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Abstract 
 

Designing an Intelligent Tutoring System (ITS) that simulates human learning 

with regard to different knowledge levels is a challenge. Most developed ITSs 

typically focus on either the building or the testing phase without paying 

appropriate consideration to the design phase. The result is that these 

systems offer specific choices in isolation, and can thus prove difficult to 

apply in situations where multiple factors interact. Researchers have 

therefore developed tutoring models that did include the design phase in 

their implementation. However these models do not consider the cognitive 

factors of students.  Such ITS models lack the ability to provide accurate 

estimations as they do not analyse the students’ individual skills against the 

item skills, particularly when the learning items require multiple skills, which 

thus reduce student’s learning efficiency due to an incomplete representation 

of the student’s knowledge.  

This thesis proposes a novel tutoring model, called ‘Cognitive Factor Analysis’ 

(CFA),  which adapts student cognitive factors, such as guessing/slipping 

parameters and student proficiency levels, together with each item’s 

parameters to produce a better estimation of student latent performance.. 

CFA also introduces the concept of the Q-matrix from psychometrics and 

connects this to the students’ prior scores. The model does not only predict 

the students’ performance, but helps students to target the strengths and 

weaknesses in their knowledge levels. Therefore, CFA has an adverse impact 

on the student’s learning curve and reduce the student’s learning time by 

controlling the amount of time spent practicing the skill several times. It 

assumes the role of modelling the student’s learning by making inferences 

about their latent performance with multiple skills assessments.  

CFA also contributes to cognitive learning psychology by exploring how 

computational models can be used to understand human behaviour. It shows 
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how data generated from tutoring systems can be analysed and modelled to 

create and improve a unified computational theory of human learning. 

Furthermore, it encapsulates psychological findings in a format that can be 

used by instructional designers and educational scientists to support the 

development of tutoring systems.  
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Chapter One: Introduction 

 

1.1 Motivation 
 

Intelligent tutoring systems (ITSs) are computer-based instructional systems 

with models of instructional content that specify what to teach, in addition to 

teaching strategies that specify how to teach. ITSs assess a student’s 

knowledge systematically and present curricula compiled according to their 

individual skill levels while simultaneously generating appropriate feedback 

for both student and teacher. The systems make certain inferences related to 

a student's mastery of specific topics or tasks in order to dynamically adapt 

the content or style of instruction. Overall, these intelligent tutoring systems 

have been shown to improve student learning across multiple domains 

(Koedinger & Anderson, 1997; Ritter et al., 2007). 

 

ITSs aim to engage the students in sustained reasoning activity and to 

interact with the student on the basis of possessing a deep understanding of 

the student’s cognitive behaviour. Content models (or knowledge bases, 

expert systems or simulations) give ITSs certain depth such that students can 

‘learn by doing’ in realistic and meaningful contexts (MacLellan, Liu & 

Koedinger, 2015). However, an incorrect determination of the domain skills 

may lead to inappropriate learning recommendations and subsequently 

negatively affect the student’s motivation and thus waste their limited 

learning time (Vanlehn, 2011). With this, building and designing tutoring 

systems that are pedagogically effective is both difficult and expensive 

(Murray, 2005).  
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In an ideal world, the implementation of an intelligent tutor would be based 

on three phases: design, building, and testing. Each phase requires time, 

expertise and resources for its appropriate execution, which, in general, 

makes tutor development a cost prohibitive endeavour (Murray, 1999). As a 

result, many tools have been created by researchers to support the tutor 

development process. Unfortunately, these tools provide little insight for the 

design phase, focusing primarily on supporting the building and testing 

phases. In other words, while they provide certain capabilities for the 

interfaces and user profiles, they give little support in terms of what factors 

need to be considered to estimate the students’ performances, or whether the 

authored content matches their performances and is effective for learning 

(i.e. the design phase). Furthermore, they do not provide an accurate 

estimation for the learner’s knowledge level due to a lack in the design 

(Aleven, McLaren, Sewall, & Koedinger, 2006; Sottilare & Holden, 2013; 

MacLellan, Liu & Koedinger, 2015). 

  

In terms of developing technology to support the design phase, designers 

must first address two high-level questions: how to have an accurate 

estimation of the students’ performance; and how to present the learning 

material that matches the students’ skill levels. Thus, various models have 

been used to support this phase, including cognitive task analysis techniques 

(Clark et al., 2006), learning factor analysis (LFA), and the deterministic 

inputs noisy ‘and’ gate model (DINA) to analyse the skills per item and match 

them with the students’ knowledge levels. These models have managed to 

estimate the students’ performances based on the prior scores achieved 

through answering items while doing assessments. However, there are 

pitfalls to using intuition to guide tutor design. For example, Clark et al. 

(2008) argued that much of an expert’s knowledge is tacit since although as 

individuals gain expertise their performance improves, it is difficult to 

estimate their current performance accurately, especially when there are 
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certain other factors affecting performance estimation (e.g. in the case of 

multiple choice (MC) assessment, did the student achieve the expertise level 

through mastering his/her own skills or by guessing the answers or using 

hints?). Such factors are defined in intelligent tutoring systems as ‘cognitive 

factors’. 

 

Cognitive factors relate to the mechanisms that control human thought, 

including, for example, language processing, analytical reasoning, learning, 

and memory. Therefore, an important class of intelligent tutors are those that 

include cognitive models. Such tutors, often known as ‘model tracing tutors’ 

(Anderson & Pelletier, 1991), observe student behaviour and build a fine -

grained cognitive model of the student's knowledge, which can be compared 

with the expert model. Such cognitive models analyse the students’ strengths 

and weaknesses in addition to providing individualised instructions. These 

models have a relatively deep level of expertise, and thus the student, when 

stuck, can ask the tutor for a hint to identify the solution to the entire 

problem. This process will enable the tutor to understand the student’s 

knowledge level and estimate the performance accurately. Furthermore, this 

will allow teachers to devote more one-on-one time to each student and to 

work with students of varying abilities simultaneously in addition to 

designing assignments that match an individual student’s needs, thereby 

enhancing their learning development.  

The process of evaluating the student knowledge level during the assessment 

that contains any form of help from the tutor, such as hints, is similar to a 

type of educational assessment that is known as  ‘dynamic assessment’ 

(Kalyuga and Sweller, 2005). 

Luckily, design is an iterative process, and poor design decisions can be 

identified and corrected through testing and redesign. The current best 

practice for testing a tutor design and improving its pedagogical effectiveness 
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is to conduct a close-the-loop study (Koedinger et al., 2013). This involves 

creating an initial tutor, deploying it in a classroom, analysing the data from 

this deployment and using the findings to redesign the tutor before finally 

deploying it again to test the effectiveness of the redesign. The close-the-loop 

approach is essentially a data-driven cognitive task analysis technique that 

guides the redesign of both the material being taught (e.g. the underlying 

model of skills necessary for domain expertise) and how the material is being 

presented (e.g. emphasising certain steps in the interface or providing more 

practice in certain skills).  

For their part, Koedinger et al. (2013) applied this approach to a geometry 

tutor and showed that students achieved mastery more rapidly with the 

redesigned tutor. While the approach, much like other similar approaches, 

such as A/B testing (Lomas et al., 2013), is effective for testing and improving 

initial tutor designs, it is expensive. Classroom studies take time to arrange 

and run, and often, multiple classroom study iterations are required to 

achieve a good tutor design.  

Given these current practices, the existing tutoring models generally provide 

less accurate assessments of a student’s performance and reduce their 

learning efficiency due to an incomplete representation of their knowledge.  

With this in mind, designing an effective and accurate ITS model can be 

achieved by implementing the following points: 

 Improving the performance estimation accuracy. This can be 

achieved by including the cognitive factors in terms of analysing the 

students’ skills and comparing them to the given item skills. This 

process ensures determining the guessing parameters if the student 

answers correctly without having acquired the necessary skills, or the 

slipping parameters in cases where the student attempts the item 

incorrectly even though he or she has mastered the required skills. 
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Therefore, the performance estimation will not only depend on the 

correct/incorrect scores but will also determine the skills for both the 

students and the items. 

 Determining whether the learning materials are effective for the 

students. The intelligent model can determine whether the learning 

materials are effective for the learning process by matching the 

student’s skills with the item skills. With this, the number of practices 

can be reduced or increased depending on the student’s skill levels 

until he or she reaches the mastery level. 

 

Based on what has been discussed above, the hypothesis of this research is as 

follows:  

Using the cognitive factors (the student’s current skills, the guessing/slipping 

parameters) will improve the prediction of the student’s performance, and 

optimise their learning experience. 

1.2 Objectives 
 

This work proposes a novel, artificial intelligence model we have termed 

‘cognitive factor analysis’ (CFA). The model targets students in terms of 

estimating their latent performance. It aims to produce an accurate 

prediction of the student’s ability to answer the next item correctly. CFA 

analyses their performance level effectively by using multiple skills 

assessments and adapting the cognitive factors in both problem-solving and 

learning. In addition, it supports both the design phase and the testing phase 

of tutor development because it can simulate student interaction with initial 

tutor prototypes. Finally, it can also produce an accurate estimation of each 
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student’s current skills and determine the student’s ability to answer the next 

item correctly.  

CFA aims to support the development of any intelligent tutoring model as the 

data generated from these simulations has an identical format to the data 

generated from real classroom studies, meaning instructional designers can 

analyse it using existing tools and techniques. For example, designers might 

apply learning curve analysis techniques, such as ‘additive factors modeling’ 

(Cen, 2009), to gain insights into which skills will be more difficult for each 

students to learn, such that they can create additional hints that exercise 

challenging skills (through the given information on whether each student 

has slipped/guessed the answer). Similarly, a designer might analyse 

simulated data to test the overall effectiveness of a specific tutor design, or to 

compare alternative designs to determine which are the most effective for 

learning. Thus, the developed model can act as a tool to leverage prior 

learning theory to cost-effectively test and improve any initial tutor designs 

prior to actual classroom deployment. 

Overall, CFA has three main objectives: 

1. Precisely identifying the students’ weaknesses and strengths to 

ensure saving their study time.  

 

2. Improving the students’ performance estimations  by including the 

cognitive factors. 

 

3.  Supporting the building and testing phases of the intelligent tutoring 

systems by focusing on producing a proper design phase without the 

need for classroom study. 
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1.3 Thesis Contributions 
 

First of all, the CFA model contributes to the design phase of intelligent 

tutoring systems by introducing a novel approach that looks at the problem 

from a very different perspective. It doesn’t aim to only predict the student’s 

performance, but also to help the students target their strengths and 

weaknesses within their knowledge level. By including the cognitive factors 

(the student’s current skills, the slipping and guessing parameters) along 

with any prior student behaviours, the accuracy of the student’s performance 

estimation will be increased, and, in detecting the knowledge level accurately, 

the student will both save their learning time and have a better learning 

curve representation. In essence, it is a tool that aims to take on the role of 

modelling the student’s learning by making inferences about his or her latent 

performance within multiple skills assessments. Here, CFA doesn’t consider 

that a correct answer from the student is positive evidence of their mastering 

all the required skills since the student may have simply guessed the answer. 

Similarly, an incorrect answer is not taken as proof of failure as the student 

may have slipped up on the answer despite the fact that they had mastered 

all the required skills. This will have an adverse impact on the student’s 

learning curve and will not waste the student’s time in terms of practicing the 

skill numerous times.  

Finally, CFA contributes to the field of cognitive learning psychology by 

exploring how computational models can be used to understand human 

behaviour. This is because CFA focuses on modelling the students learning 

behaviour and understands their needs in improving their knowledge level. 

This modelling can be achieved first by determining whether the learning 

material matches the students’ skills and second, by estimating the future 

performance for each student. With this, CFA attempts to show how data 

generated from the tutoring system can be analysed and modelled to create 
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(and improve) a unified computational theory of human learning and to 

encapsulate psychological findings in a format that can be used by 

instructional designers and learning scientists to support tutoring system 

development. 

 

1.4 Overview of thesis contents 
 

Chapter Two: 

This chapter establishes the technical background and models related to this 

thesis. It begins by explaining the concept of self-regulated learning and how 

it can be applied to educational assessment before discussing the theory of 

dynamic assessment in the field of cognitive psychology (psychometrics). The 

way in which the assessment item should be presented is shown in the form 

of multiple choice (MC) assessment. The subsequent sections then discuss 

the cognitive diagnosis models, which have been used in the area of 

education data mining area. This includes highlighting the scoring procedure 

that involves acquiring essential cognitive factors, such as the item difficulty, 

the student skills and the guessing/slipping parameters and describing the 

approximation methods used to estimate the required probability of 

knowledge level and learning. 

Chapter Three: 

This chapter demonstrates the research setup. The proposed model structure 

is described, and each building block is explained. It also addresses the 

challenges in improving the student’s learning skills by looking at two 

essential concepts: the probability of identifying the correct answer through 

a reliance on the prior used hints; and adapting the student’s item-skills with 

the guessing/slipping parameters. The chapter also presents two novel 
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models for estimating student performance, which are derived from two 

cognitive approaches: the PFA and the DINA models. The first model extends 

the previous work of PFA by splitting the success rates into ‘prior correct 

answer’ and ‘prior used hints’. Based on the first model and the consideration 

of multiple prior student factors, the chapter goes on to present a second 

model to estimate the probability of identifying the correct answer by adding 

the slipping/guessing parameters in the form of a logistic regression.  

Chapter Four: 

The first part of this chapter focuses on implementing and evaluating the 

version of PFA that includes the hints factor. In fact, several experiments have 

been previously conducted to show the comparisons between the original 

PFA and our modified version. The subsequent sections then demonstrate 

the DINA model that includes the same dataset used in PFA in addition to 

providing a full explanation of the findings related to the obtained results. 

Finally, our developed model is applied to the dataset and all the factors are 

extracted and analysed using a novel modification of logistic regression that 

allows for taking into account any situations resulting in false negative 

student actions (e.g. slipping/guessing with known/unknown skills). Later in 

this chapter, CFA defines the student’s learning curve type and determines 

any factors affecting learning performance. Such factors can be related to the 

quality of learning, such as learning materials and hints associated with each 

item/skills, and the student’s expertise level (whether he or she maintains 

the skill).  Meanwhile, the system can potentially save the student’s time as 

well as recommend certain learning resources that could help improve their 

current skills by estimating whether they are more likely to make another 

mistake or answer the next item involving the same skills correctly. 
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Finally here, how the findings show the significance of the model in relation 

to the other models is discussed. 

Chapter Five: 

Finally, this chapter presents the conclusions, including the main research 

contributions, and provides suggestions for future work. 
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Chapter Two: Background and 

Literature Review 

 

 

2.1 Introduction 
 

This chapter establishes the technical background and models related to this 

thesis. It begins by discussing certain prior work which has been conducted 

to support ITS. It then explains the concept of cognitive models and how this 

theory can be applied to educational assessment. The theory of dynamic 

assessment is discussed in the field of cognitive psychology (psychometrics). 

Furthermore, a highlight of the process of the scoring procedure is presented 

which includes essential cognitive factors such as the item difficulty, 

student’s skills and the guessing/slipping parameter and also how the Q 

matrix is applied. Finally, it describes the approximation methods used to 

estimate the required probability of knowledge level and learning. 

 

2.2 Prior work 
 

Following the brief explanation offered in chapter one regarding the ways in 

which the design of ITS models could be enhanced by including cognitive 

factors and improving student performance estimation, this section turns to 

the literature and review of several prior models that conform to this notion. 

While there is a vast number of modelling efforts that fit at least some aspect 
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of the current problem, reviewing all of these works is beyond the scope of 

this thesis. Instead, the literature focuses on highlighting certain models 

which are directly related to the impact of adopting cognitive models within 

the design of ITS. 

 The predominant view within the literature is that estimating the future 

performance of students consists of heuristic cognitive attributes through a 

problem-solving strategy (Newell & Simon, 1972), which is typically defined 

by:  

 Tracking student knowledge, i.e. analysing the student’s current skills 

compared to the given item skills to determine student mastery during 

the practice of the problem. 

 Predicting student behaviours within the ITS, such as student 

performance on the next practice opportunity.  

Given this view, prior work characterises ITS as the translation of the latent 

attributes of students and feedback regarding this with regard to students’ 

behaviour and how to improve this. Although most work can be unified 

under this characterisation, prior work differs on the cognitive factors and 

the types of assessment used in the evaluation of students. For example, Feng 

et al. (2009) employed an item response theory within ITS to estimate 

student performance in an end-of-year test. This model estimates the 

student’s latent  skill based on the number of practices that student might 

need to reach the correct answer, while ICARUS (Li et al., 2009) is capable of 

learning by filling in the gaps using means-ends problem-solving. Further, 

other problem-solving approaches (Anderson, 1993; Fikes et al., 1972; Laird 

et al., 1987) enable systems to generate their own problem-solving traces. 

These systems have succeeded in estimating student knowledge, however 

there is one issue which restricts any system from being the perfect model, 

namely the way of presenting the items’ assessments and the amount of time 

spent in solving these items. This is because, in ITS, timing is considered to be 
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the most essential factor in assessment which can be affected by the type of 

assessment and the instructions that might be given to the students while 

taking the assessment. This subsequently influences the estimation process 

of knowledge. In particular, if students are well instructed and make good 

choices regarding the answers, then they will quickly achieve their goals. 

However, when students are less well informed and fail to make appropriate 

choices, they will spend more time exploring unyielding areas of the problem. 

To combat this problem, prior work explores how to leverage correct and 

incorrect answers by applying the concept of multiple-choice (MC) 

assessments.  

The MC-type item format is easy to administer and inexpensive to score 

(whether manually or through the use of automated computer systems). 

However, with MC items, examinees can gain scores by chance through 

successful guessing when they do not have the required skills, or lose scores 

by slipping the correct answer even though they possess the appropriate 

skills to answer correctly. This could seriously negatively affect test validity 

and reliability because it would introduce another source of measurement 

error (Han, 2012). Therefore, competent work has adopted MC and 

attempted to overcome the likelihood of slipping and guessing. For example, 

Junker and Sijtsma (2001) introduced the concept of guess and slip into the 

DINA model to improve the accuracy of the model. Pardos et al. (2010) 

integrated individualisation into knowledge tracing and showed a reliable 

improvement in the prediction of real-world data (Pardos & Heffernan, 

2010). Pavlik et al. (2009) presented a new alternative student model – 

Performance Factor Analysis (PFA) – which considers the success and failure 

scores in order to improve the learning performance of students, and found 

this to be somewhat superior to knowledge tracing. Moreover, there is also a 

great deal of work which focuses much effort on examining and improving 

student performance estimations with MC ( Gong, Beck & Heffernan, 2010; 
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Pardos & Heffernan, 2010). However, without considering the 

slipping/guessing parameters, they instead focus on prior student scores. 

Together, these systems each represent major progress towards predicting 

human behaviours in the contexts of ITS. However, it is difficult to achieve 

fair and reasonable evaluations across various models and approaches for a 

number of reasons. Different studies employ different data sets and report 

different measurement metrics which makes it difficult to compare the 

models. Even if the above differences were to be avoided, it is still likely that 

the studies would use slightly different procedures despite adopting the 

same model. Additionally, the generality of these previous systems remains 

unclear. In particular, how much prior knowledge needs to be authored to 

employ these systems in new domains? For example, CASCADE and STEPS 

focus mainly on physics, but do these models also explain behaviour in the 

domains of language or engineering? If so, how much additional prior 

knowledge must a researcher (or perhaps a teacher) develop in order to 

apply them? SIMSTUDENT and DINA models have been applied to multiple 

tutoring domains and, consequently, might have a better claim to generality. 

However, each SIMSTUDENT and DINA model possesses a specialised set of 

domain-specific prior knowledge, suggesting that a user would probably 

need to author additional knowledge. Given this limitation, this research aims 

to develop a model that will be feasible, generic and practical for application 

by researchers and teachers by considering multiple cognitive factors with 

MC assessment, extracting students’ skills and matching these with the given 

item skills to enable better student performance estimations for all types of 

learning.  

The next sections will present more detailed explanations regarding certain 

significant models which have been used in ITS, analyse their effectiveness 

and provide a comparative study with respect to  their applications. 
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2.3 Cognitive factors 
 

The importance of cognitive factors in education was introduced, developed 

and thrived during the 1980s and 1990s. The great assumption involved in 

introducing cognitive factors to student learning is that the way in which 

humans learn can be modelled as a computational process (Nkambou, 

Bourdeau et al. 2010). In particular, educational technologies, such 

as Intelligent Tutoring Systems, can use cognitive factors to assign each 

student with practice problems that target their specific 

weaknesses/strengths so that they do not waste time practicing skills they 

already know. Studies have shown that students can double their learning in 

the same time (Pane et al., 2014) or learn more in approximately half the 

time (Lovett et al., 2008) when cognitive factors are considered within the 

ITS. 

Therefore, adopting cognitive factors in tutoring models has a significant 

impact on student performance estimation. There are several models that 

have been developed utilising student cognitive factors such as Model 

Tracing (MT) which is grounded in cognitive psychology based on the ACT-R 

(Adaptive Control of Thought-Rational) cognitive theory. The belief is that 

human learning processes can be modelled by some form of structure which 

describes how a task is procedurally accomplished. The technique is closely 

related to domain modelling and expert systems. In the Model Tracing 

framework, student actions are monitored and the solving rules are formed 

to the path through the problem space (Anderson and Reiser 1985). Although 

this model has produced effective steps towards a student’s learning 

strategy, nevertheless it still lacks the ability to predict the latent 

performance of the learner.  

Therefore, this model was improved upon and is now known as Knowledge 

Tracing (KT) which was introduced in (Corbett and Anderson 1994). The 
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model takes the form of the Hidden Markov Model whereby student 

knowledge is a hidden variable and student performance is an observed 

variable. The model assumes a causal relationship between student 

knowledge and student performance; i.e. the correctness of a question is 

(probabilistically) determined by student knowledge. There are four 

parameters estimated by the model, 1) prior knowledge, which is the 

probability that a particular skill was known by the student before 

interacting with the tutoring system; 2) the learning rate, which is the 

probability that a student’s knowledge transits from an unlearned to a 

learned state after each learning opportunity; 3) guess, which is the 

probability that a student can answer correctly even if he/she does not 

possess the skill required to solve the problem; 4) slip, which is the 

probability that a student responds to a question incorrectly even if he/she 

possesses the required skills. Classic KT has been used broadly and 

successfully across a range of academic domains. However, this model lacks 

the ability to handle multiple skill problems. The KT model is designed per 

skill; if to solve a problem requires multiple skills, this raises difficulties in 

deciding to which specific skill this particular observation should belong. 

Furthermore, the Additive Factors Models (AFM) is a generalised linear 

mixed model which applies a logistic regression to fit a learning curve to 

student performance data . The central idea of AFM was originally proposed 

by Draney, Pirolli et al. (1995) and was introduced into the field of ITS by 

Cen, Koedinger et al. (2006). The model was renamed as the Learning Factors 

Analysis (LFA) model by these authors.  

The model has a logit value representing the accumulated learning for a 

student using single or multiple skills. The model captures the ability of  the 

student and the easiness of the required skills. It also considers the benefit 

gained from prior practice by estimating the amount of learning on the skills 

for each practice opportunity.  
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Learning Decomposition (LD), a variant of a learning curve, estimates the 

relative worth of different types of learning opportunities. The approach is a 

generalisation of learning curve analysis and uses non-linear regression to 

determine how to weight different types of practice opportunities relative to 

each other (Beck 2006). Unlike AFM, LD selects the form of exponential 

curves over the power curves. The model has a free parameter to represent 

how well students perform on their first trial performing the skill, and a set 

of free parameters representing how quickly students learn the skill by 

performing a particular type of practice, such as reading the same story 

repeatedly or reading a new story. However, neither LD nor LFA consider the 

prior unsuccessful scores or the prior used hints. Instead, they focus only on 

the positive responses. 

The Performance Factors Analysis model (PFA), which is a reconfiguration of 

LFA, was presented by Pavlik et al. (2009). PFA disregards the student ability 

parameter of LFA and thus allows PFA to generalise across different subjects. 

Depending on the reconfiguration of the difficulty parameter, PFA is able to 

capture the problem difficulty. Aside from the learning rate parameter, 

similar to LFA, the model also estimates an additional parameter for each 

skill reflecting the effect of prior unsuccessful practices.  

The Instructional Factors Analysis model (IFA) was presented by Chi et al. 

(2011) who tailored PFA for their specific needs. This model, other than 

tracking the effect of prior successful practices, i.e. learning rate, and the 

effect of prior unsuccessful practices, estimates the effect of an additional 

variable, what is referred to as ‘tells’, a form of instruction without yielding a 

correct or incorrect answer.  

Finally, there are the DINA and NIDA models which were introduced by 

Junker and Sijtsma (2001) and Maris (1999), respectively. These are 

probabilistic models which consider the slipping/guessing parameters in 

order to produce an estimation of the student responding to the item 
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correctly. These models work on multiple skills assessments, however they 

are conjugative models that require all the necessary skills to be mastered in 

order for the examinee to have a high probability of responding correctly, 

regardless of the student’s proficiency and learning rates. 

Based on the above literature, developing an accurate performance 

estimation model is challenging for the following reasons:  

 Each learning subject may involve multiple skills which are not 

explicitly stated in textbooks and students are expected to acquire such 

skills through problem-solving. Therefore, mastering the skill can only 

be achieved by the student’s performance of tasks that require such 

skills. 

 Most of the cognitive models have been developed by experts. Many 

previous studies in cognitive psychology have shown that experts often 

make false predictions about what causes difficulty for students due to 

‘expert blind spots’ regarding the skills that novices need in order to 

reach aptitude in a particular domain (Pane et al., 2014). This will be 

reflected in an incorrect estimation of the student’s knowledge level. 

 

Previous studies have shown that, due to an incomplete representation of a 

student’s knowledge, the human engineering of these models often ignores 

distinctions in student skills and learning contents (Koedinger and Nathan 

2004; Koedinger and Mclaughlin 2010). This absence will have a negative 

impact on the performance estimation and will reduce the efficiency of the 

ITS. Therefore, improving the existing cognitive models has an immediate 

and significant impact on a student’s learning and has a long-term impact on 

ITS design. The challenge is how to achieve a better intelligent tutoring model 

taking into account cognitive factors.  
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There are several ways to achieve this: 

 Choose the type of assessment items which combine the cognitive skills 

of the student with the item skills and help to develop learning styles.  

 The weaknesses and strengths of a student need to be carefully 

diagnosed towards a  mastery level of a subject by that student (unlike 

many standard ITS models that aim to produce a prediction at the end).  

 The assessment items need to determine the item skill labels in order to 

be able to author targeted learning items and hint messages. Therefore, 

there was a necessity to use a specific assessment model designed to be 

integrated with the student cognitive load. One such type of assessment 

is the dynamic assessment (Kalyuga, & Sweller, 2005).  

The next section will explain the concept of dynamic assessment, how it 

works and its impact on ITS as well as analysing certain work which has 

adopted dynamic assessment within ITS. 

2.4 Dynamic Assessment 
 

The development of dynamic assessment was greatly influenced by L.S. 

Vygotsky who established the role of social context in children’s learning and 

development and the ways by which to improve their performance level 

using the assistance of an adult. By proposing the theory of the Zone of 

Proximal Development (ZPD), which describes the difference between the 

performance of a learner achieved with and without adult guidance, a greater 

number of opportunities have been provided to interact with more 

competent peers and adults such as teachers (Vygotsky, 1980). 

According to Sternberg (2002), there are commonly two formats of dynamic 

assessment: the sandwich format and the cake format. Both formats are 

presented in the form of ‘test–teach–retest’. Sandwich format dynamic 

assessment means that teaching is held between the pre-test and the post-
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test, thus constituting a sandwich-like process. In the cake format dynamic 

assessment, the teaching is a response to the examinee’s answers to each 

item. The main difference between the two dynamic assessment formats is 

that instruction and assessment are separate in the sandwich format dynamic 

assessment whereas they are combined in cake format dynamic assessment.  

An example of combining dynamic assessment to web-based learning is 

provided in a study by Wang (2010) which combines the idea of cake format 

dynamic assessment and the ‘graduated prompt approach’ (Campione and 

Brown, 1987) to develop a multiple choice web-based dynamic assessment 

system. This research treats assessment as a teaching and learning strategy 

and the main feature is the design of a successive and appropriate series of 

hints provided with each incorrect answer. It starts with ‘general hints’ with 

little specific information regarding the solution, gradually becoming ‘specific 

hints’ that offer ‘detailed explanations from which learners can generate the 

correct answer’. This study was developed by GPAM-WATA and the hints 

(referred to as instructional prompts (IPs)) are provided by its dynamic 

assessment items. Although this model managed to improve the learning 

progress of students through learning from instructional hints/assistance to 

achieve the correct answer, it still did not provide enough information about 

the examination item and how many skills were delivered to each student. 

Also, there is an absence in determining the current skills of students and 

whether these match the given item skills since this may lead to wasting time 

by students responding to skills which had already been previously 

mastered.  

This issue has been addressed by another study entitled ‘The Computerized 

Ecology Observation Competence Assessment (CEOCA)’ which was 

developed to assess the ecology observation competence of students and 

adapted the Concept-Map Integrated Dynamic assessment system. The 

inclusion of concept mapping in learning activities summarises the students’ 

understanding after studying instructional material. Therefore, it provides 
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appropriate ways to improve students’ knowledge growth by considering the 

cognitive load for each individual. The test items are presented with real 

pictures, films or concept maps. The CEOCA consisted of three facets: 

knowledge, observation and conceptual relationships. The concept map was 

integrated into this system to scaffold the structure of students’ knowledge. 

The learning tasks were transferred by wireless communication to students 

in the field using handheld PDAs. The students’ responses to tasks and their 

observation records were also transmitted back to the learning system. The 

PDAs functioned as portable notebooks and walking encyclopaedias within 

the learning system. The learning system also provided guided tasks, 

immediate feedback, e-library search functions for mangrove wetland 

ecological systems and an e-diary editor (Pi-Hsia, Hwang, I-Hsiang, 2012). 

This technology successfully managed to determine the students’ skills and 

matched them with the test items. It did, however, ignore certain other 

cognitive factors. For example, it did not consider whether the correct 

answer provided by the students was based on a hint or was derived from 

their current skills and this may lead the student to depend on guessing the 

answer rather than using their own skills to successfully answer the item. 

Therefore, the determination of the student’s performance is not as accurate 

as it should be. 

Although these new technologies seem to show promise, researchers have 

pointed out that students’ learning achievements could be disappointing in 

the absence of effective learning strategies or tools to engage them in 

improving their knowledge structure (Chu, Hwang, Tsai, & Tseng, 2010), 

which is considered as an important component of understanding students’ 

ability and their knowledge level (Novak, 1990). In order to identify the 

advanced scientific ability of various individuals, students need to be able to 

restructure their prior knowledge which is based on everyday experience 

and lay culture.  
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Therefore, our approach aims to extend the ‘Graduated Prompting 

Assessment Module’ of the WATA system (GPAM-WATA) by integrating this 

with an obtained personalised student performance estimation. According to 

Poehner (2008), the ‘graduated prompt approach’ (presented in GPAM-

WATA) emphasises that, when examinees have difficulty in solving problems, 

examiners would help them through mediation (hints). Therefore, the 

interaction between examiners and examinees can help examinees to 

discover or to apply certain principles to independently solve problems and 

to learn more. Hence, it is expected that instructional prompts may play the 

role of a teacher in educating and guiding learners, depending on their 

previous knowledge, towards an expert performance level.  

Furthermore, the developed model determines the current skills of students 

and matches these with the item skills. This allows the system to present only 

the assessment items that the student needs in order to reach the mastery 

level; this approach reduces learning time and facilitates an effective learning 

progress. Moreover, the system estimates the future performance of the 

students and the slipping and guessing parameters based on prior scores 

(these parameters will be explained in the following sections). 

The teaching process will be performed by proposing the appropriate 

learning material depending on the student knowledge level at each stage. 

The post dynamic test will be performed once again to determine their new 

level; hence, the student profile will continue to dynamically update the 

student’s new performance state.  

To implement dynamic assessment with cognitive factors and ITS, certain 

factors  need to be considered. These points are explained in the following 

section: 
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2.4.1 Psychometrics in Assessments 

 

Psychometrics represents a branch of statistics that is dedicated to 

psychological assessment which identifies models with cognitive 

factors. The aim of a psychological assessment is ‘to educate and 

improve student performance and not merely to audit it’’ (Wiggins, 

1998, p. xi) and it should be used not only to ascertain the status of 

learning but also to further learning (Stiggins, 2002). This type of 

assessment is similar in its principles to dynamic assessment. Ho wever, 

most of the effective work outlined in the previous section regarding 

dynamic assessment lacks the adoption of cognitive factors and hence 

does not determine an accurate estimation. As Shepard (2001) noted, 

assessments typically applied to schools do not provide diagnostic 

information about individual students in order to develop their learning 

skills (i.e. these assessments ignore the concept of cognitive factors). 

These kinds of assessments are based on a measurement model called 

the item response theory model (or IRT model) which is used for 

building tests from items and scoring procedures regardless of the skills 

required for each item for each item. Although scores from these 

assessments have proved useful in determining the single latent 

proficiency for each student, these assessments/scores do not permit 

the evaluation of a student’s specific strengths and weaknesses 

necessary for targeted instruction. They therefore cannot be utilised as 

a feedback mechanism which would allow teachers to identify effective 

learning materials that could help to improve a student’s learning.  

In contrast to the traditional models (i.e. IRT), attempts to provide more 

informative scores have been made, such as ‘Knowing What Students 

Know’ (NRC, 2001), which discuss certain measurement models that 

integrate the advances in cognitive and psychometric theories and 

facilitate inferences more relevant to learning. These psychometric 
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models are known as Cognitive Diagnosis Models (CDMs) and can be 

used to adapt the skills, cognitive processes and problem-solving 

strategies involved in an assessment. These strategies are usually 

referred to as Q matrices. 

The CDMs are discrete latent variable models developed specifically for 

diagnosing the presence or absence of multiple skills or the steps 

required for solving problems in a test. With these models, specific 

skills or processes that the students have and which they have not 

mastered can be registered in the student profiles. Such information 

can be used to direct resources and tailor instruction to optimise 

student learning.  

To illustrate the fundamental difference between IRT and CDM 

(psychometric) frameworks, consider the fraction-subtraction task: 

2
 

 
 

 

  
. By applying the IRT model (which will be explained later in this 

chapter), the performance of the task might be described as a function 

of global-subtraction proficiency and students with higher proficiencies 

are expected to have higher probabilities of answering the item 

correctly. On the contrary, a CDM might describe the performance as a 

function of the skills/attributes listed in Table 2.1 which are based on 

those identified by Mislevy (1995) and Tatsuoka (1990) using cognitive 

theory and analysis, as the way a student population of interest solves 

this type of problem. Effective performance of the task requires a series 

of successful implementations of the relevant attributes. The model 

might also describe the implications of the absence of one or more of 

the required attributes. Thus, by adopting cognitive structures in the 

psychometric model, assessments developed and analysed using CDMs 

provide information that is more prescriptive, richer and more relevant 

to the improvement of learning processes. 
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Table2. 1: Attributes in Fraction-Subtraction 

Attributes Distribution 

1 Borrow one from the whole number to a 

fraction 

2 Basic fraction subtraction 

3 Reduce/Simplify 

4 Separate whole number from a fraction 

5 Convert the whole number to a fraction 

 

 

Based on the above, there are two points that need to be considered: 

 

 Firstly, since the concept of psychometrics or CDM aims to identify 

the cognitive factors that will be used to later predict students’ 

performance, integrating these into the design phase of ITS has a 

significant impact. This integration will offer more prescriptive 

information regarding the student to be used towards improving 

their learning process. Such information includes determining a 

student’s skills and comparing these to the item skills, so the model 

is able to detect the missing skills that the student needs in order to 

improve.  

 The presentation of assessment items needs to be identified. There 

are several types of item presentations, such as full questions, 

filling in  blanks and multiple choice (MC). However, this research is 

based on MC assessments. The next section explains the importance 

of and the reasons for including MC assessment items in the design 

of the proposed model.   
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 2.4.2 Multiple Choices in Dynamic Assessment 

 

Although not without its share of criticism, the multiple choice (MC) 

format has been widely used in educational assessments due to its 

ability to sample and accommodate diverse contents (Nitko, 2001; 

Osterlind, 1998). The field of educational testing has developed a 

successful implementation of many test item formats including short 

answer and multiple choice questions. For several decades, the multiple 

choice (MC) type item format has been easy to administer and 

inexpensive to score (whether manually or using automated computer 

systems). Unlike other item formats, the MC item scoring process does 

not involve raters, so there is therefore no rater effect and that might 

lead to one less source of measurement error. The most straightforward 

and common way of analysing MC responses with cognitive diagnosis 

modelling is to treat them as dichotomous data (i.e. the scores are 

either 0 or 1). For instance, this approach has been adapted by de la 

Torre (2006) to analyse the National Assessment of Educational 

Progress (NAEP; 2003) data. Moreover, Birenbaum, Tatsuoka, and Xin 

(2005) and Tatsuoka, Corter, and Tatsuoka (2004) employed MC to 

analyse Trends in International Mathematics and Science Study (TIMSS; 

2003). 

However, such an approach is suboptimal because it does not take into 

consideration the diagnostic insights regarding student difficulties and 

alternative conceptions that can be found in the distractors (Haertel & 

Wiley, 1993; Nitko, 2001; Sadler, 1998). These difficulties are defined 

by guessing/slipping parameters. With MC items, examinees can gain 

scores by chance through successful guessing without acquiring the 

necessary knowledge or, alternatively, they may slip the correct choice 

despite having acquired the skills to answer it. This could seriously 
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negatively affect test validity and reliability because it would introduce 

another source of measurement error (Han, 2012).  

The developed model of this research will adapt the MC assessments 

within its design. This adaption is based on the following points: 

 Due to the significant impact of using MC in educational assessment 

(as explained earlier), most ITS models prefer to use this type of 

assessment, not only because of its ability to stimulate students' 

active and self-managed learning, but also because of its ability to 

provide students with rapid feedback regarding their learning. This 

will contribute towards a reduction in students’ study time and 

help to develop rapid self-learning development. 

 From the teaching aspect, using MC assessments allows scoring to 

be carried out by anyone, or even automatically, thereby increasing 

efficiency, particularly when teaching large cohorts. Further, with 

the ITS, the tutor is helped in the design assessment items through 

the use of quiz tool software, either within or independently of 

Learning Management Systems (e.g. Moodle). With such software, 

the tutor facilitates quiz administration, scoring and feedback 

provision. 

 MC assessments help to measure the student’s cognitive factors 

effectively. Each option provided with an item includes certain 

skills; these skills differ in their complexity and only one option 

contains the appropriate skills required to answer the item. 

Therefore, the student will try to choose the option which may 

match his/her skills regardless of whether it is the right or the 

wrong answer. As a result, the system will detect the student’s 

strengths and weaknesses by comparing the student’s current skills 

with the correct option skills. 
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Since the assessment items used to develop the model of this thesis are 

based on the MC type (due to its significant impact in cognitive 

assessments as explained earlier), there is a necessity to manage the 

problem of guessing/slipping parameters and fix the model towards a 

more accurate estimation of the student’s performance. The next 

section explains the guessing parameters and the effect on student 

performance. 

 

2.4.3 Guessing Parameter with Multiple Choices 

 

In educational multiple-choice testing, guessing is supposed to occur 

when a test taker does not absolutely know the correct response but 

still tries to achieve a correct answer. Several ways can be found to 

address the process for problem-solving and guessing by considering 

the question, whether the guessing process (GP) comes before or after 

the problem-solving process (PSP) (San Martin et al., 2006). There are 

two kinds of guesses: random and logical. A random guess is based 

completely at random and not on any other information whereas a 

logical guess is built on several processes of problem-solving, none of 

which alone or together are sufficient to lead directly to a correct 

response. In consideration of both random and logical guesses as 

outcomes of the guessing process, several works have tried to 

parameterise and interpret the guessing process in IRT models (Han,  

2012). 

Therefore, test developers have attempted to eliminate the guessing of 

an answer by imposing special testing policies such as giving partial 

points to omitted items, assigning penalties to unsuccessful guesses 

and/or increasing incorrect item options attractive to low-proficiency 

examinees. However, it is relatively difficult to completely prevent 
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examinees from obtaining points through successful chance guesses on 

MC items.  

Further, when the guessing parameter is discussed, the slipping 

parameters should also be considered, as the student might slip or 

attempt the wrong answer/option even if they have acquired the 

necessary skills. This might affect the overall performance estimation. 

Therefore, the developed model of this thesis has adopted the guessing 

parameters in its implementation; the model is able to work out 

whether the student has guessed the answer. The model compares the 

student’s current skills against the given item skills. Therefore, if the 

student attempts to answer correctly without having mastered the 

required skills, the parameter of guessing will be included. Likewise, if  

the student has mastered the skills and incorrectly attempts the 

answer, the slipping parameter will be considered. Including such 

parameters within the developed model will increase the accuracy 

probability of a student’s performance estimation and thus improve 

their learning process. 

 

2.5 Q Matrix with multiple choices items 
 

The Q-matrix is a Boolean matrix describing the relationship between items 

and skills (Tatsuoka, 1983). A cell value of 1 at row i, column j means that the 

item i requires the use of skill j. A cell value of 0 means otherwise. Table 2.2 

shows such a relationship between two testing items and four associated 

skills. Notice the first item requires only one skill and the second item 

requires two skills simultaneously. 
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Table2. 2: Sample Q Matrix 

 

 

 

To formulate the Q-Matrix for MC assessment with different skills items, an 

example of four coded options is given in Figure 1; the skill specifications for 

these options are given in Table 2.3. By defining the skills and determining 

the appropriate tasks, options can be developed to be more relevant and 

informative. For this example, the different options for this item were 

constructed in consultation with an experienced mathematics educator 

according to the MC-DINA model (Junker, & Sijtsma, 2001). The option with 

the largest number of required attributes (i.e. D) is the correct option/key. As 

can be seen from this example, in addition to the key, some options are also 

coded under the framework of the Q matrix. 

 

 

                                               Figure 2. 1: A Fraction-Subtraction Item 

 

Table2. 3: Q matrix of single item 

Option Skill 1 Skill 2 Skill 3 

A     

B      

C      

D       

 

Item/Skill Add Sub Mul Div 

2*8 0 0 1 0 

2*8-3 0 1 1 0 
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The options/choices reflect the knowledge scale to obtain the proficiency 

level of an examinee. The Bear Assessment System (Wilson & Sloane, 2000) 

utilises construct maps to create the options where the mapping to 

proficiency levels is determined a priori. That is, the knowledge states 

represented by the options should be in the subset of the knowledge state 

that corresponds to the correct choice. In the example above, option C was 

written to reflect mastery of the skills of borrowing from the whole and basic 

fraction subtraction but not that of reduction/simplification. By presenting 

the options in this manner, examinees with the same given skills have a 

greater ability to choose specific options. Q-matrices for the different coded 

options are combined in the modified Q-matrix given in Table 2.4. The entry 

in each cell indicates the number of times the skill is specified in the options. 

For example, the modified Q-vector for item 10, [1 1 0], indicates that the 

correct option requires skills 1 and 2.           

Table2. 4: Q Matrix for items-skills 

 

 

 

 

 

 

 

 

 

 

2.5.1 Scoring Procedure 

 

Multiple choice testing with binary scoring is the most commonly used 

approach for educational assessments. A score of one refers to the 

Item Skill 1 Skill 2 Skill 3 

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 0 0 0 

5 0 0 0 

6 1 0 0 

7 0 1 0 

8 0 0 1 

9 0 0 0 

10 1 1 0 
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correct response and zero to any incorrectly answered item. However, 

as several authors have noted (Tatsuoka, 1983), the score of one does 

not always reflect the knowledge level of examinees. Many erroneous 

rules occur to produce responses that coincide with the correct answer. 

Therefore, the performance of examinees cannot be precisely 

determined from their proficiency level. According to the literature, 

stochastic models allow for the possibility of ‘slips’ and ‘guesses’ in 

answering any item. A slip could occur when an examinee who has 

acquired the required attributes fails to correctly answer a subtask or 

fails to perform the item correctly. A guess refers to correctly answering 

an item or completing a subtask without possessing one or more of the 

required attributes. The models we have considered are largely defined 

by whether slips and guesses are allowed to take place at the subtask 

level or at the item level. These models are briefly introduced in the 

following section using the nomenclature for these models in Junker 

and Sijtsma (2001), with more mathematical descriptions given in the 

next section. 

2.6 Students' Cognitive Models 
 

2.6.1 The DINA model 
 

The deterministic inputs, “noisy” and “gate” (DINA) model has been 

broadly used where the probabilities of both slipping and guessing are 

determined at the item level. It is a popular conjunctive CDM which 

assumes that a student must have mastered all the required attributes in 

order to correctly respond to an item in an assessment (Junker & Sijtsma, 

2001). 
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To estimate students’ knowledge of attributes, we require information 

regarding which attributes are required for each item. For this, the Q-

matrix is used, which is a J×K matrix where    =1 if item j requires 

attribute k, and 0 if not. J is the number of items and K is the number of 

attributes in the assessment. 

A binary latent variable     indicates respondent i’s knowledge of 

attribute k, where    =1 if student i has mastered attribute k, and 0 if 

they have not. Then, an underlying attribute profile of student i,    , is a 

binary vector of length K that indicates whether or not the student has 

mastered each of the K attributes. 

The deterministic element of the DINA model is a latent variable      that 

indicates whether or not student i has mastered all attributes required 

for item j: 

   =∏  
  

    
    ………….. (2.1) 

If student i has mastered all the attributes required for item j, then    =1; 

if the student has not mastered all of the attributes, then    =0. 

The model allows for slipping and guessing defined in terms of 

conditional probabilities of answering items correctly (Yij=1) and 

incorrectly (Yij=0): 

  =Pr(Yij=0|   =1) 

  =Pr(Yij=1|   =0) 

The slip parameter    is the probability that student i responds 

incorrectly to item j although all the required attributes have been 

mastered. The guess parameter    is the probability that student 
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i responds correctly to item j although all the required attributes have 

not been mastered. 

It follows that the probability of a correct response of student i to 

item j is: 

               P (                 
     

     ……… (2.2) 

Applications of the DINA model, along with multiple choice test 

algorithms for estimation, are given in Junker and Sijtsma (2001), 

Tatsuoka (2002) and de la Torre and Douglas (2004). The DINA model is 

also discussed in Haertel (1989) and Doignon and Falmagne (1999). The 

representation of the DINA model strategy is shown in Figure 2.2. 

 

 

 

      

 

 

 

 

Figure 2. 2: DINA model Strategy 

 

2.6.2 The NIDA Model: 
 

This model was presented by Maris (1999). It also considers slips and 

guesses but at the subtask level rather than the whole item as shown: 

Let      indicate whether the ith subject correctly applied the kth 

attribute in completing the jth item.  
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However, this model differs from the DINA model in which the slip    

and guessing    parameters are determined within the attribute rather 

than by item and are defined by the following: 

    = P (     = 0 |    = 1,     = 1)  

    = P(     = 1 |     = 0,     = 1)  

By assuming the     s are independent conditional on    , the item 

response function which relates the probability of a correct response to 

the latent attribute pattern has the form shown in equation (2.3): 

P(                  ∏   
                           

 ∏              
          

    …………….. (2.3) 

 

  

                       

 

 

 

 

                                         Figure 2. 3: NIDA Model Strategy 

 

Neither the DINA model nor the NIDA model consider the possibility 

that examinees may solve a problem in different ways. According to 

Mislevy (1996) in his analysis of fraction subtraction data, he 

considered the notion of multiple strategies in which a strategy refers 

to the set of required attributes. Moreover, these two strategies do not 

consider the proficiency level for each examinee and, therefore, they do 

not provide an accurate estimation for the guess and slip parameters 

for each individual. Our work extends the DINA model strategy by 
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adding the proficiency level of each student with regard to their correct 

and incorrect responses for each item. 

 

2.6.3 Item Response Theory IRT 
 

In psychometrics, item response theory (IRT) is a paradigm for the 

design, analysis and scoring of tests and questionnaires. It is a theory of 

testing based on the relationship between an individual’s performances 

on a test item and the test taker’s levels of performance on an overall 

measure of the ability that item was designed to measure. It is a normal 

logical form developed by Rasch, (1960). However, Birnbaum (1968) 

created a logistic version of the IRT model that included three 

parameters: 

  (Ɵ)=  +(1-  )
 

         (    ) 
……………………(2.4) 

 

Where Pi(θ) is the probability of a randomly chosen examinee at 

proficiency level θ answering item i correctly, and the three item 

parameters a, b and c are often called by their practical interpretations: 

discrimination, difficulty and guessing, respectively. This formula 

implements Birnbaum’s idea by including a c-parameter in the model to 

allow for the statistical adjustment of IRF for the non-zero performance 

of low-proficiency examinees on multiple-choice (MC) items. 

2.6.4 Knowledge tracing (KT) 
 

The knowledge tracing (KT) procedure was discovered by Atkinson 

(1972) and developed by Corbett & Anderson (1994). It provides a 

powerful ability to track individual differences with each knowledge 

component (KC)/skill and this can then be used to make personalised 
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decisions regarding the KCs a student has learned and which KCs need 

more practice. In KT (Corbett's version), there are four parameters fit to 

each KC: initial learning, learning rate, guess and slip parameters. These 

four parameters are interpretable, so it is easy to understand their 

effects on performance in the model as they use a student’s prior 

history of performance with items for a KC to feed into the model 

equation by updating the current estimate of student learning based on 

the student’s performance. The KT model has been used extensively by 

commercial tutors in addition to many experimental studies. While KT 

does feature desirable properties, it does not support the problem of 

multiple KC/skills. This prevents the tutor designers from creating 

practice steps where the student’s response requires multiple KCs.  

 

2.6.5 Learning Factors Analysis (LFA) 
 

Multiple knowledge skills have been tackled by the Learning Factors 

Analysis (LFA) model (Cen, Koedinger & Junker, 2006). This model 

enables the evaluation of cognitive models and the analysis of student-

tutor log data. It combines a statistical model and human expertise to 

measure the difficulty and learning rates of the given skill per item. It 

supports multiple skills as it captures the Q matrix of each KC, predicts 

student performance in each KC practice and identifies over-practised 

or under-practised KCs. The statistical model is shown below:  

m (i, j𝟄KCs, n)=  +∑               ………………………..(2.5) 

P(m)= 
 

        ……………………………….……..…………….…... (2.6) 

Where m is a logit value representing the accumulated learning for 

student i (ability captured by α parameter) using one or more KCs j. The 

β parameters capture the easiness of these KCs, and the benefit of the 
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frequency of prior practice for each KC is a function of the n of prior 

observations for student i with KC j (captured by the addition of γ for 

each observation). Equation 6 is the logistic function used to convert m 

strength values to predictions of observed probability. It captures the 

KC easiness with a single parameter for each KC and the learning rate 

for each KC with a single parameter for each KC. 

However, the model states that all students accumulate learning in an 

identical fashion and ignores the correct and incorrect responses 

produced by the student. It therefore has very little power to 

dynamically differentiate between individual KCs for particular 

students. So, the LFA model is unsuitable for adaptive learning 

algorithms.  

Because of the possible advantages of LFA, it has been formulated to a 

version that could be used adaptively. This reconfigured version is 

termed the Performance Factors Analysis (PFA).  

 

2.6.6 Performance Factors Analysis (PFA) 

 

PFA is a new alternative student modelling approach presented by 

Pavlik et al. (2009). It is a variant of learning decomposition and is 

based on reconfiguring the Learning Factor Analysis (LFA) (Cen, 

Koedinger & Junker, 2006). PFA provides a flexible adaptability to 

create the required model to be used in any tutoring system. In 

addition, it provides information regarding the student’s performance,  

which is considered to be the strongest indicator of a student’s learning 

process. Performance is an essential characteristic of student learning 

because correct responses strongly indicate the current ability of the 

student is already high. Furthermore, correct responses may simply 
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lead to more learning than incorrect responses, since the production of 

a correct response may increase during the answering process, or 

perhaps may be due to ineffective review procedures after incorrect 

responses. 

However, although it is a good start to enable the model to be sensitive 

to correct answers, it also seems useful to make the model specifically 

sensitive to incorrect answers. 

Adapting sensitivity to incorrectness allows incorrectness to measure 

student learning in an inverse to correctness. Together, the matching of 

both correctness and incorrectness in the model will cause it to be 

sensitive to not only the quantity of each but also the relative ratio of 

correct to incorrect. This will achieve a better estimation of the learning 

ratio even when the student fails to answer any item correctly. 

Briefly speaking, this takes the form of a standard logistic regression 

model with the student scores being independent variables and the 

performance being the dependent variable. It recomposes LFA by 

dropping the student proficiency variable and replacing the skill 

variable with the question identity (i.e. one parameter per question). 

The model estimates a parameter for each item representing the item’s 

difficulty, and also two parameters for each skill reflecting the effects of 

the prior successes and prior failures achieved for that skill. 

Equation (2.7) shows the PFA logistic form; its variable, α, (which was 

in LFA) has been removed from the model as it does not provide an 

estimation ahead of time in adaptive situations. However, as noted by 

Corbett, models that do track subject level learning variability can 

greatly improve model adequacy.    has been previously explained, 

        tracks the prior successes for the KC for the student,         

tracks the prior failures of the given skill for the student, and the    and 
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   scale the effect of these observation counts. Equation 2 is still applied 

for conversion to probability predictions. (Again, the model can be used 

in a compensatory fashion for observations requiring multiple KCs by 

summing the    and    and    frequency components for all j KCs 

needed). We call this model the Performance Factors Analysis (PFA). 

                                 

   ∑                       

 

     

… (2.7) 

The probability of the performance: 

P(   = 
 

      
 ………………..( 2.8) 

The below table summarises all the explained models and compares 

these with the developed model – the Cognitive Factor Analysis (CFA), 

which will be explained in detail in chapter three. 

Table2. 5: Summary of the cognitive models 

  Model Type Parameter Output Limitations 
IRT Statistical Student proficiency and 

item difficulty 
Determines the 
student’s current 
performance 

Does not give performance future 
estimation, does not consider the 
cognitive factors (slipping/ guessing 
factors and students skills vs. item 
skills) 

KT Probabilistic Initial learning, learning 
rate, guess and slip 
parameters 

The probability of 
having the correct 
answer for the 
next item 

Does not support multiple skills items 
and does not consider the prior 
incorrect scores 

NIDA Probabilistic Guessing/slipping 
parameters of student’s 
current skills. 

The probability of 
providing the 
correct answer 
based on 
slipping/guessing 
parameters for a 
single skill rather 
than the whole 
item 

Only gives an estimation of the single 
skill rather than the whole item. 
Moreover, it does not consider the 
item difficulty level and the student’s 
incorrect scores. This may lead to an 
incorrect estimation of the guessing 
and slipping. 
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DINA 
 
 
 
 
 
 
 

Probabilistic Guessing/slipping 
parameters of current 
student skills 

The probability of 
having the correct 
answer based on 
slipping/guessing 
parameters for 
the whole item 
with multiple 
skills. 

It is a conjugative model that requires 
all the necessary skills to be mastered 
in order for the examinee to have a 
high probability of responding 
correctly, regardless of the student’s 
proficiency and learning rates. 

LFA 
 
 
 
 
 
 
 
 
 

Statistical 
 
 
 
 
 
 
 

Student proficiency, 
prior correct scores, 
item difficulty level and 
success rate, supports 
the multiple skill items. 

More accurate 
estimation of the 
student’s 
performance for 
the next item  

Does not support guessing/slipping 
parameters, does not support multiple 
skills items and does not determine 
whether the student has achieved the 
answer based on their own knowledge 
or has slipped the answer. 
Furthermore, it ignores the prior 
incorrect scores. 

 
PFA 

Statistical Item difficulty, prior 
correct/ incorrect 
scores, success/failure 
rate and supports 
multiple skills items. 

More accurate 
estimation of the 
student’s 
performance for 
the next item as it 
considers the 
prior incorrect 
score and failure 
rate for the 
student. 

Does not support slipping/guessing 
factors, does not support skills 
correlations. As these are two skills 
highly correlated to each other, the 
student who answers one of them 
correctly will most likely also answer 
the other item correctly. However, this 
may affect the performance prediction 
in the case where the student attempts 
one of these skills incorrectly and gets 
the other one correct, as the model 
does not decide whether this 
behaviour is learning from failures or 
performance from successes. 

 

Table 2.5 lists all the models that are useful tools in ITS and which have 

been used extensively in the literature. As has been explained, each 

model has its own disadvantages which negatively affect the estimation 

of student performance and the student learning process. Therefore, 

the developed model of this research, called the Cognitive Factor 

Analysis (CFA), overcomes all the challenges listed in the table above. 

CFA is based on the dynamic assessment technique and it uses multiple-

choice items, i.e. it supports the guessing and slipping parameters. 

Furthermore, it supports multiple skills items with item correlation. It 
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first determines the student’s current skills and compares these with 

the item skills. Moreover, it considers the prior correct scores as well as 

the incorrect scores towards a better estimation of the student’s latent 

performance. Since the model uses the dynamic assessment type, it 

adopts the concept of providing hints/help for the student to 

demonstrate the function of having a tutor. Hence, the estimation of the 

student’s correct answer will be based on guessing or receiving a hint. 

Likewise, the incorrect answer estimation is based on slipping or the 

lack of knowledge/skill. This ensures a more accurate performance 

prediction for the next item answer. Moreover, chapter three explains 

in detail the model structure, factors and its algorithm. 

2.7 Examples of using DINA and PFA models 
 

The significant impact of both DINA and PFA models in the field of ITS does 

not only feature in terms of student performance estimation but also by way 

of the analyses of students’ strengths and weaknesses.   

Despite the fact that these two models have certain limitations, which are 

listed in table 2.5, the developed model of this research, namely CFA, is based 

on the designs of DINA and PFA. CFA will expand the concept of slipping and 

guessing parameters of the DINA model and the concept of using a student’s 

prior PFA success/failure scores to produce an improved model for an 

accurate latent performance inference. 

Although the DINA and PFA models will be fully explained in chapter three, 

this section has briefly demonstrated how both the PFA and DINA model 

work to offer an understanding to other researchers regarding how cognitive 

factors are excluded and applied. 

Since both models use multiple-choice assessments, they are binary 

representation models that use binary data (0 or 1). Both models use two 
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sets of data; one is the Q matrix, which was explained earlier in section 2.5, 

and the second is the student’s prior scores data. The Q matrix consists of 

four skills items, while the student’s data set includes the student’s ID, the 

item’s ID and the answer (which is either 1 for a correct answer or 0 for an 

incorrect answer). This section used a sample of the data set used to develop 

the CFA model in chapter 3, section 3.5.  

Table2. 6: Q matrix sample 

Item ID Skill 1 Skill 2 Skill 3 Skill 4 

1 1 0 1 0 

  

Table2. 7: Student A’s prior score 

Student ID Item ID Answer 

A 1 1 

 

The DINA model will implement the following steps in its analyses: 

 Firstly, analysing the prior scores of the student to determine their 

current skills    . Several approaches can be used to determine the 

student’s current skills from prior scores. Such approaches are 

explained in detail in chapter 3, section 3.4.2. However, the DINA model 

uses Maximum Likelihood Estimation (MLE).  

Table2. 8: Student A’s current skills 

Student ID Skill 1 Skill 2 Skill 3 Skill 4 

A 1 1 0 1 

 

Therefore, Table 2.8 shows that student A has not mastered all the given 

skills and lacks skill 3. 

 Secondly, determining the student proficiency level    : By applying 

equation 2.1: 
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   =∏  
  

    
     

Since : 

     1 1 0 1  

 and,     = 1 0 1 1 

Therefore, the proficiency level    =   *     *  =0 

i.e. the proficiency level of student A answering item T1 is 0. 

However, the student has attempted this item correctly, therefore, the 

DINA model analysed the guessing and slipping parameters for item T1:  

Table2. 9: Guessing and slipping parameter values 

Item ID Slipping    Guessing    

T1 0.24 0.53 

 

 By applying the DINA model equation in 2.2, 

P (                 
     

      

=                   

=0.53, which means the probability of this student answering an item 

with the same given skills as item T1 is 58%. According to table 2.7, this 

student has attempted the answer correctly, despite the fact that 

he/she lacks in one skill and the proficiency level is 0. This means that 

there is a probability that the student has guessed the answer as he/she 

does not possess sufficient skills to answer the item. 
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PFA : 

PFA simply applies the logistic regression formula to the Q matrix and 

student data set to estimate the coefficients associated with equations 2.7 

and 2.8: 

                                  ∑              
 

     

         …….(2.7) 

       P(  = 
 

      
…….(2.8) 

The coefficient estimates are as follows (the process of theses estimations 

will be explained later in chapter four, table 4.4): 

Table2. 10: PFA coefficient estimates 

Skill          

Skill 1 0.45 0.38 0.28 

Skill 2   -0.11 0.27 0.42 

Skill 3 0.37 0.33 0.43 

Skill 4 0.17 0.38   0.104 

 

To apply these estimated coefficients to the PFA formula and estimate the 

probability of achieving the correct answer, PFA supposes that student A has 

no prior knowledge for answering the first item, therefore the 

success         /failure(         scores= 0. 

Let us suppose that student A is attempting to answer item T1, which has 

skills 1, 3 and 4. According to formula 2.7, the performance for item T1 can be 

calculated as follows: 

                       ]+                        ]+     

                   ]=0.99 
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The probability of student A answering item T1 correctly is: P (   = 

 

        =0.72 

According to table 2.11, the student has scored the item correctly, therefore 

the prior success score           is 0 and prior failure score (         is 1. The 

same process of calculation has been made for item T2  and the probability of 

having the correct answer P(  ) is 0.74; hence, the probability value is 

increasing. However, the student has answered the item incorrectly and 

scored 0 (as shown in table 2.11).  According to PFA theory, having the score 

zero does not represent a failure but a lack in knowledge. In such cases, the 

probability of a student’s performance is increasing as the student’s learning 

is becoming higher by the addition of the failure rates of the given skill.  

This section has used the parameters, utilised later in chapter four, which 

have been estimated after applying the data to the formula and running the 

code. However, all the explanations of estimating the parameters and 

calculating the success and failure rates are fully described in chapter three, 

as this example simply serves to demonstrate how the PFA and DINA models 

work with the given data. 

Table2. 11: PFA predictions’ values 

 

Student ID Item ID Skills Score 

A T1 1011 1 

A T2 1001 0 

 

2.8 Conclusion 
 

This chapter lists the related students’ estimation models, the students’ 

cognitive parameters and the scoring procedure employed. It has shown that 
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a students’ cognitive model is the main factor in the Intelligent Tutoring 

System and highlighted the essential cognitive factors, such as the item 

difficulty, student skills and guessing/slipping parameters and how the Q 

matrix is applied. A literature review has been presented for the techniques 

used in ITS. Finally, the approximation methods used to estimate the 

required probability of knowledge level and learning have been described.
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Chapter Three: Cognitive Factor 

Analysis (CFA) 

 

 

3.1 Introduction 
 

This chapter presents the structure of the proposed model “Cognitive Factor 

Analysis” (CFA) and its mathematical background. It begins by exploring the 

student behaviour analyses and their impact on the quality of performance 

estimation, then moves on to consider the research problem, including the 

issues with the PFA and DINA models, and ways of achieving better student 

performance estimations, depending on multiple factors, to attain the correct 

item answer including the guessing and slipping parameters. Later, the 

section explains the types of parameters used in CFA in terms of whether 

they are descriptive or predictive, followed by consideration of all the  

components which contribute to the CFA framework, including the model 

block diagram and its developed algorithm. Finally, the data used to fit the 

developed model parameters will be discussed. 

3.2 Analysing student behaviour 
 

In academic settings, specifying a proper definition of student behaviour 

could help to define their goals. Since student behaviour is comprehensive, as 

reflected by their past behaviours, carrying out proper analyses therefore 

leads to an accurate performance estimation because such analyses may seek 

to define the following: 
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(1) The cognitive processes that underlie students’ actions; 

(2) The differences between the students’ current skills and expert skills;  

(3) The students’ behavioural patterns or preferences; or  

(4) The students' characteristics. 

 

As discussed in the previous chapters, existing frameworks have been 

developed for estimating students’ performance based on their prior 

scores/behaviours. However, most of these lack true efficacy in estimating 

student behaviour as they do not adopt cognitive factors. As a result, a 

student’s performance estimation will be negatively affected. Therefore, in 

order to achieve an accurate latent performance inference, student behaviour 

should be defined carefully. To achieve this goal, the student’s cognitive 

factors, which play an essential role in improving such analyses, are included 

in the design. The following points explain the cognitive factors and their 

importance:  

 Importance of guessing and slipping parameters:  Most cognitive 

frameworks, such as the DINA/NIDA models, have used the concept of 

guessing/slipping parameters. In MC assessment, the student has to 

choose the correct answer from multiple options. However, it is still 

possible that the student might guess the correct answer even without 

possessing the required skills which should match the item skill. 

Likewise, the student might slip and give the incorrect answer even 

though s/he has acquired the necessary skills.  Therefore, without 

considering the slipping/guessing parameters, the estimation of 

student performance might give a false indication about the student’s 

knowledge level and this might negatively affect the improvement of 

students’ skills and the overall learning progress. 
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 Importance of hints/help parameter: Hinting is an important teaching 

factor in one-on-one tutoring, used when the student gives an 

unexpected answer to an assessment item. The tutor therefore needs to 

align the hinting strategy with the student’s need while making the 

strategy fit the high level tutoring plan and the tutoring context. In 

many student-oriented tutoring systems, the machine tutor will offer 

hints when the student asks for help, e.g. Andes (Gertner et al., 1998).  

On the other hand, and as explained earlier, the developed model (CFA) 

uses MC items embedded in the dynamic assessment. In the educational 

environment, dynamic assessment refers to assessment that is 

specifically intended to improve and accelerate the student learning 

process through teaching students within the assessment process.  

Therefore, most models use hints as a part of the teaching process. This 

empowers the students to be self-regulated learners which is the core 

goal of the ITS (Pintrich & Zusho, 2002).  Further, the intelligent tutor 

should provide an automated hint (help) attached to each item which 

can be requested whenever needed, so that the model can perfor m the 

role of the teacher in the classroom. Therefore, CFA provides one 

constructive hint per item which appears when the student requests it 

or when s/he attempts an incorrect choice. In addition to featuring 

hints and based on comparing the current student’s skills against the 

item skills, the model can determine whether the student has really 

learnt from the hints or s/he needs further training. If the student has 

asked for a hint and attempts the item correctly, then the system will 

consider this as learning and that the student does not therefore 

require any further training. However if s/he missed the correct answer 

after receiving a hint, then this student is deemed to need further 

practice regarding this skill. 

Although making hints available ensures that the student is directed 

towards attempting the correct answer, this might affect the student’s 
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latent performance estimation. With hints, the estimation depends on 

determining whether the student attempts the correct answer based on 

learning from hints (without acquiring the necessary skills) or 

depending on his skills (without asking for a hint). Therefore, CFA has 

attached the hint factor to the correct answer to estimate the student’s 

performance. This extension will ensure a better learning (from hints) 

and more accurate knowledge estimation.  

 

 Prior correct/incorrect scores: The students' prior knowledge (scores) 

provides an indication of the alternative conceptions as well as the 

scientific conceptions possessed by students. Most tutoring models 

consider only the number of correct scores of the student to make the 

decision regarding performance. However, research has shown that the 

number of incorrect scores can also provide a significant impact on the 

student’s knowledge estimation, especially when using the hinting 

strategy. The Performance Factor Analysis (PFA) model considers the 

prior incorrect scores as well as the prior correct scores for its 

estimation and has shown promising results.  However, PFA has one 

disadvantage,  it does not consider the hints parameters as well as the 

guessing/slipping parameters, although it uses MC assessments. 

Therefore, CFA extends PFA by adding the hint/guessing/slipping 

parameters to make the model capable of determining the student 

knowledge skill effectively with multiple choice assessment items  and 

to make the prediction more cognitively diagnostic to be applied in 

multiple applications.  

 

 Number of choices provided in MC items: Multiple choice items consist 

of a stem, the correct answer, the keyed alternative and distractors. 

The stem is the initial part of the item that presents the item as a 

problem to be solved, a question to be asked of the respondent or an 
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incomplete statement to be completed, as well as any other relevant 

information. The options are the possible answers that the examinee 

can choose from, with the correct answer referred to as the key and the 

incorrect answers termed distractors. Only one answer can be keyed as 

correct. The goal of MC items in ITS is to improve the student’s learning 

process by measuring precisely the student’s performance against 

his/her acquired skills; therefore, the number of choices provided per 

item depends on the number of keyed alternatives and the number of 

distractors. The more keyed alternative choices that are provided, the 

more accurate the estimation of the student’s knowledge will be. The 

keyed alternative choices help the students to make a logical guess 

based on the choices available; therefore, the likelihood of the random 

guess is very small. In such cases, the student can also learn from the 

choices. Hence, it is important to provide fewer distractors and more 

alternatives and thus offering more alternative choices reflects a 

stronger assessment item.  

Therefore, proper adaptation of the factors explained above in the design 

phase of ITS will help to properly analyse student behaviour and 

subsequently improve the overall latent performance estimation of students.  

3.3 Research problem 
 

A student’s performance is an essential factor in the learning process; it 

reflects several behaviours, such as the student’s behaviours, learning curves 

and the quality of learning resources. Furthermore, student performance is a 

major part of Intelligent Tutoring Systems, since it depends on the 

observation mechanisms which have been captured by the student’s 

performance (e.g. the correctness of the student response compared to the 

given item skills) and then uses those parameters to estimate the student’s 
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underlying hidden attributes, such as goals, preferences and knowledge 

inference.  

Recently, ITS have attracted major interest among researchers and therefore 

several satisfactory estimation models have been developed towards better 

inference prediction. However, there still remain certain challenges that 

could be addressed, such as the inability to feature the proper types of 

predictors in the model against the number of the item skills being used.  In 

order to make a better decision on model usefulness, throughout the design 

phase process certain questions need to be considered for practical model 

selection: 

1. Which factors of the data are estimated as predictive parameters and 

which are estimated as descriptive parameters? 

2. How is the student’s latent knowledge inference estimated according to the 

given guessing and slipping parameters along with prior score records? 

 In this section, we focus our efforts on the following two aspects:  

 We compare two competing student cognitive models: the DINA Model 

and the PFA model. We list the issues relating to each of them and, 

based on this, our developed model is presented which will tackle these 

issues.  

 Furthermore, for PFA, a new modified version is proposed by the 

addition of the hint factor in order to increase the performance 

estimation accuracy.  
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3.3.1 DINA Model: 

 

The DINA model divides each item into those that acquire all the 

required attributes and those that do not. It can be represented as a 

latent response model in which the slips and guesses appear at the item 

level, rather than at the subtask level. 

 

3.3.1.1 Issue with the DINA Model 

 

The issue with the DINA model is that it is a conjugative model which 

requires all the necessary skills to be mastered in order for the 

examinee to have a high probability of responding correctly, regardless 

of the student’s proficiency and learning rates. The student might 

achieve the correct answer, depending on h/is/er learning from failures 

or hints, regardless of mastering the given skills. In this case, the model 

should not consider the guessing probability for this student.  

3.3.2 PFA Model 
 

PFA is a parameterisation of the Linear Logistic Test Model that 

predicts performance on the current item using the entire history of 

success and failure on previous items addressing the same skill.  

3.3.2.1  Issues with PFA Model 

 

     Identifying the skill correlations: 

As explained earlier, the classic PFA model predicts student 

performance depending on the item difficulty and the 

student‘s prior success or failure on a number of skills 

required for this item. Although this approach supports 
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multiple skills, it ignores the correlations between other 

skills.  

This assumption is reasonable and easily understandable 

since, if there are two skills that are highly correlated to each 

other, the student who answers one of them correctly will 

most likely answer the other correctly as well. However, this 

may affect the performance prediction in the case where the 

student attempts one of these skills incorrectly and answers 

the other one correctly, so the model needs to determine 

whether this behaviour can be viewed as learning or as 

improving performance. Therefore, there must exist a way 

by which to identify student behaviour as to whether he/she 

might have slipped or guessed the answer. In this case, the 

model assumes that the probability that a student 

successfully solves a problem might also depend on his 

proficiencies in other skills. However, there is no easy way 

by which to identify which other skills are important to a 

given skill; therefore, in this study, we used all skills. 

     Student’s correctness predictions: 

Since PFA depends on a student’s prior records, there are 

therefore other factors that need to be considered in the 

student’s historic records, such as the prior used hints. Hints 

are considered to be an essential factor that helps students 

in learning and directing him/ her to the correct answer. On 

the other hand, it also enhances the student’s overall 

performance. In this case, by considering the hints factor, the 

performance accuracy might be changed according to the 

student’s prior answer with or without using hints. In a 

binary performance model, a student would receive a ‘1’ if 
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they solved the problem correctly on their attempt with or 

without asking for a hint. Therefore, the performance 

estimation may differ, as the student requesting a hint is less 

likely to understand the skill. To solve this issue with PFA, 

we created a scoring method that would split the success 

rate into a prior correct answer and prior used hints. 

By applying this method, CFA will estimate whether the 

correct answer is achieved based on the student’s current 

knowledge or by using a hint. This will enable the model to 

estimate the strength level of the student knowledge when 

answering the item correctly as the student might have 

learnt from the given hint and made a logical guess.  

In this case, achieving the correct answer based on a logical 

guess will increase the student skill level even if s/he 

previously lacked in this skill. Therefore, the level of 

complexity of learning materials may change to reduce the 

number of practices the student might need. This will have a 

huge impact on a reduction in the student’s study time.  

The next section explains the way of calculating the prior 

correct/failure scores and the prior used hints according to 

descriptive or predictive manner. 

3.4 Prediction of the outcomes versus description/evaluation 

of the inputs 
 

The estimation of model parameters, either in a predictive or descriptive 

manner, is an important aspect of model building; however, it is often 

overlooked or ignored. 
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Deciding the way in which the data is analysed and the parameters are 

constructed could have an important effect on the structure of the model. To 

clarify this, consider the following examples: 

A new student has been described by h/is/er teacher as intelligent, self -

confident and hard working. Consider these two types of questions: 

a- Description/evaluation: how does the given description impress you in 

terms of academic ability? 

b- Prediction: what is your estimate of the grades point average that this 

student will obtain? 

There is an important difference between these two questions. In the first, 

the input is evaluated while, in the second, the output is predicted. An 

evaluation is the description of quality for which data is given. Since 

prediction is the estimation of future performance, the prediction should 

therefore be more regressive than evaluation. The second question has 

greater uncertainty than the first. However, in the statistical theory of 

prediction, the description is more likely to be inaccurate or the prediction 

will be invalid. On the other hand, the observed equivalence between 

prediction and evaluation would be justified if prediction accuracy was 

perfect, which depends on the prior records/observation of each student 

(Yudelson, M., Pavlik Jr, P. I., & Koedinger, K. R. (2011, July).  

Table3.1 Table 3.1: Predictive and Descriptive coding example 

Student ID 
Item No. Answer Pred1 Pred2 Pred3 

A 1 1 1.00 0 0.60 

A 2 0 0.50 1.00 0.60 

A 3 0 0.33 0.50 0.60 
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A 4 1 0.50 0.33 0.60 

A 5 1 0.60 0.50 0.60 

 

Table 3.1 presents an explanation of the descriptive and predictive 

parameters. It gives the prior scores of student A and three ways to 

determine the student’s behaviours (Pred1, Pred2 and Pred3). Pred1 is the 

mean success rate - mean of correct - over prior user/item including the 

current one. Pred2 is the mean success rate over the items which are strictly 

prior to the current one. Pred3 is the percent correct over all user trials. An 

example of strictly predictive coding of the data is Pred2 because it considers 

that there is no information regarding the user and gives an estimation of 

his/her performance. Therefore, a model that estimates a parameter for 

Pred2 would capture the predictive nature of this value without any prior 

information. While Pred1 and Pred3 are descriptive codings since they give 

overall information regarding the user’s behaviours and there is no universal 

recipe for deciding when to include predictive or descriptive parameters into 

the model. However, for most user modelling and student performance 

estimations, predictive coding is more suitable and reasonable as the output 

of the model should be estimated/predicted more than observed. 

For our developed model, these parameters can define the student skills and 

be combined with the item skills excluded from the Q-matrix. As described in 

chapter two, the construction of the weight matrix Q (usually called Q-

matrix) involves the qualitative preliminary work of experts: 

Firstly, the tested overall data is subdivided into a few skills according to a 

well-established qualitative relationship between the skills. In our model, 

these skills are termed as     , k = 1, . . . ,n (where n is the number of skills per 

each item). Secondly, based on the relationship between the skills, these skills 

are determined per item j which is denoted in a binary J *K weight matrix Q, 
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in which     expresses whether skill k is needed (    = 1) or not (     = 0) for 

enabling examinees to positively respond to item j. 

Thus, the Q-matrix reflects the essential theory of how skills contribute to 

responding to each item and enables the estimation model to infer the 

examinees’ possession of the skill K from their response vectors. Therefore, 

the success/failure rates, including the prior used hints, are determined as 

predictive parameters to estimate the performance produced by PFA. 

The next section demonstrates how the predictive parameters approach will 

be applied to the prior scores of the student (prior correct, incorrect + prior 

used hints).  

 

3.4.1 Calculating the prior success/failure/hint scores 

 

As explained earlier, hinting is considered to be an essential part of 

teaching and, since the original PFA model formula does not consider a 

hint parameter, therefore a modified version of PFA is introduced. The 

PFA formula was extended to include the hint parameter to be added to 

the prior correct scores. This extension is a part of the CFA model which 

will be described later in this section.  In order to implement the 

ModPFA formula, the prior correct/incorrect and hints scores will be 

determined as predictive parameters.  

An algorithm has therefore been developed to describe the counting 

process of splitting the prior success scores using the prior hints (used 

in Mod PFA), besides the counting for prior failure scores. This 

algorithm has been applied to an item with two skills and the values 

have been determined as shown in   table 3.2.   
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Table3.2: Coding prior success scores and prior used hints as 

descriptive parameters 

Student 

ID Item 

ID 

Skill1 Skill2 

                    

hint 

             

        
 

     

        
         

1 1 1 0 0 0 0 1 0 0 0 0 0 0 

1 2 1 0 1 0 0 1 1 0 1 0 1 0 

1 3 1 0 1 1 0 0 2 0 3 0 1 0 

1 4 1 0 0 2 0 1 2 0 4 0 1 0 

1 5 0 1 1 0 0 1 0 3 0 3 0 0 

1 6 1 0 0 2 0 1 3 0 5 0 2 0 

1 7 0 1 1 0 1 0 0 4 0 5 0 0 

1 8 1 0 1 2 0 1 4 0 6 0 3 0 

1 9 1 1 0 3 2 1 5 5 8 7 3 0 

 

Algorithm 1: Counting the prior scores/hints   

Input: for student i, and item j: 

                                                                  

A is the prior student’s answer/score which is either 0 or 1. 

Each item j is provided with a number of skills:          where k is the 

number of skills. Further, each item j is provided with a hint for is 

counted for each given skill k: hint k. 

Output: counting the prior success scores for each student i and each 

       (split into prior correct answers       +Prior used hints    ) 

and counting of total in incorrect/failure scores  is      . 
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For j=1 : m  , j++   # m= no. of given items  

{ 

if  k=1  # checking for the skill k availability 

 then, 

{ 

for j=j-1:j      #counting for the prior scores where first prior score is zero 

{  

# counting the prior success /correct scores 

If     =1  and hint k=1 # checking whether  the answer/hint of the prior item  is 1 

Then { 

       =          , 

               

                =            

# counting for the predictive total success scores for         with the hint parameters 

} 

 

# Counting for incorrect/failure prior scores 

{ 

If     =0  # checking whether  the answer of the prior item  is 0 
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Then { 

       =          ,# counting  for the predictive prior failure scores 

} 

else 0, # when        is not available , everything else is zero 

   

end if, 

}} 

  

Table 3.2 shows how the success/failure scores and the prior used hints 

are calculated as predictive parameters to be used later in the CFA 

model.  The following example demonstrates the algorithm and how it 

can be applied to the data shown in table 3.2. Starting with item 1, 

which has only one skill available (skill1), the prior scores for 

success/failure are zero, as well as the prior used hint (because they are 

predictive parameters where there are no prior knowledge) regardless 

of the answer      which is 1.  

The counting starts from item 2, since it also has skill 1 available and 

the prior answer       , therefore, the prior success scores  for skill 1 (  

         is 0, and for skill 2 is also zero as the skill is not available while 

the prior used hints for skill1(       =1 while it is zero for skill 2. The 

failure/incorrect prior scores for skill1 (     =1, whereas it equals 0 with 

skill 2 . 

Here, the correct scores are going to be extended to also include the 

prior used hints. This extension will enable the model to predict 

whether the correct answer has been performed from the first attempt 
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or by using hints.  In other words, it will determine if this student has 

answered the item correctly depending on his/her current skills or by 

learning from the provided hints. Having such factors (i.e, determining 

hints with the correct answer) improves the prediction accuracy. 

Having the correct answer without acquiring the necessary skills will 

not be considered as random guess. Instead, it will be defined by the 

model as a logical guess (learning from the hint). This modified model 

will improve the student’s skills and reduce study time by 

recommending more advanced learning resources rather than basic 

ones.  

3.5 Modified PFA formula 
 

In order to explain the mathematical form of the modified version of PFA, a 

formula has been created to be included in the CFA full formula which will be 

explained later in this chapter. 

The formulae are as follows: 

    ∑              …………………...(3.4) 

        ∑             ……………....(3.5) 

             =                 …..(3.6) 

        ∑                …….…..(3.7) 

 

Where, 

                          ,         are the counts for prior hints used in the 

given skill, prior correct scores for the given skill, total success counts and 

prior incorrect/failure scores counts in the given skill , respectively. 
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                                            ,      

                                                             

Besides, i, j and k, represent the student i for item j with skill k, and it is the 

order of counting the skills (which have been counted using the predictive 

manner as explained earlier). This part of updated/modified PFA with the 

hint parameter will be added to the CFA model; therefore, the overall 

ModPFA equation would be as:  

                                          

      ∑                             

 

     
…….(3.8) 

Where                 is the form of equation (3.6),    is the difficulty level of 

the skill k,    and    are the success and failure rates of skill k respectively. 

The other issues with the DINA model and PFA mentioned earlier will be 

tackled with our proposed main model: Cognitive Factor Analysis (CFA). 

3.6  Cognitive Factor Analysis Model (CFA)  
 

The problems mentioned earlier regarding DINA and PFA mainly concern the 

accurate estimation of the student’s performance. To tackle this issue, and as 

has been mentioned in the hypothesis of this research which stated that 

“including the cognitive factors will improve the performance estimation”, 

CFA was developed based on  the inclusion of the student’s cognitive factors 

in which the prediction of the latent performance inference will be improved. 

Therefore, based on the above drawbacks, CFA attempts to: 

 Infer a single aspect of the data (predicted variable) from a certain 

combination of other aspects of the data (predictor variables) which is 

to make inferences about the student’s present  latent knowledge. The 
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model uses cognitive factors as predictors, such as the success/failure 

rates, the guessing/slipping parameters as well as the item difficulty 

level and the number of prior used hints. 

 Design the given data (item/skills data and the student’s prior data as 

predictive parameters (this will be explained in detail in section 3.3.5). 

 Measure how much latent skill a student possesses and the next time 

the skill is encountered while they are learning in terms of probability 

of correctness in the given items.  

To achieve the above requirements, the CFA model has been designed 

according to the following characteristics: 

 The model involves dichotomous items which may involve multiple 

knowledge components/skills.  

 The number of choices for each item is designed to have fewer 

distractors and more alternatives so that the student can learn from the 

given choices. 

 The model determines whether the student has acquired all the 

necessary knowledge to answer the given items. 

 Depending on the student responses in the given multiple choices item, 

the model determines the probability of guessing and slipping per given 

item. 

 The model considers the hint parameter by including the prior used 

hint with the prior correct answer to check whether the student 

answered the item correctly depending on the acquired skills or using 

the provided hints. 
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Figure3. 1: The proposed model flow diagram 

 

Figure 3.1 shows the main factors’ determination based model process. There 

are three essential cognitive factors in the calculation process:  

 latent skill        estimation to estimate the  

 guessing      /slipping    ) estimation  

 success rate     and failure rate     determination  

In order to create a better cognitive model, CFA explores incorporating the 

information in the existing Q matrix (   ) which includes the items j, their 

skills k and the student’s prior records which include the student’s prior 

scores of the given items. This step enables a comparison of the student’s 

current skills with the item skills to estimate the probability of achieving the 

correct answer for the next item. Therefore, the following steps should be 

implemented:  
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 Include the prior used hints with the prior correct scores and calculate 

these as predictive parameters. In addition, calculate the student’s prior 

incorrect scores as a predictive parameter as well. 

 Estimate the item skill’s success rate     and failure rate    as shown in 

equation (3.8) 

 Determine the item difficulty level    as in equation (3.8) 

 Estimate the student’s current skills (     from his/her prior 

correct/incorrect scores. 

 Determine whether the student has acquired the necessary skills to 

answer the item (the proficiency level     , by comparing the student’s 

latent skills with the item, i.e. if           then    =1, otherwise        

Based on the above parameters, CFA will conduct some comparisons to 

estimate the guessing /slipping parameters as explained below:  

 If the student has answered the item correctly (Y=1, where Y represents 

the score) and his/her latent skills match the item skills (i.e        

then the decision will be better performance with no chance of guessing 

(1-   ), otherwise, the model will calculate the probability of guessing 

the answer (     i.e (   =0 and Y=1) 

 If the student has not answered the item correctly (i.e, Y=0) and his/her 

latent skills match the item skills (       then this has slipped the 

answer and the model will calculate the probability of slipping (   ), and 

failure means the student is still learning, otherwise, (1-   ) i.e, (   =0 

and Y=0) 

 Finally, a probability function is designed to estimate the probability of 

the students attempting the next item correctly given the cognitive 

factors: (            ,    ,    ). The next section explains the 

mathematical process of developing the CFA equation form. 
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3.6.1 The mathematical form of the CFA model 

 

Performance Factors Analysis (PFA) and the DINA model are two 

popular models of student learning that employ logistic regression and 

probability to estimate parameters and to predict performance. 

However, they differ in their parameterisation of student learning and 

the estimation methods. One key difference is that the DINA model has 

parameters for the slipping and guessing rates of learned skills, 

whereas the logistic model/ PFA does not. 

Thus, the logistic models assume that, as students gain more practice, 

their probability of correctly answering the item will increase as the 

incorrect prior score does not mean failure but represents a lack of 

knowledge whereas the DINA model allows the determination of the 

probability of having the correct answer depending on the individual 

skill and item skill to determine the guessing and slipping factors. Based 

on this, our presented model is built on a novel modification of logistic 

regression that allows it to account for situations resulting in false 

negative student actions (e.g. slipping/guessing on known/unknown 

skills).  

We applied this novel regression approach to create a new method 

PFA+Slip/guess and compare the performance of this new model with 

the traditional PFA and DINA models. Also, we further extended the PFA 

with a new parameter by splitting the success rate into (prior correct 

answer + number of used hints per each knowledge component). 

The proposed model uses a logistic regression form to estimate student 

cognitive factors and to predict the student’s latent performance. 

Therefore, the probability function that student i will answer the next 

item j correctly takes the following form:  
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    = 
 

      
  ……………. (3.9)                                                                                                                                                            

 

Where    is the logistic regression function form of student and item 

parameters for item i.      is the probability function  student I 

answering item j.  

There is no easy way to incorporate explicit slipping/guessing 

parameters into the logistic models, e.g., the prediction probability 

cannot be bounded by an additional term to the logistic function. In 

order to add these parameters, we modified the underlying logistic 

model to create the following form (some of the parameters in the 

following equations are just to give an example which is used to represent 

the general logistic regression form only and they won’t be applied to the 

CFA form in the later sections): 

    (            ,                       )=∏ 
          

     )   

                …………….(3.10)                                              

Where,                                     , 

                                          = success rate, k = 

number of the given skill, and 

                                                 

 The probability function is: 

     (            ,             )= ∏ 
          

                                                                

By taking the log of the above equation, 

     Log (∏ 
          

                      ) 
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The probability of the multiple regression model can be calculated as: 

     ∏  

        

 
   …………. (3.11)           

Where    refers to any multiple logistics models and in CFA, it 

represents the modified PFA and DINA model. 

According to the PFA model, the probability of having the correct 

answer can be calculated as:  
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Where       is the modified PFA model with the addition of the hint 

parameters to the correct answer, shown as equation (3.8)  

And, based on DINA model,                          
      

Therefore, the modified logistic/probability function for CFA according 

to equation (3.9) can be derived as: 

    =
 

         
 [

 

   
        ]

   
 [

 

   
    ]

       

    ……………    (3.12) 

Where    ,     are the parameters that impose the guessing and slipping 

probability for the student i/ item j, and ,     is the proficiency level of 

student i corresponding to item j 

3.7 The data 
 

The data used in this thesis was obtained from student activity recorded by a 

modified Bridge to Algebra (BTA) tutor by Carnegie Learning 

(http://www.carnegielearning.com) and 

https://pslcdatashop.web.cmu.edu/). This data contains 255 students who 

completed all 16 assigned problems. This type of assessment is multiple 

choice, each item having four options. The number of options ensures that 

the student can learn from the given choices to reach the correct answer  as 

there are more alternatives than distractors. Each item is provided with one 

hint which the student can request. The texts of two of the problems are 

given below in Table 3.2 as examples. The students’ scores are represented as 

either a correct or an incorrect action. The students’ records consists of a 

unique anonymous identifier for each student (student id), item id, number 

of the used skills required for each item and the student’s scores (i.e. whether 

https://pslcdatashop.web.cmu.edu/
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the student attempted the item correctly or not, 1 meaning success and 0, 

failure). 

Table3. 3: problem items / skill types 

 Problem Skill 

1: Sally visits her grandfather every 4 

days and Molly visits him every 6 days. 

If they are visiting him together today, 

in how many days will they visit 

together again? 

Story- Product/ LCM 

 

2: What is the least common multiple of 

4 and 9? 

Non Story-Product/LCM 

 

According to the table 3.3, each problem has two important properties. 

Firstly, problem 1 is a so-called story problem and problem 2 is a non-story 

problem. Story problems require the use of a concrete strategy.  Figures 3.2 

(a) and (b) show the difficulty level of the four skills for the given 16 items. 

The difficulty level is measured through the error rate per each trial that the 

students might have. As shown in figure 3.2 (a), the story problems are 

generally harder. Each given item, whether story or non-story, can be further 

divided into two extra skills, which are LCM/Product. The least common 

multiple (LCM) could be correctly obtained by multiplying the two inputs. In 

this case, the problem can be solved by applying a partial problem-solving 

strategy. As shown in figure 3.2 (b), LCM problems were harder.  

As shown in Figures 3.2 (a) and 3.2 (b), the error rate curves respectively of 

LCM problems and story problems are reliably higher. When these two 

properties are crossed, the LCM/story problem represents the harder 

combination of the properties and the Product/non-story, the easier one. 

These two figures explain how item skills can be combined and affect the 

success/failure rates and student performance estimation. However, this will 
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be further discussed in chapter four where certain experiments are 

conducted to show how the students’ factors estimations can be affected by 

items of two skills and four skills.  

  

 (a)                                                                 (b) 

Figure 3. 1: Error rate comparison 

Table3. 4: Q matrix for the data 

Item  Skill 1 Skill2  Skill3 Skill 4 
Item No. Non 

Story/Product 
Non 

Story/LCM 
Story/LCM Story/Product 

1 1 0 1 0 
2 0 0 1 0 
3 0 1 0 1 
4 1 1 0 1 
5 0 0 1 1 
6 0 0 1 0 
7 1 0 0 0 
8 0 1 1 0 
9 1 0 0 1 

10 1 1 0 1 
11 1 1 0 1 
12 1 1 1 1 
13 0 1 0 0 
14 1 0 1 1 
15 1 0 1 0 
16 1 0 0 1 
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Table 3.4 describes the data Q matrix of the given data which consists of 16 

items and their four skills. This Q matrix was used to estimate the model 

parameters.  Each assessment item could contain one or more skills or 

knowledge components (story-LCM, story/Product, non-story/LCM, non-

story/Product).  

 

3.7.1 Calculating the student’s latent  skills 
 

To infer the examinees’ possession of the K skills, the pattern     builds 

all possible skill combinations. 

These patterns are called binary skill vectors:   = [   , . . .    ,], j= 1, . . . 

,     . Each element     denotes whether or not members of skill class l 

possess the skill k (i. e.,    =1 or    =0, respectively).  

It therefore allows the allocation of students into     =    =16 different 

skill classes:     [0,0,0,0],     [1,0,0,0],     [0,1,0,0],     [0,0,1,0], 

…,              . 

CFA formulation will answer the following questions, which are 

addressed in the model’s output: 

(Q1) “What is the proportion of examinees acquiring a specific skill  ?” 

The skill distribution P(  ), k =1, . . . ,K, quantifies this question and 

refers to the population skill possession question. 

(Q2) “Which skills does the i -th individual examinee possess?” 

The i -th examinee’s skill profile     =[   , . . . ,     ], i =1, . . . , I , provides 

this information and refers to the individual skill possession question. 
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As previously discussed in chapter two, the DINA model classifies each 

item into those who possess all the required attributes/item skills and 

those who do not have sufficient skills to possess the required 

attributes. This can be viewed as the latent student skills. Let     denote 

whether the      student possesses the attributes required for the     

item. This can be expressed by equation 3.11: 

     =∏    
    

   …………… (3.11) 

Where:      represents the binary vector for the current student skills. 

                     is the binary vector for the skills per item in the Q matrix. 

Note that there are binary indicators signifying whether the ith 

examinee possesses all the required skills for item j. For example, 

consider a 16-item exam diagnosing four skills (as has been explained 

earlier). Suppose item 1 requires skills 1, 2, and 3 (i.e. the binary skills 

vector         , and student 1 possesses all four skills (i.e. 1111). 

Then,      will be calculated as: 

∏    
    

   =   *  *  *  =1, indicating that the examinee possesses all 

the required skills. In contrast, suppose student 2 possesses skills 1and 

2. Then, for item 1,  

   =   *  *  *  =0, indicating that the examinee is lacking at least one 

required skill.  

 

3.7.2 Parameter Estimation for Cognitive Diagnosis Models 
 

Any successful CDM implementation depends heavily on the ability to 

accurately classify students’ skills as mastered or non-mastered. 

Obviously, true skills for each examinee are unknown. According to 
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literature, there are three main methods by which to estimate and 

classify these skills correctly. Examinees are often classified via 

maximum likelihood estimation (MLE), maximum a posteriori (MAP) or 

expected a posteriori (EAP). Below is a brief description of all three 

methods with their mathematical forms. 

  Maximum Likelihood Estimation (MLE) and Maximum A 

Posterior (MAP): 

MLE and MAP are well-known methods for examinee scoring in IRT 

models         and are similar concepts when viewed in the CDM setting.  

To compute the probability of student i's performance for each item j 

given the student skills vector: 

Let vector x= (  ,   ,   …   ) denote the student (i ) skills for each 

given item (j). 

The likelihood of the responses to J items for the ith examinee is given 

by (Cheng, 2009) and is determined as following: 

P(            ,             ) =∏ 
          

     )                  

Where,               . 

L (            ,             )=       
     )                 

For MLE classification, the likelihood is computed at each   , the true 

examinee a is unknown, and the examinee is assigned the estimated 

skill pattern  . The examinee is classified by assigning to him or her the 

estimated skill pattern      that maximises the likelihood, as shown 

below: 

     =arg max L((            ,             ) 
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On the other hand, there are certain cases that determine the 

proportion of examinees possessing each skill pattern. These 

proportions can be regarded as prior probabilities, so then the 

posterior probability can be computed according to Bayes’ Theorem: 

 

                                 

 (                         )                                          
 

 

 
                                 

∑                                    
 

…………..(3.12) 

 

And the estimator will be denoted as:     =arg max P((               , 

         ). 

Generally, it is true that MLE is equivalent to MAP estimation. See 

Henson and Douglas (2005); Henson, Roussos, Douglas; and Cheng 

(2009) for examples of studies using the MLE/MAP method of 

classification. 

 

 Expected A Posterior (EAP) 

 

An alternative to the MLE/MAP classification is EAP. For the EAP 

approach in the CDM context, the probabilities of the mastery of each 

individual skill (the marginal skill probabilities) are calculated for an 

examinee and rounded at .50 to obtain binary mastery classifications. 

The posterior probabilities P(        are computed for l = 1,2,3, . . . , L 

as in MAP/MLE, but these posterior probabilities take the sum of all 
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estimated    corresponding to the mastery of skill k, that is, the sum of 

the posterior probabilities of all the skill patterns having a 1 as the kth 

element, as shown below: 

EAP= ∑              
         , Here,          is a binary 

indicator denoting if the kth element of the lth skill pattern is 1. 

Many studies have been conducted to investigate which estimator is 

more accurate, and it has been shown over all conditions that applying 

the MLE/MAP method of classification resulted in higher numbers of 

examinees classified correctly on all K skills, whereas the EAP method 

of classification resulted in higher total skills classified correctly and 

fewer severe misclassifications (Huebner, A., & Wang, C. ,2011).  

For example, a situation is described in Jang (2008) in which a teacher 

who administers a diagnostic exam to English as a Second Language 

(ESL) students to measure progress on the completion of a teaching 

unit may prefer the use of EAP; it may be desirable to classify ‘‘most’’ 

students ‘‘mostly’’ correctly rather than to classify a maximum 

number of students exactly correctly while having a higher number of 

severe misclassifications. As a result, we have used the EAP method to 

estimate the student’s binary vector in order to estimate his mastery 

level of the given skill. However, while it is not the case that one 

classification method may be judged as better than the other, one 

method may be preferred over the other, depending on the purpose of 

the diagnostic assessment. When implementing CDM methodology for 

operational use, practitioners must decide which method is most 

consistent with the aims of the assessment in question. For some 

testing conditions, the reported differences between the estimation 

methods may be too small to make any practical difference in the 

classification of examinees in real life situations. 



Cognitive Factor Analysis (CFA) 

79 
 

3.8 CFA example 
 

In the previous sections, we presented a novel modification of logistic 

regression (CFA) which combined the parameters of both the PFA and DINA 

models. From one aspect, it further extended the PFA with a new parameter 

(which is the hint parameter) by splitting the success rate into (prior correct 

answer + number of used hints per each knowledge component). From 

another aspect, the modification  accounts for situations that result in false 

negative student actions (e.g., slipping/guessing on known/unknown skills).  

This section illustrates an example of how the CFA algorithm can be applied 

and how the output is demonstrated. Since this section adopts the same 

parameter values explained in chapter two, section 2.7, the same calculation 

processes will be used to apply the numbers to the given equations. 

 Furthermore, this section will also demonstrate the difference between the 

CFA, PFA and DINA models and how CFA has been developed to improve the 

performance estimation method. As explained in chapter two, CFA will be 

applied to two items (T1 and T2) with four different skills and one student. 

Table 3.4 shows the details of student A attempting two items, T1 and T2 

with each item having one or more skills out of four skills. These details are 

the same details presented in chapter two which were used to demonstrate 

the process of applying the DINA and PFA models in section 2.7.  Each item 

includes its own guessing/slipping parameters which have been determined 

as will be shown later in chapter four section 4.4. Furthermore, this table 

shows the scores of and the hints given to student A for both items.  
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Table3. 5: CFA estimated parameters 

 

To begin with, the parameters of CFA will be determined as shown in 

table 3.5: 

 Calculate the guessing/slipping parameters for both items T1 and T2; 

 Determine the student current skill    , which has been estimated using 

the EAP method, as previously explained in section 3.5.2. In this 

example, student A’s current skills:       1 1 0 1; 

 Determine the item skills    , which have been excluded from the Q 

matrix. In this example, each item has four skills: for item T1,     = 1 0 

1 0; for item T2,     =1 0 0 1; 

 Calculate the student proficiency level (    ∏  
  

    
     for items T1 and 

T2: While this has been conducted previously in section 2.7, the same 

process is repeated below, as follows: 

-For item T1,      =  *     *  =0. The student lacked the third skill; 

-For item T2,      =  *     *  =1. The student mastered all the skills; 

 Estimate the item difficulty and success/failure rates (as calculated 

previously from the data set explained in this chapter); 

To estimate the probability of student A having a correct answer for item T1, 

the CFA model equation is called: 

    =
 

         
 [

 

   
        ]

   
 [

 

   
    ]

       

  ……………(3.12); 

therefore, the following two steps will be applied: 

 Firstly,       for item T1 (which has skills 1, 2 and 3) is calculated 

using the same values provided in Table 2.10. Furthermore, CFA 

Student ID Item ID Skills Slipping Guessing Hint Score 

A T1 1011 0.24 0.53 1 1 

A T2 1001 0.35 0.42 0 0 
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considers the initial knowledge for student A to be zero (i.e. the student 

has no prior skills), so that the values of prior 

success           /failure        hints      =0 for all the three skills), 

therefore: 

       ∑                             

 

     

 ………(3.8) 

                              ]+                      

         ]+                               ]= 0.99 

 

 Secondly, to estimate the performance probability, all parameters will 

be applied to the CFA exponential equation in (3.12); therefore, the 

probability of student A choosing the next item correctly given the 

student skills    , item difficulty   , success rate   , failure rate 

    guessing parameter    and slipping parameter     is:       0.45. 

Based on the predicted probability value, CFA estimates that student A has 

guessed the answer for two reasons:  

 Student A has insufficient knowledge to attempt the question correctly 

(lacks the third skill); 

 CFA estimated that the probability of student A attempting the answer 

correctly is 0.45, which is a small value, but the student attempted the 

answer correctly. This offers strong evidence that the student has 

guessed the answer and CFA produced more accurate probability 

compared to other models (PFA =0.72, DINA= 0.53) 

 According to table 3.5, student A asked for a hint; therefore, s/he is 

more likely to guess the answer, as s/he might have learned from the 

hint and made a logical guess. 

Table 3.5 shows that the student scored the item correctly and asked for a 

hint; therefore, the prior success score is 1 and prior failure score is 0 for 
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item T2 (which has skills 1 and 4), therefore,  

        =0,        =0/       =1,        =1/              . 

However, since this student has asked for a hint, this means that s/he might 

have developed some knowledge for the third skill (it is likely that s/he made 

a logical guess to achieve the correct answer). Therefore, the level of learning 

materials that might be recommended for this student could be more 

advanced, as s/he is able to learn faster, meaning that s/he does not need to 

waste time studying at the basic level. 

The same calculations have been made for item T2, this time with the prior 

correct score = 1 and prior used hints = 1. The probability of having the 

correct answer is 0.82; hence, the probability value is high as the student has 

mastered all the given skills in item T2 and he is supposed to answer the item 

correctly. Besides this, item T2 is easier and skills 1 and 4 are repeated.  

However, the student scored the item incorrectly without asking for a hint. 

From the perspective of the CFA model, answering item T2 incorrectly 

means: 

 The student has slipped the answer as s/he had mastered all the given 

skills (having the efficiency level =1). 

 The student has learnt from prior success/failure scores, as item T2 

shares two skills with item T1; 

 Since CFA included the prior hint parameter, the student might have a 

chance of learning from the provided hints, hence the student’s 

performance can be enhanced and this will contribute to a reduction in 

the student’s study time.  

 The student does not require further learning materials for the given 

skills as s/he already has acquired the skills but s/he slipped the 

answer. 
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Based on that which has been explained in the examples of PFA, DINA and 

CFA models, the CFA model aims not only to predict the student’s 

performance, but also helps the student to target strong and weak points at 

their own knowledge level. By including cognitive factors (current student 

skills, slipping and guessing parameters) along with the student’s prior hints, 

the accuracy of the student’s performance estimation will be increased; 

hence, accurately detecting the knowledge level will save the student 

learning time and will result in a better learning curve representation.  

Moreover, unlike the DINA and PFA models, the CFA model does not consider 

the student’s correct answer to be positive evidence that they have mastered 

all the required skills, as the student might have guessed the answer or might 

have used a hint to make a logical guess. Similarly, an incorrect answer is not 

proof of failure, as the student might have made a mistake with this answer 

despite having mastered all the required skills. However, CFA considers the 

hint parameters to be a learning tool since the student’s knowledge level 

might improve when they request the hint. This will have an adverse impact 

on the student’s learning curve and will not waste the student’s time as they 

have practiced the skill several times.  

 

Table3. 6: Parameters of DINA, PFA and CFA models 

Model Parameters used Parameters not used 

DINA Guessing/slipping/student 

proficiency level 

Prior used hints, item difficulty, 

success/failure rates, prior 

correct/incorrect scores 

PFA Item difficulty, success/failure rates, 

prior correct/incorrect scores 

Prior used hints, guessing/ 

slipping/student proficiency level  
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CFA Guessing/slipping/student 

proficiency level, item difficulty, prior 

used hints, prior correct/incorrect 

scores, success/ failure rates 

None 

 

3.9 Conclusion 
 

This chapter has presented two novel models for estimating the performance 

of students. The first model extends the previous work of PFA by splitting the 

success rates into (the prior correct answer + prior used hints). Based on the 

first model and the considerations of students’ multiple prior factors, this 

chapter presented a second model to estimate the probability of achieving 

the correct answer by adding the slipping/guessing parameter in the form of 

logistic regression. This model is called the Cognitive Factor Analysis (CFA) 

and  has been developed as a new alternative cognitive model that can be 

used in Intelligent Tutoring Systems.  CFA’s flow diagram was shown to 

reveal the overall hierarchy of the factors. Furthermore, the theoretical part 

of this model was presented to explain the full model formula.  

 The data used to apply this model was discussed with all its components and 

items.  
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Chapter Four: Model Evaluation 
 

 

 

4.1 Introduction 
 

This chapter presents the analysis of the data explained in the previous 

chapter according to our two novel models, modified PFA with hints factor 

and CFA, and compares these to the DINA and PFA models. The results were 

evaluated using statistical methods to assess the presented prediction 

accuracy and significance of the cognitive model. This evaluation used 

various methods, e.g. Log Likelihood (LL), Bayesian Information Criterion 

(BIC), Akaike Information Criterion (AIC) and Cross Validation (CV). Evidence 

has been foundwhich confirms that the slip/guess parameters enable the 

logistic models to better fit learning rates. In addition, the combination with 

the DINA model offers a better probabilistic indication for each individual 

skill and enhanced feedback to improve learning materials.  

The first part of this chapter will explain the statistical methods used to 

evaluate the models, while the later sections will focus on the 

implementation of the extended version of the PFA with the hints factor. 

Experiments were also conducted to compare the original PFA and our 

modified version. The later sections run the DINA model using the same 

dataset as used in the PFA and provides a full explanation of the obtained 

results. Finally, our developed model (CFA) is applied to the dataset and all 

the factors are extracted and analysed to show the significance of this model 

compared to the other models. Two demonstration scenarios are also 
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described to explain how CFA can be applied as an Intelligent Tutoring 

System. 

4.2 Assessment tools 
 

Fitting a mathematical model of user behaviour to data is difficult (Yudelson, 

Pavlik & Koedinger, 2011). An effective statistical model balances model fit 

and complexity, while at the same time minimises prediction risk. It should 

capture sufficient variation in the data but should not be overly complicated. 

Unfortunately, inexperienced modellers often transfer basic knowledge of 

statistics directly to their cognitive models, which typically results in 

confusion (Wasserman, 2004). 

Certain statistical methods, such as the Akaike Information Criterion (AIC) 

(Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 1978) 

are considered to be good estimators for prediction risk. Although such tools 

are routinely used in many statistical packages, they sometimes lead to 

inappropriate inferences, particularly when the user data is not almost 

entirely independent (a requirement of the AIC and the BIC). In reality, user 

observations (prior user data) are often dependent on and related to users, 

skills or content items that the user has previously accessed.  

Therefore, in addition to the BIC and the AIC, the evaluation of prediction 

performance can be assessed by computing an error measure, such as the 

root-mean-square-error (RSME) and residual analysis (Chai & Draxler, 

2014). In addition to log likelihood (LL), which measures the fit of the data, 

there is k-fold cross validation (CV) which, although time-consuming, is a 

more accurate estimator of prediction errors that measures over-fitting 

(Kohavi, 1995). These models are shown in the following equations: 

AIC=-2*Logliklihood+2*number of parameters ….… (4.1) 
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BIC=-2*Loglikelihood+ number of parameters* number of observations …… 

(4.2) 

RMSE= √∑ 
          …… (4.3) 

where e is the difference between the actual and estimated value and n is the 

number of observations. 

CV=∑     ̂ 
   

             ………. (4.4) 

where k is the number of folds, n is the number of observations and (Y, f) are 

the actual and estimated values of X. 

To measure the effectiveness of the CFA model, AIC, BIC and LL have been 

used as assessment tools to penalise the model for containing a larger 

numbers of parameters. 

In addition, CV has been applied to assess the model parameters which 

involve feature selection. This mechanism assesses a model by rotating the 

testing and training datasets. The dataset is separated into K subsets and 

training is performed using k-1 subsets. The remaining set is used for testing. 

This mechanism is repeated until each subset has been used once for testing. 

The mean performance across all the testing subsets is then assumed as a 

measurement of the effectiveness of the system and an indication of  the 

ability of a model to generalise across all situations. K-fold CV has been 

shown to be the most effective way of estimating the accuracy of a predictive 

model. 

When evaluating cognitive models, the different fit statistics often agree with 

each other but, if they do not, it is useful to understand how their conclusions 

differ. The AIC and BIC punish a model for including too many skills, 

particularly the BIC. The CV values are arguably a more rigorous measure of 

fit because they evaluate predictive ability against over-fitting and they are 

more useful for evaluating the ability of a model to predict new items. 



Model Evaluation 

88 
 

Additionally, item stratification gives a sense of how well a skill transfers 

between items within a tutor or between levels in a game.  

4.3 PFA and ModPFA 
 

This section demonstrates the fitting evaluations of the data that were 

applied to the original PFA and ModPFA (hints parameter). This fitting was 

deployed by running experiments and assessing the results using the tools 

explained in the previous section. These experiments were conducted on two 

types of items. The first experiment measures the estimates of items with 

two skills (product-ns (non-story) and LCM-ns (non-story)). The second 

experiment was applied to items after splitting them into four skills for each 

item (product-non story (ns), LCM-ns (non-story), product–s (story) and 

LCM-s (story). These experiments examine student behaviours and whether 

the ModPFA could enhance the prediction of the cognitive model. 

 

4.3.1 First experiment 
 

This experiment attempts to answer the question: how can student learning 

behaviour be described in terms of an existing cognitive model? Specifically, 

the aim was to discover the learning rate (success and failure) and initial 

difficulty level of each item to estimate the initial performance of students. 

The question was answered by setting an experiment using the data 

previously explained in chapter 3. This data relates to the students’ prior 

scores/used hints as well as the item/skills Q-matrix. The prior scores/hints 

were calculated using the predicted parameters process as illustrated earlier 

in chapter three. The data was fitted by the logistic regression models for 

both the original PFA and ModPFA (which was developed using hint 

parameters). By applying the data to the formulae, coefficient estimations for 
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the skills and students and overall model statistics were obtained (see Tables 

4.2 and 4.3). 

 

 

Table 4. 1: Fit statistics of given PFAns and ModPFA 

 

 

 

Table 4.1 provides a summary of the statistical fit for the original and the 

modified PFA models (here the PFA  and ModPFA models were termed 

PFAns and ModPFAns as they were applied only to two skills items which 

were non-story skills/ns). The fit evaluation parameters used were the LL 

and the BIC. The low value of the BIC indicates that the estimated values of  

the model are more likely to be true, i.e. the probability function of the 

logistic model (ModPFAns). The low value of the BIC means the error rate 

seems to be less in ModPFAns when compared to PFAns. This indicates a 

better performance estimation when the hint parameter is adopted in the 

ModPFA formula. 

 

 

Model LL BIC 

PFAns -2133 4307 

ModPFAns -1563 3173 
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Table 4. 2: Parameter estimation for both PFAns and ModPFAns models 

 

In Table 4.2 the estimated values for both models with two skills items are 

shown. These parameters are defined as the difficulty level for skills 1 and 2, 

the success rate for skills 1 and 2 and the failure rate for skills 1 and 2. These 

parameters were conducted for both the PFA and ModPFA models.  

According to table 4.2 PFAns is acceptable; however, the negative value of the 

failure rate indicates negative learning or no effect on student future 

performance. Also, the item difficulty has a positive value, which means that 

the item difficulty value is average. Therefore users’ performance becomes 

worse after failing the product item (skill 1). 

Moreover, the success rate seems to be very limited although the students 

have used hints to attempt the item but PFA does not consider hints in its 

performance estimation.   

An explanation for this is that the PFAns model is not complex enough since 

the only way to distinguish higher achieving students (with fewer errors and 

hints) from lower achieving students (with more errors and hints) is to place 

more weight on the success rate factor by determining the number of used 

hints for each knowledge component/skill. Unlike the PFAns, the ModPFA 

estimated values are more accurate in terms of success/failure and there are 

PFA ns  Est. Std. Err p-value Mod PFA Est. Std. Err p-value 

Difficulty/Skill1      0.452 0.079 0.000 Difficulty/Skill1 0.676 0.073 0.000 

Difficulty/Skill2      0.347 0.070 0.000 Difficulty/Skill2 0.132 0.006 0.000 

Succ. prod/Skill1     0.118 0.087 0.000 Succ. prod/Skill1 0.110 0.062 0.033 

Fail. prod/Skill1      -0.110 0.037 0.003 Fail. prod/Skill1 0.046 0.112 0.173 

Succ .lcm/Skill2       0.254 0.026 0.000 Succ .lcm/Skill2 -0.007 0.048 0.009 

Fail. lcm/Skill2       -0.028 0.021 0.189 Fail. lcm/Skill2 0.667 0.036 0.047 
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no issues with the failure rates. One aspect that does cause concern is the 

negative value of the success rate of skill 2 which infers that the level of 

success is low as skill 2 is slightly difficult.  

Because of the extension of the correct scores to include the hint parameter, 

ModPFAns estimated the success rates more accurately in skill 2. Therefore, 

even when the students used hints, the success level was still low since the 

students might depend on the hints to achieve the correct answer. Thus, in 

addition to offering an improved performance estimation in terms of the 

adoption of hints parameters, ModPFA can also provide useful feedback 

based on the knowledge component/skill, item difficulty and success/failure 

rate parameters. The success rate was split into the prior number of correct 

answers and the prior number of used hints. This is the concept of dynamic 

assessment upon which this research is based (as explained in chapter two).  

 

4.3.2 Second experiment 

 

In the first experiment, ModPFA improved the original model by splitting the 

success rate into prior correct scores and prior used hints. It was 

implemented with two skills items. However, the second experiment further 

addresses model improvement by splitting the given skills into more detailed 

skills. This then raises a further question: are some combined skills better 

than if they are split in terms of the success and failure rates and 

performance estimations?  

Table 4.4 shows that the difficulty level in the LCM (skills 3 and 4) item type 

is higher than in the product (skills 1 and 2) item type. However, extending 

the model to include more skills adds additional differentiation. Within both 

the LCM and product types, the skill story intercept (LCM-s/prod-s) is always 

lower than the non-story (LCM-ns/prod-ns), which indicates that this skill is 

more difficult. This phenomenon can be explained for the other skills of the 
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story and non-story significant parameters, such as the success and failure 

rates for the knowledge component. The success rate for a product item type 

shows no significant difference in the formula. However, after splitting the 

model into four skills, the success level for product story/skill 2 shows a 

significant value and is an indication of student performance (see Tab le 4.3). 

Table 4. 3: Parameter estimation for ModPFA Models/four skills 

Skills Par Std. Err p Value 

Difficulty/skill1/prod-ns 0.45 0.077 0.000 

Difficulty/skill2/prod-s         -0.11 0.087 0.000 

Difficulty/skill3/lcm-ns 0.37 0.072 0.000 

Difficulty/skill4/lcm-s 0.17 0.094 0.103 

Success-ns/skill1/ prod-ns 0.38 0.086 0.000 

Success/skill2 /prod-s 0.27    0.0370    0.0213 

Success/skill3/lcm-ns 0.33 0.098 0.124 

Success/skill4/lcm-s 0.38 0.141 0.000 

Fail/skill1/ prod-ns 0.28 0.067 0.089 

Fail/skill2/prod-s 0.42 0.087 0.000 

Fail/skill3/lcm-ns 0.43 0.075 0.007 

Fail/skill4/lcm-s   0.104 0.030 0.000 

 

Furthermore, the success rate parameters for the LCM item types (skills 3 

and 4) remain positive. However, skill 4 has a smaller value than skill 3 due 

to the item having greater difficulty. The failure rates are positive which 

reflects an increase in learning. This indicates that having multiple skills in 

items increases the learning processes of the student as some skills might be 

highly correlated to each other. Furthermore, considering the hint will 

improve the student’s current skills and s/he might begin to  learn from it.  In 

summary, the complexity of our modified PFA models improves the fit and 

better explains student learning with different knowledge components. 

As shown in Table 4.4, the ModPFA model exhibits a better fit than the 

original model. The higher value of the LL indicates better estimation of the 
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performance probability as it is closer to the true value of the students’ 

current skills, learning/failure rates and the item difficulty. This value was 

obtained by extending the ModPFA model to include hint parameters and 

gives strength to the cognitive analyses. The AIC and BIC are both penalised-

likelihood criteria and are sometimes used for selecting the best predictor 

subsets. They are also often used to compare non-nested models which 

ordinary statistical tests cannot do.  

Since, the AIC or BIC for a model is usually written in the form [ -2logL + KP], 

where L is the likelihood function, P is the number of parameters in the 

model and K is 2 for the AIC and log(n) for the BIC. Therefore, a lower value 

for the BIC and the AIC reflects better estimation of the posterior probability, 

which is the probability of having the correct answer for the next item for 

each student. The estimations are very close to the truth and the model 

reflects an effective understanding of the situations in which the hint factor 

improves model fit. This indicates that the model can capture true student 

learning behaviour (improving in performance or learning from failures) 

based on details of the used skills and the difficulty level. 

Table 4. 4: Statistical comparison for both PFA models 

Model LL BIC AIC 

PFA/four skills -2025 4149 4240.0 

ModPFA/four skills -2055 4018 4137.5 
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4.4 DINA Model 
This section demonstrates how to extract items and skills related to the data. 

According to the DINA model, the guessing and slipping parameters can be 

estimated using the following equations, developed by De la Torre (2008): 

Let P (     ) equal the expected number of examinees with attribute pattern 

    and 

     ∑           
 
       the expected number of examinees with attribute 

pattern    and answering item j.     is the examinee’s proficiency level (   

when answering item j,  

and it is     =    (guess),    =   . 

Therefore 

     

    
=∑

       

    
         ̇      ̇    

 

               
][    -         ] 

+∑
       

    
         ̇      ̇    

 

               
][     -                

  
   

    
[

 

  [    ]
]∑  {       ̇      ̇   }

          

  
       

    
[

 

        
 ∑  {       ̇      ̇   }

             ………….. (4.5) 

  
   

    
[

 

  [    ]
]    

   -     
      

       

    
 [

 

        
     

             
     

…………… (4.6) 

where,    
    is the expected number of examinees lacking at least one of the 

required attributes for the item j and where     
   -     

     is the expected 

number of examinees among    
    correctly answering item j.    

    and 

   
    have the same interpretation and pertain to the examinees with all the 

required attributes for item j.    
       

     is equal to    for all j. 

When     (i.e.,       ), 
       

    
 is 1 for the first term of the equation  and 0 

for the second term. Therefore, to obtain the maximisation of       with 

respect to     to solving for     is shown in the equation (4.7): 
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  [    ]
    

   -     
     = 0, which gives the estimator   ̂ =    

   /   
   . 

……………… (4.7) 

Similarly, maximisation of       with respect to     is equivalent for    to be 

solved, therefore 

[
 

        
     

             
   

    =0  

and the estimator   ̂ will be [   
   -   

     /   
    ………………..(4.8)                           

To calculate the estimated values of s and g, the first step of the algorithm 

starts with the initial values of    and   , then in step 2,    
   ,   

   ,    
    and 

   
     are computed based on the values of s and g. Step 3 finds s and g by 

applying equations 3 and 4 . Steps 2 and 3 are repeated until convergence.  

The following statistics represent the item parameters (guessing and 

slipping), p-value and difficulty level. Analysis carried out by the DINA model 

was conducted by applying the DINA model to 16 items with four skills and 

the guessing /slipping parameters related to the items in the assessment tool 

were obtained.  The 16 assessment items with a 4 skills Q matrix and 225 

students’ profiles with prior (correct/incorrect)  scores were used to 

estimate the guessing and slipping parameters. These estimations were 

conducted using equation (4.7) for the guessing estimator and equation (4.8) 

for the slipping estimator. As shown in Tables 4.6 and 4.7, the error rates of 

the estimates for the slipping/guessing parameters are low values which 

indicates an accurate estimation. 

The DINA model parameters pertaining to the assessment tool are provided 

in Tables 4.5 and 4.6.  

Table 4. 5: Guessing parameters  

Item Est. Std. Err. 

1 0.2776359 0.03037773 

2 0.3629012 0.03266779 
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Table 4. 6: Slipping parameters 

3 0.3247046 0.07286604 

4 0.4315772 0.05603003 

5 0.4648594 0.03539947 

6 0.4404193 0.03469817 

7 0.4283343 0.07621875 

8 0.5307982 0.03645218 

9 0.4250704 0.03349788 

10 0.4498827 0.03349452 

11 0.4225016 0.03282569 

12 0.4010789 0.07585528 

13 0.3287575 0.02786006 

14 0.3807637 0.05572437 

15 0.3610092 0.02896941 

16 0.4256268 0.01059550 

Item Est. Std. Err. 

1 0.63527483 0.04660357 

2 0.40521393 0.04785718 

3 0.38707382 0.20787248 

4 0.43430383 0.05603003 

5 0.4648594 0.25066590 

6 0.33607003 0.04412488 

7 0.31522588 0.16367478 

8 0.19430448 0.12819587 

9 0. 45580484 0.14301299 

10 0. 76464171 0.12223925 
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The slipping and guessing parameters of the DINA model reveal that the 

guessing value varies between 0.10 and 0.53 and the slipping value varies 

between 0.16 and 0.76. The mean values of the slipping and guessing 

parameters are 0.26 and 0.35, respectively. Wenmin (2006) noted that higher 

         and lower          values indicate a difficult test. The test was 

therefore found to be more difficult than average.   

Figure 4.1 offers a further explanation regarding the distribution of the  DINA 

model parameters among the 225 students in the given data set. This figure 

includes the probability of guessing when the students attempt the answer 

correctly without having acquired the necessary skills, besides the 

probability of non-slipping when the student attempts the answer incorrectly 

without having acquired the skills in the item. This figure is necessary as it 

reflects the distribution of the number of students who do not master the 

given skills in the assessment items to indicate who has guessed and who has 

non-slipped the answer. It can be observed that the majority of the 225 

students have non-slipped the items as the probability distribution of 

guessing is less than non-slipping. This matches the findings in Tables 4.5 

and 4.6 and presents evidence that the assessment is difficult as the students 

could not even hazard a guess for the correct answer. 

 

11 0.14779050 0.09107638 

12 0.14049957 0.03118276 

13 0.17809368 0.13127262 

14 0.11149622 0.05572437 

15 0.16306285 0.03448476 

16 0.26589370 0.01959945 
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Figure4. 1: Guessing probability distribution 

Table 4. 7: Summary of overall item characteristics/DINA model 

 

 

 

 

 

Table 4.7 shows a summary of the item-related values. By obtaining the p-

values of the items we can determine the percentage of students solving each 

item. For example, 46% of the students solved the most difficult item, while 

68% solved the easiest item. On average, 60% of the students solved the 

items, indicating that the difficulty of the items is average. As the guessing 

parameters    reflect the probability of correct responses without acquiring 

the skills, it can be said that 1-    (slipping) determines the correct responses 

while mastering the skills. The item guessing parameters range from 0.2 to 

0.54 and have a maximum standard error of 0.02. The item slipping 

parameters range from 0.16 to 0.62 and have a maximum standard error of 

0.01. These ranges for guessing and slipping show that the items have been 

answered reasonably and that the students have acquired most of the skills.  

 

 Min Max Mean 

p-value 0.458 0.673 0.601 

Guessing 0.204 0.539 0.381 

Slipping 0.163 0.635 0.270 
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Table 4. 8: Skill distribution and respective standard error 

 Probability Std. Err 

Skill 1 0.68 0.02 

Skill 2 0.73 0.02 

Skill 3 0.65 0.01 

Skill 4 0.70 0.03 

  

Table 4.8 and Figure 4.2 show the percentages of the distributions for the 

four skills among the 16 assessment items.  The highest percentage skill 

appearing in the assessment is skill 2, while the least is skill 3. By comparing 

these findings with Table 4.3, it can be noticed that the skill 2 difficulty level 

is (-0.11) which means this skill is slightly difficult. Since the majority of the 

given 16 item assessment consists of skill 2, this indicates that the 

assessment is more difficult than usual and this explains why the distribution 

of the  probability of  slipping  is higher than the guessing as shown in Tables 

4.5 and 4.6. 

 

Figure4. 2: Skill mastery probability 
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 Table 4. 9: Individual skill mastering for the first five students 

 

 

 

 

 

Table 4.9 shows the individual skill probabilities P(  ) and their standard 

errors. There was little difference in the values of the skills that were 

distributed among the students. The results show that most students 

acquired all the skills equally as these values match the findings of Tables 4.5 

and 4.6 for both the guessing and slipping parameters. It can be observed 

that 73% of the students possessed skill 1, 71% of the students obtained skill 

2 and 65% acquired skill 3. The latter result indicates that skill 3 is slightly 

more difficult or requires further explanation.  

 

Table 4. 10: Correlations between the four skills 

 

 

 

 

Table 4.10 further examines the correlation between the four given skills in 

the assessment items. Therefore, when two skills are highly correlated to 

each other, the student who answers one correctly is more likely to answer 

the other one correctly too. 

Student ID Skill 1 Skill 2 Skill 3 Skill4 

Stud 1 1 1 1 1 

Stud 2  0 1 0 1 

Stud 3 0 1 0 0 

Stud 4 1 1 0 1 

Stud 5 1 0 1 1 

 Skill1 Skill2 Skill3 Skill4 

Skill1 1    

Skill2 0.74 1   

Skill3 0.829 0.93 1  

Skill4 0.556 0.494 0.691 1 
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 4.6 Model evaluation 
 

The accuracy level of the proposed counting approach is a measure of how 

accurately the predicted results follow the true value. For this experiment, 

the same 16 item assessment with four skills and 225 students was applied 

to the four models: PDA, ModPFA, DINA and CFA. This experiment will 

evaluate the prediction accuracy of these models in terms of the latent 

student performance estimation. The evaluation models used for this 

purpose are LL, AIC, BIC and RMSE, all of which were explained in section 4.2. 

Table 4.11 summarises the estimated effectiveness for the selected dataset of 

the proposed system, CFA, against the other models, DINA, PFA and ModPFA. 

Table 4. 11:  Summary of statistical evaluations for the four models 

Dataset Model LL AIC BIC RMSE 

Product/LCM PFA -2029 4083.3 4157 0.63 

- ModPFA -2055 4137 4218 0.454 

- DINA -1999.8 4091 4247 0.069 

- CFA -2264 4027 4016 0.0894 

   

The logistic models PFA, ModPFA and CFA shown in Table 4.11 reflect better 

evaluations than the probabilistic model DINA in terms of the LL. Compared 

to PFA, there is a very slight difference and this is not surprising since PFA 

holds an advantage because it includes success and failure counts that 

include information regarding performance on held out data. Moreover, CFA 

has the best log likelihood values which are indicative of a better ability to fit 

the data that does not suffer from this discrepancy.  

Furthermore, the models have been evaluated using AIC and BIC. As 

explained earlier, since AIC is an estimate of the relative distance between 

the unknown true likelihood function of the data and the fitted likelihood 
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function of the model,  a lower AIC therefore indicates that a model is 

considered to be closer to the truth. BIC is an estimate of a function of the 

posterior probability of a model being true, under a certain Bayesian setup, 

so that a lower BIC indicates that a model is considered to be more likely to 

be the true model.  

The findings of the AIC and BIC suggest that the CFA model fits the data 

better than the other given models (i.e. low values for both the AIC and the 

BIC). This indicates that the estimated values of the probability of achieving 

the correct answer for the next item for each student is more likely to be true 

compared to the actual values taken from the students’ prior scores. This is 

reasonable since the DINA model does not have separate learning rates for 

success and failure.  

The reason the PFA and ModPFA models are less effective (i.e. lower LL and 

high values for BIC, AIC and RMSE) is because neither model supports the 

negative learning behaviours of students such as slipping/guessing, 

particularly with regard to multiple choice assessments. The traditional DINA 

model was still included as a baseline model however as it is widely used and 

has explicit parameters for guess and slip. The RMSE shows that the DINA 

model has better accuracy than the CFA model which could be due to  the 

diversity in the predictors used in the CFA. 

In Table 4.12, CV is used to analyse the efficiency of the different features in 

the proposed model and to show the differences with the original PFA model. 

CV can be used to check whether a model has been over-fitted. It can be used 

to predict the performance of a model on unavailable data (predicted 

parameters) using numerical computation in place of theoretical analysis. 

CV divides the data into five folds, ensuring that no data from a level is split 

between folds. Once the data has been divided, the model is trained on four 

folds and then used to predict the values of the remaining fold. The AIC, BIC 

https://en.wikipedia.org/wiki/Overfitting


Model Evaluation 

103 
 

and LL are predicted and actual values are then reported, with smaller values 

indicating a more accurate model. 

Table 4. 12: CV evaluations 

Model CV-LL CV-BIC CV-AIC 

PFA -1530.2 3263.6 3212.2 

DINA -1545 3238 3208 

CFA -1599 3132.4 3173.5 

   

The CFA fit results show that the slip/guess model has better predictive 

accuracy (i.e. CV performance) and LL/BIC and AIC fit than its traditional 

counterparts across the selected datasets. The AIC/BIC scores also mirror 

this finding and suggest that the addition of the slip/guess and hint 

parameters to the logistic model led to improved model fit and an increased 

ability to predict behaviour. 

4.7 Prediction scenarios 
 

To illustrate how the proposed model CFA works and to evaluate its 

efficiency compared to the other models, a prediction scenario study was 

designed. The LCM/product data (explained in chapter three), with 16 items 

and four attributes/skills was used to examine the performance of the 

proposed method. The given data was tested to represent the past 

performance of the learner for the first eight items. The learner was then 

measured from that point onwards (i.e. from item 9 to item 16) and the 

probability of the next item being correct assessed for the four given models.  

All factors in the first set of data, such as the guessing/slipping parameters, 

success and failure rates, item difficulty and the students’ current skills were 

estimated earlier. Based on all the given factors, we predicted the 
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performance of correctly answering the next item for two students for items 

9 and 10. Two students were chosen for this scenario, one of whom had fully 

mastered the given skills and one who had partially mastered the skills (see 

Table 4.13). 

Table 4. 13: Students’ acquired skills 

Student ID Skill 1 Skill 2 Skill 3 Skill 4 
Student 1 1 1 1 1 
Student 2 1 1 0 0 

 

This scenario study was based on the assumption that, if one of the students 

mastered all the necessary skills but had slips for some items, the developed 

model needed to be measured to discern whether it would pick up these slips 

and estimate the performance of that student better than the other models. 

To demonstrate such a scenario, the students’ skills are shown in Table 4.13 

and the item/skills are shown in Table 4.14. Tables 4.15 and 4.16 summarise 

the simulation results for the four models for the two students with two 

items.  

Table 4. 14:  Item/skills  

 

 

 

 Performance scenario for student 1 

For student 1, who has mastered all the skills, item 9 has two skills. This 

means that student 1 should answer this item correctly with no guessing 

parameters. According to Table 4.15, however, this student asked for a 

hint, while according to Table 4.6, item 9 has a high percentage of 

slipping. Therefore, this student was more likely to slip the correct 

answer for this item. The CFA model estimated the probability of student 

1 answering item 9 correctly as 73%, while the PFA gave an estimation of 

Item ID Skill 1 Skill 2 Skill 3 Skill 4 

Item 9 1 0 0 1 
Item 10 1 1 0 1 
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65%. CFA considers the factors of both hints and slipping, whereas PFA 

does not. 

Table 4. 15: Actual/current student responses 

 

Table 4. 16: Probability of the next item being correct for the four 
models/student 1 

Model Student 1/item9 Student 1/item 10 
PFA 0.65 0.42 
PFA Mod 0.69 0.54 

DINA 0.58 0.62 
CFA 0.73 0.78 

 

Table 4. 17: Probability of the next item being correct for the four 
models/student 2 

Model Student 2 /item9 Student 2/item 10 

PFA 0.72 0.75 
PFA Mod 0.54 0.54 
DINA 0.56 0.61 
CFA 0.42 0.47 

 

Table 4.15 shows that student 1 attempted to answer item 9 correctly. 

Table 4.16 presents the performance estimations for all the four models.  

Now, student 1 attempts to answer item 10. According to table 4.14, item 

10 has three skills (slightly more difficult) and, since the student has 

mastered all the skills, therefore s/he is supposed to score this correctly.  

CFA estimated the probability of student 1 having the correct answer for 

item 10 as 0.78, according to table 4.15, student 1 scored it incorrectly. 

This means that there is a slipping probability due to the item difficulty, 

Student 
ID 

Item9 Hint? Answer Item 10 Hint? Answer 

1 1 1 1 1 1 1 
2 1 0 1 0 0 0 
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especially as no hint was requested in order to answer this item. CFA 

(with the factors of hint and slipping) offers the most accurate 

estimation, since the student has mastered all the skills, but the item is 

slightly difficult and the student has not requested a hint. Therefore 

there is a strong probability of slipping and not attempting the answer 

correctly. According to table 4.16, the DINA model estimated the 

probability as 0.62 as the student has acquired the skills but s/he might 

slip. PFA has the least accurate prediction as it assumes that the student 

does not possess the ability to answer the item, without considering that 

this student has a strong skills level but there is a probability that the 

student might slip the answer. Further, this student slipped this item 

although s/he had  requested a hint. This means that CFA predicted that 

this student might slip this item even though he possessed the 

knowledge required to answer it. Furthermore, CFA introduced a very 

important concept which is that attempting an item incorrectly does not 

represent a lack of knowledge but it might be simply be a slip. This 

student cannot therefore be treated in the same way as any other student 

who scores the item incorrectly without mastering the necessary skills.  

This conclusion depends on the analyses of prior scores with the factors  

combined in CFA and cannot be found in the other models. 

 

 Performance scenario for student 2 

For student 2, Table 4.13 indicates that this student mastered only two 

skills (2 and 3), therefore, the guessing parameter is considered. As item 

9 only has two skills (1 and 2), student 2 should either guess the correct 

answer or answer it incorrectly. According to Table 4.17, CFA estimated 

the probability of the correct answer as 42%, whereas the DINA model 

gave an estimate of 56%. PFA estimated that this student would answer 

item 9 correctly. According to Table 4.15, this student asked for a hint 
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and answered the item correctly. Student 2 probably guessed the answer 

(or made a logical guess) and therefore CFA demonstrated the best 

prediction as it considered the hint and guessing parameters alongside 

other factors. 

For item 10, however, which has three skills (two of which match the 

student’s skills), student 2 should not provide an answer and, if he does 

so, it will be a guess. The estimation values for the PFA and the DINA 

models indicated that this student would answer this item correctly and 

the DINA model showed a high percentage of guessing. CFA, however, 

gave a lower probability of student 2 giving the correct answer. Table 

4.15 shows that this student answered item 10 incorrectly and did not 

ask for a hint, which aligns with the estimation given by CFA.  

In addition to the evaluation tools used earlier to assess the efficiency of the 

models, Figure 4.3 illustrates the probability accuracy of the three models 

using CV with five folds across 250 students. CFA was found to have the 

highest accuracy out of the three models. The increase in accuracy among the 

three models is obvious, as it can be noticed that PFA has a low rate accuracy 

and, although stable, is still the lowest rate. This is due to the limited 

parameters used to estimate the students’ performance level.  With the DINA 

model, particularly in multiple choices assessments,  it can be noticed that 

the accuracy level of estimation is slightly higher, and this is because of the 

use of the cognitive parameters (slipping and guessing) which provide better 

predictions of the students’ current skills against the items’ skills. By using 

CFA, the prediction has reached a different level and the estimation accuracy 

reaches its highest level compared to the PFA and DINA. As explained earlier, 

CFA uses more cognitive factors of students in its predictions. The adoption 

of  guessing/slipping parameters and the inclusion of the hint parameters in 

the formula have  proved the hypothesis of this study which stated that the 
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inclusion of cognitive factors in ITS will increase the performance estimation 

and optimise a better knowledge learning process.  

Using CFA not only improved the performance estimation level, but also 

contributed to a reduction in student study time. CFA successfully addressed 

the strengths and weaknesses of each student. Furthermore it accurately 

estimated the current knowledge level and this can decrease the number of 

practices required by each student to reach the mastery level.  

 

 

Figure4. 3: Prediction accuracy curve for three models 

 

4.8 Defining the student’s learning curve 
 

This  section explains how CFA can influence the student’s learning curve and 

reduce study time. This has been proven by applying CFA on a selected data 

set from a tutoring system in DataShop (based on techniques of the DINA 

model and PFA formulas). The data set has been analysed and used to 

evaluate the effect of our model on the student’s learning curve.  
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CFA uses human input to identify model improvements from student log 

data, which are then evaluated by a statistical fit with the data. Our formula 

extends the PFA model, which is a statistical algorithm for modelling learning 

and performance that uses logistical regression performed over the ‘error 

rate’ learning curve data. This formula estimates the probability of having the 

correct answer across certain factors, which are item difficulty, 

success/failure rates, and prior used hints, in addition to the slipping and 

guessing probability.  

To describe the student model improvement, we define three ways to 

describe the learning curve according to the number of errors, and these 

curves are provided by the visualisation and analysis tools in DataShop: 

1) Smooth learning curves: a reasonably smooth learning curve is expected 

to happen when the learning progress of the students is going well, and it 

indicates no problem with learning materials. On the other hand, when the 

learning curve of a given skill is noisy, with upward or downward ‘blips’, the 

student model is suspect.  

 2) No learning progress: if the student model is accurate, we expect the 

error rate to decline over the number of opportunities a student has to learn 

and apply a skill. A flat learning curve is another indication of a potentially 

flawed student model. 

3) Learning curve associated with item difficulty: this computes the 

learning process against the item difficulty. Usually, an easy item does not 

require many practices. These phenomena will cause over-practice, and this 

will affect the performance and student time.  

According to the given learning curve types, we applied CFA formula to a 

private data set from DataShop called “Cog Model Discovery Experiment 

Spring 2010/Control”. This data was generated from student interactions 

with a cognitive tutor for learning Geometry. The assessment items consist of 
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five skills (sometimes they are known as knowledge component KC)  

distributed over 30 questions for around 1,000 students. The skills are: find 

rectangular area, find trapezoid area, find added area, find individual area, 

and enter the given measurements.  

A subset of the learning curves for these skills is shown in Figure 4.4. The 

lines represent the error rate (y-axis) averaged over all students for the first 

20 practice opportunities for each skill (e.g. on the fifth opportunity on the 

trapezoid area skill, about 50 per cent of students made an error). By 

applying this data to CFA model, we found some interesting phenomena, the 

first of which was finding a rectangle perimeter curve which is particularly 

jagged with upward blips in error rate. At opportunities 12 and 15–18, the 

curve jumps up, from about 25 per cent to above 55 per cent. 

 

Figure4. 4: Students’ learning curves for some skills 

Figure 4.4 shows the learning curve of the  skills (Find added area and Find 

individual area) given the base and height. Students had an initial error rate 

around 50 per cent. After 20 and 50 practices, the error rate remained high. 

However, the item difficulty for Find added area and Find individual area is 

0.3 and 0.5 respectively, which means they are not very difficult items. 

Furthermore, the used hints rate was about 30 per cent. Many practices and 

hints for an easy/average skill are not a good use of student time. Reducing 

the number of practices for this skill may reduce a student’s time without 

compromising their performance. Therefore, we want to distribute the blame 

appropriately across all four skills depending on prior estimates of the skill 
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difficulties skills with a higher prior probability of being known should 

receive less blame than skills with a lower probability. 

 

Figure4. 5: skill over-practice 

There are some factors affecting the learning performance and the findings 

shown above. These factors can be related to the quality of learning, such as 

the learning materials and the hints which are provided with each skill, and 

the student’s performance, whether the student maintains the skill or not. 

This could be determined by the guessing and slipping parameters. On the 

other hand, if the student guesses the answer without mastering the current 

skill, they are more likely to make another mistake or answer the next item 

containing the same skills incorrectly. This can explain having some blips 

with the learning curve or increasing the number of practices per easy item, 

which may cause the over-practice.  

 

4.8.1 Discovering student learning time through CFA 

 

One application of our CFA model is to manage the student’s learning time by 

measuring the over-/under-practice with the goal of improving learning 

efficiency, and to discover whether the student is really making progress 

while practising items. 

Accordingly, an important question has been considered here: What causes 

wasting of the student’s learning time? The answer according to the data set 
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we have here is that most tutors apply assessment items without considering 

the individual skill needs compared to the given item skills. Moreover, if the 

tutor updates its estimates according to the student’s proficiency level, it uses 

the same parameters predicted for each given item. Furthermore, we have 

discovered some other points that might affect the learning time, such as: 

 

1- More practices have been used on an easy problem/skill, which is 

shown by the learning curve still having high error rates along with 

the increasing number of practices. 

2- More hints have been requested by the students on an easy skill with a 

high error rate. Does this mean the students do not have the 

knowledge to answer this item correctly or that they have mastered 

the skills but they have slipped? 

3- In the case of multiple skills per item and based on what has been 

stated above: Do the incorrect scores obtained by the students imply 

learning (if they have not mastered some or all of the given skills) or 

slipping (if they have not acquired the knowledge)? 

4- If slipping occurs consistently, does this mean the provided hints 

might be designed ineffectively and this may reflect the quality of the 

learning materials? 

5- Again, in the case of having multiple skills for a single item, if the 

student answers the item incorrectly, it could be that the student does 

not know one or all of the given skills in that item. In that case, it does 

not seem appropriate to reduce the probability of having the correct 

answer without knowing which skill has not been mastered by the 

student. 

6- When the student requires a hint to answer the question and gets the 

answer right: Does this mean the student has learned or that the 

student guessed the answer? Likewise, when the student continues to 

ask for a hint and gets the answer wrong, does it imply slipping or 



Model Evaluation 

113 
 

learning from prior items? By considering in both cases the item 

difficulty level? 

7- Does the probability of having the correct answer increase when the 

student does not ask for a hint (i.e. their knowledge level is higher)?  

To address the above points of the given data set, a demonstration of the 

CFA estimated values is presented in the next section. 

4.8.2 Model demonstrations 

 

This section demonstrates how the fully developed CFA formula estimates 

the student’s future performance for the next exam’s item ( for the private 

dataset) by considering all the factors that were used in addition to the item 

skill excluded from the Q Matrix and the student skills which have been 

estimated previously. We have chosen two samples of students with different 

skills vectors and applied the formula to the same items. Table 4.18 describes 

the five skills provided in the data set assessments items, while table 4.19 

gives the estimates of the skills parameters that excluded after applying CFA 

model to the dataset such as, the difficulty level, success and failure rates for 

all the given five skills. 

Table 4. 18: Skills/KC representations 

Skill Description 

Skill 1 Find rectangular area 

Skill 2 Find trapezoid area 

Skill 3 Find added area 

Skill 4 Find individual area 

Skill 5 Enter the given measurements 
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Table 4. 19: Estimations of given skills parameters 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.20 below demonstrates the behaviour of one selected student from 

the data set. This table reveals the necessary parameters of CFA  model to 

predict the students performance level. Starting with the item j the students’ 

scores, the prior used hints by the student, the items’ skills (the skills number 

differs from item to another, some item might have one skill or more). 

Further, the student’s current skill and the student’s proficiency level. The 

ModPFA  

Difficulty/Skill1     0.14         

Difficulty/Skill2    -0.21          

Difficulty/Skill3    0.327          

Difficulty/Skill4     0.531 

Difficulty/Skill5     -1.2            

Success/skill1        0.14         

Success/skill2        0.02          

Success/skill3        0.12           

Success/skill4        0.32 

Success/skill5       0.014 

Failure/skill1          0.075 

Failure/skill2          0.053 

Failure/skill3         0. 17           

Failure/skill4        -0.081 

Failure/skill5        -0.081 
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guessing and slipping parameters of the given item for this data set ( these 

parameters have been calculated previously using the same process shown in 

chapter four/section 4.4), and finally, the student’s performance of having 

the next item correctly is estimated using CFA model.   

As it has been shown in Table 4.20, the student has mastered all the skills 

required for the whole assessment items . However, the skill difficulty level 

for each given item is high. It can be noticed that the probability of getting the 

answer right is increasing although the student got the next item wrong. This 

probably happened as the item difficulty level is high, and the student is most 

likely to slip the answer.  

Table 4. 20: Demonstration that student mastered all the given skills 

 

 

 

 

 

 

 

J Score Difficulty Hint ItemSkill 

1,2,3,4,5 

Student 

Skill 

Proficiency 

Level 

Guess Slip Performance 

1 - -0.25 1 11000 11111 1 0.094 0.204 0.56 

2 0 -0.23 0 10101 11111 1 0.083 0.208 0.62 

3 0  0.53 0 10100 11111 1 0.102 0.079 0.81 

 1         
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Table 4. 21: Demonstration that student mastered only one of the given 

skills 

 

Table 4.21 provides a different example of a student who has mastered only 

one of the five given skills. This table has used the same parameters 

explained in  Table 4.20, and this  example is applied to the same exam items 

given earlier in Table 4.20. The student’s proficiency value for the given item 

skills is zero, which means the student might guess the next item. Moreover, 

the formula shows that the probability of having a correct answer is low. 

However, the student got the next item wrong. Please note that the second 

item contains skills 2 and 3, and from the skills correlation table shown 

earlier, the correlation between those two skills is very high, which means if 

the student does not know one of them, they are unlikely to get the other skill 

right. This probably explains the incorrect responses for the next item. The 

probability of having the correct answer for the third item is getting slightly 

higher and shows some learning from failure. For the first two items, the 

student has asked for a hint, and this may give them some knowledge. 

Although the student got the third item wrong, according to CFA formula, 

they guessed the answer this time as they did not request a hint. However, 

the item level is easy and there is some increase in learning. 

J Score Difficulty Hint ItemSkill 

1,2,3,4,5 

Student 

Skill 

Proficiency 

level 

Guess Slip Performance 

1 - -0.25 1 11000 01000 0 0.094 0.104 0.20 

2 0 -0.23 1 10101 01000 0 0.083 0.108 0.32 

3 0  0.53 0 10100 01000 0 0.102 0.079 0.45 

4 1         
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In both cases, the system shows the incorrect scores for both students, and 

there is slipping (if all the required knowledge has been mastered) or 

learning from failure (if not all the required knowledge has been mastered). 

Furthermore, it is possible to monitor the learning progress and quality of 

hints and learning materials through the interaction with guessing and 

slipping parameters. Moreover, it can be beneficial to reduce the over -

practice and time wasted when the student has reached the mastery level for 

all given skills.  

4.9 Conclusion 

 

This chapter has described an approach for building individualised 

intelligent tutoring models that are capable of accounting for student 

differences with respect to initial mastery probabilities and skill learning 

probabilities. Our approach was based on two cognitive models: probabilistic 

(DINA model) and logistic regression (PFA). Our implementation improved 

the prediction accuracy of the success of students along with the learning 

process (in case of failure). An interesting finding was that splitting student-

specific probability of performance into two factors of prior success scores 

and prior used hints was more beneficial for the accuracy of the model.  

On the other hand, we included the probability of the slipping and guessing 

parameters associated with each item type in the form of a logistic 

regression. This combination increased the individual learning rate rather 

than individual proficiency. To summarise, the excluded findings showed a 

better fit of the data using CFA in terms of the statistical evaluations tools 

compared to the previously presented models.. 
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Chapter Five: Conclusions and 

Future work: 
 

 

5.1 Conclusions 
 

This thesis has discussed the issue of improving the performance estimation 

of students  in ITS. As has been shown, the existing ITS models generally 

provide less accurate assessments of a student’s performance and thus 

reduce learning efficiency due to an incomplete representation of the 

student’s knowledge. This is as a result of  shortcomings in the design phase 

of ITS.  

Therefore, this thesis has presented a novel tutoring model (CFA) that offers 

a significant contribution to the design phase of ITS. It differs from the other 

models by adapting student cognitive factors, such as guessing/slipping 

parameters and student proficiency levels, together with each item’s 

parameters (prior correct/incorrect score, prior used hints, item difficulty 

level and item skills)  to produce a better estimation of student latent 

performance. CFA works by extracting the student’s skills and comparing 

these with the learning items. Each learning item involves multiple skills, 

which are not explicitly stated in textbooks, and students are therefore 

expected to acquire such skills through problem-solving. Therefore, 

mastering the skills can be achieved by the students performing tasks that 

require such skills.  

The ultimate achievement of CFA is to help students to target their strengths 

and weaknesses within their knowledge level, and to provide accurate 



Conclusions and Future work 

119 
 

feedback from the assessment item’s difficulty level as to whether this is 

sufficient to improve the student learning process.  

CFA has made several significant contributions that stem directly from its 

development. Specifically, this work has made the following contributions: 

 It aims to have an adverse impact on the student’s learning curve and 

reduce the student’s learning time by controlling the amount of time 

spent practicing the skill several times. It assumes the role of 

modelling the student’s learning by making inferences about their 

latent performance with multiple skills assessments. CFA does not 

consider the correct answer by the student as positive evidence of 

mastering all the required skills, as the student might have guessed 

the answer. Similarly, an incorrect answer is not deemed to be  proof 

of failure, as the student might have slipped the answer despite having 

mastered all the required skills.  

 It estimates the student’s proficiency level and matches this with the 

given skills of the assessment items. This will assist the tutor to 

predict the accurate skill level of the student rather than completely 

relying on the student’s scores. 

 CFA has a positive impact on the field of cognitive learning 

psychology. It attempts to show how data generated from tutoring 

systems can be analysed and modelled to create (and improve) a 

unified computational theory of human learning. Furthermore, it 

encapsulates psychological findings in a format that can be used by 

instructional designers and educational scientists to support the 

development of tutoring systems. Therefore, this work has been 

inspired by the DINA model through the consideration of 

psychological factors (slipping and guessing parameters) to achieve 

better individual knowledge estimation. 
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5.2 Future Work 
 

Although the developed model has produced good results, it is possible that 

further research could be conducted in order to strengthen certain aspects. 

These areas include: 

 The developed model could consider other factors of the students’ 

records/data, such as the time spent on solving each item. However, 

since our model is in the form of logistic regression, all the factors are 

required to be presented in a binary form so, likewise, the time factor 

should be determined in binary form. 

 The developed model predicts the student performance of each given 

item and records this in the student profile database. Therefore, 

further analysis can be performed on this data and the student 

knowledge level could be further classified/organised as novice, 

medium and professional for each skill. This would improve the 

learning process and enhance the discovery of knowledge relating to 

each student. 

Since the presented model is generic and flexible, it can be combined with 

other models within the educational environment. One suggestion is that a 

recommender engine could be added to the ITS system which would then 

recommend the learning material/assessment items which match the student 

proficiency level for each given skill. This will save students a great deal  of 

time by directing them to the appropriate learning resources. The aim of the 

recommender system is to organise the vast amount of items available by 

determining user preferences and applying these preferences to items 

previously unknown to the user.  In this way, the ability to  recommend what 

has a high likelihood of being interesting to the target user is developed. We 

suggest that two recommender system techniques should be employed with 

the developed CFA model: 
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1. Collaborative Filtering: this is based on the assumption that similar 

users like similar things and, being content-agnostic, it focuses 

only on the past ratings that have been assigned. In the early days 

of recommender systems, content was deemed to be extremely 

useful as training data and research data sets contained large 

amounts of attribute information for the purpose of  algorithm 

training. However, since the late 1990s, the so-called collaborative 

filtering approach has prevailed. 

 

2. Matrix Factorisation: this is known to be one of the most successful 

methods for rating prediction, outperforming other state-of-the-

art methods (Koren and Bell, 2009). It is based on approximating 

the matrix X by the product of two smaller matrices W and H, i.e. X 

≈ W  .  

In the context of recommender systems, matrix X is the partially 

observed ratings matrix, W ∈      , a matrix where each row u is a 

vector containing the K latent features describing the user u, and H 

∈ RI×K is a matrix where each row i is a vector containing the K 

features describing the item i.  

Let     and     be the elements of W and H respectively, then the 

rating given by a user u to an item i is predicted by: 

 

   =∑      
 
      =   

                                                                                                           

(6.1) 

 

where W and H are the model parameters and can be learned by 

optimising a given criterion using stochastic gradient descent. 
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Therefore, by classifying the students’ knowledge level and organising this 

into groups, as has been described earlier, the recommender system could 

work on recommending items associated with each group level. 

In conclusion, this work has met its hypothesis; “using cognitive factors (the 

student’s current skills, the guessing/slipping parameters) will improve the 

prediction of the student’s performance and optimise their learning 

experience”. The CFA model offers two major key components, the student’s 

cognitive factors and the adoption of the hinting parameter to assist the 

student to answer correctly. The combination of these two components 

creates a novel framework within which an accurate latent inference of the 

students’ knowledge is produced. This further supports the building and 

testing phases of the intelligent tutoring systems by focusing on producing a 

solid design phase without the need for classroom study. 
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