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ABSTRACT 

Recent in vitro and in vivo studies highlight the strong potential of dimethyl trisulfide (DMTS) as an 

antidote for cyanide (CN) intoxication. Due to its high oxygen demand, the brain is one of the main 

target organs of CN. The blood-brain barrier (BBB) regulates the uptake of molecules into the brain. In 

the literature, there is no data about the ability of DMTS to penetrate the BBB. Therefore, our aim was 

to test the in vitro BBB penetration of DMTS and its in vivo pharmacokinetics in blood and brain. The 

in vitro BBB penetration of DMTS was measured by using a parallel artificial membrane permeability 

assay (BBB-PAMPA), and a triple BBB co-culture model. The pharmacokinetics was investigated in a 

mouse model by following the DMTS concentration in blood and brain at regular time intervals 

following intramuscular administration. DMTS showed high penetrability in both in vitro systems 

(apparent permeability coefficients: BBB-PAMPA 11.8 × 10-6 cm/s; cell culture 158 × 10-6 cm/s) without 

causing cell toxicity and leaving the cellular barrier intact. DMTS immediately absorbed into the blood 

after the intramuscular injection (5 min), and rapidly penetrated the brain of mice (10 min). In addition 

to the observed passive diffusion in the in vitro studies, the contribution of facilitated and/or active 

transport to the measured high permeability of DMTS in the pharmacokinetic studies can be 

hypothesized. Earlier investigations demonstrating the antidotal efficacy of DMTS against CN together 

with the present results highlight the promise of DMTS as a brain-protective CN antidote.  
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INTRODUCTION 

Cyanide (CN) is employed in industrial processes such as electroplating, and gold mining; released in 

the smoke of fires; being especially problematic when materials with high nitrogen content are burned; 

and naturally synthesized in certain plants such as cassava, and bitter almond. Inhalation or ingestion of 

CN causes severe intoxication. CN binds to and inhibits the cytochrome c oxidase, a member of the 

mitochondrial electron transport chain, thereby suppressing oxygen utilization and the aerobic ATP 

production (Vogel et al., 1981, Way et al., 1988). CN intoxication is followed by lactic acidosis (Baud 

et al., 2002) in anaerobic conditions. The organs most susceptible to CN poisoning are the brain and the 

heart, which use high amounts of ATP. Although intracellular enzymes, such as rhodanese (EC 2.8.1.1) 

or 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) convert CN to the less toxic thiocyanate, the 

efficacy of these enzymes are limited (Wrobel et al., 2004). The brain contains only small amounts of 

rhodanese and 3-mercaptopyruvate sulfurtransferase (Aminlari et al., 2002; Eskandarzade et al., 2012; 

Shahbazkia et al., 2009; Nagahara et al., 1999), therefore it is desirable that antidotes against CN rapidly 

reach the brain. Acute CN intoxication can be treated by available antidotes (Petrikovics et al., 2015) 

such as Nithiodote® (comprised of a combination of sodium thiosulfate and sodium nitrite) (Scottsdale, 

2011) and Cyanokit® (hydroxocobalamin) (Borron et al., 2006; Zakharov et al., 2015), but each of these 

have their own limitations of requirement of intravenous administration that limits their application in 

mass scenarios (Maraffa et al., 2012). Additional limitation with Cyanokit is that it requires high 

injection volume >200 ml. The major limitation of sodium nitrite is the formation of excess amount of 

methemoglobin in certain individuals even at the recommended doses and causing methemoglobinemia 

(Klimmek et al., 1988). The antidotal activity of sodium thiosulfate has limitations due to its small 

volume of distribution, short biological half-life and high rhodanese dependence (Schulz, 1984; Way, 

1988). 

The novel CN countermeasure dimethyl trisulfide (DMTS) showed remarkable anti-CN effects in 

vitro and in vivo (Rockwood et al., 2016; Kovacs et al., 2016a; Kovacs et al., 2016b). Comparing the 

sulfur donor efficacy of DMTS to sodium thiosulfate, the sulfur donor component of Nithiodote®, DMTS 

was three times more effective than thiosulfate in vivo. It also converts CN to thiocyanate 40 times faster 

than thiosulfate in vitro (Rockwood et al., 2016). These results indicate that DMTS is a promising agent 

against CN intoxication. As a highly lipophilic molecule, DMTS has low solubility in water and thus 

requires special formulation technology to obtain concentrations that are suitable for intramuscular 

administration. Such formulations have the potential for use in self-administration kits for mass casualty 

scenarios. A lipid based formulation was developed, when DMTS was encapsulated into micelles and 
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tested in vitro and in vivo, but the encapsulation efficacy of the product was not satisfying (Kovacs et 

al., 2016a). Various co-solvents and surfactants were tested for DMTS formulation (Kovacs et al., 

2016b). Polysorbate 80 (Poly80) at 15 % (w/v) and 20 % (w/v) resulted the best solubilizing properties 

for DMTS and was further tested in vivo in mice (Kovacs et al., 2016b). The 15 % (w/v) Poly80 

formulated DMTS provided over 3 times LD50 (Lethal Dose, 50%) protection at the DMTS dose of 

100 mg/kg when the LD50 values were determined by the up-and-down method (Bruce, 1985). The 

antidotal protection was expressed as antidotal potency ratio (LD50 of CN with the antidote divided by 

the LD50 of CN without antidote (control)). Based on the works of Clark et al. (2003) and Lipinski et 

al. (2001) DMTS is expected to passively penetrate through the cellular membranes, because it is a 

highly lipophilic compound with a high logP value of 2.93 (predicted value: 

http://www.chemspider.com/Chemical-Structure.18219.html), it has small molecular weight (126.26 

g/mol) and 76 Å polar surface area (predicted value: http://www.chemspider.com/Chemical-

Structure.18219.html). Due to the brain is one of the most susceptible organ (as mentioned earlier) during 

CN intoxication, a potential CN antidote needs to cross the blood-brain barrier (BBB) and efficiently 

reach the brain. In case of the BBB the drug penetration is hindered not only by cellular membranes or 

tight junctions (in the paracellular space), but cells forming the BBB actively protect the brain against 

drugs and toxins by expressing efflux pumps and by their high metabolic activity. To the best of our 

knowledge there is no data in the literature about the permeability of the BBB to DMTS. 

In this study, our aim was to test the BBB permeability and in vivo pharmacokinetics of DMTS in 

blood and brain. For permeability tests, two in vitro models of BBB were applied: 1) parallel artificial 

membrane permeability assay (PAMPA) and 2) brain endothelial cells co-cultured with pericytes and 

astrocytes. The effects of DMTS on cellular viability and on tight junctions were investigated. 

Furthermore, the pharmacokinetic profile in blood and brain for DMTS was determined on a mice model. 

 

MATERIALS AND METHODS  

Chemicals 

All chemicals were of the highest purity commercially available. HPLC grade from J.T. Baker (Center 

Valley, PA, USA), HPLC grade acetonitrile and ethanol from Acros (Thermo Fisher Scientific, Geel, 

Belgium), Poly80 from Alfa Aesar (Ward Hill, MA, USA), DMTS, dimethyl disulfide (DMDS), sodium 

heparin from Sigma-Aldrich (SAFC, St Louis, MO, USA) and dibutyl disulfide (DBDS) from TCI 

America (Portland, OR, USA) were purchased. Hamilton gas tight luer-lock syringes (100 µL), micro 
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centrifuge tubes (1.7 mL), screw cap vials (2 mL and 5 mL) and needles (27G × ½) from VWR 

International (Radnor, PA, USA) and inserts (250 µL) with polymer feet were purchased from Agilent 

Technologies (Santa Clara, CA, USA). A 10 U/ml heparin solution was prepared by diluting a 10000 

U/mL heparin stock solution with 0.9 % (w/v) saline solution. Aqueous Poly80 solutions were used at 5 

and 15 % (w/v) concentrations. The DMTS stock solution (50 mg/ml) used for the in vivo studies was 

made by dissolving DMTS in 15 % (w/v) Poly80, and another DMTS stock solution (10 mg/ml) used 

for the BBB-PAMPA and the cell culture was prepared in 5 % (w/v) Poly80. Acetonitrile was used to 

prepare the 0.1 mg/ml DMDS solution, and ethanol for the 1 mg/ml DBDS solution. A twenty millimolar 

verapamil stock solution was prepared in DMSO (Sigma Aldrich). Ringer-HEPES (R-H) buffer was 

prepared by dissolving the components in distilled water resulting in the final concentrations of 150 mM 

for NaCl, 2.2 mM for CaCl2, 0.2 mM for MgCl2, 5.2 mM for KCl, 5 mM for HEPES, 6 mM for NaHCO3, 

3.3 mM for glucose. Poly80 (0.05 % (w/v)) in Prisma HT and Ringer-HEPES buffer was used in the 

BBB-PAMPA experiment and for the cell culture studies, respectively. 

Testing DMTS Permeability in the BBB-PAMPA System 

BBB-PAMPA system was applied to model the passive permeability properties of BBB and to in vitro 

test the diffusion of DMTS through BBB (Di et al., 2003). Prisma HT buffer was used as a solvent in 

the donor compartment in the BBB-PAMPA. According to the manufacturer’s instruction 6.25 ml of 

Prisma HT concentrate (PN 110151, pION, Billerica, MA, USA) was filled up with HPLC purity water 

to 250 ml and the pH was set to 7.4 by 0.5 M NaOH. The stock solution of 10 mg/ml DMTS in 5 % 

(w/v) Poly80 was diluted with Prisma HT buffer 100 times to get the working solution of 0.1 mg/ml 

DMTS in 0.05 % (w/v) Poly80. Verapamil (pION) was used as a control for the BBB-PAMPA 

experiments. The permeability profile of verapamil is known from the literature (Mensch et al., 2010). 

To test and exclude the effect of Poly80 on DMTS permeability, verapamil was used with and without 

Poly80. Two verapamil solutions with a concentration of 200 µM were prepared in Prisma HT buffer, 

one with 0.05 % (w/v) Poly80 and one without Poly80. Brain Sink Buffer (PN110674, pION) with or 

without 0.05 % (w/v) Poly80 was used in the acceptor compartment. The arrangement of the solutions 

in the donor and acceptor phases are shown in Table 1.  

Before loading the solutions into the PAMPA plates, the concentrations of DMTS and verapamil 

were analyzed by HPLC or UV spectrophotometer, respectively. The bottom 96-well microplates 

(PN120551, pION) with magnetic discs served as the donor compartment for the BBB-PAMPA 

permeability experiments. The wells of the plates were filled with 180 µl of 0.1 mg/ml DMTS in 0.05 % 
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(w/v) Poly80, 200 µM verapamil with or without 0.05 % (w/v) Poly80 (Table 1). The BBB-PAMPA 

membranes on the acceptor plate (pION) were impregnated with 5 µl of BBB lipid cocktail (pION, PN 

110672). The donor and acceptor plates were carefully mounted (PAMPA sandwich) to prevent any 

bubble formation between the compartments. The acceptor wells were filled with 200 µl Brain Sink 

Buffer with or without 0.05 % (w/v) Poly80 (Table 1). The mounted plates were placed on the PAMPA 

plate stirrer (Gut-Box, pION) and the donor phase was stirred with 40 µm Aqueous Boundary Layer. 

The DMTS samples from the acceptor phase were collected at 30 and 60 min. The DMTS and verapamil 

samples were collected from the donor and acceptor phases after 90-min incubation (Table 1). HPLC-

UV was used for analyzing the DMTS samples and UV spectrophotometer for the verapamil samples. 

For each treatment group 5-10 replicates were measured. The clearance volume was calculated for 

DMTS at 30, 60, 90 min and the apparent permeability was derived from the line fit to the data of 

clearance (see in Supplementary Information) (Kiss et al., 2014). For verapamil the apparent 

permeability was calculated as described previously (Kiss et al., 2014, see in Supplementary 

Information).  

Cell Culture Conditions – BBB Model Construction 

Primary cultures of rat brain endothelial cells, glia and pericytes were used in the construction of the in 

vitro blood-brain barrier (BBB) model as described previously (Nakagawa et al., 2009; Veszelka et al., 

2013). Endothelial cells and pericytes were isolated from 3-weeks old Wistar rats, while mixed glial 

cultures (containing 90 % astrocytes) from neonatal Wistar rats. The detailed isolation procedure was 

published by Nakagawa et al. (2009). For the cell culture studies, all reagents were purchased from 

Sigma-Aldrich Kft., Hungary, unless otherwise indicated. Brain endothelial cells were cultured in 

DMEM F-12 (Gibco, Life Technologies, Carlsbad, CA, USA) supplemented with 15 % plasma-derived 

bovine serum (First Link, UK), 100 µg/ml heparin, 5 µg/ml insulin, 5 µg/ml transferrin, 5 ng/ml sodium 

selenite, 1 ng/ml basic fibroblast growth factor (Roche, Switzerland) and 50 µg/ml gentamycin. For the 

establishment of the BBB model, brain microvascular pericytes were passaged to the bottom side of 12-

well tissue culture inserts (Transwell, polycarbonate membrane, 0.4 µm pore size, Corning Costar, USA) 

coated with collagen IV at a density of 1.5 × 104 cells/cm2. After attachment of the pericytes, brain 

endothelial cells (8 × 104 cells/cm2) were seeded to the upper side of the fibronectin and collagen IV 

coated membranes. Primary cultures of rat glial cells were passaged to the bottom of 12-well dishes 

(Corning, Costar, New York, NY) coated with 100  mg/mL collagen type IV in sterile distilled water 

and cultured for 2 weeks before using for the triple co-culture model. Pericytes and glial cells were 

cultured in DMEM/HAM's F-12 supplemented with 10 % fetal bovine serum (Pan-Biotech GmbH) and 
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50 µg/mL gentamycin. To construct the in vitro BBB co-culture model Transwell culture inserts were 

placed into 12-well plates containing glial cells with endothelial culture medium in both compartments. 

After two days of co-culture leading to the formation of a confluent monolayer of brain endothelial cells, 

550 nM hydrocortisone was added to the culture medium to tighten junctions (Deli et al. 2005; Walter 

et al., 2015).  

Cellular Viability - MTT Dye Conversion Assay 

For the cell viability assay, the isolated rat brain primary endothelial cells were seeded to 96-well 

plates at a density of 6 × 103 cells/well and cultured for 3-5 days until confluency (Kiss et al., 2013). To 

test the dose-dependent toxicity of DMTS the monolayers were treated with DMTS solution in the 

concentration range of 1-300 µg/ml in 0.05 % (w/v) Poly80 and phenol red free DMEM (Life 

Technologies, Gibco, Carlsbad, CA, USA) for 10 min. Cells which received only culture medium served 

as a negative control group (100 % viability), while cells treated with 1 mg/ml Triton X-100 detergent 

served as a positive control (100 % toxicity). The viability of cells treated with DMTS was compared to 

these positive and negative controls. After the 10-min incubation time the DMTS containing treatment 

medium was removed, the cells were washed with phosphate buffer saline (PBS) and 0.5 mg/ml 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) containing fresh medium was added to 

the culture and kept for 3 h in a CO2 incubator. The conversion rate of the yellow MTT dye to the purple 

formazan reflects the metabolic activity of the cells. The formazan crystals were dissolved in DMSO and 

the amount of the converted dye was determined by measuring absorbance at 595 nm in a microplate 

reader (Fluostar Optima, BMG Labtechnologies, Ortenberg, Germany). The cell metabolic activity 

(viability) was calculated as a percentage of the dye conversion by the non-treated cells.  

Integrity of the Paracellular Barrier  

Transendothelial electrical resistance (TEER) were used to determine the tightness of the intercellular 

junctions in the BBB model (Deli et al. 2005). TEER measurements were made by an EVOM Volt/Ohm 

Meter (World Precision Instruments, USA) combined with STX-2 electrodes and expressed relative to 

the surface area of the monolayers (Ω × cm2). The resistance of cell-free inserts (130 Ω × cm2) was 

subtracted from the measured values. The BBB model showed a TEER value of 386 ± 67 Ω × cm2 

indicating tight barrier properties necessary for the permeability assay. 



 
8 

Permeability Experiments on the BBB Culture Model 

For permeability studies in cell culture 0.1 mg/ml working concentration of DMTS was selected, which 

was approximately 100 times higher concentration than the detection limit in Ringer-HEPES buffer (1.4 

µg/ml) and was still non-toxic to the cells. In contrast to a PAMPA system, in the culture BBB model 

the membrane of the inserts is thin (10 µm) and highly permeable, therefore log phase is negligible for 

a lipophilic compound, like DMTS. A short time period, 10-min for the measurement of Papp in culture 

condition was selected based on these characteristics and to limit any potential effect of cellular 

metabolism of DMTS. Inserts were transferred to 12-well plates containing 1.5 ml Ringer-HEPES buffer 

in the acceptor (abluminal) compartments. Culture medium was replaced in the donor (luminal) 

compartment for freshly prepared 0.1 mg/ml DMTS solution containing 0.05 % (w/v) Poly80. After a 

10-min incubation on a horizontal shaker, solutions from both compartments were collected and prepared 

for HPLC measurement. DMTS concentrations from the luminal and abluminal compartments were 

determined by HPLC-UV. After the penetration assay the integrity of brain endothelial barrier was 

verified by the permeability of the permeability marker molecule fluorescein (Mw: 376 Da; 10 µg/ml 

final concentration in Ringer-Hepes buffer). The assay with fluorescein was 15 min long. Concentrations 

of fluorescein in samples were determined by a fluorescence microplate reader (Fluostar Optima, BMG 

Labtechnologies, Germany; excitation wavelength: 485 nm, emission wavelength: 535 nm). The 

apparent permeability coefficients (Papp) for DMTS and fluorescein and transfer and recovery (mass 

balance) of DMTS were calculated as described in previous papers (Kürti et al., 2012; Kiss et al., 2014; 

Hellinger et al., 2012). 

Immunohistochemistry 

Morphological changes in brain endothelial monolayers were followed by immunostaining for junctional 

proteins claudin-5, zonula occludens protein-1 (ZO-1), and β-catenin. After the transport studies, inserts 

were washed with PBS and the cells were fixed with 3 % paraformaldehyde solution for 30 min at room 

temperature and incubated in 0.2 % TX-100 solution for permeabilization. Non-specific binding sites 

were blocked with 3 % bovine serum albumin in PBS. Cells were incubated with primary antibodies 

rabbit anti-ZO-1, rabbit anti-β-catenin and mouse anti-claudin-5 (Life Technologies, Carlsbad, CA, 

USA) overnight. Incubation with Alexa Fluor-488-labeled anti-mouse and anti-rabbit secondary 

antibodies (Life Technologies, Invitrogen, USA) lasted for 1 hour. Nuclei of the living cells were stained 

with ethidium homodimer-1 and Hoechst dye 33342 for 5 min before fixation. After mounting the 
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samples (Fluoromount-G; Southern Biotech, Birmingham, USA) staining was visualized by a Leica TCS 

SP5 confocal laser scanning microscope (Leica Microsystems GmbH, Wetzlar, Germany). 

Animals 

Animal studies were conducted using CD-1 male mice (18 – 28 g; Charles River Breeding 

Laboratories, Inc., Wilmington, MA). Animal procedures were conducted in accordance with the 

guidelines by The Guide for the Care and Use of Laboratory Animals (National Academic Press, 2010), 

accredited by AAALAC (American Association for the Assessment and Accreditation of Laboratory 

Animal Care, International). The mice were fed with 4 % Rodent Chow (Teklad HSD, Inc., Madison, 

WI) and water ad libitum, and were housed at 21°C in light-controlled rooms (12-h light/dark, full-

spectrum lighting cycle with no twilight). At the termination of the experiments animals were euthanized 

in accordance with the AVMA Guidelines for the Euthanasia of Animals: 2013 Edition (AVMA 

Guidelines). The Institutional Animal Care and Use Committee (IACUC) permission number is 15-09-

14-1015-3-01. 

Pharmacokinetics of DMTS in Mouse Blood and Brain 

For the absorption kinetics experiment, the DMTS concentration in blood and brain was measured 

from samples taken 0, 5, 10, 20, 60 and 120 min after intramuscular injection. DMTS stock solution at 

50 mg/ml concentration was prepared by dissolving DMTS in 15 % (w/v) Poly80 solution (Petrikovics 

and Kovacs, 2016). A 200 mg/kg DMTS dose was applied by injecting the DMTS stock solution 

intramuscularly. The injection volume (approximately 90 - 110 µl) was halved and both rear legs were 

injected. For the control mouse, the 15 % (w/v) Poly80 solution without DMTS was injected. The mice 

were anesthetized by inhalation of isoflurane before the blood and the brain samples were taken. Right 

after anesthesia blood samples were collected from the heart into heparinized tubes. The rest of the blood 

was washed out from the circulation by performing cardiac perfusion with approximately 8 ml 

physiological saline containing 10 U/ml heparin under the deep terminal anesthesia. The brain was 

quickly removed from the skull and divided into two parts. The measurement of the DMTS 

concentrations in the blood and brain samples was initiated immediately following collection to 

minimize the effect of any post collection reactions of DMTS with the sample (Kiss et al. 2017). The 

volume of distribution and the tissue partitioning coefficient (Kp brain:blood) for DMTS were calculated 

(see in Supplementary Information). 
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Preparation of DMTS Samples for HPLC Analysis 

DMTS Samples Originated from the BBB-PAMPA Measurements 

The DMTS concentrations from the Ringer-HEPES solutions in the BBB-PAMPA system were 

determined by HPLC-UV. A 60 µl aliquot of internal standard solution (0.05 mg/ml DMDS in 

acetonitrile) was transferred to 250 µl glass inserts within the HPLC glass vials (Agilent Technologies), 

and 40 µl of the BBB-PAMPA DMTS samples were added to each insert. The vials were hand-vortexed 

for 10 s, followed by auto-vortexing for 5 min at room temperature, and loaded into the HPLC instrument 

for measurement. 

DMTS Samples Collected from the Cell Culture Measurements  

A 300 µl aliquot of internal standard solution (0.05 mg/ml DMDS in acetonitrile) was mixed with 

200 µl of the DMTS containing samples. The solutions were hand-vortexed for 10 s, auto-vortexed for 

5 min at room temperature, and centrifuged for 5 min at 4°C with 14000 RCF. The supernatant (150µl) 

was transferred to 250 µl glass inserts in the HPLC glass vials, and loaded into HPLC instrument for 

measurement. 

Blood Samples Containing DMTS Collected from Animals 

The method developed for DMTS detection from blood was applied in this study (Kiss et al., 2017). 

Briefly, immediately after collection of the DMTS-exposed blood (80 µl), 200 µl of the internal standard 

(0.1 mg/ml DMDS) in ice cold acetonitrile was added. Then the micro-centrifuge tubes with the solutions 

were hand-vortexed for 10 s, auto-vortexed for 10 min at room temperature, and centrifuged for 5 min 

at 4°C, and 14000 RCF. The supernatants (80µl) were transferred to 250 µl glass inserts in the HPLC 

glass vials, and loaded into HPLC instrument for measurement. 

DMTS Analysis by HPLC-UV  

A Dionex Ultimate 3000 (Thermo Scientific, Waltham, MA, USA) HPLC-UV instrument was used 

in the analysis (Kiss et al., 2017). Forty microliters of DMTS containing samples were injected onto a 

guard column connected to a 250 × 4.60 mm non-polar C-8 analytical column having a Phenomenex 

Luna stationary phase (consisting of bonded octane units coated on silica support particles, pore size of 

100Å, outer diameter of 5 µm). Isocratic elution was employed. A 35 : 65 v/v mixture of water and 

acetonitrile flowing at rate of 1 mL/min served as the mobile phase. The column backpressures ranged 

from 1430 to 1450 psi. The analyte absorbance at 215 nm was monitored by a UV detector. The 



 
11 

calibration curve used for BBB-PAMPA and cell culture studies is shown on Figure 1. This method was 

also used for experiments with blood, where the limit of detection (LOD) and limit of quantification 

(LOQ) were 1.46 and 4.45 µg/ml, respectively. Furthermore, the intra- and inter-day precisions varied 

from 6.9 to 12.2 CV% (relative standard deviation), while the intra- and inter-day accuracies varied from 

-3.7 to -14.8 %. (Kiss et al., 2017). 

DMTS Analysis by GC-MS  

GC-MS was used to measure DMTS concentration from the brain samples with a previously developed 

method (Kiss et al, 2017). To every 220-mg mouse brain tissue 1 ml ethanol was added. The brains were 

homogenized by a Precellys 24 tissue homogenizor (Bertin Technologies, Montigny-le-

Bretonneux (France), Precellys vials with 1.4 mm ceramic beads, 6500 RPM, 3 times 1 min). The brain 

homogenate (475 µl) was added to 25 µl of 1 mg/ml DBDS (in ethanol) solution. A magnet bar was 

placed into the vials and the sample was stirred for 5 min. PDMS fiber (Agilent Technologies) was 

inserted into the headspace of the vials and were incubated for 10 min. To detect the molecules from the 

fiber GC-MS was used. For sample analysis an Agilent Model 6890A gas chromatograph and Agilent 

Model 5973C mass selective detector was used. The GC column was an Agilent DB-5MS (30 m × 0.25 

mm with 0.1 µm film). The chromatographic method parameters were: 40ºC for 1 min, 60ºC/min to 

280ºC, and 280ºC for 3 min with a He flow rate of 1 ml/min. The temperature of the inlet was 250ºC. 

The source temperature for MS was 230ºC, while the quadrupole temperature was 150ºC. Both scan 

mode and single ion monitoring (SIM) were applied for detection, in the scan range between 30 and 200 

m/z. The following ions were selected for the SIM detection with 5ms dwell time for DMTS: 44.9, 45.0, 

63.9, 64.0, 78.9, 79.0, 110.8, 111.0, 125.9, 126.0 m/z. The ions used for DBDS quantification included: 

178 and 178.1 m/z. For data processing Agilent ChemStation version E.02.02.1431 software was used. 

Concentrations were determined by the calibration curve published earlier, and the LOD and LOQ were 

determined to be 213 and 645 ng DMTS/g brain, respectively (Kiss et al., 2017). The intra- and inter-

day precisions were below 24.3 CV %, while the accuracy was between -1.3 and +2.4 %. 

UV Spectrophotometric Method for Verapamil Analysis 

Samples containing verapamil were collected from the BBB-PAMPA measurements. To the micro-

centrifuge tubes filled with 300 µl of 200 mg/ml DMSO in water, 140 µl of the collected samples were 

added. After vortexing 400 µl of the mixture was transferred to a narrow quartz cuvette (VWR). 

Absorbances were measured in the range of 210 - 400 nm by a Shimadzu UV2101 (Shimadzu Corp., 

Kyoto, Japan) spectrophotometer. The absorbances measured at 278 nm were used for the calculation. 
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Statistical Analysis 

All plotted values represent the means ± standard deviations (SD). Unpooled Student t-tests were used 

to assess the significance of changes in the permeabilities of verapamil in the presence and absence of 

Poly80. To evaluate the toxic effect of DMTS on endothelial cells one-way ANOVA followed by 

Dunnett’s test (GraphPad Prism 5.0, GraphPad Software Inc., San Diego, CA, USA) was used. The effect 

of the variable under study was considered statistically significant, if the random probability (p) of the 

observed change in signal associated with a specific treatment was less than 0.05. The number of 

replicate samples varied from 3 to 10.  

RESULTS 

Permeability of DMTS in the BBB-PAMPA System 

The BBB-PAMPA system is a widely used surrogate model of BBB permeability, therefore the passive 

penetration of DMTS was tested on it (Di et al., 2003 and 2009; Mensch et al., 2010; Müller et al., 2015). 

The clearance volume of DMTS was determined at 30, 60, and 120 mins after injection and the 

permeability was calculated from the data shown in Figure 2A. In the BBB-PAMPA system the Papp of 

DMTS was 11.8 × 10-6 cm/s. A lag time of 6.41 mins in DMTS appearance in the acceptor compartment 

was measured. Verapamil, used as control, showed a Papp of 25.7 × 10-6 cm/s in the absence of Poly80. 

In the presence of 0.05 % (w/v) Poly80, the permeability of verapamil decreased by 16 %, to 21.5 × 10-

6 cm/s. 

Effect of DMTS on Viability of Cultured Brain Endot helial Cells 

The viability of brain endothelial cells in the presence of DMTS at different concentrations was tested 

by the MTT dye conversion assay (Figure 3). A 10-min treatment with DMTS in a concentration range 

of 1–300 µg/ml did not significantly decrease the viability compared to the non-treated control group. 

However, at the concentrations of 30, 100 and 300 µg/ml DMTS enhanced the metabolic activity of the 

cells. Triton X-100 was the positive control for cell death and resulted in complete toxicity within 10 

min. 

Permeability of DMTS Through the Triple Co-Culture Model of BBB 

A very high permeability was measured for DMTS in the BBB culture model (158 ± 14 × 10-6 cm/s) 

indicating a complete distribution between the two compartments (Table 2). The permeability of DMTS 

in the cell free inserts (159 ± 7 × 10-6 cm/s) was similar to those measured with cell culture. The 70 % 

recovery of the highly lipophilic DMTS is in good accordance with the recovery of more than 100 tested 
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compounds on BBB culture models in our previous study (Hellinger et al., 2012). The passive 

paracellular permeability of hydrophilic fluorescein through the cellular barrier remained low (Papp: 4.1 

± 0.9 × 10-6 cm/s) following a 10-min DMTS treatment, indicating that the barrier integrity was not 

compromised by DMTS treatment. The DMTS permeability was ~40 times higher than that of 

fluorescein. 

Effect of DMTS on Cell Junctions 

Following the transport experiments, the cells on the inserts were stained for junctional proteins. ZO-1 

and β-catenin stainings show that the monolayer integrity is not disturbed in agreement with the 

fluorescein permeability values (Figure 4). The cellular distribution of claudin-5 was slightly changed, 

with more cytoplasmic staining. The cell nuclei were stained for both ethidium homodimer-1 (red) and 

Hoechst dye 33342 (blue). No red labeling of nuclei was observed, denoting intact cell membranes after 

the DMTS treatment. The untreated cells showed similar morphology following each immunostaining 

treatment.  

Pharmacokinetics of DMTS 

The pharmacokinetics of DMTS was investigated in vivo in blood and brain (Figure 5A and B). 

The concentrations of DMTS were determined at time intervals of 0, 5, 10, 20, 60, 120 min after the 

intramuscular injection of 200 mg/kg dose of DMTS using previously developed methodology (Kiss et 

al., 2017). A comparison of the first three time points in Figures 5A and 5B, shows that DMTS uptake 

into the blood is largely complete by 5 min, while uptake into the brain is still climbing strongly between 

the 5 and 10 min sampling points. For both samples, uptake is rapid, and cmax is achieved in less than 10 

min in blood, and very close to 10 min in the brain. The volume of distribution (VD) of DMTS was 

calculated after 10 min treatment, where the cmax was measured in blood, and resulted 0.21 ± 0.03 L. The 

tissue partitioning coefficient for brain (Kp brain:blood) was 0.0179 (1.79 %).  

DISCUSSION 

The present studies focus on the BBB permeability and pharmacokinetics of the promising CN antidote 

candidate DMTS. To the best of our knowledge this is the first publication investigating the absorption 

of DMTS into blood, the in vitro BBB permeability and the in vivo distribution in the brain. 

The penetrability of DMTS through the BBB was measured in both a BBB-PAMPA system and in 

a cell culture model of BBB. Both these systems are widely used by pharmaceutical companies to screen 

the permeability profile of drug candidates (Mensch et al., 2010; Di et al., 2009; Hellinger et al., 2012; 
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Helms et al., 2016). Compound lipophilicity is an important physicochemical property which has an 

impact on the penetration to the central nervous system, the partitioning into other organs, the membrane 

permeability and the plasma protein binding etc. (Lipinski et al., 2001). The octanol/water partitioning 

coefficient (logP) describes the lipophilicity. The logP for DMTS is 2.93 

(http://www.chemspider.com/Chemical-Structure.18219.html) and for verapamil 3.79 

(http://www.drugbank.ca/drugs/DB00661). Lipophilicity is a determining factor for the penetration 

ability of DMTS and verapamil in the BBB-PAMPA system. Verapamil was used as a high permeability 

standard in BBB-PAMPA experiments. Our permeability result with verapamil (25.7 × 10-6 cm/s) as a 

control in the BBB-PAMPA is comparable with the literature data (16.0 × 10-6 cm/s; 18.5 × 10-6 cm/s; 

23.7 × 10-6 cm/s; Di et al., 2003; Chlebek et al., 2016; Mensch et al., 2010). Although verapamil has 

higher permeability (P) and logP, these values of DMTS are large enough to categorize it as a molecule 

with high permeability in the BBB-PAMPA system.  

The presence of Poly80 was required to achieve sufficiently high concentrations of DMTS. Due to 

its surfactant properties Poly80 may indirectly influence the lipid membrane permeability in BBB-

PAMPA. To check its effect on the lipid membranes, a verapamil control was applied in the system with 

and without Poly80. One would expect a permeability enhancement effect for verapamil in the presence 

of Poly80 due to its absorption enhancer properties (Kiss et al., 2014; Rege et al., 2002). However, a 

slight decrease in the permeability of verapamil through the BBB-PAMPA model was observed in the 

presence of 0.05 % (w/v) Poly80 (Figure 2B). This decrease in permeability may be due to the association 

between the Poly80 and the BBB-PAMPA membrane. This effect is not expected to be significant in 

vivo, because (1) Poly80 will be diluted upon entering the circulation and will have many competing 

opportunities to partition out of blood into tissues before reaching the BBB; (2) earlier studies 

demonstrated that Poly80 at 0.1 % (w/v) (1 mg/ml) did not cause any cell damage after 1 hour in Caco-

2 and RPMI 2650 cell culture (Kürti et al., 2012; Kiss et al., 2014). 

The triple co-culture model for BBB is suitable for in vitro permeability measurements and the 

drug permeability is generally comparable with in vivo data (Nakagawa et al., 2009). In our experiments, 

this culture model was applied to estimate the permeability of DMTS through the BBB. Results showed 

that the endothelial cell layers did not present a barrier against DMTS as indicated by similar 

permeability values in culture models and cell-free inserts. The Papp of DMTS was similar to that of the 

highly lipophilic and BBB penetrating drug caffeine on the same model (Hellinger et al., 2012). The 

recovery (mass balance) of DMTS was 67.7 % and 69.4 % in culture and in cell free permeability assays, 

respectively. These results indicate 32.3 % and 30.6 % loss of DMTS in these systems. Our unpublished 
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preliminary data show that DMTS attach with high affinity to the surface of glass and plastic. Therefore, 

we assume that the loss of DMTS was mainly caused because of the binding of DMTS to culture insert 

membranes or to the walls of plastic plates. Cellular metabolism can also eliminate DMTS as it was 

mentioned in our previous paper (Kiss et al., 2017), where the DMTS amount decreased by time in sheep 

blood. However, due to the little difference between the recovery data in the presence of cells and in cell 

free assays we assume that cellular metabolism can be negligible as compared to the binding of DMTS 

to surfaces and this phenomenon may cause the DMTS loss in the assay systems. Based on the high 

TEER values and the low permeability of fluorescein the cellular barrier remained intact ten minutes 

after the treatment. Furthermore, proteins building up the tight junctions, ZO-1 and claudin-5, and 

adherent junctions, β-catenin, showed a typical morphology with strong staining between the 

neighboring endothelial cells after the DMTS treatment (Figure 4). 

Double-nuclei staining is an indicator of membrane damage and cell death (Kiss et al., 2013) which  

was performed after the DMTS permeability measurement. The endothelial cells were alive with intact 

membranes and no staining of ethidium homodimer-1 was observed. Furthermore, DMTS did not 

decrease the metabolic activity of the brain endothelial cells at tested concentrations, but even slightly 

enhanced this activity at higher concentrations as shown by the MTT assay. These cell culture data 

indicate that DMTS can be safely used at 0.1 mg/ml concentration within 10 minutes, while the effect 

of longer exposure of DMTS should be tested in the future. 

The permeability of DMTS measured in the BBB culture model (158×10-6 cm/s) was ~13 times 

higher than in the BBB-PAMPA system (12×10-6 cm/s). This difference between the permeability values 

measured in PAMPA and cell culture models can also be observed for other drugs. For example, caffeine 

and alprazolam have permeabilities of 2.03 × 10-6 and 11.12 × 10-6 cm/s through the BBB-PAMPA, 

respectively, and 44.40 × 10-6 and 103.63 × 10-6 cm/s through the Caco-2 cellular barrier membranes 

(Mensch et al., 2010). Caffeine (logPcaffeine = -0.07; 

https://pubchem.ncbi.nlm.nih.gov/compound/2519#section=LogP) can pass through the cellular barrier 

with passive and facilitated diffusion (McCall et al., 1982), while alprazolam (logPalprazolam = 2.12; 

https://pubchem.ncbi.nlm.nih.gov/compound/alprazolam#section=LogP) penetrates by passive 

diffusion and active transport using human organic cation transporter 2 (Chiba et al., 2013). The 

significant difference in permeability of DMTS in the BBB-PAMPA – containing only lipids – and the 

BBB model, which expresses transporters (Walter et al., 2015) suggests that in addition to passive 

diffusion DMTS may cross the BBB by an other, facilitated or active transport mechanism. 
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DMTS uptake into the blood and soon thereafter into the brain occurred fast enough to reach the 

cmax within 10 min following intramuscular injection. The toxic effects of CN can appear from a few 

minutes to an hour after exposure depending on the concentration. The rapid penetration of a CN antidote 

is essential to efficiently defend the body in cases of acute intoxication. In the previous paragraph we 

discussed a possible active transport mechanism of DMTS and the quick and significant penetration into 

the brain observed in vivo, which together do not contradict the in vitro experimental results. The 

concentration of DMTS reached the maximum of 25.2 µg/ml in the blood and 1.07 µg DMTS/g in the 

brain ten minutes after the injection. To prevent the biasing effects of blood in the brain experiments, the 

cerebral blood was flushed out of the brain by cerebral perfusion prior to extracting the brain for analysis. 

This ensured that the DMTS determination from the brain was not affected by the DMTS in the blood 

and only the DMTS that entered the brain was analyzed. The disappearance of blood from brain tissue 

during perfusion can easily be observed. The volume of distribution for DMTS showed higher value 

than the mouse total body water (approximately 14.5 ml; Davies and Morris, 1993). This high VD is 

typical for lipophilic drugs, and may indicate a greater amount of tissue distribution. 

Detailed studies of the mechanisms of DMTS penetration through BBB were beyond the scope of 

the present work. DMTS may also undergo chemical transformations in the brain, as it appears to happen 

in the blood (Kiss et al., 2017). Ongoing efforts in our lab are focused on the investigation of these 

interactions between the DMTS and the blood or the brain and will be published separately. 

Our results with DMTS showed better pharmacokinetic parameters than commercially available 

CN antidotes, the thiosulfate or the hydroxocobalamin. Thiosulfate, the sulfur donor component of 

Nithiodote®, has limited ability to cross the BBB (Pollay and Kaplan, 1971; Neuwelt et al., 1998) and 

has a shorter half-life (15 - 20 mins; Schulz, 1984; https://www.drugs.com/pro/sodium-thiosulfate-

injection.html) in the blood than DMTS. The half-life of DMTS in blood is 36 mins (De Silva et al., 

2016) and it can effectively cross the BBB as the results of this paper proved. Van den Berg et al. (2003) 

measured the concentration of hydroxocobalamin (component of Cyanokit®) in the cerebrospinal fluid 

(CSF) and plasma after intranasal or intravenous administration. The partitioning coefficient (Kp 

CSF:plasma) of hydroxocobalamin was between 0.5 - 0.6 %. However, in our paper the DMTS was measured 

from whole brain and blood instead of CSF and plasma, but if we compare the two Kp-s DMTS 

(Kp brain:blood = 1.79 %) has 10 times higher partitioning to brain than hydroxocobalamin to CSF. 

Furthermore, hydroxocobalamin hardly appeared in CSF 30 min after the administration, while DMTS 

reached its highest concentration in brain within 10 minutes. 
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CONCLUSION 

The permeability of DMTS through the BBB was measured in a BBB-PAMPA system and in a cell 

culture BBB model. The high penetrability of DMTS through the BBB-PAMPA indicates that the rate 

of passive diffusion is significant. The thirteen times greater penetrability of DMTS through the BBB 

cell culture model suggests that the possibility of an active transport mechanism for DMTS in the BBB 

of living systems can not be excluded. The results of the pharmacokinetics investigations in a mouse 

model (blood and brain) were consistent with those of the in vitro experiments. The DMTS reached a 

peak brain concentration in alive mice within 10 min following the intramuscular injection. These 

permeability and pharmacokinetic results highlight the promise of DMTS as a brain protecting antidote. 

Together with the prior observations of high in vivo antidotal efficacy against CN, these results 

strengthen the potential of DMTS for clinical studies. 
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Tables 

TABLE 1.  BBB-PAMPA experimental setup of the DMTS and verapamil treatments, buffer solutions and sample 

collection times. The donor compartments and the corresponding acceptor compartments are placed in the same 

row. 

Donor compartment Acceptor compartment 

Sample 
Sample collection 

times (min) 
Sample 

Sample collection 
times (min) 

0.1 mg/ml DMTS in  
0.05 % (w/v) Poly80 and  

Prisma HT buffer 
0; 90 

Brain Sink Buffer  
0.05 % (w/v) Poly80 

30; 60; 90 

200 µM verapamil in DMSO +  
0.05 % (w/v) Poly80 and  

Prisma HT buffer 
0; 90 

Brain Sink Buffer  
0.05 % (w/v) Poly80 

90 

200 µM verapamil in DMSO 
and Prisma HT buffer 

0; 90 Brain Sink Buffer 90 

 

 
TABLE 2.  Apparent permeability (Papp), transfer and recovery of DMTS in the in vitro BBB model and 
in cell-free inserts. Values are presented as mean ± SD, n = 4. The apparent permeability calculation is 
described in the supplementary materials. 
 

Samples 
Papp (10-6 cm/s) 

BBB model Cell-free insert 
DMTS permeability 158 ± 14 159 ± 7 

Transfer of DMTS (%)a 21.2 ± 1.9 21.4 ± 1.1 
Recovery of DMTS (%)b 67.7 ± 2.4 69.4 ± 1.3 

 

a Transfer of DMTS (%) = (µg of measured DMTS in the acceptor compartment after the experiment / µg of DMTS 
in the donor compartment at the beginning of the experiment) x 100 
b Recovery of DMTS (%) = [(µg of measured DMTS in the acceptor compartment after the experiment + µg of 
measured DMTS in the donor compartment after the experiment) / µg of DMTS in the donor compartment at the 
beginning of the experiment] x 100 
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Legends 

 

FIG. 1. Calibration curve for BBB-PAMPA and cell culture studies. Data are presented as mean ± SD, 

n = 3. Error bars are not visible due to the low SDs. 

 

FIG. 2. Clearance volume and apparent permeability for DMTS and verapamil in the BBB-PAMPA 

system. A) The clearance volume of DMTS was plotted against time. Data are presented as mean ± SD, 

n = 10. B) Apparent permeability of verapamil combined with Poly80, and verapamil alone. Data are 

presented as mean ± SD, n = 5. Significance analysis was performed using unpaired Student t-test: 

statistically significant difference was detected between verapamil + Poly80 and verapamil permeability 

(* p < 0.05). 

 

FIG. 3. Cell viability measured by MTT dye conversion assay after a 10-min treatment with DMTS 

solutions in 0.05 % (w/v) Poly80. The viability is given as the percentage of the control group. Values 

are presented as means ± SD, n = 6 - 8. Statistical analysis: ANOVA followed by Dunnett’s test, p < 

0.05 as compared with the control groups. Control, non-treated cells; TX, Triton X-100. 

 

FIG. 4. Effects of DMTS (10-min treatment) on junctional morphology of the brain endothelial cells. 

Immunostaining for zonula occludens-1 (ZO-1), claudin-5 and β-catenin junction proteins are shown in 

green color. Blue color: staining of cell nuclei. Bar = 25 µm. 

 

FIG. 5. Concentration-time profile of DMTS in (a) blood and (b) brain. Values are presented as 

means ± SD, n = 3 - 4. 

 


