is finally emitted and named secondary electron. Its
trajectory is also calculated and its path starts with an initial kinetic energy equal to W� < B >.
Otherwise, if the energy loss W results to be smaller than the threshold energy < B >, the
emission of a secondary electron does not occur, but the atom can be excited. In turn the
atom de-energizes by emitting X-rays or Auger electrons. The value of < B > is determined
according to the electronic characteristics of the target material.
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2.1.3 Electron - phonon interaction
The travelling electron can interact with optical phonons of the target material involving a
phonon creation by transferring energy by the electron. This quasi - elastic interaction is de-
scribed by the Fröhlich theory [14] and according to the formulation by Llacer and Garwin [15]
the inelastic mean free path is given by:

l�1
ph =

1
a0

e0 � e•
e0e•

Wph

E
n(T) + 1

2
ln

2

4
1 +

q
1 � Wph/E

1 �
q

1 � Wph/E

3

5, (2.21)

where a0 is the Bohr radius, e0 and e• are the static and the high frequency dielectric con-
stants respectively and Wph is the energy loss transferred from the electron to the phonon. The
occupation number n(T) is defined as:

n(T) =
1

eWph/kBT � 1
, (2.22)

with T the temperature and kB the Boltzmann constant. Given the fact that the phonon energy
is in the order of kBTD, with TD the Debye temperature, the characteristic energy loss of this
interaction Wph does not exceed 0.1 eV [1]. Its value will be determined according to the target
material characteristics and will be indicated for each different situation.

2.1.4 Trapping phenomena
Trapping phenomena are able to literally stop the electron trajectory. Depending on the elec-
tronic structure of target material different phenomena can occur. Conductor and semicon-
ductor materials can present impurities or local deformations of crystalline structure that can
act as traps for electrons, and affecting the charge mobility [16, 17, 18]. In case of insulating
material, the main trapping phenomenon is represented by the generation of polarons. They
are quasi-particles due to the interaction of the electron with the polarizing field generated
from its passage [9]. The mean free path characteristic of the trapping phenomena is defined
by Ganachaud and Mokrani [9] as:

l�1
trap = Ctrap e�gtrapE, (2.23)

where Ctrap and gtrap are characteristic parameters of the sample.
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2.2 Molecular Dynamics simulation
Molecular Dynamics (MD) simulation allows the study of the time evolution of a system com-
posed by atoms or molecules. It is based on the computation of the trajectories of these el-
ements in a given time interval. This method provides the measurement of important and
interesting quantities that can be compared to experiments data. In particular, the model is
based on the assumption that atoms and molecules are subjected to Newton laws of classical
mechanics of a many-body system. This assumption is valid if the de Broglie wavelength, de-
fined as l = h/p (h Planck constant, p particle momentum), results to be significantly smaller
than the mean neighbor separation. Assuming that the system is composed by N particles,
atoms or molecules, their temporal evolution is determined by solving the related system of
equations of motion:

mi~ri
00 = ~Fi = �r~ri

U(~r) (2.24)

where~r = (~r1, ~r2, ... ~rN) is the vector containing the Cartesian coordinates~ri = (xi, yi, zi) of each
item of the system, ~Fi is the force acting on the i-element. The interatomic potential U(~r) deter-
mines the time evolution of the system and depends on the positions of all the particles in the
system. Hence, the time evolution totally depends on the choice of the interatomic potential.
It has to be selected according to the aim of the simulation, which observables are attempt-
ing to measure, and the kind of the sample, chemical elements, and bonds. For our purposes,
with samples composed of carbon atoms, the adaptive intermolecular reactive empirical bond-
order (AIREBO) potential was used [19]. The MD simulations were performed by using the
LAMMPS software [20], where the time integration of equations of motion is performed for a
given system and interatomic potential. The system of motion equations was solved by apply-
ing the Verlet algorithm. It provides the formulation for the system arrangement positions at
the subsequent interval of time t + Lt, known the state of the system at previous timesteps t
and t � Lt [21].

~r(t + Lt) = 2~r(t) �~r(t � Lt) + (Lt)2~r00(t) (2.25)

Then thex velocity is given by:

~r0 = [~r(t + Lt) �~r(t � Lt)]/2(Lt) (2.26)

To perform the integration with this method, initial conditions for positions and velocities at
previous time steps have to be provided.

The first step for performing MD simulation is the initialization of the system. First of all,
the structure is generated, by determining the values of atoms coordinates. In the following
case study, the considered atom structure was constructed by using a Python code which gen-
erates coordinate of atoms given the desired geometry of the system. The system is contained
in a fixed 3D cell. The walls of this box are subject to boundary conditions. If the boundary
conditions are periodic, the particles can move from one side to the other and interact across
the boundary, otherwise the walls block any kind of interaction and overcoming of particles.

On this generated particle structure the energy and force minimization is performed in or-
der to relax the system in a balanced configuration. This minimization is realized by applying
the conjugate gradient method and by considering the system at 0�K. After minimization ve-
locities are assigned to each element, with a uniform distribution of values and randomly in
direction. The velocity value is determined according to the set temperature of the system.
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After energy and force minimization and velocities assignment, the system can be evolved by
setting the ensemble in which perform the integration. In our computation different ensembles
were used:

• canonical ensemble: where the number of particles, the cell volume, and the temperatures
are maintained constant;

• isothermal-isobaric ensemble: involves constant number of particles, system pressure and
temperature;

• microcanonical ensemble: requires constant number of particles, system volume and en-
ergy. In our calculation where this ensemble was set, the temperature was kept con-
stant by the action of a Langevin thermostat. This thermostat act directly on the equation
of motion, by adding a friction component to the force, in order to dissipate heat and
maintaining constant the temperature [22].

To thermalize the system at the desired temperature of the experiment, the system is kept
for a sufficient interval of time at the desired temperature and without adding modification. In
this period it is assured that the system is in a relaxed configuration at the required conditions.
At this point, different perturbations as a forced movement of atoms or deformation on the cell
can be applied to the system. Thus it is evolved by solving the equations of motion with these
constraints. During the simulation, different observables can be measured in order to control
the system evolution. In the chapter 3.3 the application of this method to the calculation of
mechanical properties of a graphene layer, the calculation of the adhesion energy between two
layers of graphene and the peeling of a graphene layer from a bulk of graphite are reported.
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Chapter 3

Carbon based materials I:
electron transport in diamond
and graphite

3.1 Different dielectric descriptions of
diamond and graphite

In this section, the impact of different theoretical descriptions of the dielectric response of di-
amond and graphite on the calculation of Reflection Electron Energy Loss (REEL) spectra was
investigated. The dielectric models are presented in details and afterwards the results con-
cerning observables, such as inelastic mean free paths and cross sections calculated with these
different approaches are also presented. Finally, the comparison with the experimental data
(acquired in the LISC group laboratories) allows identifying the dielectric theoretical approach
that ensures the most accurate description of the inelastic interaction. This study was pub-
lished as research paper in Ref. [1].

3.1.1 Dielectric models
The key quantity for the electron energy loss description is represented by the Energy Loss
Function (ELF) [Eq. (2.15)] that is directly obtained from the dielectric function e(~q, W) as
previously explained in Section 2.1.2. For this investigation ELFs acquired with different tech-
niques were taken into account. In one case dielectric functions of diamond and graphite were
calculated by ab initio procedure in the optical limit and for different values of the transferred
momentum [1]. Then the corresponding ELFs were simply computed according to Eq. (2.15)
and afterwards directly employed in Eq. (2.18), without using the fitting and expansion pro-
cedures Eqs. (2.16) and (2.17). This is the first approach considered and it is a full ab initio
calculation. The relative results will be denoted with AI label.
The second approach starts from the dielectric response in the optical limit obtained from the
ab initio calculation, while the extension to finite transferred momentum is obtained by fitting
the ELF in the optical domain (Eq. 2.16) and then by applying the quadratic dispersion law
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n En (eV2) Gn (eV) An (eV)
1 21.59 0.95 8.58
2 25.40 5.68 61.62
3 32.28 11.38 626.46
4 36.39 5.25 224.76

TABLE 3.1: Fitting parameters of AI
ELF in the optical limit with D–L

functions for diamond [1].

n En (eV2) Gn (eV) An (eV)
1 6.75 1.17 6.38
2 27.76 8.68 573.09

TABLE 3.2: Fitting parameters of AI
ELF in the optical limit with D–L

functions for graphite [1].

(Eq. 2.17). To best fit the ab initio ELF of diamond in the optical limit, four harmonic oscillators
were considered, while for the function of graphite two oscillators were necessary. These best
fits fulfill the f -sum rule [2]: this means that the integral of the ELF multiplied by the energy
loss sums up to the number of effective-electrons per atom [3], i.e. the valence electrons in our
model. The corresponding parameters of these best fit procedures are reported in Tabs. 3.1 and
3.2. In Fig. 3.1 the comparison between the AI dielectric response (red curve) for diamond (left
panel) and graphite (right panel) obtained in the optical limit with the D–L fit (dashed black
line) is presented. This approach, which starts with ab initio data and then includes the D–L
procedures, will be denoted with the DL-AI label.
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FIGURE 3.1: ELF in the optical limit (w ! 0) obtained from AI simulations (continuous red
curve) along with the data fit (dashed black line) for diamond (left panel) and graphite (right

panel) [1].

The third approach is given by the use of ELFs, in the optical limit, that were directly
measured in transmission electron energy-loss experiments. Then, as fit values those reported
by Garcia-Molina et al. [4] were taken into account. The expansion outside the optical limit was
performed by applying the quadratic dispersion law (Eq. 2.17). Given the experimental origin
of these ELFs, this approach will be denoted as Drude–Lorentz from experimental optical data
(DL–E). Figure 3.2 reports ELFs of diamond and graphite (respectively left and right panel) in
the optical limit: (i) ab initio calculated, (ii) from experiments and taken from references [5] and
[6] and (iii)best fit achieved by Garcia-Molina et al. [4].
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FIGURE 3.2: Comparison between the ELF of diamond (left panel) and graphite (right panel)
in the optical limit obtained from AI simulations (continuous red curve), experimental data
from Refs. [5] and [6] (black triangles) and fit obtained with the model of Garcia-Molina et al.

[4] (dashed black line) [1].

Inelastic mean free path calculation
Inelastic mean free paths (IMFP) for diamond and graphite were calculated starting from

the three different approaches of dielectric descriptions [Eq. (2.19)]. IMFPs for different kinetic
energies are reported in Fig. 3.3 and compared with calculated data with the Tanuma-Powell-
Penn (TPP) model [7].
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(Å
)

AI
DL - AI
DL - E
TPP calculation

101 102 103

T (eV)

100

101

102

103

IM
FP

(Å
)

AI
DL - AI
DL - E
TPP calculation

FIGURE 3.3: IMFP of diamond (left) and graphite (right). Data obtained from AI simulations
are reported in red (AI), DL-AI in blue and with the DL-E in green. Black dashed lines corre-

spond to the same quantities obtained by Tanuma et al. (TPP) [7] [1].

Fig. 3.3 shows a very good agreement, for energies higher than 100 eV, between results
achieved with the different approaches and the reference curve by Tanuma, Powell and Penn
(TPP). The discrepancy found for lower energy can be attributed to the different dispersion
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laws applied to extend the ELFs outside the optical limit. Indeed, the discrepancy is relevant
among the results obtained with the quadratic dispersion law (DL-AI and DL-E) with the ones
obtained with the full ab initio calculation (AI). The quadratic dispersion law is derived from
the hypothesis of a homogeneous electron gas model. Actually, diamond is a semiconductor,
with a wide band gap, and graphite presents an anisotropic structure with metallic behaviour
in the in-plane direction. So, the ab initio calculation takes into account these features, while
the dispersion law generalizes the system. The IMFP is an input information for the MC calcu-
lation and in the simulations we assume homogeneous systems described by mean ELFs, that
are those previously reported, without a preferential direction of interaction.

3.1.2 Calculated reflection electron energy loss spectra
Monte Carlo simulations were performed as previously described in section 2.1, by including
as possible interactions the elastic and the inelastic scattering. To reproduce the spectra, 109

electron trajectories were computed. The beam direction was set orthogonal to the surface and
the electron beam energy varies from 250 to 2000 eV. A Gaussian distribution of the initial en-
ergy was set (with s = 0.4 eV). The elastic scattering was evaluated by applying the analytical
formulation by Salvat [8] reported in Appendix A. The computation of input data concerning
the inelastic scattering started from different descriptions of the dielectric behaviour of dia-
mond and graphite was performed as reported before.

Diamond: The diamond target was considered with density equal to 3.515 g/cm3 [4]. The
energy band gap was calculated in our research group by density functional calculation [1]
and set to 4.16 eV. The calculated spectra, by applying the different approaches, are reported
and compared with experimental data in Fig. 3.4. All the spectra show a main s plasmon peak
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FIGURE 3.4: REELS of diamond: experimental data are reported in black, while simulated
results using the three different dielectric models are sketched in red (AI), blue (DL-AI) and
green (DL-E). Electron beam kinetic energy is 1000 eV. Data are normalized with respect to the

height of s plasmon peak [1].
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at ⇠ 35 eV. This can be brought back to the ELF main peak (Figs. 3.1 and 3.2) at the same en-
ergy. Moreover, the two-plasmon excitations at higher energy are present in both experimental
and calculated spectrum. However, the spectrum obtained with the full AI approach shows
a higher agreement with experimental data than the spectra obtained with the dispersion law
(Eq. 2.17). Indeed, the latter spectra show blue-shifted peaks at higher energies.
By considering the full AI dielectric approach, different simulations were carried out by chang-
ing the value of the beam energy T. The results are compared to experimental data in Fig. 3.5.
The agreement with experimental data is increased by the increase of the beam energy. This is
due to the fact that our MC simulation does not take into account surface effects, that becomes
less important for higher beam energies.

0.0

0.5

1.0

1.5 T = 250eV
MC
Exp

T = 500eV
MC
Exp

0 25 50 75
0.0

0.5

1.0

1.5 T = 1000eV
MC
Exp

0 25 50 75

T = 2000eV
MC
Exp

Energy Loss (eV)

In
te

ns
ity

(a
rb

.u
.)

FIGURE 3.5: REELS of diamond obtained by calculating the ELF with the full AI approach (red
line) at different momentum transfer compared to experimental data (black line) for several
primary electron beam kinetic energies T. Data are normalized with respect to the height of s

plasmon peak [1].

From this comparison, it can be deduced that the DL-AI and DL-E approaches are less ac-
curate in the description of electronic properties of semiconductors than the full AI approach,
with the aim to reproduce REEL spectra. The reason can be found in the strongly inhomoge-
neous electron density and, thus, to the complexity of the dielectric response of this material
that can not be considered as the response of a free electrons gas [1, 9].

Graphite: The graphite sample was considered with a density of 2.25 g/cm3 [4]. Fig. 3.6
shows the REELS obtained with MC simulations (red line) and our experimental measure-
ments (black line). The calculated spectra in Fig.3.6 show the two main plasmon peaks of
graphite: the p peak (due to the collective excitation of valence electrons in the p band) and
the p + s peak (due to collective excitation of all valence electrons) . These correspond to
the two main peak of graphite ELF (Fig.s 3.1 and 3.2). The p peak is well defined in all the
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FIGURE 3.6: REEL spectra of graphite: experimental data are reported in black, while simu-
lations using the 3 different models are sketched in red (AI), blue (DL-AI) and green (DL-E).
Electron beam kinetic energy is 1000 eV. Data are normalized with respect to the height of the

p + s plasmon peak [1].

spectra. It corresponds to the oscillations of electrons in the p band where the electrons can
be considered almost de-localized. The hypothesis in which the dispersion law is developed
(Eq. 2.17) considers a free electrons gas and in the case of graphite it is a correct assumption,
indeed along graphite planes electron motion is characterized by a high mobility. And for this
reason the spectra calculated with different dielectric approaches agree. The only discrepancy
between the three calculated spectra is represented by the rise of a peak around 60 eV in the
spectrum obtained with the full AI approach. The full AI approach guarantees a more accu-
rate description of the ELF at different momenta. Other simulations were carried out, by using
the AI approach, at different energies T of the beam and the results are compared to experi-
mental data in Fig. 3.7. As in the case of diamond (Fig. 3.5) the agreement with experimental
data is enhanced by the increase of the beam kinetic energy, as a result of the reduced influence
of surface effects.

3.2 Anisotropy of the graphite structure in the simula-
tion of electron transport

In this section calculated REEL spectra and secondary electron emission spectra (SEE) of graphite
were calculated by presenting and testing a new model to take into account the anisotropic
structure of graphite [10]. First of all the calculation of input data for MC simulation is ex-
plained in detail, then the MC model will be presented and the obtained spectra will be shown
and commented.
This chapter is reproduced in part with permission from M. Azzolini, T. Morresi, K. Abrams, R.
Masters, N. Stehling, C. Rodenburg, N. M. Pugno, S. Taioli, M. Dapor, An Anisotropic Approach for
Simulating Electron Transport in Layered Materials: Computational and Experimental Study of Highly
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FIGURE 3.7: REEL spectra of graphite obtained by calculating the ELF with the full AI ap-
proach (red line) at different momentum transfer compared to experimental data (black line)
at different primary electron beam kinetic energy T. Data are normalized with respect to the

height of the p + s plasmon peak [1].

Oriented Pyrolitic Graphite, The Journal of Physical Chemistry C 122 (18), 10159-1016 (Copyright
2018 American Chemical Society ).

3.2.1 Input data calculation
Elastic scattering The elastic scattering was considered by applying the Mott theory as in-
dicated in Section 2.1.1. In this case the atomic potential was carefully calculated by using the
ELK software program to solve the Dirac-Kohn-Sham equations for the carbon atom within the
local-spin-density approximation (LSDA). The application of the Ganachaud-Mokrani correc-
tion (see section 2.1.1) is necessary since the total elastic scattering cross-section sel is equal to
28.3 Å2 for the kinetic energy equal to T = 10 eV. This correspond to an elastic mean free path
lel = 0.31 Å. The latter results to be one order of magnitude lower than the lattice parameters
of graphite (a = 2.46 Å, c = 6.71 Å) . By choosing a = 0.003 eV�2 the value of the elastic mean
free path for T = 10 eV is lel = 1.15 Å. Fig. 3.8 shows the behaviour of sel (left panel) and lel
(right panel) obtained with a = 0.003 eV�2, along with those calculated by using the bare Mott
theory.

By applying this correction, the elastic scattering cross section is consistently diminished
for low energy values. Furthermore, the introduction of this correction allows to achieve a
good agreement between calculated and experimental secondary electron emission spectrum
[10], as will shown later.

Inelastic scattering To take into account graphite anisotropy, the dielectric function and the
ELF of graphite, were calculated in the optical limit (e~q!0) , along the two main directions of the
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FIGURE 3.8: Total elastic scattering cross-section sel (left panel) and elastic mean free path
lel (right panel) calculated from the bare Mott theory (blue line) and by using the correction

proposed by Ganachaud and Mokrani (a = 0.003 1/eV2) (red line) [10].

structure: along the direction normal to the layer (identified by the vector~c), which accounts for
intra-planar interactions (~q||~c), and along that one perpendicular to ~c (~q?~c), which describes
in-plane excitations. These dielectric functions will be denoted respectively as e||(q, W) and
e?(q, W). Moreover, to distinguish them, the same notation is applied to the corresponding
inelastic mean free paths l|| and l?. These dielectric functions were achieved by ab initio time-
dependent density functional calculations performed in our research group [10]. Then the
ELFs in the two directions, calculated in the optical limit, were fitted by using Drude–Lorentz
functions (Eq. 2.16). Fig.3.9 compares final fit functions with ab initio ELF data, while the
fitting parameters are reported in Tabs. 3.3 and 3.4. The number of oscillators was select in
order to reach the best fit of ab intio data. Furthermore, the f-sum rule validity was taken into
account [2]. It is worth noting that in this case the fit of the ELF? is achieved by using a higher
number of oscillators than in the previous case (Tab. 3.2). In this way, an accurate reproduction
of the ab intio result, without ignoring any possible excitation, is realized.

n An (eV2) Gn (eV) En (eV)
1 0.15 1.75 0.80
2 0.62 1.76 4.06
3 13.26 4.22 15.57
4 51.80 1.90 18.23
5 25.52 6.23 20.73
6 452.31 20.02 37.93
7 112.91 19.84 48.25

TABLE 3.3: D–L parameters (~q||~c di-
rection)

n An (eV2) Gn (eV) En (eV)
1 0.43 5.36 2.58
2 8.96 1.73 6.99
3 0.25 8.30 14.53
4 33.93 10.16 21.77
5 32.00 10.50 24.32
6 466.69 6.99 28.03
7 100.30 30.03 38.09

TABLE 3.4: D–L parameters (~q?~c di-
rection)
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FIGURE 3.9: ELF functions along the two possible orthogonal directions of transferred
momentum~q: ab initio calculations (red lines) are compared to the Drude–Lorentz best

fits (black lines).

The extension of these ELFs for finite momenta, beyond the optical limit, i.e., was achieved
by applying the quadratic dispersion law Eq. (2.17). Then, the inelastic mean free paths in the
two directions were calculated by applying Eq. (2.19) and results are shown in the following
Fig. 3.10:
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FIGURE 3.10: Inelastic mean free paths calculated along the two possible orthogonal
directions of transferred momentum ~q. In the case ~q?~c the calculated values are com-

pared with the data by Tanuma et al. (dashed lines) [7] [10].

To consider the anisotropic structure of graphite, a linear combination of inelastic inter-
action along the two main directions was introduced to calculate the energy loss W and the
inelastic mean free path linel :

W = f cos2 q W|| + [(1 � f ) + f sin2 q] W? (3.1)
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linel = f cos2 q l|| + [(1 � f ) + f sin2 q] l? (3.2)

Here f is an anisotropy parameter in the range [0:1], and q is the scattering angle ~c and ~q.
The role of the parameter f is to promote the movement of the electron along the plane(~q?~c),
given the fact that graphite shows a higher conductivity along this direction. The value of the
parameters in the linear combination in Eqs. (3.2) and (3.1) are calculated at different values
of f (Fig. 3.13), f cos2 q, the coefficient of the || component, is reported in red and [(1 � f ) +
f sin2 q], the coefficient of the ? component, in blue.
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FIGURE 3.11: Coefficient of each component in Eqs.(3.2) and (3.1)

3.2.2 Anisotropic model and calculated emission spectra
Monte Carlo simulations were performed as reported in section 2.1 by considering only elas-
tic and inelastic scattering. To simulate REEL spectra, 109 trajectories were calculated, while
to reproduce secondary electron emission spectrum 106 primary electrons in the beam were
considered. This reduction of electron number in the beam is determined by the fact that the
number of secondary electrons generated and emitted is order of magnitude higher that the
back-scattered electrons, and so to obtain statistically significant curves a lower number of
beam electron is sufficient. Different simulations were performed by changing electrons beam
energy and the f parameter value, in order to compare the calculated spectra with the experi-
mental data.
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The characteristic quantities of the sample required by the MC routine are: the atomic number
(Z = 6), the atomic mass (A = 12.011 amu) [11], the density (d = 2.25 g/cm3) [4], the electronic
band gap Eg (0.0 eV), and the work function (WF = 4.6 eV) [12].
The total mean free path (l), which characterizes the electron path within the target material
is defined as:

1
l

=
1

lel
+

1
linel

(3.3)

where lel is the elastic mean free path. The probabilities of the elastic and inelastic events can
be evaluated, for any fixed value of kinetic energy and angle, as:

pel =
l

lel
pinel =

l

linel
(3.4)

The decision on the type of collision that the electrons undergo is made by generating another
random number r. Whether this number is lower than pel the interaction will be elastic, other-
wise it will be inelastic. In Fig. 6.9 we report the elastic and inelastic collision probabilities as a
function of the relevant variables q and T.

FIGURE 3.12: Collision probabilities as a function of the electron kinetic energy (T)
and of the scattering angle (q) between the transferred momentum ~q and the vector ~c

normal to the surface [10].

REELS Simulations were performed in order to compare calculated REEL spectra with ex-
perimental data [1]. The incidence beam angle was set to 30� with respect to the normal to the
surface, in order to reproduce the experimental conditions. First, the investigation on the role
of the f parameter was carried out by calculating spectra at 1500 eV by changing its value in
Eqs. (3.2) and (3.1). The comparison is visible in Fig. 3.13.

The rise of a shoulder around 20 eV, which corresponds to the main oscillation of the ELF
along the ~q||~c direction (see Fig. 3.9, left panel), is present as a consequence of the increase
of the value of f . The higher agreement between experimental and calculated REEL spectra
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FIGURE 3.13: REELs of graphite for different values of the f parameter (red lines). The
kinetic energy of the primary beam is set to 1500 eV. MC calculations are compared
with our experimental data (black lines) [1]. The spectra are normalized at a common

area of the elastic peak [10].

is obtained with the anisotropy parameter f equal to 0.6. It is also confirmed by the c2 test,
performed in an energy loss range [-2:80] eV (Fig. 3.14). The value of f = 0.6 can be visual-
ized by considering a beam impinging normally on the target surface (orthogonal to graphite
layers), the travelling electron is slowed down by losing energy in interactions that are for a
40% given from in-plane direction collisions (~q?~c) and for the other 60% given from inelastic
interactions with transferred momentum along the ~q||~c direction. In the simulation, each di-
rectional change of the electron trajectory is taken into account and the linear combinations of
Eqs. (3.2) and (3.1) are carefully calculated at each MC step according to the actual q angle of
the electron trajectory.

It is worth noting, that this good agreement is reached by normalizing the spectra at a com-
mon area of the elastic peak, and therefore this anisotropic model reproduce quantitatively the
experimental spectra, by maintaining the correct ratio between the two main peaks. The best
anisotropic parameter ( f = 0.6) was maintained fixed and MC simulations were realized by
changing the value of the primary beam kinetic energy. The results are reported and compared
with experimental data in Fig. 3.15.
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FIGURE 3.14: c2-test carried out by considering the experimental and calculated data
normalized at a common area of the elastic peak in the energy loss range [-2:80] eV for

different values of the parameter f [10].

As in previous cases (Fig. 3.5 and 3.7) the agreement between calculated and experimental
data improves as the energy increases. Indeed, the surface plasmon contribution, which is not
taken into account in the MC calculation, diminishes its contribution at higher beam kinetic
energy.

Secondary Electron Emission spectrum Secondary electron emission spectrum of graphite
was calculated by considering the beam kinetic energy equal to 1000 eV and by maintaining
the direction normal to the target surface, according to the experimental conditions [10]. The
obtained spectrum is reported and compared with the experimental one in Fig. 3.16. The
experiemental measurement was acquired by the experimental group at the University of
Sheffield (UK).

The calculated spectrum has been shifted by 0.7 eV along the positive axis direction, in
order to align the emission peak, showing that the shapes of the two peak are quite similar.
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FIGURE 3.15: REELs of graphite for several primary beam kinetic energies. Red lines
show simulated spectra, while black curves report our experimental data [1]. The re-

sults are normalized at a common area of the elastic peak [10].

3.3 Conclusions
In this section the most stable carbon-based materials, diamond and graphite, were considered
for studying the electron transport phenomena. First of all, different models on the evaluation
of the dielectric response of these materials were tested. Their accuracy was assessed by com-
paring results about REEL spectra with experimental data. It emerges from this analysis that
the ab initio evaluation of dielectric properties of diamond and graphite ensures an increase in
the accuracy of the method. Indeed, the ab initio procedure overcomes the assumption of the
free electron gas. The free electron gas approximation is satisfied for metals samples, while in
semiconductors and insulators where the electron density is not homogeneous this hypothesis
is no longer properly valid. The ab initio calculation of dielectric properties of graphite was
further exploited, by obtaining the energy loss function in the two main directions of the target
crystalline structure of graphite. Starting from this directional information, a new MC model
was developed to consider the anisotropic structure in inelastic interactions, by evaluating the
inelastic mean free path and the energy loss as linear combinations of these quantities along
the two main directions. The results obtained further enhance the accuracy of the method em-
phasizing the fact that the conductive properties of the sample, in particular if they are not
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homogeneous, significantly affect the electron transport within it.
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Chapter 4

Carbon based materials II:
peeling of a graphene layer from
a bulk of graphite

In this chapter the peeling of a graphene layer from a bulk of graphite was modeled and
simulated by means of Molecular Dynamics method. To quantitatively understand the phe-
nomenon, initially mechanical tests were carried out on free-standing layers of graphene. To
evaluate the energy adhesion between two attached layers of graphene, dedicated simulations
were done. Finally, the simulations of the complete peeling process were realized and here
the results and the application of the classical theory by Kendall are presented and discussed.
In particular, the Molecular Dynamic simulation of tensile test of a graphene layer, measure-
ment of adhesion energy and the peeling of a graphene layer from a bulk of graphite were
realized by using the software LAMMPS [1]. The atomic structures were visualized by using
the OVITO package [2] and the atomic interaction was modeled with the AIREBO potential [3]
with a long range cutoff of 10.2 Å.

4.1 Mechanical test on a graphene layer
Molecular dynamic simulations were realized to test the mechanical behaviour of a free stand-
ing graphene layer to calculate the value of the Young’s Modulus, the strength and the fracture
strain for different deformation conditions.
The sample considered is a free standing layer of graphene, composed by 960 atoms, with a
square shape of side dimension of 50 Å. This structure was constructed by developing a python
code that generates atoms coordinates. The x-direction corresponds to the zig-zag configura-
tion, the y-direction to the armchair configuration (Fig. 5.1). The thickness of the graphene
layer is equal to 3.4 . The simulation cell was created with these dimensions in the three di-
rections (Lx, Ly, Lz) = (49.2, 51.2, 30.0) Å and periodic boundary conditions were set along the
three directions. After the structure energy and force minimization, in order to thermalize the
sample at room temperature, an isothermal-isobaric (NPT) ensemble was set. The initial veloc-
ities were assigned at a temperature equal to 10 K. During the integration in the NPT ensemble,
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FIGURE 4.1: Free standing graphene layer considered in molecular dynamics simula-
tions, the black box represent the simulation cell.

the temperature is increased reaching the value of 300 K and maintaining the pressure in x and
y directions equal to zero. The time-step was set equal to 0.001 ps and this part of the thermal-
ization process lasted for 50 ps. Then the system was kept at 300 K in a canonical ensemble for
100 ps to asses a solid thermalization. In the following charts (Fig. 4.2) the temperature and the
kinetic energy of the system during the thermalization process are reported. The values are ob-
tained by averaging the observables in an interval of 0.2 ps and they were sampled every 0.2 ps.
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FIGURE 4.2: Temperature and kinetic energy of the system during the thermalization
process.

The temperature was calculated by averaging the values in the interval between 50 and
150 ps and it results to be 300 K, in agreement with the desired temperature for the tensile
test. The deformation was realized in an NPT ensemble, at the constant temperature of 300 K
and maintaining zero the pressure in the direction without applied deformation. A constant
deformation velocity of the box length, actually an engineering strain rate, was imposed and
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it was set at different values between 0.1 Å/ps and 10.0 Å/ps. To stretch along the armchair
direction the deformation was applied in the y-direction while to stretch along the zigzag di-
rection a constant velocity was applied in the x-direction. After the rupture, structures appear
as reported in Fig. 4.3.

v = 0.1 Å/ps v = 2.5 Å/ps v = 5.0 Å/ps v = 10.0 Å/ps

v = 0.1 Å/ps v = 2.5 Å/ps v = 5.0 Å/ps v = 10.0 Å/ps

FIGURE 4.3: Free standing graphene layers after deformations obtained with differ-
ent velocities: in the upper panel armchair deformations, in the bottom panel zigzag

deformations.

The stress and strain values are sampled, during simulations carried out with different
velocities, in order to obtain data set with the same length. In Fig.4.4 stress - strain curves are
reported, for different values of velocity deformation.
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v = 2.5 Å/ps
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v = 10.0 Å/ps
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FIGURE 4.4: Stress strain curve of the graphene layer subjected to traction
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FIGURE 4.5: Values of fracture and rupture strength as a function of the applied defor-
mation velocity

The elastic modulus was obtained by a linear fit of the first part of the stress-strain curve.
The strength was determined by choosing the highest value of the stress-strain curve and the
correspondent value of fracture results to be the fracture strain. In Tab. 4.1 the values of
strength (s), fracture strain (eF) and Young’s modulus (Y) are reported for different velocities.

From the previous figures (Fig. 4.4 and 4.5) it is clear that the Young Modulus remains
constant by considering different situations of deformation, and it is in agreement with those
reported in Ref.[4], while the strength and the fracture strain tends to increase for higher defor-
mation velocity. This can be interpreted as a tendency of the material to become more resistant
to the fracture if the deformation is faster.

4.2 Measure of the adhesion energy
The adhesion energy is the energy that has to be transferred to the system in order to detach
two layers. In the case of the peeling process it has an important role. This quantity can
be measured by considering the system in two different configurations: with the two layers
attached and with the two layers detached. Indeed, the adhesion energy R, per unit of surface,
can be defined as:

R = [U(a) + U(b) � U(a/b)]/S (4.1)

where U(a) + U(b) is the total energy of the detached system and U(a/b) the total energy in
presence of a common interface with S the area of the interface.
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Armchair
Velocity (Å/ps) Strength (GPa) Fracture strain Young modulus (TPa)

0.1 92.1 0.147 0.9
1.0 93.0 0.150 0.9
2.5 94.2 0.158 0.9
5.0 94.4 0.166 0.9
7.5 95.1 0.164 0.9

10.0 95.6 0.167 0.9

Zigzag

Velocity (Å/ps) Strength (GPa) Fracture strain Young modulus (TPa)
0.1 109.3 0.216 0.8
1.0 109.7 0.216 0.8
2.5 111.6 0.233 0.8
5.0 112.7 0.241 0.8
7.5 113.2 0.239 0.8

10.0 113.8 0.239 0.8

TABLE 4.1: Values of strength, fracture strain and Young’s modulus (E) for different
applyied deformation velocities.

To measure the adhesion energy between two graphene layers, two different molecular dy-
namic simulations were realized.
The considered system was composed of two layers of graphene, in the AB configuration, with
a square shape of the side length of 50 Å. In the "attached case" layers were separated by 3.4 Å,
in the "detached case" they were separated by 13.4 Å (Fig. 4.6).

FIGURE 4.6: Graphene layers considered to calculate the adhesion energy, on the left
the attached configuration and on the right the divided configuration.
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The total number of atoms in the system was equal to 1920. The timestep was chosen equal
to 0.001 ps and periodic boundary conditions were set around the cell.
In the two different configurations, the energy and forces of the system were minimized at 0 K .
Then random velocities at 300 K were assigned to each atom and for 10 ps the system was kept
at 300 K in a canonical ensemble. After the minimization at 0 K and after the thermalization at
300 K, the total energies of the two systems were measured. The values of adhesion energy R,
at different temperatures, were computed as reported in Eq. 4.1, obtaining this values:

R(T = 0 K) = 0.281 J/m2

R(T = 300 K) = 0.280 J/m2

These results are in agreement with the experimental value and the DFT result, respectively
0.221 ± 0.011 J/m2 and 0.235 J/m2 at T = 77K, reported by Wang et al. [5].

4.3 Simulation of the peeling of a graphene layer from
a bulk of graphite

The simulation of the peeling of a graphene layer from a bulk of graphite was carried out
by considering two different structures: one with the peeling direction along the armchair
direction and the other along the zigzag direction. The structures are composed by 16 layers in
the AB stack configuration. The width was set equal to 15 Å and the length to 600 Å. The total
number of atoms in the armchair direction structure is 53763 and in the zigzag case is equal to
46632. The deeper layer and the sides were maintained fixed with no force applied (indicated
in red in Fig. 4.7), in order to simulate a bulk structure.

In the width direction (x for armchair, y for zigzag) periodic conditions were set. The
generation of atoms coordinates of these structures was realized by developing an in-house
Python code. First of all, the samples were subjected to energy and force minimization in
order to arrange the system in the equilibrium configuration. After the minimization process,
the equilibration at room temperature was achieved by initially generating random velocities
at 600 K. Then systems were kept for 20 ps in an NVE ensemble with a Langevin thermostat at
300 K and by setting the timestep to 0.001 ps. To ensure the proper thermalization, the systems
were later subjected to an NPT ensemble, maintaining the temperature at 300 K and by asking
for zero pressure in the direction of the width. This last step of thermalization lasts for 40 ps.
In Figure 4.8 the temperature trend is reported for the two systems, and we see that its value
converges to the required temperature of 300 K.

A constant velocity was applied in the z direction to the atoms of the free side of the upper
layer, indicated in orange in the previous figure 4.7. For these atoms, the forces in the x and
y directions were set to zero to maintain this coordinates fixed during the simulation. The
system was kept at 300 K in a canonical ensemble.
Integration was stopped when the top layer was completely detached (Fig.4.9). The applied
velocity was varied in the interval between 0.1 Å/ps and 10.0 Å/ps. Figs. 4.10 and 4.11 report
snapshots zoomed on the peeling zone during the simulations at different applied velocities.

The color code of atoms evidences the atoms vertical displacement. The pictures show
that for the intermediate velocity of 5 Å/ps there is a substantial vertical displacement of the
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FIGURE 4.7: Structures considered in MD simulation of the peeling of a graphene layer.
In red fixed atoms, in blue the layer to be peeled off, in orange the atoms with applied

velocity.
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FIGURE 4.8: Temperature of the two systems, as a function of time, during the ther-
malization stages.

substrate layers. For the other velocities, the displacement is not so intense and dissolves with
the continuation of the process. Details about the vertical displacement of atoms are given
by the following pictures (Fig. 4.12), in which the percentage of substrate atoms that have
undergone a vertical translation higher than 3.4 Å is reported as a function of the z position of
the atoms to which the constant velocity is applied.

For velocities lower or equal to 2.5 Å/ps and higher than 8 Å/ps the substrate can be
considered not influenced by the peeling process.
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structure with different applied constant velocities. The atoms colormap reports the z

displacement.

To quantitatively analyze this process the peeling angles and the force F were calculated
for each system and velocity during the entire simulation. In particular, the force F is the sum
of forces along the z direction of those atoms to which the constant velocity was applied. The
Kendall theory [6] states that the force f , along the peeling direction, required to peel off an
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elastic medium from a rigid substrate is equal to:

f = b t Y

"
cos(q) � 1 +

r
(1 � cos(q))2 +

2R
tY

#
(4.2)

where b and t are respectively the thickness and the width of the layer, R the adhesion energy
per unit surface, Y the Young modulus and q the peeling angle (Fig. 4.7). The force f can be
computed from the calculated force F value as:

f = F/ sin(q) (4.3)

The Kendall equation can be rewritten in terms of the measured F as:

F = sin(q) b t Y

"
cos(q) � 1 +

r
(1 � cos(q))2 +

2R
tY

#
(4.4)

Atom trajectories were elaborated in order to obtain the value of the peeling angle (q) as a
function of the z position of the atoms with applied constant velocity.
The applied peeling velocity which ensures a quasi-static deformation of the system is the
lowest one, equal to 0.1 Å/ps. The peeling angle is reported as a function of the z displacement
of the atoms with applied velocity.

Looking at the peeling angle behavior, an initial spike indicates the initial detachment of
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FIGURE 4.12: Percentage of atoms of the substrate that have undergone a z displace-
ment higher than 3.4 Å as a function of the z position of the atoms with applied velocity

for the armchair structure.
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FIGURE 4.13: Angle as a function of z position of those atoms to which the constant
velocity is applied. Results for the armchair structure on the left and for the zigzag

structure on the right.

the layer, for higher detachments the angle, tends to stabilize. Also the force was computed
at fixed integration steps during the different simulations. For those realized with a peeling
velocity equal to 0.1 Å/ps, the values of the peeling force F, as a function of the peeling angle
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and as a function of z position of the atoms with the applied velocity, are reported in figure
4.14.
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FIGURE 4.14: Force suffered in the z direction by the atoms with applied velocity: on
the left as a function of the peeling angle and on the right as a function of the atoms
z position. Upper panels show results for armchair peeling structure and the lower
panels for the zigzag configuration. The data were recorded by setting the peeling
velocity equal to 0.1 Å/ps. In red the curves predicted by the Kendall theory by using
the fitted value of R, in green by using the value of R calculated from a dedicated MD

simulation (see section 4.2).

By considering the force value as a function of the peeling angle, the Kendall theory can
be applied to calculate the adhesion energy. This was realized by fitting the data with Eq. 4.4
by maintaining the adhesion energy R as a free parameter. The employed values of the Young
Modulus Y is the one calculated in the previous section 4.1. For the quasi static simulation
(at a peeling velocity equal to 0.1 Å/ps) the obtained values of the adhesion energy are for
the armchair structure equal to 0.284 J/m2 and for the zigzag structure equal to 0.276 J/m2,
which are both in agreement with the value calculated before (section 4.2). The obtained fit
function is drown in red in Figs. 4.14 and in green is shown the curve obtained with the value
of R determined from the previous dedicated MD simulations. These fitting procedure was
implemented for all the data sets concerning the results of simulations realized at different
velocities and the obtained values of adhesion energy are displayed in the following Fig. 4.12.

From the previous figure it is clear that the agreement between the previous calculated and
the effective value of R (assessed via fitting procedure) is achieved only for the lowest applied
velocity. Indeed the effective R tends to increase with the raise of the velocity. Around 5 Å/ps
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FIGURE 4.15: Values of effective adhesion energy, for different applied velocities, ob-
tained from fitting procedure and compared to the value calculated with static MD

simulation.

a local maximum is reached. This corresponds to an increase of the force. In fact for this veloc-
ity there was a collective movement of the substrate in the z direction. By further increasing
the applied velocity, the effective adhesion energy diminishes and then increases again. The
decrease of effective energy corresponds to a lower perturbation of the substrate (Fig. 4.12).
However, even if the adhesion energy further increases, the substrate is no longer affected by
the peeling of the upper layer.
Taking into account the above analysis leads to the conclusion that, if the peeling of the upper
layer occurs with low velocity, the system is subjected to a quasi static perturbation without in-
volving the substrate. By increasing the velocity, the detachment action competes with the ad-
hesion between the layers, producing the temporary translation of the substrate in the vertical
direction. At higher velocity, the detachment of the upper layer occurs almost instantaneously
and, given the inertia of the substrate, it remains unperturbed.

Deeper structure

From the previous set of simulations, it was found that the most substantial influence on the
substrate occurs for a peeling velocity of 5 Å/ps. To investigate how long in depth is the sub-
strate deformation due to the peeling of the first layer a structure (armchair direction) with the
same geometry in the x-y plane (15 Å in width and 600Å length) and with 26 total layer is gen-
erated. The system is composed of 83976 atoms and was subjected to the same thermalization
procedure than the previous case.

Snapshots of the structure during the simulations are shown in the figure 4.16.
In this case the deformation undergone by the substrate is more complex than before. Pro-

ceeding with the peeling, a further delamination between substrate layer occurs. In the end,
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FIGURE 4.16: Snapshots of the armchair structure, composed by 25 layers, during the
MD simulation of the peeling of the upper layer at a velocity of 5.0 Å/ps.

the peeling position exceeds the deformation of the substrate by reaching the other side of the
sample first.
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4.4 Conclusions
Molecular dynamic simulations were realized in order to investigate the peeling of the graphene
layer from a bulk of graphite. As preliminary study, a graphene layer was subjected to tensile
test by changing the values of the deformation velocity. It was found that the graphene reaches
higher fracture stress at higher deformation velocity. As preliminary study for the peeling
process, the energy adhesion between two graphene layer was determined from a dedicated
molecular dynamic simulation. After that, the simulation of a graphene layer from a bulk of
graphite was realized for different applied peeling velocities. The Kendall theory results to be
valid only in the case of the quasi static deformation obtained with the lowest velocity (v = 0.1
Å/ps). For intermediate applied velocity the substrate is consistently affected by the delami-
nation of the upper layer with their translation in the vertical direction. For higher velocity the
substrate is basically unperturbed, due to the inertia of it to the fast impulse given from the
peeled upper layer.
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Chapter 5

Electron transport in Metals

5.1 Comparison and validation of methods for
REEL spectra calculation

In this section the calculation of reflection electron energy loss (REEL) spectra of three met-
als (copper, silver and gold) was achieved with two different methods: (i) the Monte Carlo
(MC) procedure as presented in the section 2.1 and (ii) the numerical solution (NS) of the Am-
bartsumian - Chandrasekhar equations using the Invariant Embedding Method [1]. In the
following section the calculation of input data, concerning elastic and inelastic interaction, is
presented. Regarding the inelastic scattering, two different energy loss function (ELF) were
employed: one accounting only for plasmon bulk excitations and the other which includes
both surface and bulk plasmon excitations. The two computational methods were tested with
both the dielectric description and the results were compared to experimental measurements.
The overall investigation was published in Ref. [2].

5.1.1 Calculation of input data
Logical flow of the calculations The calculation of REEL spectra, by means of MC or NS
methods, starts from a database reporting information about elastic and inelastic scattering.
Figure 5.1 outlines the sequence of computational steps to perform in order to simulate the
emission spectra. Both computational methods include only elastic and inelastic scattering as
interactions performed by electrons. In particular, the inelastic scattering was assessed by ap-
plying the Ritchie dielectric method as described above in section 2.1.2. The elastic scattering
was evaluated by considering the Mott theory as explained in section 2.1.1. The calculated elas-
tic and inelastic features, such as cross sections, mean free paths and cumulative probabilities
as well as the routines implemented to evaluate them, are stored in the open access Mendley
databases [3, 4, 5, 6]
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FIGURE 5.1: Sketch of the logical flow of the REEL spectra calculation [2]

Elastic scattering:

To simulate the elastic collisions, we solve according to the Mott approach [7] the Dirac equa-
tion in a central field using the partial wave expansion. In particular, the differential elastic
scattering cross section (DESCS, dsel/dW ) is computed for each sample as reported in Eq.
(2.9). The achieved DESCSs values for copper, silver, and gold are reported in figure 5.2 as a
function of the scattering angle q, for a beam kinetic energy of 1000 eV.

These values represent the input information necessary for performing NS calculations.
To obtain the input data for the MC approach, the differential elastic scattering cross section
is integrated over the possible elastic scattering angles to obtain the total elastic scattering
cross section sel [Eq.( 2.12)]. The elastic mean free path (EMFP), which is used in both MC
and NS simulations, can be computed from Eq. 2.1. Finally, the elastic cumulative distribution
probability is evaluated for the full range of possible scattering angles [Eq. (2.13)] and reported
in Fig. 5.3. This latter set of data are provided as input information to the MC code suite for
calculating the REEL spectrum.
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FIGURE 5.2: DESCSs of Cu a), Ag b) and Au c) as a function of the scattering angle.
The kinetic energy of the primary beam is set to 1000 eV [2].

These cumulative distributions tend to 1 asymptotically and display a sharp slope at small
scattering angles. The whole calculation concerning the elastic scattering is realized by running
the MATLAB code Elastic_calculation.m in the ESCcal environment based on the ELSEPA code
[8]. The code is made publicly available through the Mendeley database [6].
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FIGURE 5.3: Cumulative elastic probability distributions of Cu a), Ag b) and Au c) as a
function of the scattering angle. The kinetic energy of the primary beam is set to 1000

eV [2].

Inelastic scattering:

The description of the inelastic scattering is based on the Ritchie dielectric theory as described
in the previous section 2.1.1. For the three investigated metals two different kinds of energy
loss functions (ELF) in the optical limit were used to perform REEL calculations: the (i) the bulk
ELF accounting for plasmon bulk excitations and (ii) the effective ELF which includes also the
surface plasmon excitations. These ELFs were fitted [Eq. (2.16)] in the optical limit and then
extended to finite momenta with the quadratic dispersion law (Eq. 2.17). The NS procedure re-
quires the knowledge of the differential inverse inelastic mean free path (DIIMFP , dlinel/dW)
as a function of the energy loss for a fixed initial kinetic energy, calculated by applying Eq.
(2.18). Then the total inelastic mean free path (IMFP, linel ) is obtained by integrating the DI-
IMFP in the energy loss range (Eq. 2.19). The dataset required by the MC method is composed
of the values of the cumulative inelastic probability distribution Pinel calculated as indicated
in Eq. (2.20). The overall calculation of input data for inelastic scattering can be performed by
running the Inelastic_calculation.cpp program, which is provided via the Mendeley database
[4] . In the following paragraphs the input data, computed by applying the just described
scheme, for the three metals with the two different ELFs, are presented
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Bulk ELF As best-fit parameters for bulk ELFs in the optical limits, those reported by Smith
et al. [9] were used for Ag, those achieved by Denton et al. [10] for Au and those achieved by
C.C. Montanari et al [11] for Cu. The f -sum rule was verified with these parameters. The ELFs
given by these best-fit parameters are shown in Fig. 5.19 and the used parameters are reported
in Tab. 5.1.
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FIGURE 5.4: Bulk energy loss functions of Cu a), Ag b), and Au c) in the optical limit
(~q �! 0) obtained using Eq. (2.16). These ELFs were obtained by best-fitting the
optical data reported in [9] for Ag, while we used the parameters from [11] and [10] for

Cu and Au, respectively [2].



52 Chapter 5. Electron transport in Metals

Cu Ag Au
n En (eV) Gn (eV) An (eV2) n En (eV) Gn (eV) An (eV2) n En (eV) Gn (eV) An (eV2)
1 4.08 1.09 0.33 1 7.89 3.37 12.80 1 9.52 14.97 18.49
2 10.07 5.99 22.10 2 38.20 42.93 1109.46 2 15.92 6.26 25.85
3 19.05 8.16 88.91 3 59.58 29.93 480.38 3 25.58 2.18 11.12
4 27.21 8.16 112.54 4 73.81 20.12 300.6 4 38.09 26.67 973.52
5 78.91 152.38 2216.74 5 85.70 27.70 226.83 5 64.49 30.48 507.39

6 99.32 19.05 88.88
7 402.71 612.23 337.32

TABLE 5.1: Fit parameters of Equation (2.16) obtained for bulk ELFs. The best-fit pa-
rameters of Cu were provided by C.C. Montanari et al. [11], while for Au were given by
C.D. Denton et al. [10]. In the case of Ag the parameters were obtained by best-fitting

the optical measurements by Smith et al [9].

The DIIMFPs were calculated and for the three investigated materials are reported in Fig.
5.5 by considering the kinetic energy of the primary beam equal to 1000 eV. Those are the
input data, relative to inelastic scattering, for the NS approach. Starting from the DIIMFPs also
IMFPs were computed ad compared to those achieved by applying the Tanuma, Powell and
Penn (TPP) algorithm [12] in Fig. 5.6.
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FIGURE 5.5: DIIMFP of Cu a), Ag b) and Au c) calculated using the Equation (2.18)
and bulk ELFs, for a kinetic energy of the primary beam equal to 1000 eV [2].
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FIGURE 5.6: IMFPs for bulk ELFs of Cu a), Ag b) and Au c) compared with data re-
ported by Tanuma et al. [12].

A good agreement between tabulated values, obtained with TPP algorithms, and the val-
ues achieved with our procedure is shown. To conclude the computation for the MC model,
the inelastic cumulative probability distributions Pinel(E0, W), for the three materials, by set-
ting the initial kinetic energy to 1000 eV, were calculated. These are shown in the following
Fig. 5.7.
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FIGURE 5.7: Cumulative inelastic probabilities as a function of energy loss of Cu a), Ag
b) and Au c), obtained with Equation (2.13) and bulk ELFs, for a primary beam kinetic

energy equal to 1000 eV [2].

The cumulative distributions tend to 1, but show the maximum slope at energy losses
corresponding to the main bulk plasmon excitations.
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Effective ELF for including surface plasmons A further step towards a higher accuracy
of the overall REEL calculation can be achieved starting from ELFs which includes both sur-
face and bulk plasmon excitations, a sort of effective ELFs. Those functions were computed by
Nagatomi et al. [13] from experimental REEL spectra by applying the extended Landau theory
[14]. These effective ELFs were fitted [Eq. (2.16)] by using the best-fit parameters reported in
Tab. 5.2. The resulting functions are shown in 5.8. Compared to bulk ELFs, the effective ELFs
present more complex structures, reporting a different variety of excitations. To well reproduce
these features the number of used oscillators is increased with respect to the previous case.
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FIGURE 5.8: Effective energy loss functions of Cu a), Ag b), and Au c) in the optical
limit (~q �! 0) obtained by using Eq. (2.16). These ELFs were obtained by best-fitting

the effective ELFs calculated by Nagatomi et al [13, 2].
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Cu Ag Au
n En (eV) Gn (eV) An (eV2) n En (eV) Gn (eV) An (eV2) n En (eV) Gn (eV) An (eV2)
1 4.28 2.09 5.80 1 4.09 1.70 13.80 1 6.40 8.77 46.92
2 7.90 5.79 67.00 2 5.91 2.80 8.42 2 11.11 6.52 26.16
3 11.45 2.20 6.50 3 7.73 2.13 21.16 3 26.16 5.62 30.56
4 14.76 5.20 5.20 4 10.98 2.30 3.72 4 23.68 7.72 148.97
5 18.30 7.16 95.00 5 16.58 4.80 15.80 5 31.90 6.90 110.32
6 26.51 5.16 50.12 6 20.58 18.20 190.83 6 42.82 15.60 220.60
7 48.91 25.30 146.00 7 24.10 2.90 33.60 7 50.51 11.20 65.50
8 60.30 9.30 28.20 8 32.75 5.60 53.60 8 60.12 10.70 132.50
9 76.20 9.00 75.20 9 44.48 16.20 220.30 9 81.65 16.78 143.20

10 95.20 45.00 330.00 10 52.75 6.50 102.20 10 125.60 60.30 250.50
11 130.40 90.30 180.20 11 65.09 9.20 138.50

12 75.21 16.50 140.70
13 83.15 17.30 120.50

TABLE 5.2: The best-fit parameters (Eq. (2.16)) of effective ELFs of Cu, Ag and Au.

To compute the DIIMFP, necessary for the NS approach, the ELFs function were extended
towards the optical limit with the dispersion law [Eq. (2.17)]. Then those values were inte-
grated in Eq.(2.18) obtaining the DIIMFPs reported, for the metals, in the following Fig. 5.9,
for an initial kinetic energy of the beam equal to 1000 eV.
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FIGURE 5.9: DIIMFPs of Cu a), Ag b) and Au c) calculated using Eq. (2.18) and the
effective ELFs, for a kinetic energy of the primary beam equal to 1000 eV [2].
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The IMFPs were then computed by integrating the DIIMFPs as indicated by Eq. (2.19). The
thus obtained IMFPs are shown together with the tabulated data, achieved with the Tanuma
Powell Penn algorithm, in Fig. 5.10.
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FIGURE 5.10: IMFPs calculated using the effective ELFs, of Cu a), Ag b) and Au c)
compared to data reported by Tanuma et al [12, 2] .
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The cumulative inelastic probabilities, to pass as input information to MC routines, were
obtained with Eq. 2.20 and displayed for the three samples and kinetic energy equal to 1000
eV in Fig. 5.11.
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FIGURE 5.11: Cumulative inelastic probabilities as a function of energy loss of Cu a),
Ag b) and Au c), obtained with Eq. (2.20) and effective ELFs, for a primary beam

kinetic energy equal to 1000 eV[2].

As in the previous case, the distributions tends to 1 and the slope varies at energy loss
values correspondent to main plasmon excitations.
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5.1.2 REEL spectra results and discussion
REEL spectra of the three different metal samples, copper, silver and gold, were modeled by
using the following characteristic parameters reported in Tab. 5.3.

Cu Ag Au
density (g/cm3) 8.96 [11] 10.5[12] 19.32[10]

lel (nm) 0.866 0.783 0.677
linel (Bulk ELF) (nm) 1.686 1.277 1.414

linel (Effective ELF) (nm) 1.713 1.369 1.418

TABLE 5.3: Target material characteristic parameters. Elastic and inelastic mean free
paths have been assessed at E0 = 1000 eV primary beam kinetic energy [2].

In both the approaches to calculate REEL spectra, the initial kinetic energy of beam elec-
trons was set to 1000 eV and the beam was maintained orthogonal to the surface. In the NS
approach, to calculate REEL, only the primary electrons which had undergone at maximum
25 inelastic collisions were considered in the computation. In the MC procedure, to asses the
sufficient statistic avoiding noisy signals, 109 electron trajectories were computed.

Bulk ELF: Fig. 6.10 shows the comparison between REEL spectra obtained by means of
MC and NS computations and Nagatomi et al. calculations [13], all considering the input data
produced with the bulk ELFs of the three samples. An overall agreement between the three
calculated spectra, for all the sample, is reached. Moreover, from this comparison, the MC and
NS results can be considered equivalent for all intents and practical purposes.
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FIGURE 5.12: REEL spectra of Cu a), Ag b), and Au c), obtained by the NS (black
curves) and MC approaches, for a primary beam kinetic energy equal to 1000 eV and
by considering bulk ELFs. Our results are compared to the spectra calculated by Na-
gatomi et al [13] (magenta dashed lines). The data are normalized to a common height

of the main plasmon peak [2].

By deconvoluting the REEL spectra (Fig. 5.13), as a function of the number of inelastic
interactions that electrons at most undergo in their way out of the solid, the main contributors
to the spectra are given by those electrons which undergone only one inelastic interaction.
Indeed, this contribution follows the trend of the DIIMFP (Fig. 5.5). From this analysis can
be seen that the electrons performing more inelastic interactions contribute directly to the part
of the spectrum ascribable to multiple plasmon excitations. Furthermore, also in this case, the
agreement between the deconvoluted spectra assessed with the two approaches result to be
very satisfactory.
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FIGURE 5.13: REEL spectra of Cu, Ag and Au, deconvoluted for the number of inelastic
collisions that electrons undergo in their way out of the solid. On the right panel we
show MC simulations, while on the left panel we report the same quantities obtained
by the NS approach. The primary beam kinetic energy is set to 1000 eV. The data are

normalized at a common height of the main plasmon peak [2].
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Effective ELF To include surface plasmon excitation, naturally present in experimental
REEL spectra, calculations (MC and NS) were performed by using inelastic scattering databases,
obtained with the effective ELF. Indeed, the inclusion of those kinds of interaction leads to a
good agreement with the experimental data. Fig. 5.14 shows the correspondence of calculated
spectra, for copper, silver and gold with the experimental curves acquired by Nagatomi et al.
[13]. Also in these case, the theoretical spectra computed with the two investigated procedures
produces comparable lineshapes.
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FIGURE 5.14: REEL spectra of Cu a), Ag b), and Au c), obtained by the NS (black
curves) and MC approaches, for a primary beam kinetic energy equal to 1000 eV, start-
ing from Effective ELF. Our results are compared to the experimental spectra by Na-
gatomi et al [13] (magenta lines). The data are normalized at a common height of the

background [2].

Concerning the computational cost, the NS procedure results to be quantitatively less ex-
pensive than MC method. Computational efficiency tests were performed by running simu-
lation on 2.9 Ghz Intel Core i7 processors. MC method performs REEL calculation employing
4 CPUs for 70 minutes, while NS procedure runs on only one CPU and delivers results in 10
seconds. However, it is worth noting that the MC method reproduces the full emission spec-
trum, considering also the generation and emission of low energy secondary electrons, while
NS provides information concerning only back-scattered electrons. Nevertheless, from these
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investigations it was proved the equivalence of the two independent computational methods
in the calculation of REEL spectra. The choice between the two has to be made in function of
the required information and on the available computational resource.

5.2 Calculation of Secondary electron yield of metals
In this section, the application of the MC method for the calculation of the secondary elec-
tron emission yield of copper, silver and gold is presented. The method was applied starting
from dielectric functions derived from REEL experiments. The full emission spectra and yield
curves as a function of different initial kinetic energies were calculated. These theoretical re-
sults were compared to experimental measurements recorded by the experimental INFN group
in Frascati. This section is mainly based on the results reported in our published paper [15].

Monte Carlo model

For the purpose of this investigation, the MC model was set by including elastic and inelastic
interactions. Moreover the secondary electrons generations and their consequent trajectories
were carefully simulated. The overall calculation followed the algorithm reported in the pre-
vious section 2.1. The kinetic energy of the beam electrons is determined by considering the
energy distribution of the experimental elastic peak. The elastic peak of the energy emission
spectrum is generated by those electrons which have been elastically reflected by the target
surface, and thus it provides information about the energy distribution of the beam. In order
to reproduce the experimental distribution of the elastic peak, the initial kinetic energy of the
beam was set to a fixed value E, and then a correction DE was added. To evaluate this correc-
tion, the experimental elastic peak of copper is taken into account. First of all the elastic peak
was centered to zero and the resulting curve is named f (DE) (Fig. 5.15a), where DE represents
the energy correction. The total area of the peak was calculated by integrating the experimen-
tal f (DE) curve in the energy symmetric interval [E�; E+], with E± = ±2.5 eV to obtain the
total peak area.

Area =

E+Z

E�

f (DE0)d(DE0). (5.1)

Then, the cumulative distribution probability (Fig. 5.15 b), describing the experimental elastic
peak, is computed, as a function of the energy correction, by applying the following equation:

P(DE) =
1

Area

DEZ

E�

f (DE0)d(DE0). (5.2)

For each electron in the beam, the value of the correction DE to add to the set initial ki-
netic has to be determined. This is done by generating another random number r, uniformly
distributed in the interval [0,1]. Then the value of DE for which the P(DE) is equal to r is iden-
tified. So the initial kinetic energy of the considered electron was set to E + DE.
In the next sections the input data to pass to the MC routine are displayed and discussed, sub-
sequently the calculated full emission spectra and secondary electron yields are presented. In
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FIGURE 5.15: (Upper panel) Experimental elastic peak of copper; (Lower Panel) Cu-
mulative probability distribution describing the experimental elastic peak [15].

particular the role of the work function is probed in promoting or preventing the emission of
electrons from the sample interface.

Elastic scattering

The Mott theory [7], as described in section 2.1.1, was applied to calculate elastic features for
copper, silver and gold. The analytical formulation of the atomic potential proposed by Salvat
et al. [16] was used (see Appendix A). The total elastic scattering cross section is obtained by
integrating Eq. (2.9) in the solid angle [Eq.(2.12)] . The results are shown in Fig. 5.16 and
compared with tabulated values [17].

To evaluate the scattering angle, the cumulative elastic scattering probabilities are calcu-
lated for different values of electron kinetic energy E with Eq. 2.13 . Some of them are shown
for the three samples in Fig. 5.17:
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(Å

2 )

c) Calculated
NIST

FIGURE 5.16: Total elastic scattering cross section of Cu a), Ag b) and Au c) as a func-
tion of electron kinetic energy. Black lines report tabulated values [17, 15].

Inelastic scattering and secondary electron generation

The electrons are slowed down during their path, due to inelastic scattering with atomic elec-
trons. The travelling electrons transfer a fraction of their kinetic energy, producing both excita-
tions and ionizations. To describe these interactions, the Ritchie dielectric theory, as described
in section 2.1.2, was applied with some variations. In particular, we decided to use the dielec-
tric functions calculated from experimental REEL spectra by Werner et al. [18]. The obtained
functions include both the bulk and the surface excitations. The real and imaginary compo-
nents were fitted with Drude-Lorentz functions, which represent plasmon oscillations.

The fitting parameters proposed by Werner in ref. [18] are reported in Tab. 5.4 and the
resulting components of the dielectric functions of Cu, Ag and Au, for transferred momentum
equal to zero, are shown in Fig.5.18.

The ELF, which represents the key quantity in the Ritchie dielectric theory, is defined as:

ELF = Im

� 1

e(q, W)

�
(5.3)
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FIGURE 5.17: Cumulative elastic scattering probabilities of Cu a), Ag b) and Au c), as
a function of the scattering angle and for different kinetic energies [15].

Cu Ag Au
n En (eV) Gn (eV) An (eV2) n En (eV) Gn (eV) An (eV2) n En (eV) Gn (eV) An (eV2)
1 0.00 0.027 86.3 1 0.000 0.065 98.4 1 0.000 0.2 113.1
2 1.0 0.5 19.8 2 1.0 93.8 103.9 2 4.0 1.5 44.6
3 1.0 0.5 21.9 3 4.9 0.7 23.8 3 7.3 3.3 54.8
4 4.0 1.7 30.2 4 10.3 22.0 318.3 4 12.8 11.8 184.9
5 4.8 0.5 2.5 5 13.2 6.3 89.6 5 18.9 71.0 728.1
6 7.2 11.3 157.7 6 21.2 3.3 63.5 6 19.9 2.9 65.7
7 14.2 10.1 130.9 7 30.2 3.7 43.3 7 28.9 3.9 50.0
8 16.9 68.2 108.6 8 43.0 16.7 313.3 8 38.7 13.0 74.7
9 24.3 3.0 40.0 9 65.7 38.8 519.9 9 64.3 51.9 1544.0

10 59.4 55.1 1022.4

TABLE 5.4: The best-fit parameters (Eq. (2.16)) of effective ELFs of Cu, Ag and Au
proposed by Werner in ref [18] .

and can be calculated as:
ELF =

Im[e]

Re[e]2 + Im[e]2
(5.4)
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FIGURE 5.18: Dielectric function components of Cu a), Ag b) and Au c), as a func-
tion of energy loss and for transferred momentum equal to zero, obtained with fitting

parameters by Werner et al. [15, 18].

The ELF calculated, from the dielectric function components reported above, are shown, for
the three investigated materials, in Fig. 5.19.

To extend the dielectric function to transferred momentum ~q different from zero, a disper-
sion law has to be applied to the characteristic energies of the oscillators [Wi(q)]:

Wi(q) = Wi(q = 0) + b
(h̄q2)
2m

(5.5)

where m is the electron mass, q the transferred momentum and b the dispersion coefficient.
The Drude-Lorentz theory was developed to describe the excitation in the low energy region,
corresponding to energy losses lower than the semi-core transition energy. To extend properly
the Drude-Lorentz theory for higher energy the value of the b dispersion parameter has to be
tuned. This latter value was set, according to Ref. [18], to 1 for oscillator energies Wi(q = 0)
lower than the characteristic energy of the semi-core transitions. For larger oscillators energy,
it was set to 0.5, which ensures the highest agreement with experimental data [18]. In partic-
ular, for the investigated targets, the threshold energies of the semi-core transitions are for Cu
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FIGURE 5.19: Energy Loss Functions of Cu a), Ag b) and Au c), as a function of energy
loss and for transferred momentum equal to zero, obtained with fitting parameters by

Werner et al. [18, 15].

E3p3/2 = 75.1eV, for Ag E5p3/2 =57.2 eV and for Au E4p3/2 = 58.3 eV [18].
Starting from the ELFs thus evaluated and expanded, the calculation of the differential inelas-
tic mean free paths, inelastic mean free paths and inelastic cumulative probabilities proceeds
as reported in section 2.1.2. The inelastic mean free paths of the three samples are shown in
Fig. 5.20 and compared with calculation presented by Tanuma et al. [19].

As a results of an inelastic interaction, the impinging electron loses a fraction W of its
kinetic energy. To identify the energy loss due to each interaction, the cumulative inelastic
probabilities Pinel(E, W) were a calculated as in Eq. (2.20). Some distributions are reported in
the following figures as a function of energy loss values (Fig. 5.21).

If the energy loss is larger than the first ionization energy <B>, an ionization occurs and
a secondary electron is emitted with an initial kinetic energy equal to W�<B>. The first ion-
ization energy is the energy required to extract one electron from the external electron shell of
the target atom. At this point, the generated secondary electron starts to travel in the target
solid. Otherwise the transferred energy triggers an excitation of the atom, without causing the
emission of a secondary electron.
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FIGURE 5.20: Inelastic Mean Free Paths of Cu a), Ag b) and Au c), as a function of
kinetic electron energy. Dashed lines represent the results obtained by Tanuma et al.

[19, 15].

To decide the type of interaction, distribution probabilities and generated random numbers
(uniformly distributed in the interval [0,1]) are involved. The distribution probabilities, pel
and pinel, regarding the tendency of electrons to undergo respectively an elastic or inelastic
scattering, are computed starting from the total mean free path l, defined as:

l�1(E) = l�1
inel(E) + l�1

el (E) (5.6)

The distributions, as a function of kinetic energy, are given by:

pel =
l

lel
(5.7)

pinel =
l

linel
(5.8)

These are reported in Fig. 5.22.
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FIGURE 5.21: Cumulative inelastic scattering probabilities of Cu a), Ag b) and Au c),
as a function of the energy loss and for different kinetic energies [15].

5.2.1 Results and discussion
In MC simulations, copper, silver and gold bulks were considered as targets. In the following
table (Tab. 5.5) the characteristic features are reported. In the next sections the results concern-
ing full spectra of copper and electron yield of the three metals are presented.

Metal density <B>
(g/cm3) (eV)

Cu 8.96 [11] 7.726
Ag 10.5[19] 7.576
Au 19.32[10] 9.226

TABLE 5.5: Characteristic quantities of target materials [15].
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FIGURE 5.22: Scattering probabilities for Cu a), Ag b) and Au c) as a function of the
electron energy [15].

Full energy emission spectra of Cu

MC simulations were performed by considering bulk copper as target material, to calculate
the full energy emission spectrum for different initial beam energies E. The number of sent
electrons was set to 107 to ensure stable results. The sample work function was set to 5.4 eV.
Emitted electrons are collected as a function of their kinetic energies. The spectra were calcu-
lated by considering the initial electron energy distributed as the reference copper experimen-
tal elastic peak reported above (Fig. 1). The obtained spectra are compared with experimental
data (recorded by R. Cimino INFN group in Frascati) for different initial kinetic energies and
they are reported in Fig. 5.23. The left panels show spectra normalized at a common height of
the secondary electron (SE) emission peak, the right panels show the spectra normalized at a
common area.

The experimental spectra were acquired with a retarding field analyzer (RFA) which is
known to cause a characteristic broadening of the elastic peak due to poor resolution at high
energies and a strong asymmetry on the low energy side due to the integration of the back-
ground [20, 21]. Due to this, the integrated area of the whole elastic peak is always higher than
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FIGURE 5.23: Electron energy emission spectra for different initial kinetic energies. The
central panels of each figures frame the two main parts of the spectrum: the secondary
electron (SE) emission peak in blue and the back-scattered electrons (BE) in red. The
experimental data are reported in all the figures with black lines. The figures on the
left report spectra normalized at a common height of the secondary electron emission
peak. The figures on the right show spectra which are normalized at a common total

area of the spectrum [15].
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the MC one [22, 23]. As a result, in the case of spectra normalized at a common area (right pan-
els), the MC secondary electron (SE) peaks are more intense than the experimental ones. On
the other hand, by normalizing at a common height of the secondary electron emission peak,
it is evident that a very good agreement is reached between the shape of SE MC peaks and SE
experimental peaks.

Electron yield

The electron yield is defined as the total number of emitted electrons divided by the number of
electrons in the beam. It was calculated by considering the three investigated metals, Cu, Ag
and Au, for different kinetic energies. The role of the work function was investigated: different
simulation runs were carried out by changing this parameter. To calculate the electron yield
curves, 106 electrons in the beam were considered. In Fig. 6.21, calculated electron yield curves
are compared to experimental data by Gonzales et al. [24].

These results clearly show that the increase of the energy barrier, represented by the work
function, decreases the number of electrons which have the possibility to emerge from the
surface. Indeed, curves calculated with a higher value of c, show lower intensities than the
ones obtained with a lower c. The best agreement with the experimental data [24], is reached
for copper, silver and gold respectively with c equal to 5.4 eV, 4.4 eV and 4.7 eV. The value
of c measured experimentally by Gonzales et al. [24], are for copper, silver and gold equal
respectively to 4.6 eV, 4.4 eV and 5.3 eV. Thus, for silver, we got the agreement with yield
curves and this agreement is reached by setting the value of the work function equal to the
one measured experimentally. In the case of copper, the best MC curve was obtained with a c
higher than the experimental value. The curve which ensures the highest agreement for gold,
was achieved by using a value of c smaller than the experimental value.
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FIGURE 5.24: Electron yield curves of Cu a), Ag b) and Au c) as a function of the elec-
tron energy, for different values of work functions c (left panels). In black experimental
data are reported [24]. Right panels show the best agreement between calculated data

and experimental curve [15].
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5.3 Conclusions
In this section, the performances of MC method against NS of the Ambartsumian - Chan-
drasekhar equations were compared in terms of accuracy and computational cost for calcu-
lating REEL spectra of several metals, such as Cu, Ag and Au. To obtain a fair comparison,
the computations were performed using the same input data in each test case, which means
the same IMFPs for the relevant test cases. The spectra obtained with these two methods are
comparable and show a good agreement with experimental data, even when including the ef-
fective description of the ELFs for dealing with surface plasmon excitations. The spectra were
further analyzed by resolving the spectral contribution of the electrons as a function of the
maximum number of inelastic collisions in their way out of the solid. Even in this case, the
results obtained are comparable for any practical purpose. Thus, these two approaches can
be considered equivalent with respect to accuracy for the simulation of REEL spectra in solids
and they both can be used to test materials dielectric response. Moreover, these approaches are
very versatile as they basically require as input data information on the materials ELFs, which
can be obtained by using several tools, from experimental measurements to ab-initio simula-
tions [25]. Nevertheless, we notice that the NS approach is much faster than MC, having a
computational cost lower of about two orders of magnitude concerning CPU time, once input
data are provided to the main program routine. However, MC gives access to a number of dif-
ferent data, such as multiple scattering and secondary electron yields, which can be useful to
give some insight into SEM microscopy or, generally, into imaging techniques [2]. Indeed, the
MC method was then applied in the calculation of secondary electron trajectories for the three
different metals (copper, silver and gold). In particular, in the second part of the chapter the
MC calculation of the complete electron emission spectra and secondary electron yield curves
are presented. The calculations were performed by changing the value of the work functions,
and the variations in the secondary electron yields were analyzed. The best agreement with
yield experimental curves was reached by setting the values of work function very close to the
experimentally measured values [24].
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Chapter 6

SiO2: substrate for FEDIB
technique

The purpose of this chapter is to analyze the contribution of backscattered and secondary elec-
tron in the focused electron beam induced deposition (FEBID) technique in the deposition of
2D and 3D nanostructures. This procedure involves a high energy electron beam impinging on
a layer of adsorbed molecules deposited on a given substrate. The high energy electrons (pri-
mary and backscattered) fragment precursor adsorbed molecules by dissociative ionization,
resulting in a complete loss of all ligands. Moreover, given their high energy these electrons
reach the substrate and traveling inside the solid they generate avalanches of secondary elec-
trons. Those low energy electrons can manage to reach the surface and escape. Even if they
also interact with adsorbed molecules, they participate in the precursors fragmentation with
a dissociative electron attachment process, resulting in an incomplete ligand loss. Hence a
consistent action of secondary will produce "dirty" nanostructures at the end of the overall de-
position process [1]. To simulate the FEDIB process two different models has to be combined:
(i) for the transport of primary and secondary electrons through the substrate the MC model is
used and (ii) to consider the fragmentation, dynamics and reaction of precursor molecules on
the substrate [2] the irradiation driven molecular dynamics (IDMD) is implemented. In par-
ticular, the MC procedure allows obtaining electron energy spectra at several annular patches
around the beam center. The electron energies and fluxes will be used to determine fragmen-
tation rates for precursor molecules, to be used in IDMD. Then IDMD can be used to follow
the time evolution of precursor molecules in the silica substrate and the growing nanostruc-
tures (size and composition). In this section only the first part, regarding the MC simulation
is treated. The theoretical group at the University of Alicante and at the University of Murcia
contributes in the calculation of input inelastic cross sections and performed the IDMD proce-
dure. As a working example, the same situation as in [2] will be considered: a 30 keV primary
electron beam of 5 nm-radius impinging on a SiO2 surface covered with W(CO)6 molecules.
This choice in materials was done since the availability of experimental data on these samples.
In this chapter, the calculation of input data for the MC model and a detailed discussion of the
delivered results of the relative simulations are provided.
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6.1 Set up of the Monte Carlo simulation
Monte Carlo simulations of electron transport were realized by considering as target material
SiO2 with the following characteristic quantities (Tab.6.1) :

Z 30
atomic mass 60.0735 u.m.a

density 2.19 g/cm3

Energy Band Gap (Eg) 8.9 eV
Work Function (c) 0.9 eV (Ref. [3])

Mean Ionization Energy (<B>) 12.2 eV

TABLE 6.1: Characteristic quantities of target material.

The MC simulations were carried out as reported in section 2.1 by including inelastic and
elastic scattering and also electron�phonon interaction. Among those the inelastic interaction
involves a loss of energy, if the value of the energy loss results to be larger than the mean
binding energy for outer shell electrons <B>, an ionization occurs and a secondary electron
is generated. The initial kinetic energy of the secondary electron is equal to the loss of energy
minus the mean ionization energy. For lower transferred energy loss an excitation atomic
electron cloud occurs, without the emission of secondary electrons.

6.1.1 Beam cross section
To properly model the cross section of the impinging primary electron beam two different
distributions of the electrons in the spot were taken into account: the uniform distribution and
the Gaussian distribution. In the next paragraph we present these two distributions.

Circular spot with uniform distribution: An incident beam with a spot diameter of 10
nm has to be mathematically modeled. Incidence positions in the plane, for each electron in the
beam, were evaluated by generating two random numbers (r1 and r2), uniformly distributed
in the interval (0,1). The two coordinates of the incidence position (x, y) were obtained as:

q = 2 p r1

x = R
p

r2 cos q

y = R
p

r2 sin q

(6.1)

where R is equal to 5 nm. The resulting pattern, for 105 electrons, is the one reported in Fig.
6.1.

Circular spot with Gaussian distribution: To generate a Gaussian distributed circular
beam spot (diameter of 10 nm), two random numbers (r1 and r2) have to be generated. In
particular, r1 is sampled uniformly in the interval (0,1), and r2 is selected accordingly to the
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(Å

)

FIGURE 6.1: Beam section pattern.

following Gaussian distribution (Fig. 6.2a):

p(x) =
1p

2ps2
exp

✓
� x2

2s2

◆

with s = 25nm. The two coordinates of the incidence position (x, y) were obtained as:

q = 2 p r1

R = r2

x = R cos q

y = R sin q

(6.2)

The resulting pattern, for 105 electrons, are the one reported in Fig. 6.2(b).

6.1.2 Elastic scattering
The elastic scattering was described by the Mott theory [4] and it was evaluated starting from
the Salvat potential [5] (See section 2.1.1 and Appedix A). The total elastic scattering cross
section sel of SiO2 was obtained by considering the stoichiometry of the compound. Indeed, it
was computed as the sum of twice the sel of oxygen and once the sel of silicon. In Fig. 6.3 sel
of oxygen, silicon and SiO2 are reported.
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�60

�40

�20

0

20

40

60

y
(Å
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FIGURE 6.2: On the left the Gaussian distribution adopted to sample the value of the
Radius, on the right the obtained beam section pattern.

The elastic scattering cross section should tend to zero for low kinetic energy because at
lower energies the electron�phonon interaction should be the main elastic interaction. To
correct the sel in that energy region the Ganachaud-Mokrani method was used (see section
2.1.1). Different values of the a parameter were tested and the resulting corrected sel are shown
in Fig. 6.4.

To fix the proper value, tests of the secondary electron yield calculation were performed
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FIGURE 6.3: In red silicon, in green oxygen and in blue SiO2 elastic scattering cross
section.
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FIGURE 6.4: Elastic scattering cross sections: in blue as calculated, dashed lines with
the Ganachaud-Mokrani correction with different values of the coefficient a.

(will be presented later) in order to reach the highest agreement with the experimental mea-
surements. The value which allows the best agreement with the measurements is a = 0.06
eV�2. With this value of a, the values of elastic mean free path results to be of the order of the
lattice parameters as can be seen in the following figures (Fig. 6.5). Starting from the corrected
sel, the elastic scattering cumulative distribution probabilities [Eq. (2.13)] for different fixed
kinetic energies were computed as a function of the scattering angle q (see Fig. 6.6).
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FIGURE 6.5: Elastic scattering cross section and elastic mean free path obtained with
the application of the Ganachaud-Mokrani correction.
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FIGURE 6.6: Elastic scattering cumulative distribution probability for a set of intial
kinetic energies.

6.1.3 Inelastic scattering
Inelastic scattering cross sections were calculated according to [6] . The mean binding energy
of SiO2 has been estimated from data taken from Refs. [7, 8, 9, 10], by obtaining an average
value of <B>=12.2 eV . The ELF has been taken from data from Palik [11].

From the calculated cross sections, the total inelastic mean free path is obtained, as shown
in Fig. 6.7. The results is compared with experimental data by Murat et al. [12]and by Jung
et al. [13] . Starting from the differential inelastic scattering cross sections, the cumulative
inelastic probability distributions were computed as indicated in Eq.( 2.20) for a set of kinetic
energies. Fig.6.8 shows that the cumulative inelastic scattering probability distributions are
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FIGURE 6.7: Calculated inelastic mean free path as a function of the kinetic energy in
red compared to experimental data by Murat [12] and by Jung [13].

rather similar for electrons with energies larger than 1 keV. The differences appear at low elec-
tron energies.
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FIGURE 6.8: Inelastic scattering cumulative probability distributions as a function of
the energy loss for a set of kinetic energies.
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6.1.4 Electron Phonon interaction
The electron-phonon interaction was modeled using the Frölich theory [14] as described in
section 2.1.3. In the computation of the relative mean free path [lph Eq. (2.21)] e0 and e•,
respectively the static and the high frequency dielectric constants, were set to 3.84 and 2.24,
as reported in [3]. The simulations were realized by fixing the temperature T to 273�K. After
a series of tests and comparisons with experimental data of secondary electron yields, it was
found that the value of the average mean energy Wph which ensures the highest agreement
with the experimental data is 0.15 eV.

6.1.5 Scattering probabilities
The mean free path, which takes into account all the possible interactions, is computed in this
case as:

1
l

=
1

lel
+

1
linel

+
1

lph
(6.3)

The probabilities to undergo each kind of interaction are evaluated by applying these relations:

pel =
l

lel

pinel =
l

linel

pph =
l

lph

(6.4)

The various scattering probabilities are reported, as a function of the kinetic energy, in Fig. 6.9.
As a result of the application of the Ganachaud - Mokrani correction, the electron-phonons
interaction becomes significant in the low energy range, to detriment of elastic scattering.

6.2 Results of Monte Carlo simulations

6.2.1 Validation of the Code
Before considering high energy electron beams, simulations at low beam energy were realized
in order to validate the model. With this aim, simulated REEL spectra and secondary elec-
tron yields were compared to experimental data to validate the code and determine optimal
parameters for the accurate description of each kind of interaction.

Reflection Electron Energy Loss spectra

REEL spectra were simulated by setting the number of electrons in the beam equal to 109.
Different initial kinetic energies were considered and the results were compared with our ex-
perimental data [15, 16] in Fig. 6.10. The data are normalized to a common height of the main
plasmon peak.
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FIGURE 6.10: Reflection Electron Energy Loss spectra of SiO2 at different kinetic en-
ergy of the beam. In red simulated spectra and in black experimental spectra [15, 16].

The data are normalized to a common height of the main plasmon peak.
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These results show a good agreement between simulated and measured spectra. Even if
the MC main plasmon peak results to be slightly wider than the experimental one, the part of
the spectra corresponding to multiple plasmon excitations is well reproduced by the simulated
results.

Secondary electron spectra

A complete electron emission energy spectra was obtained by generating 106 electron trajecto-
ries and by setting the beam energy at 100 eV. The simulated spectrum is compared in Fig. 6.11
to another theoretical spectrum achieved by Schreiber and Fitting [3]. This latter is in turn in
agreement with experimental data by Fitting at al. [17].

0 20 40 60 80 100
Electron Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
te

ns
ity

(a
rb

.u
.)

MC simulation
Schreiben and Fitting MC simulation

FIGURE 6.11: Energy spectrum of SiO2 for an initial kinetic energy of 100 eV. In red
our calculated spectrum, in black the calculated spectrum by Schreiber and Fitting [3].
The data are normalized to a common height of the secondary electron emission peak.

By taking into account the low resolution of the reference theoretical spectrum, a good
agreement can be found between the two theoretical line shapes.

Secondary electron yield

Monte Carlo simulations were performed to calculate the secondary electron yield of SiO2.
In this case, to assure the statistical significance of the calculation, the number of trajectories
was set to 105. In Fig. 6.12 results of different runs carried out using different values of the
Ganachaud-Mokrani coefficient are reported, maintaining fixed the value of the energy loss
Wph due to the electron-phonon interaction to 0.15 eV. The curves thus obtained are compared



6.2. Results of Monte Carlo simulations 89

with numerical results of Schreiber and Fitting [3] and the experimental data by Glavatskikh
and Yi [18, 19].

0 500 1000 1500 2000 2500 3000
Energy (eV)

0
2
4
6
8

10
12
14
16

Se
co

nd
ar

y
El

ec
tr

on
Yi

el
d

Schreiber - Fitting calculated
MC Wph = 0.15 eV

MC Wph = 0.15 eV, a = 0.0006 eV�2

MC Wph = 0.15 eV, a = 0.006 eV�2

MC Wph = 0.15 eV, a = 0.06 eV�2

Experimental

FIGURE 6.12: Secondary electron yield of SiO2. In green the curve obtained without the
Ganchaud-Mokrani correction. The other curves were obtained with different values
of the a parameter of the Ganchaud-Mokrani correction. The dashed blue line reports
the calculated curve by Schreiber and Fitting [3] and the black dotted curve represents

experimental data by Glavatskikh and Yi [18, 19].

By choosing the value of a equal to 0.06 eV�2, a good agreement is reached with both
experimental and computational reference data.

Fig. 6.13 shows the results achieved by changing the values of the energy loss Wph due
to the electron-phonon interaction and by maintaining constant the value of the Ganachaud-
Mokrani coefficient a to 0.06 eV�2.

From the comparison with experimental data reported in Ref.[18, 19], it was determined
that the proper value of a is 0.06 eV�2 and the proper value of Wph is 0.15 eV. By setting
these parameters, characteristic of the sample, the optimized secondary electron yield curve
is the one reported in Fig. 6.14. This calculated signal shows the same shape of the Schreiber
and Fitting [3] theoretical results. Schreiber and Fitting reported that their calculated curve
resulted to be higher than experimental data. Our calculated curve is in agreement with the
experimental data by Glavatskikh and Yi [18, 19].

The MC model was so validated for this target and can be applied to perform specula-
tive simulations, in order to acquire quantitative information about the action of primary and
secondary electrons in the FEDIB process.
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6.2.2 High energy simulations
With the aim to understand the general behaviour of primary and secondary electrons trav-
eling in SiO2, different sets of simulations were performed by choosing the beam energy in
the range between 1 keV and 30 keV. The incident beam was modeled with a uniform spot
distribution and composed by N = 107 or 108, depending on the scope, primary electrons. In
particular, the study on secondary electrons position generation and energy deposition was
carried out. The kinetic energy and the distance of the emission position from the center of the
incident beam were recorded for each emitted electron and, by analyzing these records, energy
spectra and distance distribution spectra were realized.

Spectra

The emission energy spectra obtained for different initial kinetic energies, starting from 107

primary electrons, are shown in Fig. 6.15.
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FIGURE 6.15: Calculated energy emission spectra obtained for different initial kinetic
energies. In green the full spectrum is reported. In blue the secondary electron emis-
sion peak is shown. In red the back scattered emission spectra is presented. In each

plot the data are normalized to the highest peak value.
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From these results we see that the variation of the initial beam energy does not influence
the shape of the secondary electron emission peak. The intensity of the secondary electron
emission peak remain progressively higher than the elastic peak.

Secondary electron generation yield

The secondary electron generation yield is the total number of generated secondary electrons
divided by the number of primary electrons. In is worth noting that it is different from the
secondary electron yield, which accounts for emitted electrons. The secondary electron gen-
eration yield is not measurable experimentally, it was evaluated with simulations, for a set of
different beam energies. The results are reported in Fig. 6.16.
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FIGURE 6.16: Secondary electron generation yield as a function of the initial kinetic
energy of the beam.

The figure shows a linear trend: the secondary electron generation is enhanced by the
increase of the beam energy. The depths of the positions in which the secondary electrons are
generated were recorded. The distributions of depth position are reported in Fig. 6.17, and the
positions at which the distributions are maxima were indicated in Fig. 6.18 as a function of
beam energy.

Also the depth position increases with the increase of the beam energy. Thus higher the
beam energy higher the depth generation position and the number of secondary electrons
which are generated. However, the number of secondary electrons which manage to escape
from the target decreases as the beam energy increases. This is clearly shown by Fig. 6.19
where the ratio between the number of emitted secondary electrons and the number of gener-
ated secondary electrons is reported. So, a high energy beam produces a big drop of generated
secondary electrons, but electrons have to travel a long way in order to emerge. In this way
they continue performing interactions, losing energy till their stop or they emerge.

The initial kinetic energy assigned to each generated secondary electrons was also recorded.
The energy distributions are reported in Fig. 6.20 for different beam energies. The distributions
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FIGURE 6.17: Secondary electrons generation position depth distributions for different
values of the beam energy.
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FIGURE 6.18: Position depths correspondent to the maximum of position depth distri-
bution as a function of beam energy.
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FIGURE 6.19: Percentage of the ratio between the number of emitted secondary elec-
trons and the number of generated secondary electrons, as a function of the beam en-

ergy.

evidence the same trend as the cumulative inelastic probability distributions, related to peak
positions in the ELF function. The MC model recognizes the nature of the electron, whether it

0 20 40 60 80 100
Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

T = 30 keV
T = 27.5 keV
T = 25 keV
T = 22.5 keV
T = 17.5 keV
T = 15 keV
T = 12.5 keV

0 20 40 60 80 100
Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

T = 10 keV
T = 7.5 keV
T = 5 keV
T = 4 keV
T = 3 keV
T = 2 keV
T = 1 keV

FIGURE 6.20: Intial kinetic energy of generated secondary electrons distributions for
different values of the beam energies.

is a primary beam electron or a generated one, thus the yields considering this difference were
also evaluated. The back-scattering coefficient is the ratio between the back-scattered electrons
and the number of the electrons in the beam. The secondary electrons yield is the ratio between
the emitted secondary electrons and number of the electrons in the beam. The total yield is the
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sum of the two yields. These three features as a function of initial beam energies are reported
in Fig. 6.21.
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FIGURE 6.21: Electrons yields as a function of the beam energy. In red the primary
electrons yield, in blue the secondary electrons yield and in green the total yield.

In light of these results, the contribution of the primary electron yield can be considered
constant, while the contribution of the secondary electron yield decreases as the beam energy
increases.

Emission position distribution

The position emission distance from the center of the incidence beam was recorded for each
emitted electron. Then, these data were analyzed counting the number of electrons emitted
in an interval centered at a specific value of the distance (Fig. 6.22 , left side). These counts
were also normalized dividing by the area of the annulus relative to the specific value of the
distance, in order to obtain a flux. Being dR the interval between two subsequent distance
values in the set and D the specific value of the distance, the annulus area was calculated as:

Area = p[(D + dR/2)2 � (D � dR/2)2] (6.5)

and are shown in Fig. 6.22 (right side).
The curves reporting counts show a peak around 50 Å which corresponds to the radius of

the incident beam section. Moreover, at radial distances larger that 10 times the initial radius
of the beam (at 500 Å), the number of emitted electrons is almost 3 order of magnitude lower.
The normalized curves, for a distance lower than 50 Å, which corresponds to the beam radius,
are constant. This is due to the uniform distribution of incident positions in the beam spot.
Moreover, we note that the distributions reach higher distances for higher kinetic energy of the
beam.
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FIGURE 6.22: Emission position distance distributions for different initial beam en-
ergies. Figures on the left (in blue) report the number of emitted electrons with the
specified distance from the center of the beam. Plots on the right (in red) report the

data of the pictures on the left side normalized respect to the annulus area.

Emission angle distribution

The value of electron emission angles with respect to the normal direction to the target surface
were acquired. Then the distributions were elaborated and reported in Fig. 6.23 for different
kinetic energies. From this figure it can be notice that the distributions remain substantially
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constant for different initial kinetic energies of the beam.
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FIGURE 6.23: Emission angle distributions for different values of the beam energy.

Energy and position spectra

These results were carried out by considering 108 primary electrons in the impinging beam.

Beam energy equal to 1keV The data were analyzed by setting the energy bin dE equal
to 0.1 eV and the distance bin dR to 10 Å. The maximum distance taken into account for the
sampling is 10000 Å. To obtain the spectra the electrons were counted depending on their ki-
netic energy and emission position (Fig. 6.24). Then these values were divided by the value
of the energy bin dE, by the number of sent electrons N and by the area of the annulus. These
results are shown in Fig. 6.25. From the complete emission spectra, the consistent difference
in intensity between secondary electron emission peaks and elastic peaks is evident. The nor-
malized curves, concerning the backscattered electrons, show peaks related to the excitation of
plasmon oscillations. By normalizing the data, the profile of secondary electron peaks in the
distance direction is the same reported in the previous investigation shown in Fig. 6.22.
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FIGURE 6.24: In the upper panel the full spectra are reported. In these the counts are
reported as a function of emission distance and as a function of emission energy. In
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emission spectra are reported.
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Å
�

2 )
⇥

10
�

6

0

1

2

3

4

5

6

7

Energy (eV)

0 5 10 15 20 25 30 35 40
Radius (Å
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counts are reported as a function of emission distance and as a function of emission
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Beam energy equal to 30keV The data were analyzed by setting the energy bin dE equal
to 1 eV and the distance bin dR to 10 Å. The maximum distance taken into account for the
sampling is 30000 Å. The energy and emission position spectra are reported in Fig. 6.26.
The normalized spectra are then shown in Fig. 6.27. In light of these results, we notice that
the emission of secondary electrons is concentrated in a narrow radial distance and that the
backscattered electrons are emitted at higher distances. Secondary electrons are emitted with
an energy lower than 50 eV. By considering the simple counts result, the secondary electron
emission peak reaches its maximum value around the distance equal than the radius of the
beam, as can be expected. For normalized counts, the secondary electrons peak value remains
constant till distance equal the beam spot radius, then progressively decreases. The normalized
data were passed to the IDMD model, to consider the charge transfer to precursor molecules
represented by different kind of emitted electrons.

Simulations details

In the following table characteristic quantities of simulations and data analysis are reported.
These features were recorded by considering the beam composed by 107 primary electrons.

Beam N� computational N� emitted Maximum dR (Å) dE (eV)
energy (eV) CPUs time electrons distance (Å)

1000 2048 00:16:22 27017149 2.53 ⇥ 108 10.0 0.1
10000 2048 03:45:53 5014371 3.12 ⇥ 1010 20.0 1
15000 2048 02:38:15 3916981 1.40 ⇥ 108 20.0 1
30000 2048 05:15:18 2793844 2.63 ⇥ 106 50.0 1

TABLE 6.2: Characteristic quantities of Monte Carlo simulations.
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FIGURE 6.26: In the upper panel the full spectra are reported. In these the counts are
reported as a function of emission distance and as a function of emission energy. In
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Gaussian distributed beam pattern

A simulation with the beam energy set at 30 keV and the beam spot realized with a Gaussian
distribution of the radius was realized. The simulation were realized by initially considering
107 primary electrons.
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equal to 30keV and a Gaussian distributed beam pattern. In green the full spectrum is
reported. In blue the secondary electron emission peak is shown. In red the backscat-
tered emission spectra is presented. In each plot the data are normalized to the highest

peak value.

Emitted electrons were counted as a function of their emission distance from the beam
center. The bin of the sampling dR was set equal to 10Å for a total number of bins equal to
3000. The emission distance spectrum is reported in Fig. 6.29. In this case, the normalized

101 102 103 104

Distance (Å)
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10�3

10�2

10�1

100

101

102

El
ec

tr
on

s
nu

m
be

r/
ar

ea
(1

/
Å
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FIGURE 6.29: Emission position distance distributions: the figure on the left (in blue)
reports the number of emitted electrons with the specified distance from the centre of
the beam. the plot on the right (in red) report the data of the pictures on the left side

normalized respect to the annulus area.
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distance emission distribution presents a decreasing shape also for low distance value, due to
the Gaussian beam spot distribution. The energy and emission position spectra are reported
in Fig. 6.30. The normalized spectra are then shown in Fig. 6.31.
It is worth noting that, compared to previous results at 30 keV achieved with a constant distri-
bution, the number of primary electrons in the beam is one order lower and this justifies the
more noisy signals. However the overall behaviour of emitted electrons is not substantially
affected by the variation of beam spot distribution.
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Å
�

2 )
⇥

10
�

5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Energy (eV)

29900
29920

29940
29960

29980
30000

Radius (Å
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6.3 Conclusions
In this chapter, the electron emission from a bulk of SiO2 bombarded by a high energy electron
beam was analyzed in details. Initially, the MC procedure was tested by comparing calculated
emission spectra and secondary electrons yield to experimental measurements. A remarkably
good agreement was found between calculated and measured spectra and yield values. This
allowed further studies focused on the secondary electron generation, the consistency of the
avalanches, their generation depth and initial energy distribution. High energy beam involves
a significant generation of secondary electrons. However, given the huge depth at which they
are generated, only a decreasing part of them manage to reach the surface and be emitted.
Thus, we found that the quantity of emitted electrons decrease as the the beam energy in-
creases. Further investigations were aimed at the acquisition of energy and position emission
distributions of electrons for high energy beam. By feeding IDMD technique with these re-
sults, might allow understanding the overall processes due to the FEDIB deposition technique,
with the aim to provide the experimentalists with recommendations about optimized beam
conditions.
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Chapter 7

Deep investigation of secondary
electron emission spectra of
P3HT

7.1 Introduction
Understanding nanoscale molecular ordering within organic electronic materials is a crucial
factor in building better organic electronic devices. In this chapter, we present secondary elec-
tron (SE) spectroscopy to probing molecular ordering in P3HT. Early work in the SE spec-
troscopy of organic materials showed that peaks in the SE spectrum emitted from graphite
reflect the energy levels of conduction band minima [1]. More recently, the influence of sam-
ple doping [2] and the sample’s bonding structure[8] of SE spectral features have also been
explored. However, the process of SE generation, transport and subsequent emission is highly
complex, involving a ‘cascade’ of interactions with sample atoms, electrons, phonons and trap
sites, each of which can influence the properties of an emitted SE [3]. As a result, the energy
distribution of emitted SEs results from a complex convolution of various material and elec-
tronic properties. In this work, we investigate the material properties that influence the shape
of the SE spectrum emitted from poly(3-hexylthiophene) (P3HT), a semicrystalline polymer
with organic electronic applications. P3HT films are an ideal test subject for investigating
SE emissions, as the electron transport and emission properties are dependent on molecular
ordering, and controllable with film processing [4, 5, 6, 7] . Further, P3HT is a popular con-
jugated polymer with applications across the field of organic electronics [8]. In particular, we
demonstrate that crystalline content in a P3HT film alters its SE energy spectrum, and find
that the localised SE spectrum reflecting the presence of amorphous and crystalline phases in a
semi-crystalline film. We investigate the origin of SE spectral features using both experimental
and modelling approaches, and find that the different electronic properties of amorphous and
crystalline P3HT (most notably electron affinity) cause SEs to be emitted with different energy
distributions. The overall investigation is reported in Ref. [9].
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7.2 Monte Carlo model
The simulation of the shape of secondary electron emission peak was realized by means of the
Monte Carlo method as presented in section 2.1. A monoenergetic electron beam impinging
on the target material was taken into account. The trajectories of both beam and secondary
electrons were calculated. The emission spectrum was elaborated by collecting the electrons
which escape from the material and counting them as a function of their kinetic energy to
obtain the emission spectrum. All the 4 kinds of interactions were included in the model:

1. the elastic scattering between electrons and atomic nuclei was evaluated starting from the
elastic scattering cross section by applying the Mott theory [10] (see section 2.1.1). The
P3HT elastic scattering cross section was obtained by a linear combination of elastic cross
sections of single elements which compose the molecule. Given the molecular compo-
sition of this organic compound equal to C10H14S, the resulting total elastic scattering
cross section is obtained by the weighted sum of elastic scattering cross sections of the
three constituent elements, where the coefficients of the combination are given by the
stoichiometry of the compound. To determine the element elastic scattering cross sec-
tion, the correspondent analytical formulation of atomic potential by Salvat was used
[11]. The resulting total elastic scattering cross section is shown in Fig. 7.1.
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FIGURE 7.1: Total elastic scattering cross section of P3HT and of their component ele-
ments as a function of the kinetic energy.

Moreover, the Ganachaud and Mokrani correction was applied to the total elastic scatter-
ing cross section [12]. The parameter a equal to 0.01 eV�2 ensures the highest agreement
with experimental data. The corrected total elastic scattering cross section and the corre-
spondent elastic mean free path are shown in Fig. 7.2 as a function of the electron kinetic
energy.

2. the inelastic scattering between travelling electrons and target electrons was considered by
implementing the Ritchie dielectric theory. It involves the energy loss function, that is
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FIGURE 7.2: On the left elastic mean free path and on the right total elastic scattering
cross section of P3HT, with or without the Ganachau and Mokrani correction.

n En (eV2) Gn (eV) An (eV)
1 2.80 0.913 0.265
2 22.50 15.000 268.313

TABLE 7.1: Fitting parameters ELF in the optical limit with D–L functions for P3HT
[14].

described as a sum of Drude-Lorentz functions, representing electron oscillations [13]
(section 2.1.2). The values of the strength, energy and width of the oscillators are pro-
posed in Ref. [14] and reported in Tab. 7.1.
and the obtained energy loss function in the optical limit is shown in Fig. 7.3. This is
composed by only two oscillators, with the one centered at 20 eV as the prominent. The
first peak corresponds to p plasmon excitation and its influence on the SE spectrum will
be discussed later.
Secondary electrons are generated as a result of inelastic interactions: if the energy loss
of the travelling electron is larger than the threshold energy, this energy is transferred
to an electron of a target atom. Thus, the secondary electron is emitted and also its
trajectory is calculated. The threshold energy, in this case, was set equal to 2.5 eV, a
value corresponding to the mean value of energy band gaps found in the literature [5].

3. the electron-phonon interaction was treated by applying the Froehlich theory [15] (see sec-
tion 2.1.3). This interaction influences mainly the low energy electron region. The value
of high frequency and static dielectric constants, respectively equal to e• = 3.6 and e0 =
3.0 [16], were employed in the calculation. Moreover, the single energy loss due to the
electron-phonon interaction was set to Wph = 0.05 eV [17].

4. the trapping phenomenon was dealt as reported in section 2.1.3 and the characteristics
parameters were set, after a series of comparison with experimental records, to Ctrap =
0.001 Å�1, and gtrap = 0.105 eV�1 [18].



112 Chapter 7. Deep investigation of secondary electron emission spectra of P3HT

0 10 20 30 40 50 60 70
W (eV)

0.0

0.2

0.4

0.6

0.8

1.0

Im
h �

1
e(

0,
W

)i
ELF functions
D-L components

FIGURE 7.3: Energy loss function in the optical limit of P3HT, obtained with the fit
function proposed by Drude - Lorentz [Eq. (2.16)] with the parameters provided by

[14].

By considering these phenomena the interaction probabilities as a function of the electron
energy (Eq. 2.4) result to be as shown in Fig. 7.4.
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FIGURE 7.4: Interaction probabilities as a function of electron energy.

A key role in the calculation is represented by the electron affinity, acting as the energy
barrier that electrons must overcome to be emitted. The surface of the P3HT shows amorphous
and crystalline regions. To model this feature, regions with different electrons affinities were
considered in the simulation.
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7.3 Model results
The emission spectra were calculated by setting an initial kinetic energy of the beam to 700 eV.
The number of primary electrons was set to 107, these are sufficient to produce significant low
noise signals by considering the huge number of generated secondary electrons. This beam
energy value, minimize experimentally the charging and electron beam damage issues, effects
which are not accounted for in the Monte Carlo model. Two different samples were considered:
(i) the semi-crystalline film and (ii) the amorphous film.

The accuracy of the MC method was verified by modelling the SE spectrum of an amor-
phous P3HT film. Indeed, amorphous P3HT is an ideal test case for this purpose; electron
transport in an amorphous film is simpler to model due to its homogeneity [13]. We compared
the modelled spectra with experimental spectra measured in the FEI Sirion tool (Fig. 7.5).
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FIGURE 7.5: Comparison between calculated and experimental secondary electron
emission spectra of amorphous P3HT, for energy of the beam equal to 700 eV [9].

The modelled spectrum demonstrates two primary features: a large, dominant peak at low
energies (< 2 eV), with a long tail at higher energies. This produces a good match for the
general shape of the experimental spectrum. With this model having successfully simulated
the SE emissions of P3HT, we used it to investigate the effects of different sample parameters
on the nature of the SE spectrum. In Fig. 7.6, the effect of altering the electron affinity on the
simulated SE spectrum shape of P3HT can be observed.

The values of P3HT electron affinity in literature take a range of values, from 2.1 eV [5]
to 3.2 eV [18], as such the c values modelled in Fig. 7.6 (c = 1.7 eV and c = 2.5 eV) are a
reasonable match to real P3HT films. This is especially the case given that measurements
of P3HT electron affinity in the literature are bulk measurements that take no account of the
localised variation. Moreover, in Fig.7.6 , we observe that with a higher electron affinity value,
the low-energy peak becomes narrower and less intense. This is an unsurprising effect; the
electron affinity can be taken as an analogue for the energy barrier that an internal SE must
overcome if it is to be emitted. A larger electron affinity therefore has the effect ‘cutting-off’
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FIGURE 7.6: Comparison between two calculated spectra at different values of the
electron affinity, for the beam energy equal to 700 eV [9].

low-energy SEs from the emitted spectrum, and ‘compressing’ the low-energy peak in to a
smaller energy range. Due to the narrow low-energy peak at higher electron affinities, the
higher-energy spectral feature that is observed as a tail for c= 1.7 eV is revealed to be a peak at
2 eV in the c = 2.5 eV spectrum. The shape and intensity of this feature is independent of the
electron affinity value, indicating that it is representative of some other feature of the sample.
Thus the effect of different electron affinity values on the SE spectrum shape can explain the
‘double’ peak feature observed around 1 eV in the wide-field SE spectrum of semi-crystalline
P3HT. We model the semi-crystalline P3HT film as a two-phase system consisting of domains
of different electron affinity. A SE can then be emitted from an area of the film with one of
two electron affinity values. By setting the electron affinities of these two phases to c = 1.7 eV
and c = 2.5 eV respectively, our modelled P3HT spectrum accurately recreates the double-peak
feature around 1 eV. As the semi-crystalline P3HT sample emits a SE peak at lower energies
than the amorphous sample, we ascribe an average c = 2.5 eV to the crystalline phase, and an
average c = 1.7 eV to the amorphous phase. The relative intensities of the two peaks can be
used to infer the fraction of the sample surface consisting of each domain. Modelled SE spectra
from P3HT samples consisting of different fractions of crystalline and amorphous phase are
observed in Fig. 7.7.

Matching the wide-field semi-crystalline SE spectrum, we roughly approximate from the
wide-field spectra that 25% of the semi-crystalline P3HT film surface is crystalline. The abso-
lute crystallinity content of P3HT films is difficult to compare with literature due to the effects
of surfaces and interfaces on the absolute values [19].

Investigation on p plasmon peak The importance of p-electron plasmon excitations to
the nature of the SE spectrum is a crucial sample feature in the discussion of molecular order-
ing. Indeed, the strength of the p-plasmon has been closely related to the presence of molecular
ordering in the material as found in TEM-EELS studies [20, 21]. p-plasmon excitations are an
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FIGURE 7.7: Simulating the SE spectrum of a semicrystalline P3HT film by considering
the different electronic properties of amorphous and crystalline phases [9].

important factor in determining the SEs interactions within the material, and can influence the
nature of the emitted SE spectrum as a result [14]. The model used to generate the previous
spectra uses the low-loss electron energy loss-spectrum of P3HT films measured at 300 keV in
the transmission electron microscope to calculate the nature of p-electron oscillations in real
P3HT films as an input parameter. However, the interaction of P3HT with a 700 eV electron
beam (as used in this study) and the 300 keV beam used to measure the p-plasmon proper-
ties is expected to differ. This is due to greater losses to surface plasmons and lower-energy
plasmon oscillations at lower energies. In order to explore this effect, we increased the inten-
sity of the p-plasmon oscillator in our model by up to 10 times and modelled the effect on the
resulting SE spectrum in Fig. 7.8. We find that the shape of the low-energy peak does show
a small reduction in the peak energy of this feature, although the shape of the spectrum does
not change dramatically. For the qualitative nature of this modelling comparison, we there-
fore find that the p-plasmon as observed at 300 keV is a reasonable input parameter to our
simulations.

Fig. 7.8 is also relevant for understanding how the presence of crystallinity in a material
may affect its SE spectrum. Indeed these results also suggest that crystalline P3HT phases with
a stronger p-electron structure would display a spectrum peak at lower energies. However,
this effect is relatively small in comparison to that of electron affinity, and as such we expect
that electron affinity remains the dominant effect.

7.4 Conclusions
In this work, we found that the shape of the SE spectrum of electrons emitted from P3HT sam-
ples in the SEM is dependent on the level of molecular ordering within the film. We demon-
strated that specific SE spectral features can be linked empirically to crystalline content in the
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FIGURE 7.8: Comparison between two calculated SE spectra of P3HT, obtained for two
different values of electron affinity [9].

film. By applying advanced Monte Carlo modelling techniques to simulate the shape of the
P3HT SE spectrum, we showed that these spectral features linked to crystallinity can be related
to the localised electronic properties of the film (themselves a function of localised molecular
ordering). We found that the electron affinity of the sample is a dominant factor determining
the shape of the spectrum. As electronic devices shrink to ever smaller sizes, considering these
nanoscale variations will be of increasing importance.

Bibliography
[1] R. Willis, B. Feuerbacher, B. Fitton, Experimental investigation of the band structure of

graphite, Physical Review B 4 (8) (1971) 2441.

[2] P. Kazemian, S. Mentink, C. Rodenburg, C. Humphreys, High resolution quantitative
two-dimensional dopant mapping using energy-filtered secondary electron imaging,
Journal of applied physics 100 (5) (2006) 054901.

[3] M. Dapor, Transport of Energetic Electrons in Solids, Vol. 257, Springer Tracts in Modern
Physics, 2017.

[4] L. Biniek, S. Pouget, D. Djurado, E. Gonthier, K. Tremel, N. Kayunkid, E. Zaborova,
N. Crespo-Monteiro, O. Boyron, N. Leclerc, et al., High-temperature rubbing: a versatile
method to align p-conjugated polymers without alignment substrate, Macromolecules
47 (12) (2014) 3871–3879.

[5] K. Kanai, T. Miyazaki, H. Suzuki, M. Inaba, Y. Ouchi, K. Seki, Effect of annealing on the
electronic structure of poly (3-hexylthiophene) thin film, Physical Chemistry Chemical
Physics 12 (1) (2010) 273–282.



BIBLIOGRAPHY 117

[6] U. Bielecka, P. Lutsyk, K. Janus, J. Sworakowski, W. Bartkowiak, Effect of solution aging
on morphology and electrical characteristics of regioregular p3ht fets fabricated by spin
coating and spray coating, Organic Electronics 12 (11) (2011) 1768–1776.

[7] C. Scharsich, R. H. Lohwasser, M. Sommer, U. Asawapirom, U. Scherf, M. Thelakkat,
D. Neher, A. Köhler, Control of aggregate formation in poly (3-hexylthiophene) by sol-
vent, molecular weight, and synthetic method, Journal of Polymer Science Part B: Poly-
mer Physics 50 (6) (2012) 442–453.

[8] B. Park, A. Aiyar, J.-i. Hong, E. Reichmanis, Electrical contact properties between the
accumulation layer and metal electrodes in ultrathin poly (3-hexylthiophene)(p3ht) field
effect transistors, ACS applied materials & interfaces 3 (5) (2011) 1574–1580.

[9] R. C. Masters, N. Stehling, K. Abrams, V. Kumar, M. Azzolini, N. M. Pugno, A. Dapor,
M.. Huber, P. Schäfer, D. G. . Lidzey, C. Rodenburg, Secondary electron energy spec-
troscopy in the scanning electron microscope: Origins and applications for a conjugated
polymer, Advanced Science (2019) 1801752.

[10] N. Mott, The scattering of fast electrons by atomic nuclei, Proc. R. Soc. London, Ser. A
124 (794) (1929) 425.

[11] F. Salvat, J. Martnez, R. Mayol, J. Parellada, Analytical Dirac-Hartree-Fock-Slater screen-
ing function for atoms (Z= 1–92), Physical Review A 36 (2) (1987) 467.

[12] J. Ganachaud, A. Mokrani, Theoretical study of the secondary electron emission of insu-
lating targets, Surf. Sci. 334 (1995) 329.

[13] M. Azzolini, T. Morresi, G. Garberoglio, L. Calliari, N. M. Pugno, S. Taioli, M. Da-
por, Monte carlo simulations of measured electron energy-loss spectra of diamond and
graphite: Role of dielectric-response models, Carbon 118 (2017) 299–309.

[14] M. Dapor, R. C. Masters, I. Ross, D. G. Lidzey, A. Pearson, I. Abril, R. Garcia-Molina,
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Chapter 8

Conclusions

In this thesis we presented different situations where the modeling and simulations were ap-
plied to deeply understand physical phenomena. In particular, the Monte Carlo method to
simulate electron transport was developed and tested on different samples. Molecular dynam-
ics simulations were performed to investigate the mechanical properties of 2D materials and
the dynamic evolution of the peeling of a layer.

First of all, carbon-based materials were taken into account. Different dielectric models
were tested in the modelling of electron transport in diamond and graphite[1]. Found out
that the proper description is the one assessed by means of ab initio methods, this was applied
to further develop the MC model. Indeed, the code was further improved to consider the
influence of the anisotropic structure of graphite on the electron transport [2].

By carrying out molecular dynamics simulations, mechanical properties of graphene and
adhesion energy between two layers of it were evaluated. Different simulations were per-
formed to investigate the peeling of a graphene layer from a bulk of graphite. The imple-
mentation of these computational tools allowed the determination of the optimal conditions to
achieve the peeling of the top layer without perturbing the substrate.

By considering as samples copper, silver and gold, the Monte Carlo method was also tested
and compared to another numerical method based on the solution of the Ambartsumian-
Chandrasekhar equations [3]. It was found that the method assures a remarkably good agree-
ment with experimental data also in the evaluation of secondary electrons yield as a function
of beam energy [4].

The modelling of electron transport in solid target was also applied in identifying the op-
timized conditions for the focused electron beam induced deposition (FEBID) technique in
the deposition of 2D and 3D nanostructures. The case study of W(CO)6 deposited on SiO2
substrate was investigated. Simulations with SiO2 as the target material were performed by
considering high energy beam. The calculated radial energy distributions of emitted electrons
represent input data for further irradiation driven molecular dynamics simulations. By the
combination of these two different computational tools, the understanding of the overall pro-
cess can be achieved.

Moreover, also in the field of organic electronic material, modelling and simulations can
bring their contribution. Indeed, Monte Carlo simulations had a key role in understanding the
influence of molecular ordering in the emission of secondary electrons in a sample composed
by poly(3-hexylthiophene) (P3HT). The model was further developed to include areas of the
sample surface with different electron affinities. This reflects the fact that differently ordered
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molecules show different electronic properties that can be modeled by different values of the
electron affinity [5]

In conclusion, we presented different cases of study in which computational tools substan-
tially contribute to the overall understanding of the phenomena. The comparison with the
experimental data and others simulated results were always performed in order to further de-
velop and validate the methods. The aim to construct stable and general codes to produce
predictive results remains the main focus. Following this path, the optimized conditions for
proper applications of several samples can be a priori determined, avoiding expensive trail
experiments.
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Appendix A

Elastic scattering cross section:
calculation by using the
analytical formulation of the
atomic potential

The atomic potential employed in Eq. 2.7 can be obatined by ab initio calculation or by using
an analytical formulation. The ab initio calculation provides the value of the potential for a set
of distances. In the case of the analytical formulation, the potential is computed for the desired
distance r by applying the correspondent formula. Here the formulation proposed by Salvat
et al. is considered [1, 2]. The analytical formula is expressed, in atomic units, as:

V(r) = �Z
r

y, (A.1)

In particular, it takes into account the atomic screening function y that stands for the effect of
the electron cloud. This screening function is expanded as:

y =
3

Â
i=1

Atab
i exp(�atab

i r), (A.2)

with the condition Atab
1 + Atab

2 + Atab
3 = 1. The values of these constants for different elements

are all reported in Ref. [1]. In order to use the obtained potential in the unit system of the
previous formulation for the calculation of the elastic scattering cross section, the constants
have to be scaled:

ai = atab
i

K
a0

,

Ai = Atab
i .

(A.3)
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where the factor is K = h/(2pmc), with h the Plank constant, m the electron mass and c the
speed of light It is worth noting that the radius r is expressed in unit of f actor, so to scale all
the quantities the formulation for the potential is consistent. These values are multiplied by r
that is expressed in unit of K. Therefore the potential is calculated with these corrections inside
the program:

V(r) =

"
�Z e2

r K

3

Â
i=1

Atab
i exp(�atab

i
K
a0

r)

#
1

mc2 . (A.4)

The differential cross section is given by the sum of square of the scattering amplitudes
(Eq. 2.9); these are given by the sum on the angular momentum of functions dependent on
the phase shift d±l . This is in turn dependent by the phases f±

l that are determined by solving
the Dirac equation (Eq. 2.7) at large distance from the scattering center. Therefore, within an
iterative cycle, that runs on the l-values, the values of f±

l were obtained integrating the Eq. (2.7)
with the 4-th order Runge Kutta methods. It requires initial conditions. They were founded
considering the series expansion of the potential at small distances r from the scattering center:

V(r) !r!0 �Z0 + Z1r + Z2r2 + Z3r3

r
, (A.5)

Comparing this with the Eq. (A.1) the coefficients can be computed as:

ai = atab
i

f actor
a0

,

Z0 =
Z e2

f actor mc2

3

Â
i=1

Ai =
Z e2

f actor mc2 ,

Z1 = �Z0

3

Â
i=1

Aiai,

Z2 =
Z0
2

3

Â
i=1

Aia
2
i ,

Z3 = �Z0
6

3

Â
i=1

Aia
3
i .

(A.6)

Then also phase functions can be expanded as:

f±
l = f±

l0 + f±
l1r + f±

l2r2 + f±
l3r3. (A.7)
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Replacing these expansions in Eq. (2.7), and considering the expansion up to the second order,
the coefficients of the phase can be computed as:

f±
l0 = sin�1

✓
�Z0

k

◆
,

f±
l1 =

W + Z1 � cos(2f±
l0)

1 � 2k±cos(2f±
l0)

,

f±
l2 =

2f±
l1 sin(2f±

l0)(1 � k±f±
l1 + Z2)

2 � 2k± cos(2f±
l0)

,

f±
l3 =

2f±
l2 sin(2f±

l0 (1 � 2k±f±
l1 + 2f±2

l1 cos(2f±
l0)(1 � 2/3k±f±

l1)

3 � 2k± cos(2f±
l0)

.

(A.8)

Thus the initial value of the phase function can be computed. In order to obtain the phase
functions at large distances from the scattering centre, the initial condition is integrated by
using Eq. (2.7) with the Runge Kutta method formulated as:

f(r + dr) = f(r) +
dr
6

(h0 + 2h1 + 2h2 + h3), (A.9)

with:

h0 =
k
r

sin[2fl(r)] � cos[2fl(r)] + W � V(r),
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k
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2
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2
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2
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dr
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k

r + dr
sin[2(fl(r) + h2 dr)] � cos[2(fl(r) + h2 dr)] + W � V(r + dr).

(A.10)

The phase shift d±l can be evaluated using Eq.(2.8), for each value of l. Then the value of
the scattering amplitudes is calculated using Eqs. (2.10) and (2.11) . Finally the value of the
differential elastic scattering cross section is computed [Eq. (2.9)] [3].
In order to obtain the total cross section, the differential cross section is integrated:

sel =
Z ds

dW
dW = 2p

pZ

0

ds

dW
sin(q)dq. (A.11)

A C++ code was developed to calculate differential and total elastic cross section by ap-
plying the illustrated procedure. The results obtained, for the different investigated materials,
were compared to the results obtained with the ELSEPA code [4] obtaining a good agreement
in particular for energy greater than 100 eV. Our developed code allows to calculate elastic
cross sections for low electron kinetic energy, below the limit of the ELSEPA code set at 50 eV.
The knowledge of these features at lower energy results to be important in the simulation of
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the secondary electrons generations, in the calculation of secondary electron emission spectra
and secondary electron yield. High energy calculations of elastic cross sections are sufficient
for the simulation of reflection electron energy loss spectra , since in this phenomenon electrons
with kinetic energy higher than 50 eV are involved. Indeed, for the simulation of REEL spectra
of metals (see Chapter 4.1.1) the ELSEPA code was employed in the calculation of input data.
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The aim of this thesis is the study of electronic transport and mechanical properties of 
materials using computer simulations. In particular, we dealt with the charge transport in 
semiconductor and metallic samples and with the peeling of a graphene layer from bulk 
graphite. The computational methods used to investigate the samples are (i) the Monte 
Carlo (MC) statistical method to simulate the transport of electrons in solids and (ii) the 
molecular dynamic (MD) approach to study the mechanical characteristics.
A relevant part of this thesis is focused on carbon-based material, such as diamond and 
graphite, and the stable two-dimensional allotrope, graphene. The response of diamond 
and graphite to external electromagnetic perturbations was investigated by calculating 
reflection electron energy loss (REEL) spectra with MC simulations. An extension to 
these models to describe the anisotropic response of graphite to an external 
electromagnetic perturbation was developed and included in the MC approach. Owing to 
the central role of carbon for future electronic and technological applications, also its 
mechanical properties were investigated by means of MD simulations. In particular, the 
peeling process of a layer of graphene from a bulk of graphite was investigated. This 
process is exploitable for graphene production and for adhesive applications of this 
material. Moreover, the MC approach was tested and compared to other computational 
techniques based on the solution of the Ambartsumian-Chandrasekhar equations. This 
consistency test was realized by considering three metals (copper, silver and gold) as 
target materials. Further studies were carried out on these materials by calculating 
secondary electron emission yields as a function of the electron beam energy.  
Finally the MC approach was also used to investigate electron transport in SiO2 and in 
an organic polymer (P3HT). In this latter case, these studies allow a deeper knowledge 
of the influence of the molecular ordering in the secondary electron emission.  
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