
ORIGINAL ARTICLE

Real-time collaboration through web applications: an introduction
to the Toolkit for Web-based Interactive Collaborative
Environments (TWICE)

Oliver Schmid • Agnes Lisowska Masson •

Béat Hirsbrunner

Received: 14 January 2013 / Accepted: 25 July 2013 / Published online: 16 October 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The widespread availability of personal mobile

devices, combined with the increasing availability of sta-

tionary public devices such as large interactive displays,

creates new opportunities for computer-supported collab-

orative work. In particular, these two factors enable the

emergence of collaborative scenarios, whether planned or

spontaneous, in any location, and previous obstacles to

such collaborative settings such as limitations on the

number of devices available for use and infrastructure costs

can be overcome more easily. As hardware restrictions

diminish, the need for software toolkits that simplify the

development of distributed collaborative applications

allowing for device heterogeneity, true multi-user interac-

tion and spontaneous emergence increases. In this article,

we describe the Toolkit for Web-based Interactive Col-

laborative Environments whose aim is to address these

issues. This is done using current standard web technolo-

gies extended for real-time application (and structured

using specific development guidelines) while ensuring

compatibility with the manifold new evolutions in the

currently ongoing development of open web platform

(HTML5, websockets, etc). While our own work has

mainly focused on synchronous co-located collaborative

systems (same place/same time), our solution, the tech-

nologies used, as well as the concepts that are introduced

are easily extendable for remote and/or asynchronous

collaboration.

Keywords CSCW � Ad hoc collaboration �
Web technologies � Real time � Device heterogeneity

1 Introduction

The widespread availability of powerful user-owned

mobile devices, the broad availability of wireless networks

and the increasing availability of devices such as large

interactive displays installed in public (and especially

semi-public) locations bring new opportunities for com-

puter-supported collaborative work, which has traditionally

been carried out in rather static and controlled environ-

ments in terms of available hardware and software infra-

structure (e.g. meeting rooms).

Although, given the above advances, the hardware

requirements for spontaneous collaborative scenarios are

now much more easily fulfilled, the many potentially het-

erogeneous devices and device types involved imply sev-

eral issues in terms of software engineering that need to be

addressed. The Toolkit for Web-based Interactive Collab-

orative Environments (TWICE) was created to support and

explore some of the new collaborative interaction possi-

bilities that are emerging and to overcome some of the

more complex issues that developers of applications for

such scenarios would be faced with. In addition to the usual

issues related to ad hoc networks and distributed comput-

ing (network latencies, synchronization of application

states, etc.), developers would be faced with supporting a

heterogeneous set of devices and technologies, and making

This paper is an extract of the PhD thesis in [1] and presents the main

concepts of this work.

O. Schmid (&) � A. Lisowska Masson � B. Hirsbrunner

University of Fribourg, Blvd de Pérolles 90,

Fribourg, Switzerland

e-mail: Oliver.Schmid@unifr.ch

A. Lisowska Masson

e-mail: Agnes.LisowskaMasson@unifr.ch

B. Hirsbrunner

e-mail: Beat.Hirsbrunner@unifr.ch

123

Pers Ubiquit Comput (2014) 18:1201–1211

DOI 10.1007/s00779-013-0729-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/200784978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


spontaneous collaborative scenarios using personal devices

more accessible and acceptable for end-users by providing

minimally invasive installation and configuration while

still providing a secure ‘‘walk-up-and-use’’ solution. To

help facilitate these tasks, it would be useful to have a

toolkit that reduces syntactical differences when devel-

oping multi-device and multi-user applications (Fig. 1)

compared to their standard single-user counterparts. Our

toolkit proposes a solution addressing these issues.

2 Context

The TWICE toolkit evolved from our work on exploring

the possibilities of collaboration in multi-user, multi-dis-

play and multi-device environments in semi-public set-

tings, and in particular in cases where the collaboration

occurs spontaneously. Given this context, we assumed that

users would bring and use their own devices for interaction,

minimal infrastructure should be expected (due to the

spontaneity), and the interaction should not only be col-

laborative, but also concurrent (users interacting with the

same object at the same time).

As already mentioned, many people these days carry

with them at least one mobile device (smart phone, tablet,

laptop etc), and most, if not all, of these devices are

powerful enough to provide the functionalities that would

be necessary for complex interaction. Moreover, using

personal devices can also have a positive effect in terms of

user experience. First, users are familiar with the device,

allowing us to leverage the notion of habituation, ‘‘When

one uses an interface repeatedly, some frequent physical

actions become reflexive […]. The user no longer needs to

think consciously about these actions. They’ve become

habitual’’ [2, p. 15], which can be especially important for

novice technology users since they would not have to

worry about learning new features of a device. Second, the

device settings and preferences are already configured to

suit the user’s needs and interaction style (e.g. user-specific

dictionaries for text input corrections), making interaction

smoother and more comfortable for them. Third, it allows

users to share private content (e.g. pictures, documents,

music, etc) easily and directly by transferring it to the

collaborative system, and it allows them to directly save

any artefacts generated during the collaboration onto the

device, making them immediately accessible to the user in

the future. Finally, a personal device can act as a natural

barrier between public and private space, helping users

maintain an awareness of which data are shared within the

collaborative session and which is not.

The use of personal devices for interaction also con-

tributes to minimizing the amount of infrastructure neces-

sary, and the cost of providing and maintaining that

infrastructure for the owner of the collaborative environ-

ment. The fact that an increasing number of semi-public

(and public) settings provide wireless networks and many

also include some form of large (sometimes interactive)

display also contributes to this, and we wanted to leverage

these ‘‘free’’ infrastructure resources as much as possible in

order to maximize the degree of spontaneity that our sys-

tem could ensure.

However, several significant technical and usability

issues have to be resolved in order to maximize the

opportunities that personal devices and minimal infra-

structure provide. Given that personal mobile devices vary

in their hardware and platform capabilities, heterogeneity

of devices can be expected, and thus needs to be sup-

ported—otherwise, owners of certain types of devices

would be unfairly excluded from the collaborative envi-

ronment. Moreover, the specificities of the different devi-

ces themselves (e.g. interaction possibilities, screen size,

external buttons etc) need to be considered, and some

device-specific adaptations of functionalities (e.g. provid-

ing appropriate layouts depending on the screen size or

reacting to device-specific input modalities) may be nec-

essary. Additionally, the use of personal devices immedi-

ately implies the need for addressing privacy issues since

‘‘careful users concerned about their privacy have to make

a tradeoff between the functionality offered by an app and

its potential for compromising their privacy’’ [3, p. 315].

This means that when connecting to the collaborative

system, the user should not be obligated to download or

launch any custom-built applications (since they might be

doubtful of the security and privacy that the application

provides) and the user should be assured that their private

data will remain private and will not be accessed by or

through the collaborative application without the user’s

explicit permission.

Finally, since in our scenario the infrastructure does not

dictate the type or quantity of devices, a system that allows

the integration of personal devices should handle scaling

issues easily and allow all users, independent of their

number, to interact with the system simultaneously. While

in some cases simultaneous interaction can be considered

as many people connected to a single system but only one

being able to directly affect the system at any given

moment (even though all connected users could potentially

affect the system), the case we wanted to consider in our

work was one in which many users can interact with and

affect the system at the exact same time (for example in a

collaborative editing application where one person is

writing the end of a paragraph and another is starting the

paragraph that immediately follows, or even editing the

just-written paragraph).

As the next section will show, we were unable to find

any existing toolkits that we could use which fully satisfied

1202 Pers Ubiquit Comput (2014) 18:1201–1211

123



the requirements of our particular context, which is why we

decided to develop the TWICE toolkit.

3 Related work

Over the years, many different toolkits have been created

to support the development of collaborative applications.

However, most of these toolkits, libraries and APIs were

developed to address specific problems that were being

explored at the time—communication between devices

(e.g. GT/SD [4], Kevlar [5]), the synchronization and

conflict handling of events by cloud-based real-time back-

end solutions (e.g. Google Drive Realtime API [6], Fire-

base [7]), the distribution of user interfaces (e.g. GrafiXML

[8], Toolkit for Peer-To-Peer Distributed User Interfaces

[9], WebSplitter [10]), the extension of legacy applications

(e.g. mighty mouse [11], CollabWiseTk [12]), support of

multiple users and multiple input devices (e.g. MID [13],

MPX [14])—and therefore very few generic toolkits which

try to establish a code base for more general support of

collaborative scenarios can be found. Examples of more

generic toolkits are GroupKIT [15] and GaiaOS [16],

although these toolkits, and those like them, tend to depend

on specific types of devices or other infrastructure

requirements or offer limited flexibility in the types of

interaction or collaboration possible. Moreover, many of

these task or problem-oriented toolkits handle different

technologies or are written in different programming lan-

guages, making them difficult to integrate, either with one

another solution or into new ones, and since many of them

were written to handle pre-defined devices in a specific

environment, they are seldom able to adapt sufficiently to

dynamically be able to integrate personal devices easily

and without the need to install specialized software. In

1996, Roseman and Greenberg found that ‘‘Virtually all

toolkits […] are just prototypes used to explore different

ideas, abstractions, and architectures.’’ and unfortunately,

this statement still tends to be valid today.

Although contributing a lot to advanced technologies for

collaborative systems, commercial collaborative applica-

tions such as Google Docs often fulfil very specific pur-

poses and are usually restricted in their extensibility and

therefore in their generalizability for other use. Addition-

ally, most such solutions are often built for telepresent

collaboration and usually assume a ‘‘one user, one device’’

scenario in which they allow multiple such users to interact

with the same content on a shared platform in real time.

Further complicating the rapid prototyping and devel-

opment of collaborative applications and systems is the

lack of mature software development tools such as inte-

grated development environments (IDEs), testing envi-

ronments and coding guidelines, like those that exist for

prototyping and development of single-user applications.

As Roseman and Greenberg point out ‘‘Groupware toolkits

still have a long way to go to catch up to their single-user

counterparts. We look forward to the day when all toolkits,

[…], will incorporate multi-user features. When that day

comes, the artificial distinction between constructing single

and collaborative systems will disappear’’ [15]. Most of the

existing approaches to simplify the development of col-

laborative systems are a trade-off between the complexity

needed and customizability, since the abstractions needed

for simplification often involve default behaviour which is

either impossible or very difficult to customize.

Approaches for ‘‘Single Display Groupware’’ (SDG)

(cp. [17]) using a single shared device (e.g. a shared screen)

are the focus of several toolkits (e.g. [18]). However, our

work necessitates the use of multiple displays and inter-

action devices, and as a result, we face a distributed system

where the applications executed on the different devices

have to be kept in a consistent state due to their influence

on each other. This type of distributed collaborative system

therefore has to handle issues such as application state

synchronization, event ordering and messaging, coordina-

tion of the devices involved (e.g. to distribute user inter-

faces) as well as balancing functionalities between devices.

It therefore has to coordinate the load of executed code

between the different devices while taking into account the

differences in their capabilities (performance, suitability of

the device for a specific component, etc.).

Finally, most standard software engineering toolkits are

oriented towards the development of single-user systems

and applications, and in particular the most advanced

graphical toolkits are only aware of a single user interact-

ing at a time, limiting their suitability for development of

collaborative applications: ‘‘Unfortunately, modern win-

dow systems are tied to the notion of a single cursor, and

application developers must go to great lengths (and suffer

performance penalties) to implement multiple cursors’’

[15]. Only a few specific solutions exist that address this

issue (e.g. Windows MultiPoint Mouse SDK [19], MAUI

Toolkit [20]), but they are platform dependant, which

limits their use in handling a potentially heterogeneous set

of devices.

Although research and development of technical solu-

tions for collaborative systems has a long tradition and

many researchers have contributed a lot of interesting and

fundamental work in this field, we were not able to find a

solution which fully suited our requirements—to support

dynamic integration of personal devices into the overall

system, to allow easy configuration and installation for a

real ‘‘walk-up-and-use’’ environment, to support as many

different platforms and devices as possible without (sig-

nificant) adaptation of code and with as little reprogram-

ming as possible, to enable adaptability to specific devices

Pers Ubiquit Comput (2014) 18:1201–1211 1203

123



and their specificities (screen size, input modalities, etc.),

as well as to simplify development while maintaining fine-

grained customizability of functionalities if needed, in

order to meet application-specific needs.

We therefore decided to develop a generic and exten-

sible toolkit which fulfils the above-mentioned require-

ments or at the very least allows them to be fulfilled by

third-party developers.

4 Approach

To create a toolkit which fulfils our requirements, we had

to choose an appropriate technology and decide on the

distribution of the load of functionalities between the

devices for the special case of unpredictable performance

capabilities of the devices involved. Additionally, we had

to extend existing software engineering concepts or intro-

duce new ones and had to add functionalities to support

collaboration using the technology we chose. In the fol-

lowing sections, we present our approach to addressing the

main issues we encountered.

4.1 Technology

After evaluating different possible technologies, we found

standard web technologies to be the most appropriate

technology stack for our solution. Web applications are

supported by almost all modern devices which could be

considered as useful in a collaborative setting (smartphone,

tablet, laptop etc) thanks to their built-in web browsers and

wireless network capabilities. They also provide a true

‘‘walk-up-and-use’’ functionality since they can be laun-

ched by simply accessing the correct URL, while appli-

cations written in native programming languages have to

be installed on a device before they can be executed.

Standard web technologies have a natural privacy protec-

tion mechanism. Since the application runs in a restrictive

security and privacy-protected browser sandbox, it is easy

to make users aware that when they give permission to the

possibly unknown and therefore untrusted collaborative

system, and they do so in the same way as they would if

they were navigating to a previously unknown web page.

For the collaborative system to access extended function-

alities such as location information, video and audio

resources, etc. users have to explicitly give permission,

meaning that they are in full control of what the system can

and cannot access.

Despite these advantages, web technologies unfortu-

nately also imply several disadvantages. Due to the security

and privacy restrictions of the web application, the set of

accessible functionalities is limited. It is therefore not

possible to use all potential functionalities of the device

when the application is executed within the context of a

standard web browser. Other execution environments, and

therefore less restrictive sandboxes, like operating systems

that are able to execute web applications natively (e.g.

Firefox OS) or native wrapper applications (e.g. Phone-

Gap) are able to extend the set of functionalities of web

technologies and can therefore provide ways to work

around the mentioned restrictions.

One of the most difficult disadvantages of web tech-

nologies to overcome is the reduced set of communication

channels. While new web technology specifications pro-

vide solutions for true bidirectional communication

between servers and clients (through web sockets) and

between clients in a peer-to-peer manner (through data

channels), legacy browsers require workarounds to estab-

lish bidirectional communication through standard HTTP

connections such as long polling, iframe streaming, etc.

known under the collective term ‘‘comet’’. Although they

are not as powerful as natively bidirectional communica-

tion protocols, Gutwin et al. [21] have shown that such

workarounds can provide sufficient message rates for most

collaborative applications and share our belief in ‘‘[…] a

strong need for better tools in this area—e.g., groupware

toolkits that use Web technologies, and development

environments for Web applications’’ [21].

4.1.1 Reuse of APIs

Web technologies, and especially JavaScript, provide

functionalities which can be used to overcome the ‘‘artifi-

cial distinction between constructing single and collabo-

rative systems’’ [15]. Because of JavaScript’s weak typing,

existing standard structures such as standard events can be

freely extended by introducing additional fields. It is

therefore rather easy to provide backward compatibility

and to extend the functionality of this language, all while

reusing standard APIs.

An example of how this backward-compatible extension

of standard APIs works is the way in which multiple mouse

pointers can be handled. When introducing multi-pointer

functionality, it is important to be able to separate mouse

events triggered by the different individual pointers. In

JavaScript, this can be done by extending the standard

mouse event with an additional attribute ‘‘deviceId’’ which

contains a unique value for the device which fires the event

and therefore allows the event handler logic to react

appropriately. Thus, a standard mouse event handler can be

registered which receives events originating from any of

the available pointers and the ‘‘deviceId’’ field of the

received event can be checked within the handling

mechanism.

This behaviour not only allows the reuse of standard APIs

such as the mouse event object and the mouse event handler,

1204 Pers Ubiquit Comput (2014) 18:1201–1211

123



but also lets the developer distinguish between native and

remote pointers and to react differently to them (e.g. by

processing a ‘‘click’’ event on a button only if the event

originates from a specific pointer, thus preventing others

from selecting the button). Additionally, legacy web appli-

cations can be extended for multi-pointer scenarios rather

easily because their registered mouse event handlers can be

invoked by the additional pointers as well and will therefore

react the same way as they would if the native pointer had

interacted with them. This enables the application to support

all simple mouse events (although more complex mouse

gestures such as drag-and-drop which need additional device

information to work properly in multi-pointer scenarios

might cause unexpected behaviours—cp. [22, 23]).

This reuse of standard APIs allows developers to make

use of APIs with which they are already familiar (thus

lowering the learning curve of the toolkit) while profiting

from new functionalities by using additional methods and

fields. Another big advantage is a simplified development

and testing process. Since the native mouse pointer behaves

in the same way as any other additional pointer, the

development and testing for a multi-user environment can

be executed just as in a single-user mode using only the

default mouse pointer. Multiple pointers can be simulated

in one of two ways—by manipulation of the value of the

field ‘‘deviceId’’ at runtime (e.g. in debug mode) or by the

definition of mode switches (e.g. mouse events which are

extended with a specific device identifier when they are

triggered by pressing down on a specific keyboard button,

simulating the use of another pointer). Thus, the complex

set-up of a special development environment with multiple

devices and network connections becomes unnecessary,

greatly simplifying the testing process.

The example of multiple mouse pointers was chosen to

demonstrate the idea of API reuse—the power of dynamic

extensions of standard JavaScript objects, and conse-

quently a reduction in the need to introduce new concepts

to cover additional functionalities, is one of the central

concepts of development using the TWICE toolkit.

4.1.2 Supporting heterogeneous devices with ‘‘deferred

binding’’

Although the choice of technology defines the program-

ming language (JavaScript) and the markup language

(HTML) in combination with CSS for the visual repre-

sentation, there was still a choice to work with pure

JavaScript, third-party libraries such as jQuery or more

structured concepts such as the Google Web Toolkit

(GWT). All of these options have the same capabilities,

and therefore, our goals could have been achieved using

any of them. However, the Google Web Toolkit facilitated

the realization of several specific features. In particular,

GWT allows the developer to write code in Java and the

toolkit then transforms it in a compilation step into Java-

Script for the client side. The advantage is not only that the

same programming language can be used for the client as

well as for the server side (if the backend is written in Java

as well) but also that the toolkit provides different versions

of JavaScript to handle browser-specific characteristics and

interpretations of code.

The separation of code for different browsers is

achieved through a mechanism called ‘‘deferred binding’’.

This mechanism allows to define different implementations

of a specific functionality. The toolkit then creates different

versions (‘‘permutations’’ in GWT terminology) of the

application code at compile time. Specified JavaScript

logic then decides at runtime which implementation should

be loaded and executed. Although originally created to

overcome different interpretations of JavaScript by the

main web browsers, this mechanism can be reused by

defining custom decision logic (cp. Listing 1) and

dynamically replacing implementations (cp. Listing 2) as

part of a standard GWT module descriptor file.

If the class MyComponent is now instantiated with the

factory method GWT.create(MyComponent.class),

the return value is either CursorComponent or

TouchComponent if the defined property is set to the value

‘‘touch’’ and the device therefore supports touch input.

Because any information which is accessible by Java-

Script (e.g. screen resolution, user agent, URL request

Pers Ubiquit Comput (2014) 18:1201–1211 1205

123



parameters, support of HTML5 features, etc.) can be used

to distinguish and therefore replace implementations at

runtime, this functionality is perfectly suited for fulfilling

our requirement of being able to handle device heteroge-

neity since different implementations of a specific func-

tionality can be substituted as needed.

4.2 Load balancing

The balancing of the executed functionalities over the

different devices involved has several effects on the sta-

bility of the system, the performance and the network

traffic. If a functionality is spread over many devices, the

failure of a single device usually has little impact on the

stability of the overall system—especially if the devices are

mainly executing their own functionalities (and therefore

do not execute calculations or other tasks for other devi-

ces). We have therefore decided to offload functionalities

to the clients and therefore to execute the application code

within the web browser. This allows the relaxation of

requirements for web server(s) since they have to execute

fewer functionalities and can focus on their core tasks such

as providing application code and resources (e.g. images,

stylesheets, etc.) and acting as a message gateway since the

(not yet) possible direct communication between clients, as

well as potential management and coordination function-

alities (e.g. control over the distribution of user interfaces),

depend on the requirements of the specific application. This

reduction in functionality is especially important if the

system is not executed on powerful standard web server

infrastructures as part of huge computer centres but rather

on one or multiple dedicated devices in an ad hoc scenario.

The decision to execute the bulk of the functionalities on

the client side was also influenced by the improved

responsiveness that the device can provide. If an action is

triggered on the device by the user, the software can

respond immediately without having to send a request to

the server first. On the other hand, this requires more

complex synchronization requirements between the devices

since all devices have their own application states and have

to be kept updated about the changes on other devices. The

reduction in executed code on the server side implies the

execution of more code on the client, which can be an issue

since the client devices may be low-performance devices

and therefore may not be able to execute complex logic. A

separation between different implementations depending

on device specificities is therefore not only necessary to

address user interface aspects and to support different input

modalities, but also to provide variations of implementa-

tions which differ in complexity and can be executed on

low-performance devices with reduced functionalities

while medium- and high-performance devices can profit

from their additional computational capacities and provide

more advanced functionalities. If the complexity of a

functionality cannot be reduced and therefore is not suited

for execution on some devices, it should be possible to

exclude it from the overall execution without affecting the

general integration of the device. We have therefore

developed a modular system in which components and

their implementations can be replaced or excluded at run-

time. The system thus allows the integration of devices into

a collaborative setting even if they are not capable of

executing all of the potentially available functionalities.

4.3 Eventing and messaging

Because GWT was developed for standard web applications

and therefore is not prepared for distributed eventing

mechanisms, we have extended the already existing concept

of the EventBus with remote eventing capabilities. A new

implementation of the event bus (which is usually applied

as a singleton and on which elements all over the applica-

tion can register event handlers through which events can be

fired) has been developed which takes care of the set-up of

bidirectional communication (either through web sockets or

comet), serializes the events sent through the event bus,

distributes them over devices registered in the same col-

laborative session and deserializes the remote events which

are received from other devices. Additionally, it contains an

event ordering mechanism which ensures consistency

between the different devices involved.

The provided conflict management by TWICE is

designed to handle conflicts on the client side (within the

web browser) because of the design goal to minimize the

requirements for the servers. The clients make use of the

system clock of their providing server to obtain a common

time base and therefore to define a global order of the

events on which every device agrees. Thus, conflicts

(unordered events) can be recognized and are addressed

depending on their type. For events which cannot be

undone (e.g. because they affect third-party systems), the

system applies locking strategies to prevent conflicts from

arising (e.g. delays the processing of the event until a

conflict-free execution is guaranteed). Undoable events are

rolled back and discarding events, which fully replace

others of their kind (e.g. mouse pointer position updates),

are simply ignored if newer information has already been

received. The development of a custom-distributed event

handling strategy was necessary, since solutions such as

Google Drive Realtime [6], Firebase [7] and others are

usually based on cloud infrastructures and are therefore not

suitable for collaborative scenarios including devices

which are not connected to the internet (but might instead

be connected only to a local ad hoc network). Since it is an

explicit design goal of TWICE to address low-capability

and low-infrastructure scenarios, we have decided to

1206 Pers Ubiquit Comput (2014) 18:1201–1211

123



provide our own eventing and messaging mechanism with

fewer requirements on the infrastructure. However, infra-

structure-supported services can easily be integrated into

the toolkit by creating alternative implementations of the

EventBus which can replace the eventing mechanism

provided with TWICE through the ‘‘deferred binding’’

mechanism at runtime whenever the collaborative scenario

and its devices fulfil the service’s requirements.

4.4 Multi-user support

One of the main features that a collaborative system has to

provide is simultaneous shared access to a single resource

for multiple users and multiple devices. This functionality

is often established by providing multiple pointers, for

example on a shared screen, or as remote text input

possibilities.

4.4.1 Multiple pointers and remote text input

To enable multiple pointers within web technologies, different

problems have to be solved for both the shared device (the one

the pointers are actually living on) and the controller instances

(the input devices used to move the pointer, to click, etc.). The

implementations of the pointer controller instances differ

depending on the input modalities of the device.

Touch-capable devices are equipped with a touch-sen-

sitive area which works in a way that is similar to a touch

pad on a notebook. Here, the pointer can be controlled by

dragging the finger over the area (cp. Fig. 2 device B).

Clicks are triggered by simple tapping on the screen, and

drag-and-drop can be achieved by holding the finger on the

screen for a short moment, until the display of the device

indicates that it is in dragging mode. A draggable element

on the shared screen can then be repositioned by moving

the pointer and can be released by a single tap.

In contrast, on cursor-oriented devices, the relative

position of the device’s standard mouse is captured when

hovering over the sensitive area (cp. Fig. 2 device A) and is

translated to the absolute coordinates depending on the

screen resolution of the shared device. In addition to mouse

movements, clicks and mouse down and mouse up events

are captured and sent to the server which then pushes the

information to the shared device through a web socket

connection.

The shared device receives the command messages from

its clients, assigns a mouse pointer (rendered as an HTML

element), executes the action according to the commands

and fires standard mouse events extended with the infor-

mation about the mouse pointer (by adding a specific

device identifier to the event).

Different implementations are also required for the text

entry mechanism. Since most touch devices (such as smart

phones and tablets) do not have a physical keyboard, the

software keyboard needs to be triggered using only web

technologies. This was not a trivial issue to solve since web

applications do not have permission to request the native

keyboard. Therefore, a little trick had to be used—a standard

HTML textbox was redesigned to look like a button. When

this textbox is touched, the focus is set on this widget, which

triggers the appearance of the software keyboard (because

the user is expected to enter text). By hiding the textbox

(moving it outside of the visible area), we were able to pro-

vide a mechanism which is indistinguishable from native

triggering of the keyboard (from the user’s perspective), and

the key press events can be redirected to the shared device.
Fig. 1 TWICE—a toolkit for the development of collaborative

systems based on web technologies

Fig. 2 Remote pointer control on a shared screen with a pointer (A)-

and a touch (B)-based device

Pers Ubiquit Comput (2014) 18:1201–1211 1207

123



4.4.2 Multi-focus widgets

Last but not least, multi-user support involves the issue of

multi-focus. Because standard web browsers use standard

widgets (e.g. buttons, text boxes, checkboxes, etc.) of the

graphical toolkit of the programming language they are

implemented in, none of them is prepared for multi-user

use. The simultaneous focus of multiple devices on the

same widget (e.g. multiple text cursors in the same text box

or in different textboxes within the same application) is an

issue that requires special handling at the functional level

and also at the level of the visual representation. We have

therefore implemented multi-focus replacements, for

example for a text box based on the HTML5 canvas

(although proof-of-concept implementations have been

developed with legacy HTML elements as well), which

contain the handling logic and are able to manage the

visual representation of the text cursors so that the current

entry position of the different devices can be identified (cp.

[23]).

4.4.3 Collaborative web browsing

Based on the mechanisms of multiple pointers and multi-

focus described above, we were able to provide a solution

for simultaneous collaborative web browsing on a shared

screen (cp. [23]). Here, we injected additional JavaScript

functionalities into a third-party web page (e.g. http://www.

google.com) when accessing it through a forward proxy

server. This allowed us to control the web page with

multiple pointers and to replace standard components (such

as textboxes) of the original web page with our own multi-

focus components to provide a full set of multi-user

functionalities. Thanks to the backward compatibility

achieved with the reuse of standard APIs, we were even

able to dynamically extend third-party web pages which

were developed for single-user use and support all of the

standard functionalities provided by these ‘‘legacy‘‘ web

applications without needing to make any code changes.

Tests with major web portals (e.g. Google, Yahoo and

Wikipedia) showed that we could extend single-user web

applications dynamically for multi-user scenarios with

default behaviours and therefore were able to noticeably

diminish the differences between these modes in terms of

software engineering.

As discussed in [23], the use of a proxy server involves

security issues when interacting with web pages which are

accessed through the secured HTTPS protocol: since the

proxy server mediates the secured connection to the real

server, the ensurance of confidentiality between the client

and the back-end server is broken. Aware of this problem,

we are convinced that the context of a collaborative web

browsing session relativizes this issue because we can not

see a realistic use case of transferring sensitive information

to a web page on which multiple users are interacting

simultaneously. Nevertheless, reasonable actions can be

taken to make the user aware of the potential security threat

by displaying warning messages whenever a web page is

accessed with HTTPS through the proxy server. Addi-

tionally, since our forward proxy solution does not require

configuration of the client, users can still interact with web

pages through secured connections alongside of the col-

laborative session by simply accessing the original web-

page (without the forward proxy prefix) in another browser

tab or window.

4.5 Dynamic layouts and managed modules

Adaptive-distributed user interfaces which are required

for multi-display groupware have to solve the issue of

splitting up a user interface into multiple parts, distrib-

uting these parts across the available devices and ensuring

that the communication between the different parts allows

them to interact with and influence each other. In addition

to the distribution logic which defines which part is sent

to which device, issues of dynamic layout systems and

lifecycle management have to be considered to ensure

optimal resource use. Since it is difficult to predict which

and how many components will be executed on a specific

device, the main layout should be scalable and flexible

enough to integrate a varying number of sub-elements.

The design of such a layout mechanism depends on the

actual device specificities. While a bigger display (such as

a notebook screen) could easily run multiple components

side by side in a split layout, it is less comfortable to have

multiple elements visible on a small screen such as that of

a smart phone. We therefore developed different layout-

ing mechanisms for small- and large-screen devices.

While on larger screens, a new tab (which can be rear-

ranged by drag-and-drop (cp. Fig. 3 upper right)) is cre-

ated for every component, the small screen version

contains a single component on the screen at any one time

and contains an additional menu button on the top left

which, when selected, shows a list of available compo-

nents (cp. Fig. 3 lower left).

To be able to separate the code and to save resources,

especially on low-performance devices, we have extended

the module concept of GWT. Every (user interface)

component is defined as a single module which

contains—inspired by OSGi—the necessary methods for

the lifecycle management of the module (by the provision

of start and stop methods). This extension of the module

concept of GWT allows us to improve the resource use of

the application. The code of the components is loaded in a

lazy manner, meaning that it is only loaded (and therefore

only occupies resources) at the moment when it is

1208 Pers Ubiquit Comput (2014) 18:1201–1211

123

http://www.google.com
http://www.google.com


accessed for the first time. Additionally, if the user navi-

gates away from a component (e.g. switches to another

component in the case of the small screen component or

the tab becomes deactivated in the large screen layout),

the stop method of the component is invoked and occu-

pied resources can be released. These mechanisms allow

us to reduce the complexity and occupied resources at

runtime and therefore optimize the performance of the

executed application.

5 Evaluation

The theoretical and implemented concepts we have

described have been evaluated in a number of different

situations (cp. [1]). The toolkit was used to develop mul-

tiple experiments to explore usability and group dynamics

in collaborative scenarios (in collaboration with psychol-

ogists), and the software developed with our toolkit has

proven to be reliable and stable, and shows the feasibility

of integrating a very heterogeneous set of devices.

In open interviews with other developers who have used

the toolkit, we examined how easy the newly introduced

functionalities were to use. In particular, the reuse of

existing GWT APIs was mentioned as lowering the

learning curve for familiarizing oneself with the toolkit,

and the possibility of implementing an application as if for

a single-user context and then extending it for multi-pointer

use with only a few lines of code was seen as a big

advantage.

To ensure functionality in real-world use and as a

practical scalability test, we developed a mind-map appli-

cation with remote pointer and text input capabilities and

ran an experiment in the context of a high school class with

13 students and one teacher. The students were asked to

bring their own mobile devices with them, leading to a set

of expectedly heterogeneous input devices. Although most

of the devices were different versions of iPhones (from 3G

to 4S), Android-based phones from different manufacturers

and in different versions were also used, as were tablets.

The client devices were all interconnected through a

standard wireless LAN provided by a low-budget WiFi

router and a server running on a standard notebook.1 We

experienced no performance issues within the network,

even when all participants controlled their remote pointers

simultaneously (we measured a maximal network

throughput of 85 KB/s which is far below the capacity of a

standard wireless LAN). Nor did we remark any perfor-

mance issues at the server level. Therefore, we believe that

the limit of the number of simultaneous users, even in a

very simple setup, is far above 14. These performance

results were confirmed by the impressions of the users who

indicated (through a survey) that they did not feel that the

system had delayed reactions to events.

6 Discussion

Although our development focused on synchronous co-

located scenarios involving a stationary large display and

an architecture with a standard wireless network and a

single pre-installed server providing the application for a

varying number of heterogeneous devices, our toolkit as

well as the technologies involved can also be used in other

settings such as purely ad hoc cases involving no infra-

structural support (e.g. with only user-owned devices),

asynchronous and/or remote collaboration and different

(more redundant) system architectures (e.g. server clus-

tering, dynamically added server resources from the cloud,

etc).

In addition to standard devices such as computers, smart

phones and tablets, we were also able to show that the

system works with other types of devices such as e-readers

and game consoles (cp. [1]). This gives a good indication

that TWICE can support any device which is able to run a

web browser with JavaScript and consequently that new

generations of TV sets and photo cameras, as well as future

device types with internet connections, will also be

supported.

TWICE provides the basic infrastructure to build col-

laborative applications involving multiple users and mul-

tiple devices. The complexity of such applications is

indisputably high and the adaptation of the toolkit to rapid

and ongoing technological advancements is a huge

Fig. 3 Different dynamic layouts for big (upper right) and small

(lower left) screens

1 HP Compaq 6730b, 4GB RAM, Intel Core2 Duo CPU P8800

(2 9 2.66 GHz) running Ubuntu with Kernel 3.2.0.

Pers Ubiquit Comput (2014) 18:1201–1211 1209

123



challenge. Some components of the toolkit might become

obsolete due to new approaches and concepts originating

from industry and academics, while others might gain in

importance if new requirements arise or the toolkit is

applied in other contexts than it was originally intended

for. One of the main ideas of TWICE is to extract the

commonalities of collaborative applications, to name them

and to hide their complexity behind generic interfaces to

make the manifold existing and not yet existing approaches

and solutions replaceable and interchangeable and capable

of adapting the application to the most appropriate

approaches available for a specific type of collaborative

setting at runtime.

Since TWICE applications are based on web technolo-

gies, they also suffer from the technologies’ disadvantages:

drawbacks such as the lack of direct hardware access,

reduced performance as well as the required adaptation to a

very heterogeneous set of devices are applicable to TWICE

applications just as they are to any other web application.

However, increasing performance of web browsers, ongo-

ing standardization of APIs (video camera, audio, sensors,

etc.) and the integration and extension of web technology

functionalities as part of operating systems (Chromium OS,

Firefox OS) give positive indications for further develop-

ment and increasing capabilities of this type of technology.

Although TWICE tries to address the main issues that arise

when developing collaborative systems, there are still

many issues which have not yet been solved, and the

provided solutions could be further improved. Some of the

provided components are well-performing proof-of-con-

cept implementations which should be optimized in terms

of performance, features, as well as visual appearance for

productive use. Additionally, further evaluation of the

validity of our technology choice, architectural concept and

developer guidelines would provide more founded knowl-

edge about the current shortcomings of the toolkit and give

hints where further improvements would be most

beneficial.

However, we are convinced that there is a need for a

toolkit like TWICE which provides basic functionalities for

the development of collaborative systems and which allows

to focus on very specific topics in this interesting and

rapidly growing area. We strongly believe that the big

complexity involved in the area of real-time multi-user and

multi-device systems can only be handled if experts from

different fields can focus on their specific main topics while

profiting from continuously integrated achievements and

improvements coming from other research areas, as well as

from the standard functionalities provided in the toolkit

itself. With the release of the source code of TWICE under

a very permissive license, we hope to improve and to

extend the toolkit through the creation of an active com-

munity of users and contributors.

7 Conclusion

Although heterogeneity of end-user devices is more wide-

spread than ever, we were able to show that it is possible to

integrate most of these devices into a distributed collabora-

tive system using currently available technologies. In our

solution, we not only addressed the technical feasibility of

multi-user systems but were also able to integrate privacy

protection mechanisms and ‘‘walk-up-and-use’’ functional-

ities. Although the use of standard web technologies for real-

time collaborative applications involves several issues such

as the lack of bidirectional communication channels (unless

websockets are supported by the browser), we have shown

that most of these issues can be overcome and that the

advantages of web technologies (widespread support, con-

figuration and installation free use, etc.) outweigh the

restrictions involved. We have shown concepts to reduce the

complexity of development of multi-user applications

compared to their single-user counterparts, ways of extend-

ing legacy and even third-party web applications with multi-

user capabilities, introduced structures to be able to address

device-specific characteristics by the dynamic partial

replacement of code (‘‘deferred binding’’) and to simplify the

messaging and eventing between devices, and presented

basic functionalities (multi-user support, dynamic layouting)

required for the development of multi-display collaborative

applications. We were also able to successfully evaluate our

toolkit in many different scenarios, using it for the devel-

opment of exploratory applications as well as applications

used in real-world conditions applied in a classroom setting

with 14 users.

Although we do not claim that our toolkit solves all

issues involved in the development of collaborative appli-

cations, we believe that we have built a solid base for further

development of solutions for specific issues arising in this

domain. We strongly believe that all of the important work

that has been done over the years by many researchers in the

field of collaborative systems needs to be integrated into an

open structure based on standardized, future-safe, extensi-

ble and platform-independent technologies to simplify the

development of collaborative applications and therefore to

improve the way in which traditional collaboration can be

supported by technical means in general.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Schmid O (2013) TWICE - a toolkit for web-based interactive

collaborative environments. PhD. thesis, University of Fribourg

1210 Pers Ubiquit Comput (2014) 18:1201–1211

123



2. Tidwell J (2010) Designing interfaces. O’Reilly Media, Inc.,

Sebastopol

3. Chia PH, Yamamoto Y, Asokan N (2012) In: Proceedings of the

21st international conference on World Wide Web, pp 311–320.

http://dl.acm.org/citation.cfm?id=2187879

4. de Alwis B, Gutwin C, Greenberg S (2009) In: Proceedings of the

1st ACM SIGCHI symposium on engineering interactive com-

puting systems. ACM, New York, EICS ’09, pp 265–274. doi:10.

1145/1570433.1570483

5. Huang Q, Freedman DA, Vigfusson Y, Birman K, Peng B (2010)

In: Proceedings of the ACM/IFIP/USENIX 11th international

conference on middleware, Springer, Berlin, Middleware ’10,

pp 148–168. http://dl.acm.org/citation.cfm?id=2023718.2023729

6. Google Drive Realtime API. http://developers.google.com/drive/

realtime/21June2013

7. Firebase. http://www.firebase.com/21June2013

8. Michotte B, Vanderdonckt J (2008) In: Fourth international

conference on autonomic and autonomous systems, ICAS 2008,

pp 15–22. doi:10.1109/ICAS.2008.29

9. Melchior J, Grolaux D, Vanderdonckt J, Van Roy P (2009) In:

Proceedings of the 1st ACM SIGCHI symposium on engineering

interactive computing systems. ACM, New York, EICS ’09,

pp 69–78. doi:10.1145/1570433.1570449

10. Han R, Perret V, Naghshineh M (2000) In: Proceedings of the

2000 ACM conference on computer supported cooperative work.

ACM, New York. CSCW’00, pp 221–230. doi:10.1145/358916.

358993

11. Booth KS, Fisher BD, Lin CJR, Argue R (2002) In: Proceedings

of the 15th annual ACM symposium on User interface software

and technology. ACM, New York, UIST ’02, pp 209–212. doi:10.

1145/571985.572016

12. Lavana H, Brglez F (2000) In: Proceedings of the 7th conference

on USENIX Tcl/Tk, vol 7. USENIX Association, Berkeley, CA,

USA, TCLTK’00, p 4

13. Hourcade JP, Bederson BB (1999) Architecture and implemen-

tation of a java package for multiple input devices (MID). In:

Technical Reports from UMIACS. http://hdl.handle.net/1903/100

14. Hutterer P, Thomas BH (2007) In: Proceedings of the eight

Australasian conference on user interface, vol 64. Australian

Computer Society, Inc., Darlinghurst, Australia, AUIC ’07,

pp 39–46. http://dl.acm.org/citation.cfm?id=1273714.1273721

15. Roseman M, Greenberg S (1996) ACM Trans Comput Hum

Interact 3(1):66–106. doi:10.1145/226159.226162

16. Roman M, Hess C, Cerqueira R, Ranganathan A, Campbell R,

Nahrstedt K (2002) IEEE Pervasive Comput 1(4):74. doi:10.

1109/MPRV.2002.1158281

17. Wallace JR, Scott SD, Stutz T, Enns T, Inkpen K (2009) Personal

Ubiquitous Comput 13(8):569–581. doi:10.1007/s00779-009-

0241-8

18. Tse E, Greenberg S (2004) In: Proceedings of the fifth conference

on Australasian user interface, vol 28. Australian Computer

Society, Inc., Darlinghurst, Australia, AUIC ’04, pp 101–110.

http://dl.acm.org/citation.cfm?id=976310.976323

19. Website for the Windows MultiPoint Mouse SDK. http://www.

microsoft.com/multipoint/mouse-sdk/13September2012

20. Hill J, Gutwin C (2004) The MAUI toolkit: groupware widgets

for group awareness. CSCW 13(5–6):539–571. doi:10.1007/

s10606-004-5063-7

21. Gutwin CA, Lippold M, Graham TCN (2011) In: Proceedings of

the ACM 2011 conference on computer supported cooperative

work. ACM, New York, CSCW’11, pp 167–176. doi:10.1145/

1958824.1958850

22. Bowie M, Schmid O, Lisowska Masson A, Hirsbrunner B (2011)

In: Proceedings of the ACM 2011 conference on Computer

supported cooperative work. ACM, New York, CSCW’11,

pp 609–612. doi:10.1145/1958824.1958926

23. Schmid O, Lisowska Masson A, Hirsbrunner B (2012) In: Pro-

ceedings of the 4th ACM SIGCHI symposium on engineering

interactive computing systems. ACM, New York, EICS’12,

pp 141–150. doi:10.1145/2305484.2305508

Pers Ubiquit Comput (2014) 18:1201–1211 1211

123

http://dl.acm.org/citation.cfm?id=2187879
http://dx.doi.org/10.1145/1570433.1570483
http://dx.doi.org/10.1145/1570433.1570483
http://dl.acm.org/citation.cfm?id=2023718.2023729
http://developers.google.com/drive/realtime/21June2013
http://developers.google.com/drive/realtime/21June2013
http://www.firebase.com/21June2013
http://dx.doi.org/10.1109/ICAS.2008.29
http://dx.doi.org/10.1145/1570433.1570449
http://dx.doi.org/10.1145/358916.358993
http://dx.doi.org/10.1145/358916.358993
http://dx.doi.org/10.1145/571985.572016
http://dx.doi.org/10.1145/571985.572016
http://hdl.handle.net/1903/100
http://dl.acm.org/citation.cfm?id=1273714.1273721
http://dx.doi.org/10.1145/226159.226162
http://dx.doi.org/10.1109/MPRV.2002.1158281
http://dx.doi.org/10.1109/MPRV.2002.1158281
http://dx.doi.org/10.1007/s00779-009-0241-8
http://dx.doi.org/10.1007/s00779-009-0241-8
http://dl.acm.org/citation.cfm?id=976310.976323
http://www.microsoft.com/multipoint/mouse-sdk/13September2012
http://www.microsoft.com/multipoint/mouse-sdk/13September2012
http://dx.doi.org/10.1007/s10606-004-5063-7
http://dx.doi.org/10.1007/s10606-004-5063-7
http://dx.doi.org/10.1145/1958824.1958850
http://dx.doi.org/10.1145/1958824.1958850
http://dx.doi.org/10.1145/1958824.1958926
http://dx.doi.org/10.1145/2305484.2305508

	Real-time collaboration through web applications: an introduction to the Toolkit for Web-based Interactive Collaborative Environments (TWICE)
	Abstract
	Introduction
	Context
	Related work
	Approach
	Technology
	Reuse of APIs
	Supporting heterogeneous devices with ‘‘deferred binding’’

	Load balancing
	Eventing and messaging
	Multi-user support
	Multiple pointers and remote text input
	Multi-focus widgets
	Collaborative web browsing

	Dynamic layouts and managed modules

	Evaluation
	Discussion
	Conclusion
	Open Access
	References


