HYBRID FAULT DETECTION USING KALMAN FILTER AND NEURAL NETWORK FOR QUADROTOR MICRO AERIAL VEHICLE

CHAN SHI JING

Master of Science

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supe	rvisor	's Signature)
Full Name	:	DR. DWI PEBRIANTI
Position	:	SENIOR LECTURER
Date	:	

(Co-supervisor's Signature)		
Full Name	:	DR. MOHAMMAD FADHIL BIN ABAS
Position	:	SENIOR LECTURER
Date	:	

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at University Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : CHAN SHI JING ID Number : MEL15004 Date :

HYBRID FAULT DETECTION USING KALMAN FILTER AND NEURAL NETWORK FOR QUADROTOR MICRO AERIAL VEHICLE

CHAN SHI JING

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Electrical & Electronics Engineering UNIVERSITI MALAYSIA PAHANG

JULY 2018

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation and sincere gratitude to my supervisor, Dr Dwi Pebrianti. Her supervision and support throughout my Master has truly helped the progression and completion of my research. She has given me much help in particular her detailed guidance and constructive criticism as well as positive advice during my presentation for the research project. Without her guidance and persistent help, this project would not have been possible.

Secondly, I would like to thank my parents and family, for they have given me their full support when I am doing my Master of research project on the hybrid fault detection and isolation in quadrotor system.

Finally, I would like to express my sincere appreciation to all the Lecturers in the Electrical Engineering Department, UMP, who has helped me in many ways. Furthermore, I would also like to give an honourable mention to the Ministry of Higher Education Malaysia (MOE) for their technical support and funding under the Fundamental Research Grant Scheme, FRGS RDU140137 and University Malaysia Pahang Research Grant RDU 170378. MOE has indeed contributed a lot of inspiration and supports for my research project.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	STRAK	iii
ABS	TRACT	iv
TAB	BLE OF CONTENT	v
LIST	Г OF TABLES	viii
LIST	Γ OF FIGURES	ix
LIST	Γ OF SYMBOLS	xii
LIST	Γ OF ABBREVIATIONS	xiii
CHA	APTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objectives	5
1.4	Scope and Limitations	6
1.5	Thesis Outline	6
CHA	APTER 2 LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Review on UAV/MAV system & control	10
2.3	General on FD System	13
	2.3.1 AI-based FD	14
	2.3.2 Model-based FD	18

	2.3.3 Hybrid FD	24
2.4	FD in Quadrotor	25
2.5	Summary	27
CHA	PTER 3 METHODOLOGY	28
3.1	Introduction	28
3.2	Quadrotor system configuration & coordination	28
3.3	Kinematics model of quadrotor system	31
3.4	Dynamic model of quadrotor system	34
3.5	PD controller of design in quadrotor system	36
	3.5.1 Inner Loop Controller	37
	3.5.2 Outer Loop Controller	38
3.6	Kalman Filter and Fault Signature	41
3.7	Linearization of nonlinear quadrotor system	42
3.8	Residual Generation	46
3.9	Residual Classification using Artificial Neural Network (ANN)	47
	3.9.1 Learning Phase	48
	3.9.2 Neural Network Implementation	50
3.10	Fault type and condition	51
3.11	Summary	55
CHA	PTER 4 RESULTS AND DISCUSSION	56
4.1	Introduction	56
4.2	Simulation procedure	56
4.3	Fault free condition	59
4.4	GPS sensor fault	60

4.5	GYRO sensor fault	68
4.6	Actuator fault in quadrotor model	79
4.7	Multiple faults detection	84
4.8	Chapter conclusion	88
CHAP	TER 5 CONCLUSION	89
5.1	Conclusion	89
5.2	Future Research	90
REFERENCES 91		91
LIST OF PUBLICATION BY AUTHOR 96		96
APPE	NDIX A ADDITIONAL FINDING	97

LIST OF TABLES

Table 3.1	Detail of Quadrotor constant	32
Table 3.2	Main physical effects acting on a helicopter	34
Table 3.3	Parameter of the inner loop controller	38
Table 3.4	Parameter of the outer loop controller	40
Table 3.5	List of input	51
Table 3.6	List of output	51

LIST OF FIGURES

Figure 1.1	Illustration of restrictive real-life quadrotor operation	4
Figure 2.1	General classification of aircraft	11
Figure 2.2	Neural model reference control architecture Neural Network	16
Figure 2.3	Type of Learning dynamic network model	16
Figure 2.4	Process Flow of Dedicated Observer Scheme (DOS)	20
Figure 2.5	Family chart of fault detection, isolation, and recovery	26
Figure 2.6	Fault detection chart	26
Figure 3.1	Local and global coodinate system of quadrotor system	29
Figure 3.2	The direction of propeller's rotation	29
Figure 3.3	The positive turning of roll (\emptyset) in local coordinate	30
Figure 3.4	The positive turning of pitch (θ) in local coordinate	30
Figure 3.5	The positive turning of yaw (ψ) in local coordinate	30
Figure 3.6	Four control inputs generator by using the rotor speed quadrotor	33
Figure 3.7	The quadrotor dynamics and coordinate system.	35
Figure 3.8	Two stages PD controller in the quadrotor control archetecture	37
Figure 3.9	Shows the control scheme of the system.	40
Figure 3.10	Kalman filter in system dynamic.	41
Figure 3.11	Kalman Filter in connected in pallarelly to the quadrotor model	46
Figure 3.12	The ANN model.	48
Figure 3.13	Neural Network Diagram	49
Figure 3.14	Decision making by using the ANN model	50
Figure 3.15	An abrupt fault in Time-dependency	52
Figure 3.16	The incipient fault signal in drifting form	53
Figure 3.17	Intermittent fault type format	54
Figure 3.18	The fault injection in speed of rotation and sensor.	54
Figure 4.1	Flow of simulation procedure	57
Figure 4.2	Simulation on fault free condition (a) x position, (b) y position, (c) z position	60
Figure 4.3	The random fault signal on x position	61
Figure 4.4	The desired and the measured signal (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	62
Figure 4.5	The measured state conditiona signal and noise state condition signal on x position fault (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	64

Figure 4.6	The estimation signal and measured signal of quadrotor in fly mode. (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	65
Figure 4.7	Result of the residual generated signal	66
Figure 4.8	Result of the x fault situation from Kalman-ANN decision signal.	67
Figure 4.9	The random fault signal on Roll sensor	68
Figure 4.10	Measured signal and the desire signal during the flying mode the measured roll and desired roll, (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	69
Figure 4.11	The noise state condition are generated by using random signal (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	70
Figure 4.12	The estimated state condition signal and measure state condition signals (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	72
Figure 4.13	(a) The residual pattern of a Roll sensor fault (b) result of Kalman- ANN of a Roll sensor fault.	73
Figure 4.14	3D Flying map of quadrotor	74
Figure 4.15	Flying map of quadrotor (a) Top view, (b) Front view, and (c) Side view	75
Figure 4.16	The noise state condition of quadrotor system (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	76
Figure 4.17	The measure and estimated state condition is recoded when the Roll sensor fault signal is activated. (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	77
Figure 4.18	The Fault Severity Process	78
Figure 4.19	The Fault estimater from ANN subsystem. (a) residual signal, (b) Kalman-ANN output signal.	78
Figure 4.20	The incipient Rotor 1 fault to the situation of real fly failure in quarotor system.	79
Figure 4.21	Measure state condition signal and the Desire state condition signal during the flying mode (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	80
Figure 4.22	The measure state condition signal and the noise state condition signal. (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	81
Figure 4.23	Estimated signal and the measured signal when a actuator fault is injected (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	83
Figure 4.24	The actuator fault is identified by the Kalman-ANN at the 6.900 s. (a) the residual signal, (b) Kalman-ANN decision signal.	84

Figure 4.25	The measured state condition signal and noise state condition signal(a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	85
Figure 4.26	The measured state condition and estimate state condition in Multiple fault (a) Roll (ϕ), (b) Pitch (θ), (c) Yaw (Ψ), (d) Position x, (e) Position y and (f) Position z	86
Figure 4.27	(a) the residual generated signal, (b) the Kalman-ANN decision signal result.	87

LIST OF SYMBOLS

ϕ	Roll
θ	Pitch
Ψ	Yaw
x	Location in x axis
у	Location in y axis
Ζ	Location in z axis
\dot{q}_i	Generalized coordinate
Γ_i	Generalized force
V	Velocity
t	Time in second
Ω	Omega
τ	Torque
I_{xx}	Quadrotor moment of inertia around X axis
I _{yy}	Quadrotor moment of inertia around Y axis
Izz	Quadrotor moment of inertia around Z axis
Jr	Total rotational moment of inertia around the propeller axis
b	Thrust factor
d	Drag factor
l	Distance to the center of the Quadrotor
т	Mass of the Quadrotor in Kg
g	Gravitational acceleration
С	Cosine
S	Sine
и	Control output
Re	Residual
Loc	Location

LIST OF ABBREVIATIONS

ANN	Artificial Neural Network
В	Body fixed frame
BP	Back-propagation
CoG	Centre of gravity
DC	Direct current
DES	Discrete-event system
DOF	Degree of Freedom
E	Earth fixed frame
FD	Fault diagnose
FDI	Fault Detection and Isolation
FDIR	Fault diagnosis, isolation, and recovery
KF	Kalman Filter
LOE	Loss of effectiveness
LQE	Linear quadratic estimation
NUVs	Network of unmanned vehicle
PD	Proportional–Derivative
PID	Proportional–Integral–Derivative
PWM	Pulse Weight Modules
TSKF	Two-Stage Kalman Filter
UAVs	Unmanned aerial vehicles