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Abstract—Visible light communications (VLC) technology is a
relatively new emerging telecommunication paradigm. It offers
the opportunity to design cost-effective communication systems
due to the dual use of the light sources, which are exploited as
illumination devices and as communication antennas. However,
this technology is mostly deployed in short-range communication
applications because of the light diffusion range, which is short
by nature. One good response to this dilemma is the imple-
mentation of relay-assisted cooperative communication systems.
Cooperative VLC systems provide three advantages, which are
an increase in the transmission range, an improvement of the
detection, hence of the bit error rate (BER), and an improved
lighting system. In this paper, we analyze the channel response
of a single-relay indoor VLC system based on an amplify-and-
forward (AF) strategy. The system takes into account the fact
that the relay also receives a reflected message. Results show the
influence of the room’s reflection index, Lambertian index, the
number of scattered rays on the overall channel response and
confirms the importance of relay-assisted strategies in improving
systems’ reliability.

Index Terms—Cascaded VLC system, amplify-and-forward
strategy, relay-assisted VLC system, channel response of coop-
erative VLC systems.

I. INTRODUCTION

The increased thirst for high data rate and better quality of

service (QoS) has led researchers to continuously carry out

research in visible light communications (VLC) technology. In

general, most techniques used in VLC are borrowed from ra-

dio frequency (RF) or other optical wireless communications

(OWC) technologies. Examples include orthogonal frequency

division multiplexing (OFDM) with its two variants direct

current (DC)-offset (DCO) and asymmetric clipped optical

(ACO), and cooperative relaying strategies.

In RF technology, cooperative relaying is widely used to

improve reliability [1], [2]. The performance of such systems

can be improved by the introduction of selectivity feedback

loops from the receiver to the relay, to avoid the relay to

transmit with a low signal-to-noise ratio (SNR) and enable

the receiver to communicate on its SNR [3]. In general, incre-

mental cooperative networks outperform direct transmissions.

Their performance is improved by using multiple relaying

systems [4]. They perform better with the introduction of

incremental selective techniques in which thresholds are im-

posed on relays’ and receiver’s SNRs. This allows the receiver

to send a feedback message on its own SNR to the relay. [5].

A combination of amplify-and-forward (AF) and decode and

forward (DF) with an incremental selectivity, provides better

performance when compared to all the above described AF

and DF strategies [3].

Relay-assisted strategies have recently been proposed for

OWC and VLC [6]–[16] in particular. It is shown in [6] that

relay-assisted strategies are powerful techniques to mitigate

fading and transmission range shortness. This is confirmed in

[7], which proposed a multi-hop relay-based maritime VLC

system. The system exploits a DF strategy to extend coverage

in underwater VLC environments. This is illustrated in Fig. 1.

[8] investigates a scenario in which user terminals can act

as relays in order to extend the coverage of a VLC-based

downlink. In [9] and [10], relay-assisted VLC systems based

on DCO-OFDM are proposed. They confirm that cooperative

VLC systems improve the transmission gain when compared

to a direct link. [11] deals with a multi-user VLC system

in which other users serve as a relay. The message transits

through other users to reach the destination if the source-

destination link is blocked or shadowed. The same technique

is proposed in [12] for an inter-vehicle system in which

each vehicle can serve as a relay to forward the transmitted

message. A full duplex cooperative VLC system using a

loop interference cancellation method is also investigated

in [13] and [14]. The gamma-gamma distribution can be

exploited as done in [15] to analyze a DF strategy on free

space optical (FSO) links. A practical demonstration of a

cooperative VLC system is proposed in [16] where an au-

dio signal is successfully delivered to the destination over

two intermediate relay terminals. These strategies are also

exploited in hybrid systems with VLC. For example, in a

cascaded system involving power line communications and

VLC, both AF [17]–[19] and DF strategies [20] have been

proposed.

Against the above background, it is clear that relay-assisted

transmissions and cooperative techniques provide a great deal

of contribution in improving the system reliability. Neverthe-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/200785775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. Illustration of improved lighting and transmission coverage due
to a relay-assisted strategy. If both source and relay have the same lighting
characteristics, then lighting range and transmission coverage are doubled.

less, many aspects of these strategies are not fully investigated

in VLC technology. For example, the analysis of a single-

relay VLC system in the indoor environment where the relay

also receives part of the reflected message has not been

fully studied. Therefore, in this paper, we analyze the indoor

channel response of a single-hop VLC system, based on the

AF scenario, taking into consideration the fact that relay also

receives part of the reflected message.

The remainder of the paper is organized as follows: In

Section II, a description of the system is given, followed

by the channel model, simulation and results in Section III.

Finally concluding remarks are given in Section IV.

II. PRINCIPLE AND SYSTEM DESCRIPTION

A. System description

Fig. 2 illustrates a typical indoor VLC environment where a

relay light is needed. The primary light source (S) broadcasts

both light and the message from the ceiling, situated at 3

m from the floor. S is purposely located at the center of

the ceiling of a 5.2×5.2 m2 room. The room is a sleeping

environment with a reading station equipped with a desk-light

(R). The main light, S, is a sleeping light. As shown in Fig. 2,

the coordinates of R are (0.5 m, 1.2 m, 1.2 m). S produces

a little amount of lumens and hence, it can not be used for

reading. Consequently, it is hard for the receiver, D, to detect

the message sent by S. The receiver is either a smart phone

with a front camera or a laptop disposed on the working table.

Its coordinates are (1 m, 1 m, 0.8 m).

1) The message source (S): S is the main light source

lighting the transmission environment. It is characterized by

a Lambertian pattern of semi-angle Φ1/2(S). It produces an

optical power, Pt, with a luminance LS . S is the antenna from

which the message is originally generated.

2) The relay (R): R is made of two main parts: a receiving

part RR and a transmitting part RT . RR is a normal VLC

receiver including a photo-detector (PD) and characterized

by its field of view (FoV), FoVR. FoVR is wide, allowing

the relay to also detect signals from reflected rays. The PD

is also characterized by its responsivity λR. Its role is to

Figure 2. Transmission environment showing the light source, the relay and
the main receiver.

detect the message signal from S and forward it to RT for

re-transmission, depending on the strategy adopted. On the

other hand, RT is normally a light source characterized by

a Lambertian pattern with a semi-angle Φ1/2(R). It produces

an optical power, PR, with a luminance LR. RT is required

to forward to the main recipient the message it receives from

RR.

3) The message recipient (D): D is the main recipient of

the message diffused by S. It is made of a PD, characterized by

its responsivity λD and its wide field of view, FoVD. It may

detect signals directly from (S), (R), and reflected signals.

4) Reflecting objects: The reflecting objects over the trans-

mission environment include walls, ceiling, floor and other

object disposed over the environment. It is assumed that the

relay and the message recipient receive reflected messages

only from the walls. Walls are in general modeled by the

Lambertian reflectance model. The reflection index of walls

defines the amount of reflected rays.

B. Illumination analysis

The visible portion of the electromagnetic spectrum ranges

from 380 nm to 770 nm, and represents the band of radiation

perceived by the human eye. The power of light can be

calculated from its energy, which is defined in quantum

theory by Planck’s equation. For a given light source, the

relationship between irradiance and distance is defined by the

inverse square law, and the falling of illuminance on a surface

varies according to the Lambert’s cosine law. The radiometric

power of that illuminance, the luminous flux, is an important

parameter related to lighting.

Most indoor VLC environments such as offices, reading

rooms, kitchens, bed rooms or TV rooms are environments

with illumination constraint. This implies that the amount

of lumens produced by the light source must be calculated

according to the lighting level required. For example, a class-

room requires about 250 lumens per meter square (lm/m2)

while for a computer work, a study library or a show room,

about 500 lm/m2 are needed. To calculate these values,

the knowledge of both luminous flux and illuminance are

fundamental.

In regard with our system, the luminous intensity of the

light from the jth source, j = S, R, and walls (W), falling on
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Figure 3. Luminous intensities falling on D, R and the walls.

the ith element, i = W, D and R, is given by

Ij = Ij(0) cos
µj (αi), (1)

where Ij(0) is the maximum luminous intensity produced by

the jth source which corresponds to the incident angle αi =
0o, and µj is the Lambertian order of the jth source. The

illuminance at a point i due to the source j can be expressed

as

Ei =

W,D,S,R
∑

i,j

Ij(αi) cos(βi)

di
+ εi, (2)

where Ij(αi) is defined in Eq. (1), βi the angle of reflection

at point i, and di the distance from source to destination. In

Fig. 3, we show the optical power intensity of S, W and R in

terms of the emitting angle. We assume IR(0) = 2.5IS(0). The

choice of the 2.5 scaling factor is motivated by the fact that by

multiplying the intensity at S by 2.5, the obtained value agrees

with the needed reading light intensity. S and R, are given with

different Lambertian orders. µS = 1, corresponding to Φ1/2(S)
= 30o while µR = 1.5, corresponding to Φ1/2(R) = 25o, which

confers to the desk-light a more focused light beam. The walls

have a Lambertian reflectivity of order, µW = 0.6, and a 75%

reflectance coefficient. These values are chosen to match the

description of the system given in Section II-A. From Fig. 3, it

can be noted that the luminous intensity produced at the relay

is about 2.5 times that of the main source. But the illuminance

at D is larger than that at the relay and on the walls as shown

in Fig. 4. This is because D receives light from S, R and W.

III. CHANNEL AND MODEL

A generalized VLC data transmission model is depicted in

Fig. 5. It shows the two VLC domains and their converting

equipment which are light sources in the transmitter and PDs

in the receiver. A driver (Dr) is used to adapt the generated

electrical current to the light source after the application of the

DC-offset. Note that the signal processing block is not shown

in this figure. Here, the channel includes both the filter and

the noise generators while in the receiver, the block Am+F

represents both the trans-impedance amplifier (TIA) and the

filter. Also note that the model given in Fig. 5 represents all
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Figure 4. Illuminance at D, R and walls.

Figure 5. Generalized VLC communication model.

links (S-D, S-R and R-D). The TIA is used to amplify the

current when it is firstly produced by the PD. Light emitting

diodes (LEDs) and laser diodes (LDs), used in VLC [21],

are non-coherent, hence, intensity modulation (IM) and direct

detection (DD) techniques adapt well. Let u(t) be the emitted

optical intensity due to the light source, which follows the

IM pattern. The DD function is accomplished by the photo-

detector combined with a TIA. For the S-D, S-R and R-D

links, the transmission is governed by [22]

v(t) = λu(t)⊗ h(t) + n(t), (3)

where n(t) is the additive white Gaussian noise (AWGN).

The rest of the parameters are defined as follows: v(t) is the

amplified output electrical current, λ the responsivity of the

PD used, and h(t) the channel impulse response (CIR). The

CIR depends on the structure of the transmission link as it

may be LoS (direct or non-direct) or non-LoS (NLoS). In the

system model under consideration, the S-D link is made of

both LoS and diffuse components. This also applies to the

S-R link while the R-D link is purely LoS.

A. Channel characteristics

The CIR of these VLC links are functions of the geometry

of the transmission environment and the FoV of the receiver.

This geometry includes the position and the orientation of the

light source and its LoS and NLoS properties. As a result of

the above links description, the CIR is given by

h∆(t) = h∆LoS(t) + h∆diff (t), (4)

where h∆LoS(t) and h∆diff (t) are respectively the contribu-

tions of the LoS and that of the diffuse links into the CIR,

and ∆ ∈ {S-D, S-R, R-D}. It should be noted that, h∆diff (t)
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W/m2; receiver FoV = 75o and effective PD area, Ar = 10

−4 m2.

is null for the R-D link since no reflection of the light emitted

by the relay reaches D.

At the receiver i, the LoS part of the links is given by

h∆LoS(t) =

η
∑

j=1

VjT (αi)
Ar(βi)

d2i
δ
(

t− di
c

)

, (5)

where η ∈ {S, R}, depending on the strategy adopted.

In a fix strategy, the relay unconditionally always transmit

and as such, is considered as a permanent antenna. In the

case of incremental strategies and incremental strategies with

selection based on the SNR at D and R, η = S when R is

not transmitting and η ∈ {S, R} when R is transmitting. We

assume that the visibility function Vj is unity and that αi

and βi may vary so that the best position is selected for all

components in the system. c is the speed of light and δ(.) is

the Dirac delta function. Finally, Ar is the effective receiver

area and the filter function, T (αi), is defined by [22]

T (αi) =
(µj + 1) cosµj (αi)

2π
, (6)

where µj = {µS , µR, µW } for the system considered.

The contribution of the NLoS links, h∆diff (t), is hard

to determine as the number of reflection can not easily be

calculated. This number is generally obtained by simulation

[9]. h∆diff (t) depends on many factors, including and not

limited to the room dimension, the reflectivity of walls, ceiling

and floor, and others object disposed over the environment,

and the position and the orientation of S and R [23]. If the

number of reflections, k, is known at the receiver i, the impulse

response due to light undergoing these reflections can be

expressed as [23]

h∆diff (t, S,R) =
µj + 1

2π

k
∑

v=1

ρi cos
µj(αi)

cos(βi)

d2i
rect

(2βi

π

)

× hv−1

∆diff

(

t− di
c
, S,R

)

Aref .

(7)
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In Eq. (7), ρv is the reflection coefficient of the vth reflector,

di is the distance from the jth source to the ith reflector,

Aref is the area of the reflector and the quantity hv−1

∆diff

(

t−
dsj

c , S,R
)

represents the impulse response of the (v − 1)th

path. Due to the complexity of Eq. (7), the power delay profile

based on the root mean square delay spread, which quantifies

the properties of the multi-path link, is used. Another metric

used in multi-path transmissions is the Rician factor, K, which

characterizes the statistical distribution of the original message

signal amplitude at the receiver. It is the ratio of the squared

power of the dominant path (LoS) components to the squared

power of the remaining path. Measuring K is quite difficult

due to the number of path that is not easy to be determined.

Nevertheless, few techniques have been proposed [24]. It is

reported in [23] that K can be given as the square-ratio of

the LoS frequency response by that of the diffuse link, and

can be expressed as

K =

[

H∆LoS

H∆diff

]2

. (8)

Given K, the received powers, P r
∆LoS and P r

∆diff , respec-

tively due to the LoS and NLoS channels for the link ∆, are

given by [23]










P r
∆LoS = H∆LoSPt (1),

P r
∆diff = H∆diffPt (2),

P r
∆
=

(

H∆ LoS +H∆diff

)

Pt (3).

(9)

Based on Eq. (8), Eq. (9-3) can be rewritten as

P r
∆ = (1 +

√
K)H∆LoSPt. (10)

B. Noise and interference scenario

Shot (Quantum), thermal (Dark current) and background

radiation noises are the most important noise in the indoor



100 101 102 103

Frequency (MHz)

2

2.5

3

3.5

4
|H

(f
)|

×10-7 (a)

100 101 102 103

Frequency (MHz)

5.5

6

6.5

|H
(f

)|

×10-5 (b)

0 10 20 30 40

Time (ns)

0

2

4

6

8

h
(t

) 
A

m
p
lit

u
d
e

×10-7 (c)

0 10 20 30 40

Time (ns)

0

1

2

3

4

h
(t

) 
A

m
p
lit

u
d
e

×10-5 (d)

Figure 8. Channel impulse response (CIR) and channel frequency response
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VLC environment. Shot noise is well described by Bose-

Einstein statistics when it is generated by a coherent light

and is best represented by Poisson statistics if caused by a

thermal light. Both distributions may exhibit a Gaussian fit

for a high number of photons. Three shot noise scenarios are

identified: (i) part of it is generated by the LoS rays from the

source, (ii) another part is generated by the reflected light,

and (iii) the third part emanates from the background light.

On the other side, thermal noise is generated by the receiver

circuitry. This happens regardless of the voltage source used

to power the circuit. It is modeled using the central limit

theorem (CLT), which is a normal distribution. For a high

photon number, which is the case considered in this paper,

shot noise is approximated to Gaussian noise. On its own side,

background noise is a Gaussian white noise. Therefore, the

AWGN model is used to model the channel. Note that Fano

noise is also present over the environment but is generally

generated with low amplitude and consequently neglected. As

a result, AWGN with zero mean and variance σ2
n = N0/2,

N0 being the power spectral density of the AWGN, is used.

The main interference may be generated by the light

carrying the message. In fact, due to multi-path propagation,

another version of the message will reach the receiver at a

slightly different time. This type of interference is always

present over the indoor VLC environment.

• Signal-to-noise ratio (SNR)

By substituting P r
∆

with its expression given in Eq. (10), with

a total elimination of the interference, we obtain the SNR

expressed as

SNR =
2λ2H∆LoS(1 +

√
K)P 2

t

N0

. (11)

C. Simulation and results

The overall simulations are based on the modified Monte

Carlo Ray-tracing method [25]. The Monte Carlo method is a
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heuristical algorithm used to simulate system’s behavior and

uses random sampling to obtain results while in a Ray-tracing

algorithm, the path of light is traced to generate an image.

Figs. 6 to 9 show simulation results on the characterization

of an indoor VLC relay-based system. In Fig. 6, we show the

CIR for the direct link between S and D for four scenarios

taken randomly. Since the main source is dimmed, we assume

a Pt of 0.4 W/m2. At the destination, we assume FoV = 75o

and Ar = 10−4 m2. We vary the number of emitted rays

(1000 and 2000) and the number of reflections (one, three

and 10). The figure shows that the CIR produces the same

first peak for the selected number of rays and reflections.

The reflected signal will appear 5 ns later from the scenario

with only one reflection, and the one with 10 reflections will

appear the last. In Fig. 7, we show the channel frequency

response (CFR) corresponding to the four scenarios of Fig. 6.

The results are obtained for the same simulation parameters.

The channels have the same behavior for the fours selected

scenarios. The little difference is that in the case of one

reflection, the first notch does not exist, which corresponds to

the quick appearance of the reflected signal shown in Fig. 6.

More results are depicted in Fig. 8, which presents both CIR

and CFR for S-R and R-D links. The S-R link is depicted in

Fig. 8-(a) and -(c) while the R-D link is given in Fig. 8-(b)

and -(d). CIR and CFR for the S-R link are very close to the

scenario, 1000 rays and 3 reflections from Fig. 6. This is due

to two reasons: (i) The simulations are done under the same

conditions (Pt of 0.4 W/m2). At the destination, we assume

FoV = 75o and Ar = 10−4 m2, 1000 rays and 3 reflections),

and (ii) S-R and S-D links have similar behaviors of their

respective CIRs since R and D are physically close to each

other. The R-D link, Fig. 8-(b) and -(d), is also simulated

with Pt of 0.4 W/m2. At the destination, we assume FoV =

75o and Ar = 10−4 m2, 1000 rays and 1 reflection. The

result shows a low attenuation of the transmitted signal. This

is due to the fact that the distance from R to D is considerably



small, which implies less attenuation. The CIR in Fig. 8-

(d) displays the arrival of the reflected signal with a low

amplitude. Note that in terms of transmission time, the R-D

link is faster than the S-R and S-D links. This is also related

to the distance R-D as materialized by the first impulse which

appears about 2 ns after its transmission while in S-R and S-D,

the pulse arrives about 10 ns after it is sent. We show in Fig. 9

how the number of rays produced by the light source affects

the channel characteristics. Recall that this number depends

on the lighting pattern used, which are Lambertian or non-

Lambertian. In our case, light sources have Lambertian with

order µS = 1 (Φ1/2(S) =30o) and µR = 1.5 (Φ1/2(R) = 25o).

This means that S produces more rays than R even though

R gives out more power that S. Fig. 9 is obtained for the S-

D link under the following parameters: Pt = 0.4 W/m2, 3

reflections for 100, 400 and 100000 rays. Fig. 9-(a) shows

that the number of light rays does not affect the direct link

(LoS) since this is independent on the number of rays, and

one ray is enough to create a LoS link. The influence of the

number of rays appears when we consider the diffuse link

since these rays undergo reflections. This can be observed in

Fig. 9-(a). For a high number of rays, the reflected signal

is more attenuated because the environment experiences a

scattering of light with loss of focus. This is also explained by

the reflected signal showing some significant amplitudes for

a lower number of rays. In the frequency domain, Fig. 9-(b),

it can be seen that within the frequency range from 0 to 20

MHz, the channel has the same behavior for the three number

of rays used in the simulation. Above 20 MHz, the channel

with 100000 rays is a more stabilized channel with fewer

fluctuations when compared to those with a small number of

rays. Note that the ringing appearing when the frequency goes

beyond 100 MHz in Figs. 7, 8-(a) and 9-(b) is related to the

internal characteristic of the filter that constitutes the channel.

IV. CONCLUSION

In this paper, we propose the channel analysis of an indoor

VLC relay-assisted system using a single relay, in which the

relay also receives part of the reflected signal diffused by

the main source. We first analyze the illumination aspect of

the environment before heading to the channel analysis. The

transmission environment is a sleeping room with a working

station. Based on the required illuminance at the reading

surface, the main light source provides a number of lumens

which is assumed to be 2.5 times lesser than that provided by

the relay light. As results of the channel analysis, it is clear

that the performance of a relay-assisted link is far better than

that of the source-destination link. The overall transmission

is affected by the number of light rays, which is related to

the Lambertian order, the number of reflected rays and the

reflectivity index, and finally by the position and orientation of

light sources and that of VLC receivers. The analysis confirms

that the performance of a relay-assisted system is improved.
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