
ION CHANNELS, RECEPTORS AND TRANSPORTERS

P2Y2 receptor activation inhibits the expression
of the sodium-chloride cotransporter NCC in distal convoluted
tubule cells

P. Gailly & M. Szutkowska & E. Olinger & H. Debaix &

F. Seghers & S. Janas & V. Vallon & O. Devuyst

Received: 11 October 2013 /Revised: 28 December 2013 /Accepted: 29 December 2013 /Published online: 25 January 2014
# Springer-Verlag Berlin Heidelberg 2014

Abstract Luminal nucleotide stimulation is known to reduce
Na+ transport in the distal nephron. Previous studies suggest
that this mechanism may involve the thiazide-sensitive Na+-
Cl− cotransporter (NCC), which plays an essential role in NaCl
reabsorption in the cells lining the distal convoluted tubule
(DCT). Here we show that stimulation of mouseDCT (mDCT)
cells with ATP orUTP promoted Ca2+ transients and decreased
the expression of NCC at both mRNA and protein levels.
Specific siRNA-mediated silencing of P2Y2 receptors almost
completely abolished ATP/UTP-induced Ca2+ transients and
significantly reduced ATP/UTP-induced decrease of NCC ex-
pression. To test whether local variations in the intracellular
Ca2+ concentration ([Ca2+]i) may control NCC transcription,
we overexpressed the Ca2+-binding protein parvalbumin selec-
tively in the cytosol or in the nucleus of mDCT cells. The

decrease in NCC mRNA upon nucleotide stimulation was
abolished in cells overexpressing cytosolic PV but not in cells
overexpressing either a nuclear-targeted PV or a mutated PV
unable to bind Ca2+. Using a firefly luciferase reporter gene
strategy, we observed that the activity of NCC promoter region
from −1 to −2,200 bp was not regulated by changes in [Ca2+]i.
In contrast, high cytosolic calcium level induced instability of
NCC mRNA. We conclude that in mDCT cells: (1) P2Y2

receptor is essential for the intracellular Ca2+ signaling induced
by ATP/UTP stimulation; (2) P2Y2-mediated increase of cyto-
plasmic Ca2+ concentration down-regulates the expression of
NCC; (3) the decrease of NCC expression occurs, at least in
part, via destabilization of its mRNA.
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Introduction

The strict control of NaCl excretion by the kidney is essential
for maintaining body fluid homeostasis as well as blood
pressure. The distal convoluted tubule (DCT) reabsorbs 5 %
to 10 % of the filtered Na+, via the thiazide-sensitive Na+-Cl−

cotransporter (NCC), located on the apical membrane. NCC is
phosphorylated and activated by WNK via specific SPAK
isoforms that are expressed in the DCT [9]. The functional
importance of NCC is illustrated by Gitelman syndrome, an
autosomal recessive tubulopathy characterized by salt wasting
and secondary aldosteronism responsible for hypokalemia and
metabolic alkalosis, and by hypomagnesemia and
hypocalciuria [13]. Gitelman syndrome is most often due to
invalidating mutations in the SLC12A3 gene that codes for
NCC [46].

Recently, we provided in vitro and in vivo evidence that
NCC expression was modulated by the presence of
parvalbumin (PV), a cytosolic "EF-hand" protein able to bind
divalent cations and specifically expressed in early DCT
(DCT1) [4]. The fact that DCT segment as well as immortal-
ized mouse DCT cell line (mDCT) that expresses NCC and
other typical markers were sensitive to nucleotide stimulation,
known to induce Ca2+ signaling, led us to hypothesize that
NCC expression might be controlled by ATP/UTP-induced
Ca2+ transients [4, 8].

Response to ATP and UTP involves nucleotide P2 recep-
tors. Seven ionotropic P2X (P2X1-7) and five metabotropic
P2Y (P2Y1, -2,-4, -6 and -11) receptors have been identified
in the kidney, each with a specific agonist response profile (for
review, see refs. [24, 44, 45]). Several P2Y receptor subtypes
are coupled to G-protein subtype Gαq, which activates PLC-β
and promotes mobilization of Ca2+ from intracellular stores.
One of them, the P2Y2 receptor, which is activated by both
ATP and UTP, has previously been linked to electrolyte and
water transport processes in the kidney (for review, see ref.
[45]). Indeed, in the intact mouse collecting duct, luminal
ATP/UTP stimulation via P2Y2-like receptors inhibits electro-
genic Na+ transport and decreases K+ secretion, thus
inhibiting transport processes for salt and water absorption
in this nephron segment [23, 24, 26]. Making use of P2Y2

receptor knockout mice, it was subsequently shown that this
receptor contributes to blood pressure regulation, and renal
fluid and NaCl reabsorption by inhibitory effects on the ex-
pression of the Na-2Cl-K cotransporter NKCC2 and the water
channel aquaporin-2 [34]. These studies further showed that
local P2Y2 receptor tone in the aldosterone-sensitive distal
nephron exerts paracrine down-regulation of epithelial sodium
channel (ENaC) activity by lowering channel open probability
[31]. This mechanism explains the inhibition of ENaC activity
following an increase in dietary NaCl intake and contributes to
blood pressure regulation [32]. The precise role of P2Y recep-
tors in the DCT is however not yet characterized.

In the present study, we aimed at identifying the P2 recep-
tors involved in Ca2+ signaling in DCTand how the nucleotide
stimulus could regulate the NCC expression in the mDCT
cells. We show that the P2Y2 receptor is present in DCT cells
and that it is the main functional receptor, essential for the
intracellular Ca2+ signaling induced by extracellular ATP/
UTP in mDCT cells. P2Y2 stimulation induces cytosolic
Ca2+ transients, regulating the NCC expression by decreasing
the stability of its mRNA.

Methods

Cell culture

The immortalized mDCT cell line was kindly provided by
Prof. P.A. Friedman (University of Pittsburgh School of Med-
icine, Pittsburgh, PA, USA). mDCTcells have been previously
characterized as a model for thiazide-sensitive Na+ and Ca2+

transport occurring in the DCT and they express sizeable en-
dogenous NCC as well as other markers of the DCT1 [4, 12].
Cells were grown in DMEM/Ham’s F12 medium (Lonza,
Verviers, Belgium) supplemented with 5 % (v/v) fetal bovine
serum (Lonza), 2 mM ultraglutamine (Lonza) and a mixture of
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) in a
humidified atmosphere of 5% (v/v) CO2 at 37 °C. Studies were
performed in 24-well plates between passages 25 and 35.

Drug treatments

During nucleotide stimulation experiments, confluent cells
were treated with either ATP (Boehringer Mannheim, Roche
Applied Science) or UTP (Sigma-Aldrich) at different con-
centrations (1, 5, 10, 50 or 100 μM). For repetitive stimula-
tions protocol, cells were stimulated with ATP or UTP 10 μM
for 10 min, then rinsed (to avoid receptor down-regulation)
and re-stimulated every hour, for 6 h. To suppress phospholi-
pase C (PLC) activity, cells were treated with 10 μM of the
PLC inhibitor U73122 (Tocris, Bioscience), 10 min before
Ca2+ measurements. In mRNA stability experiments, the tran-
scriptional inhibitor 6-dichloro-1-b-ribofuranosylbenzimi-
dazole (DRB; Sigma) was used at 75 μM throughout the
duration of the experiment.

Transient transfections

Subconfluent cultures (approximately 80 %) were transfected
using Lipofectamine™ 2000 (Invitrogen) with pCMV-GFP
(Mock), pCMV-PV-cyto-GFP (PV-cyto) or pCMV-PV-nuc-
GFP (PV-nuc) plasmids (Addgene, Cambridge, MA, USA).

Site-directed mutagenesis was carried out to generate the
mutant PV plasmid pCMV-PV-cyto-CDEF-GFP coding for
PV in which both functional Ca2+-binding sites were
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inactivated by substituting a glutamate for a valine residue at
position 12 of each Ca2+-binding loop. The mutant construct
was generated by using pCMV-PV-cyto-GFP plasmid as a
template and by using the QuickChangeR Lightning Site-
Directed Mutagenesis Kit (Stratagene, Agilent) following the
manufacturer’s protocol. Mutant plasmid was generated by
polymerase chain reaction using the following synthetic oli-
gonucleotides containing mismatches in codon 62 of the CD
loop and in codon 101 of the EF loop were used: CD62: 5′-
TTCATTGAGGAGGATGTGCTGGGGTCCATTCTG-3′,
and EF101, 5′- GCAAGATTGGGGTTGAAGTGTTCTCC
ACTCTGGTGGCC-3′ (mutated nucleotides are underlined).
We checked the identity of the mutant plasmid by sequencing.

RNA Interference

To knock down the endogenous P2ry2 expression, a pool of
three different double-strand siRNAs (15nM, SilencerR Select
Pre-designed siRNA synthesized by Ambion) was introduced
into mDCT cells using Lipofectamine™ RNAiMAX
(Invitrogen). Cells were cultured on plate wells containing the
transfection complexes. Seventy-two hours after transfection,
RNAwas extracted with RNAqueousR-Micro kit and subjected
to real-time polymerase chain reaction (PCR). Transfection
efficiency was assessed using BLOCK-iT™ Alexa FluorR

Red Fluorescent Oligo (Invitrogen). Fluorescent siRNAs were
used to follow transfection in fluorescence microscopy.

Extraction of RNA, quantitative RT-PCR

mDCT mRNAs were extracted with RNAqueousR-Micro kit
(Ambion, Invitrogen) and reversed-transcribed using
iScript™ cDNA Synthesis Kit (Bio-Rad). Gene-specific
PCR primers were designed using Primer3 [36] (see Table 1).
Total RNA samples were stored at -80 °C. Real-time RT-PCR
was performed using 1 μg cDNA, 10 μl of SybrGreen Mix
(Bio-Rad) and 100 nM of each primer in a total reaction
volume of 20 μl.

PCR conditions were 95 °C for 3 min followed by 40
cycles of 15 s at 95 °C, 30 s at 60 °C. The PCR products were
sequenced with the BigDye terminator kit (Perkin-Elmer
Applied Biosystems). The multiScreen SEQ384 Filter Plate
(Millipore, Billerica, MA, USA) and Sephadex G-50 DNA
Grade Fine (Amersham Biosciences, Piscataway, NJ, USA)
dye terminator removal were used to purify sequences reac-
tions before analysis on an ABI3100 capillary sequencer
(Perkin-Elmer Applied Biosystems).

The efficiency of each set of primers was determined by
dilution curves (Table 1).

Each cDNAwas amplified in duplicate and cycle threshold
values (Ct) were averaged for each duplicate. The average Ct

value for GAPDH was subtracted from the average Ct value
for the gene of interest. ThisΔCt value, determined in specific

experimental conditions, was then subtracted from the ΔCt

value determined in control conditions to obtain a ΔΔCt

value. As amplification efficiencies of the genes of interest
and GAPDH were comparable, the amount of mRNA, nor-
malized to GAPDH, was given by the relation 2−ΔΔCt [7, 25].

Semiquantitative RT-PCR

We used RT-PCR to assess the presence of P2X and P2Y
receptors in microdissected nephron segments. PCR condi-
tions used were: 94 °C for 3 min followed by 35 cycles of 30 s
at 95 °C, 30 s at 60 °C and 1 min at 72 °C with FastStart Taq
polymerase (Roche, Vilvoorde, Belgium). The PCR products
were separated on a 2 % agarose gel.

[Ca2+]i measurements

mDCT cells were cultured on coverslips until they reached
70 % confluence. Cell cultures were incubated with 1 μM
Fura2-AM for 60 min at room temperature, prior to the
measurement of fluorescence in individual cells. Coverslips
were rinsed with Krebs medium containing (in mM): 135
NaCl, 5.9 KCl, 1.8 CaCl, 1.2 MgCl2, 11.6 Hepes and 10
glucose, (pH 7.3) for 30 min and mounted in a thermostatized
(20 °C) chamber. The chamber was continuously superfused
(1 ml/min, or 4 ml/min for quick exchanges of solutions).

Cytosolic concentration of free Ca2+ was measured at room
temperature by radiometric measurements of fluorescence
intensity monitored at 510 nm [11]. Fura-2 loaded cells were
excited alternatively at 340 and 380 nm and fluorescence
emission was monitored at 510 nm using a Deltascan spectro-
fluorimeter (Photon Technology International) coupled to an
inverted microscope (Nikon Diaphot, oil immersion objective
40× NA 1.3). Fluorescence intensity was recorded over the
entire surface of the single cells. [Ca2+]i was calculated from
the ratio of the fluorescence intensities excited at the two
wavelengths, using a standard intracellular calibration proce-
dure performed after cell permeabilization with 5 μM
ionomycin. In Ca2+-free solution, CaCl2 was omitted and
0.2 mM EGTA (Molecular Probes, Invitrogen) was added.
In the experiments designed to investigate the role of PV in
[Ca2+]i responses, [Ca

2+]i measurements were performed only
on cells expressing PV-GFP plasmids (cells selected by GFP
fluorescence).

Antibodies

The rabbit anti-P2Y2 (Abcam: ab 46537), rabbit anti-NCC
[40], goat anti-PV (sc-7448; Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA) and mouse anti β-actin (Sigma-
Aldrich) primary antibodies were used during experiments.
To visualize, secondary fluorescent antibody: Alexa Fluor
(647 anti-rat, 633 anti-rabbit, 633 anti-sheep, 488 anti-goat
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and 488 anti-rabbit) were used for immunofluorescent assays
(Molecular Probes).

Immunoblotting

Total membrane -and cytosolic proteins extracts were pre-
pared from mDCT cells after homogenization with a Tissue
Tearor Homogenizer. The lysis buffer contained 250 mM
sucrose, 20 mM imidazole pH 7.2, 1 mM EDTA and a
protease inhibitors mix Complete (Roche). The sample (total
extract) was centrifuged at 1,000×g for 15 min at 4 °C for
nucleus elimination. The supernatant was then centrifuged at
38,500 rpm for 120 min at 4 °C. The pellet (membrane
extract) was suspended in 300 μl of lysis buffer. The super-
natant contains the cytosolic fraction. Protein concentrations
were determined with the bicinchoninic acid assay using BSA
as standard. Membrane proteins were solubilized 1/4 in sam-
ple buffer (50 mM Tris–HCl, pH 6.8, 7.5 % SDS, 30 %

glycerol, 0.004 % bromophenol blue) containing 6 % of
DTT and heated at 95 °C for 5 min.

SDS-PAGE was performed under reduced conditions. For
Western blotting, 40 μg of protein was loaded onto a SDS-
polyacrylamide gel and separated by electrophoresis. After
blotting on nitrocellulose, the membranes were incubated
overnight at 4 °C with primary antibodies, washed and incu-
bated for 1 h at room temperature with peroxidase-labeled
antibodies (Dako). Secondary antibodies conjugated to
horseradish-peroxidase were detected with ECL reagent
(Amersham Biosciences). The molecular weight of proteins
was estimated by running the Precision Plus Protein™ All
Blue standard (Bio-Rad).

Immunostaining

Cell cultures were grown on permeable filter supports until
confluence. Twenty-four hours before cell fixation, standard

Table 1 Primers used in real-time
RT-PCR analyses and expression
of P2 nucleotide receptors in
mDCT cells

Gene (protein) Forward and reverse primers Amplimer
length (bp)

Efficiency Expression in
mDCT cells (Ct)

Slc12a3 (NCC) 5′-CCTCCATCACCAACTCACCT-3′

5′-AGGAGGAAGAGGACGACTC-3′

151 0.98

Pvalb (PV) 5′-GACGCCATTCTTCTGGAAAT-3′

5′-ATACCCC CACTGCCCTAAAA-3′

136 0.99

Trpm6 (TRPM6) 5′-TCTTCCTTCGAGAGCCATCA-3′

5′-TCCACCAGGATTGGAGTCAC-3′

156 1.01

β- actin 5′-CCTGAACCCCAAAGCTAACA-3′

5′-CGTCACCAGAGTCCATGACA-3′

146 0.98

P2ry1 (P2Y1) 5′-ACCCTACCAGCCCTCATCTT-3′

5′-CTGTACCTGTGTGCGCTGAT-3′

146 1.01 26.4±0.15

P2ry2 (P2Y2) 5′-CGTGCTCTACTTCGTCACCA-3′

5′-GAAAAGGGCACAGCAAAAAG-3′

135 0.97 27.5±0.06

P2ry4 (P2Y4) 5′-CACATCACCCGCACAATTTA-3′

5′-G TCCCCCGTGAACAGATAGA-3′

150 1.02 32.3±0.3

P2ry6 (P2Y6) 5′-CGCTTTGTACGCTTCCTCTT-3′

5′-TCCACACACTACCCAAGCAG-3′

150 1.09 27.5±0.4

P2rx1 (P2X1) 5′-ACTGGGAGTGTGACCTGGA-3′

5′-AGAGGTGACGACGGTTTGTC-3′

150 0.99 33.9±0.51

P2rx2 (P2X2) 5′-CCATGTCGGAACACAAAGTG-3′

5′-GGCAGGTAGAGCTGTGAAC-3′

153 0.95 32.9±0.14

P2rx3 (P2X3) 5′-GACACCGTGGAGATGCCTAT-3′

5′-AT GGAAGCGGCACTTCTTTA-3′

147 0.97 34.1±0.36

P2rx4 (P2X4) 5′-CCTCGACACTCGGGACTTA-3′

5′-GCCTTTCCAAACACGATGAT-3′

147 0.99 26.8±0.13

P2rx5 (P2X5) 5′-ACTTCCCTGCAGAGTGCTGT-3′

5′-GGAGTCACGATCAGGTTGGT-3′

155 1.03 30.2±0.37

P2rx6 (P2X6) 5′-CCCAGAGCATCCTTCTGTTC-3′

5′-CACCAGCTCCAGATCTCACA-3′

150 0.98 35.2±0.34

P2rx7 (P2X7) 5′-AAGCTGTACCAGCGGAAAGA-3′

5′-CCTGCAAAGGGAAGGTGTAG-3′

152 0.97 33.5±0.17

Gapdh 5′-TGCACCACCAACTGCTTAGC-3′

5′-GGATGCAGGGATGATGTTCT-3′

176 0.99
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culture medium was replaced by DMEM/F12 supplemented
with REGM™ Single Quots (Lonza). Cells were fixed 10 min
using 4 % formaldehyde, washed three times with DPBS and
permeabilized using 0.2 % Triton X-100. Cells were then
preincubated for 1 h with DPBS containing 3 % blocking
serum, 1 h with primary antibodies at room temperature,
30 min with the secondary fluorescent antibodies and washed
with DPBS before mounting with DAPI-ProLongR Gold
(Invitrogen). Sections were viewed with a Zeiss LSM 410
confocal microscope or Leica CLSM confocal microscope.
Images were processed (overlays) using Adobe Photoshop.

mRNA half-life time determination

mDCT cells were cultured up to 80 % confluence and treated
with 75 μM DRB for different time intervals. NCC, β-actin
and TRPM6 expressions were measured using RT-qPCR.
mRNA half-life time was estimated by exponential regression
analysis [35].

Plasmid construction for reporter assay

The plasmid pGL3-basic (Promega) was used to examine the
promoter activity of the 5′-flanking region in the mouse
Slc12a3 gene. The 5′-flanking region of Slc12a3was generat-
ed by PCR and ligated into KpnI and XhoI sites of pGL3-basic
vector. Sense primer: 5′-TtggtaccGTGCCATCCTTCCTCA
TTCC-3′ (nucleotide −1502) containing an engineered KpnI
restriction site was derived from the Slc12a3 gene sequence,
and the antisense primer: 5′-TtctcgagTATGGCTCTGGGTA
TCAAAGG-3′ was corresponding to nucleotides −1 to −21
and containing an engineered XhoI restriction site. Construct
(pGL3-1500/Slc12a3) was confirmed by sequence analysis.
The pGL3-1000/Slc12a3 was generated with Sense primer:
TtggtaccGATGATTCAGGGAAACACTGG-3′ (nucleotide
−1015) and the antisense primer was the same than for
pGL3-1500. The pGL3-2200/Slc12a3 was constructed by
PCR amplification using an engineered KpnI restriction site
in the Sense primer: 5′-TtggtaccAGAGTCCCACCA-3′
corresponding to nucleotide −2246 and the antisense prim-
er: 5′-AagcatgcTACTTGGCTATCAA (nucleotide −1274).
The Slc12a3 gene sequence contained a restriction site for
SphI in position −1280. The PCR fragment was then ligat-
ed into the pGL3-1500/Slc12a3 plasmid digested with
KpnI and SphI restriction enzymes to generate pGL3-
2200/Slc12a3 plasmid.

Plasmids were sequenced with the BigDye terminator
kit (Perkin Elmer Applied Biosystems). The multiScreen
SEQ384 Filter Plate (Millipore) and Sephadex G-50 DNA
Grade Fine (Amersham Biosciences) dye terminator re-
moval were used to purify sequences reactions before
analysis on an ABI3100 capillary sequencer (Perkin-
Elmer Applied Biosystems).

Luciferase assay

mDCT were transiently transfected with 500 ng firefly lucif-
erase reporter plasmid and 10 ng Renilla luciferase vector
using Lipofectamine 2000 (Invitrogen).

Forty-eight hours after transfection, luciferase activity was
measured with Dual-Luciferase Reporter Assay System
(Promega), using a GloMax™ 96 luminometer (Promega)
with a 10-s integration time for each luciferase reaction.
Firefly luciferase activity was corrected for transfection effi-
ciency by using Renilla luciferase measurements. The
corrected activity (Firefly luciferase divided by Renilla lucif-
erase activity) was compared to the promoterless pGL3-basic
corrected activity, used as a negative control (results expressed
as percentages).

Extracts from each transfection were assayed in duplicate
for at least three independent transfection experiments.

Statistical analysis

The results are presented as means±SEM. One-way analysis
of variance was used to investigate statistical differences
among the studied groups. Individual groups were compared
by an unpaired Student’s t test. A pvalue of <0.05was taken as
significant.

Results

Stimulation of mDCT cells by ATP and UTP decreases NCC
mRNA level

Based on our previous observation that Ca2+ signaling regu-
lates the expression of NCC in mDCT cells [4], we first
investigated whether the nucleotides ATP and UTP, known
to trigger changes in intracellular free calcium concentration
([Ca2+]i), regulate the mRNA expression of NCC. mDCTcells
were treated with ATP or UTP 10 μM for 10 min every hour
for 6 h. Both treatments produced a significant decrease in
NCC mRNA level compared to control (59±12 % and 58±
7 %, respectively, n=8; Fig. 1a). We also observed that the
effect on NCC expression obtained at this concentration
(10 μM ATP/UTP) was maximal (data not shown). Accord-
ingly, repetitive stimulation with 10μMUTP for 10min every
hour for 6 h decreased the amount of NCC protein expressed
after 24 h by ~40 % (Fig. 1a insert).

ATP and UTP increase [Ca2+]i in mDCT cells

The involvement of P2 receptors was further characterized in
mDCT cells by analyzing [Ca2+]i transients after ATP and
UTP stimulation. mDCT cells were loaded with the calcium
indicator fura-2 acetoxymethyl ester (Fura-2 AM) to measure
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[Ca2+]i. In the presence of Ca2+ in the extracellular medium,
the response was constituted of a fast peak of [Ca2+]i followed
by a sustained plateau (Fig. 1b(a)). The response was largely
inhibited by suramine (300 μM) suggesting the involvement
of a P2 receptor (data not shown). In the absence of external
Ca2+, ATP was still able to induce the fast initial peak of
[Ca2+]i, but the long-lasting plateau phase was lost, suggesting
that ATP stimulation triggers both the release of Ca2+ from
internal stores and the entry of Ca2+ from the external milieu
(Fig. 1b(b)). This also suggested that the purinergic receptor
involved in the first phase is metabotropic, belonging to the
P2Y family. UTP elicited a similar increase in [Ca2+]i as
observed for ATP and exerted a maximal effect at 10 μM
(Fig. 1b(c–d)). We further characterized the presence of func-
tional P2Y receptors coupled to Gq protein by testing the

effect of the PLC antagonist, U73122 (10 nM), on [Ca2+]i
response elicited by ATP/UTP. U73122 completely inhibited
the increase in [Ca2+]i, both in the presence and in the absence
of external Ca2+ (Fig. 1b(a–c)) confirming that the receptor
involved is metabotropic and coupled to PLC, and suggesting
that the entry of Ca2+ is not due to P2X receptor stimulation
but is subsequent to stores depletion. Taken together, these
observations indicate that mDCTcells express functional P2Y
receptor subtypes sensitive to ATP and UTP.

mDCT cells express P2Y2 receptor in cell membrane

Among P2Yand P2X receptors, P2Y1, P2Y2, P2Y4, P2Y6 and
P2X1–7 subtypes have been previously identified in kidney [1,
24, 37, 42, 43]. Semiquantitative (Fig. 1c(a)) and quantitative
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Fig. 1 Nucleotide stimulation of mDCT cells activates metabotropic P2
receptors and decreases NCC expression. a Repetitive stimulation with
10 μM ATP/UTP induced a 2-fold decrease of NCC mRNA expression
(RT-qPCR) (n=8). ***p<0.0001 and a 40 % reduction in NCC protein
expression (n=2 independent experiments, with β-actin as control). b
Stimulation of mDCT cells with ATP/UTP induced Ca2+ transients.
Representative recording of mDCT cells stimulated by ATP in the pres-
ence (2 mM [Ca2+]e; a) and ATP or UTP in the absence (0 mM [Ca2+]e; b
and c) of extracellular calcium. ATP or UTP induces the release of [Ca2+]i
from internal stores (dark lines). Cells preincubated for 10 min with

10 μM PLC inhibitor (U73122) lacked nucleotide-induced [Ca2+]i tran-
sients (a–c; red lines). Similar results were obtained for n=3–11 in each
condition. Stimulation with 10 and 100 μM UTP (d) induced a similar
amplitude of [Ca2+]i transient (n=4–5). The time points of drug stimula-
tion are indicated by arrows. cP2 receptors expression in mDCTcells. (a)
RT-PCR analyses showed that P2Y1, P2Y2, P2X4 and P2X5 are highly
expressed in mDCT cells (see also Table 1). (b) Immunofluorescence
staining (confocal images inXZplane) is compatible with a P2Y2 receptor
(green) expression in the apical membrane and a PV expression (red) in
the cytosol
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(Table 1) RT-PCR experiments showed that P2Y1, P2Y2 and
P2Y6 as well as P2X4 and P2X5 were by far the most
expressed subtypes in mDCT cells.

Immunofluorescent microscopy was used to study subcel-
lular localization of the P2Y2 receptor subtype in mDCT cells
(see the reason below). As expected, the P2Y2 receptor was
found in the membrane compartment, whereas PV, a specific
marker of DCT1, was found in the cytosol (Fig. 1c(b)).

P2Y2 receptor silencing suppresses nucleotide-induced
increases in [Ca2+]i and suppression of NCC expression

The similar and high potency of both ATP and UTP in
the above studies pointed to a possible role of the P2Y2
and/or P2Y4 receptor, which in rodents are both and
similarly activated by both nucleotides, whereas P2Y1
and P2Y6 subtypes are not responsive to UTP and
ATP, respectively. To identify the P2Y receptor involved,
and considering the high expression of P2Y2 versus P2Y4

receptors in mDCT cells, we repressed the expression of the
P2Y2 receptor. mDCT cells were transfected with nonspecific
siRNA (siCtrl) or treated independently with three specific
siRNAs targeted against P2Y2 receptor (siP2Y2). Treatment
with siP2Y2 resulted in a significant reduction of about 80 %
in P2Y2 mRNA levels, with no effect on the P2Y1 mRNA
level (Fig. 2a(a)). Accordingly, 72 h after transfection with a
pool of the three siP2Y2, Western blot analysis revealed a
strong reduction in the P2Y2 receptor protein expressed
(Fig. 2a(b)).

We then observed that in mDCT cells transfected with this
pool of siP2Y2, the Ca2+ response to 10 μM UTP was
completely abolished, emphasizing the essential involvement
of P2Y2 receptors in nucleotide-induced release of [Ca2+]i
(Fig. 2b).

We previously reported that the ATP-induced decrease in
NCC expression was dependent on intact [Ca2+]i transients
[4]. We therefore used the same siRNA strategy to determine
the role of P2Y2 receptor signaling in the nucleotide-induced
regulation of NCC expression. Compared to baseline condi-
tions, P2Y2 receptor knock-down prevented the decrease in
NCC expression induced by nucleotide activation (10 μM
UTP) (Fig. 2c).

Altogether, these observations indicate that P2Y2 re-
ceptors mediate the [Ca2+]i transients and the negative
regulation of NCC expression induced by extracellular
nucleotides.

Selective [Ca2+]i buffering prevents the nucleotide-induced
decrease of NCC mRNA expression

We next investigated the relative role of localized [Ca2+]i
transients (nuclear vs. cytoplasmic) in nucleotide-induced
regulation of NCC expression. Toward this aim, we

overexpressed PV specifically in the cytosol or in the nucleus.
mDCT cells were transfected with plasmids coding for rat PV
targeted to the cytosol (PV-cyto) and rat PV targeted to the
nucleus (PV-nuc), respectively [33]. We used, as controls, a
plasmid coding GFP alone (Mock) and a plasmid coding for a
mutated form of PV in which both calcium binding sites were
rendered nonfunctional (PV-cyto-CDEF). These proteins were
built as GFP-fusion proteins and their proper targeting con-
firmed by fluorescent detection (Fig. 3a).

At rest, cells transfected with PV-cyto, PV-cyto-CDEF or
PV-nuc did not show any significant difference in [Ca2+]i in
comparison to Mock transfected cells. However, UTP-
induced cytosolic [Ca2+]i transients were largely reduced in
PV-cyto transfected cells compared to control Mock
transfected cells (274±42 vs. 755±71 nM). As expected,
overexpression of PV in the nucleus and overexpression of
the mutated PV unable to bind Ca2+ did not affect the UTP-
induced [Ca2+]i response (824±43 and 826±62 nM, respec-
tively) (Fig. 3b).

Having validated the experimental model, we investigated
the effect of local changes in [Ca2+] on the regulation of NCC
expression. UTP stimulation of Mock as well as PV-cyto-
CDEF and PV-nuc transfected cells induced a significant
decrease in NCC expression. In contrast, buffering of cyto-
plasmic Ca2+ by overexpression of PV-cyto completely
inhibited the effect (Fig. 3c), suggesting that an increase of
cytosolic but not of nuclear [Ca2+] inhibits NCC expression.
This also suggests that if Ca2+ exerts its effects on NCC
expression by acting on transcription, it is not a direct effect
of Ca2+ on the promoter but an indirect effect passing through
a cytosolic factor.

Nucleotide stimulation does not influence NCC gene
transcription

To evaluate whether nucleotide stimulation could interfere
with NCC transcription, we measured the activity of NCC
gene promoter using a firefly luciferase reporter gene. As it
has been reported that maximal activity of the promoter re-
quires a sequence of 1,019 bp for humans and of 2.1 kb for rat
[42], mDCT cells were transfected with three Slc12a3
promoter-luciferase gene constructs containing a sequence of
the promoter of 1, 1,5 and 2,2 kb, respectively (pGL3-1000/
SLC12a3, pGL3-1500/Slc12a3 and pGL3-2200/Slc12a3, re-
spectively). Red firefly luciferase activity was corrected for
transfection efficiency by measuring the activity of the simul-
taneously transfected green Renilla luciferase. Firefly lucifer-
ase activities measured in cells transfected with pGL3-1000/
Slc12a3, pGL3-1500/Slc12a3 and pGL3-2200/Slc12a3 were
significantly higher than in cells transfected with the control
vector (pGL3-basic), suggesting that the constructs were tran-
scriptionally active. Treatment of the cells with 10 μM UTP
for 10 min every hour for 6 h did not reduce the expression of
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luciferase, suggesting that the activity of the NCC promoter
region from −1 to −2,200 bp is not regulated by nucleotide
stimulation (Fig. 4). These results argued against important
regulatory sequences for nucleotide-induced and Ca2+-medi-
ated inhibition of NCC gene transcription in the area of the
NCC promoter.

Nucleotide stimulation decreases NCC mRNA stability

Since UTP-induced decrease of NCC expression seemed in-
dependent of transcription, we checked whether UTP might

interfere with mRNA stability. To this aim, we blocked
transcription with 75 μM of DRB and measured the
progressive decay of mRNA amount by RT-qPCR.
Analysis showed that NCC mRNA half-life time signif-
icantly decreased upon UTP stimulation, from 11.2 to
5.9 h (Fig. 5). In comparison, nucleotide stimulation did
not affect the relative half-life time of other genes such
as β-actin or the magnesium transporter TRPM6 (10
and 10.3 h, respectively). We conclude that UTP stim-
ulation specifically decreases NCC mRNA stability in
mDCT cells.
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Fig. 2 Effects of P2Y2 receptor knock-down on intracellular Ca
2+ release

and NCC mRNA expression in mDCT. a (a) P2Y receptor mRNA
expression in mDCT cells after transfection with three different siP2Y2.
P2Y1 (white columns) and P2Y2 receptors (black columns) mRNAs were
quantified by RT-qPCR, related to GAPDH expression and expressed in
proportion to control situation (siCtrl). Cells treated with siP2Y2 RNA
showed a significant decrease in the expression of P2Y2, whereas P2Y1

stayed unchanged. ***p<0.0001 versus siCtrl (n=4). Efficiency of trans-
fection was around 90 %, verified with BLOCK-iT™ Alexa FluorR Red
Fluorescent Oligo (Invitrogen). (b) Immunoblot analysis of P2Y2 protein
expression of cells transfected with siP2Y2 versus siCtrl. bSpecific P2Y2

receptor knock-down inhibits intracellular Ca2+ release in mDCT. (a)
Representative recording of changes in [Ca2+]i measured with the fluo-
rescent indicator Fura2-AM. Stimulation ofmDCTcells with 10μMUTP
induced a release of Ca2+ in the absence of [Ca2+]e after siCtrl treatment
(dark line) but not after transfection with siP2Y2 (red line). The time point
of drug stimulation is indicated by arrow. (b) Quantification (n=6 inde-
pendent measurements; ***p<0.0001). c Stimulation with 10 μM UTP
for 10 min every hour for 6 h induced a 2-fold decrease of NCC
expression (RT-qPCR), an effect that was blocked after P2Y2 silencing
(n=8, **p<0.001)
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Discussion

We previously reported that ATP stimulation of mDCT cells
significantly reduced NCC expression [4]. In the present
study, we investigated how ATP-induced Ca2+ signaling reg-
ulates NCC expression and elucidated the involved P2 recep-
tor subtype. We show that P2Y2 receptor plays an essential
role in this response, which is induced by both ATP and UTP.
We further show that the ATP/UTP-induced increase in cyto-
plasmic Ca2+ concentration down-regulates the expression of
NCC, at least in part, by decreasing its mRNA stability.

The DCT segment is not readily accessible by regular
microdissection of the mouse kidney. Therefore, most recep-
tor studies of the distal tubule have been performed thus far on
cell lines. Nucleotide receptors have been studied on Xenopus
laevis A6, canine MDCK and rabbit DC1 cells [2, 5, 47].

Here, we used mDCT cells, an established cell model that
expresses the thiazide-sensitive cotransporter NCC typical for
the DCT [12] and which has recently been used to study the
regulation of NCC and the expression of other DCT1 markers
such as PV [4].

Cytosolic ATP concentrations exceed 5 mM in most cell
types [14, 20], whereas the pericellular concentrations re-
quired for P2Y2 receptor stimulation (EC50 values for ATP)
range between 0.085 and 0.23 μM in humans and 0.7 and
1.8 μM in mice. Similar concentrations are necessary for
activation of this receptor by UTP [39]. Lazarowski and
colleagues detected UTP in nanomolar concentrations in the
medium bathing a variety of cells including platelets and
leukocytes, primary airway epithelial cells, rat astrocytes and
several cell lines cultures [21]. This suggests that constitutive
release of UTP may provide a mechanism of regulation of the
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basal activity of uridine nucleotide sensitive receptors. Inter-
estingly, high dietary NaCl intake is paralleled by increased
urinary levels of UTP and ATP. Such change in NaCl intake,

reflected by modifications in aldosterone concentration, may
change P2Y2-receptor activation, in turn affecting ENaC open
probability and therefore NaCl reabsorption [32].
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Extracellular nucleotides can activate two families of re-
ceptors: (1) the ionotropic P2X receptors that open in response
to the binding of extracellular ATP as their principal ligand
[6]; and (2) the metabotropic P2Y receptors that are function-
ally coupled to G proteins and that are activated byATP (P2Y1

and P2Y2 receptors) or UTP (P2Y2, P2Y4 and P2Y6 receptors)
[22, 41, 45]. By RT-qPCR, we identified the presence of
several subtypes of P2Y and P2X receptors among which
P2Y1, P2Y2, P2Y6, P2X4 and P2X5 were the most highly
expressed. ATP and UTP induced an increase in [Ca2+]i even
in the absence of extracellular calcium, suggesting the in-
volvement of metabotropic receptors. Accordingly, the PLC
antagonist U73122 inhibited the ATP/UTP-elicited calcium
peak in mDCTcells. Among the P2Y metabotropic receptors,
the similar and high potency of ATP and UTP suggested the
possible involvement of P2Y2 in mDCT cells, which was
highly expressed in these cells. siRNA-mediated knock-
down of P2Y2 receptor protein confirmed that this isoform
was responsible of both ATP/UTP-induced [Ca2+]i transients
and ATP/UTP-induced inhibition of NCC expression. P2Y2

receptor and NCC (the la t te r not shown) were
immunodetected in the apical membrane of the mDCT cells
cultivated on filter whereas PV, a protein specifically
expressed in mouse DCT1, was found in the cytosol. P2Y2

has also been described in both apical and basolateral mem-
branes of principal cells of the inner medullary collecting duct
(IMCD) [18, 43, 45].

Our understanding of the distinct roles of cytosolic and
nuclear Ca2+ transients in gene expression is still limited. The
generation of PVexpression constructs targeted to the cytosol
or to the nucleus allowed to investigate the relative contribu-
tion of cytoplasmic and nuclear Ca2+ transients to the regula-
tion of MAPK-mediated gene expression in response to stim-
ulation with EGF [33]. We used the same strategy and found
that cytosolic and not nuclear Ca2+ transients played a decisive
role in the regulation of NCC expression. This observation
was confirmed by the fact that the expression of neither the
mutated PV unable to bind Ca2+ nor the nuclear-targeted PV
was able to inhibit UTP-induced modulation of NCC expres-
sion. Taken together with the specific buffering properties of
PV [30], these data suggest that the calcium signal peak is
indeed the determinant factor for NCC regulation.

Gene expression may be regulated at the level of RNA
transcription, splicing, polyadenylation, capping, trafficking,
stability, translation, or at the level of protein processing and
stability [28]. Genes down-regulated by Ca2+ transients have
been identified in Arabidopsis, but also in mammals [16, 17].
For example, it was shown that Ca2+ transients inhibit expres-
sion of the protooncogene c-myb in an erythropoietin-
responsive murine erythroleukemia cell line [38]. Similarly,
calcium inhibits renin gene expression by transcriptional and
posttranscriptional mechanisms [10]. It inhibits renin tran-
scription by inducing translocation of transcription factor

Ref-1 to the nucleus, where it binds to a negative calcium
response element (nCaRE) of the renin promoter/enhancer.
Besides its indirect action on transcription, Ca2+ also induces a
destabilization of renin mRNA, a process involving dynamin-
1 protein [19].

In the present study, we showed that NCC mRNA levels
decreased after UTP stimulation, suggesting that UTP stimu-
lation inhibits NCC transcription or makes NCC mRNA less
stable [35, 37]. We therefore studied the role of UTP-induced
Ca2+ transients in both these processes.

Maximal promoter activity of NCC was observed in
mDCT cells using a human promoter containing 1,019 bp of
the 5′ flanking region of SLC12A3. MacKenzie and col-
leagues [27] observed a significant repressor effect from po-
sition –1019 to –1885. Luciferase reporter gene analysis using
the rat promoter sequence of Slc12a3 showed a maximal
activity with a promoter containing 2,039 bp and demonstrat-
ed that the most important region was located between posi-
tion –580 and –141 [42]. In silico analysis of NCC sequence
did not reveal any nCaRE element in the promoter region. We
nevertheless studied the possible effect of [Ca2+]i transients on
NCC gene transcription by using a firefly luciferase reporter
gene using the rat promoter sequence up to 2.2 kb upward as
the start codon. Based on these observations in mDCTcells, it
seems that nucleotide stimulation, shown to increase intracel-
lular Ca2+ concentrations, has no direct or indirect influence
on NCC gene transcription. However, we cannot exclude a
possible involvement of a region upstream this 2.2-kb
sequence.

We next turned to mRNA stability investigation. Important-
ly, we found that repeated stimulations with 10 μM UTP (for
10 min every hour for 6 h), eliciting repeated pulses of high
intracellular calcium concentrations, reduced NCC mRNA
half-life by 50 %. Messenger RNA stability is determined by
specific sequences (cis-acting elements) in the 3′-UTR of RNA
such as AUUUA, U(U/A)(U/A)UUU(u/A)(U/A)U, GUUUG
or CAGUGU/C repeats and by the presence of specialized
proteins (trans-acting factors) such as heterogeneous nuclear
ribonucleoprotein-A1 (hnRNP-A1), a protein known to bind, in
the cytoplasm, to reiterated AUUUA, AU-rich and poly-U
sequences to determine mRNA stability [3, 28]. We did not
identify in a short 250-bp-long 3′-UTR sequence of NCC the
classical AU-rich elements (ARE) "AUUUA" motif typically
responsible for the trans-acting factors binding. However, even
though the "AUUUA" repeats are commonly involved in
mRNA stability regulation, they are not essential. For example,
parathyroid hormone mRNA is known to contain a 63b cis-
acting nucleotide destabilizingAU-rich sequence in the 3′-UTR
and another distinct region determining mRNA stability
by its interaction with trans-acting factors AUF-1 and
Unr. Both proteins bind PTH mRNA and stabilize the
transcript; interestingly, their binding is increased in low
[Ca2+]i environment [29].
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Finally, mRNA abundance could be regulated by binding
of specific miRNAs to a complementary binding sequence
generally located in 3′-UTR of target RNA [15]. In the case of
murine NCC mRNA, a computational analysis of 3′-UTR
identified two potential sites of fixation for miRNA described
in the kidney: mmu-let-7d and mmu-miR-143. Recently, these
miRNA were implicated in cancer protein regulation. The
importance of 3′-UTR region in Ca2+-induced destabilization
of NCC mRNA and protein is under investigation.

In conclusion, our results demonstrate that in mDCT cells,
the extracellular nucleotide-induced and P2Y2 receptor-
mediated [Ca2+]i elevation is associated with a decrease in
NCCmRNA, which is due, at least in part, to a reduction of its
stability. These studies provide another example for the down-
regulation of a mammalian gene by Ca2+ transients and add
another level of complexity to the regulation of NCC expres-
sion in the distal nephron.
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