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The algebra of essential relations on a finite set
By Serge Bouc at Amiens and Jacques Thévenaz at Lausanne

Abstract. Let X be a finite set and let k be a commutative ring. We consider the
k-algebra of the monoid of all relations on X , modulo the ideal generated by the relations
factorizing through a set of cardinality strictly smaller than Card.X/, called inessential rela-
tions. This quotient is called the essential algebra associated to X . We then define a suitable
nilpotent ideal of the essential algebra and describe completely the structure of the correspond-
ing quotient, a product of matrix algebras over suitable group algebras. In particular, we obtain
a description of all the simple modules for the essential algebra.

1. Introduction

Let X and Y be finite sets. A correspondence between X and Y is a subset R of X � Y .
In caseX D Y , we say thatR is a relation onX . Correspondences can be composed as follows.
If R � X � Y and S � Y �Z, then RS is the correspondence between X and Z defined by

RS D ¹.x; z/ 2 X �Z j there exists y 2 Y such that .x; y/ 2 R and .y; z/ 2 Sº:

In particular the set of all relations on X is a monoid. Given a commutative ring k and a finite
set X , let R be the k-algebra of the monoid of all relations on X (having this monoid as
a k-basis).

Throughout this paper, X will denote a finite set of cardinality n. We say that a rela-
tion R on X is inessential if there exists a set Y with Card.Y / < Card.X/ and two relations
S � X � Y and T � Y �X such that R D ST . Otherwise, R is called essential. The set of
all inessential relations on X spans a two-sided ideal I of R. We define E D R=I . It is clear
that E is a k-algebra having as a k-basis the set of all essential relations on X . The purpose of
this paper is to explore the concept of essential relation and to study the structure of E .

We shall define a nilpotent idealN of E and describe completely the quotient P D E=N .
More precisely, P is isomorphic to a product of matrix algebras over suitable group algebras,
the product being indexed by the set of all (partial) order relations on X , up to permutation.
Consequently, we find all the simple E-modules.

The motivation for this work comes from various sources. First, it is clear that the no-
tion of relation on a set is of fundamental importance in mathematics. Moreover, the fact that
relations can be composed leads naturally to the monoid of all relations on a finite set. This
monoid has been studied by several authors: see for instance [13–15], and more recently [8]
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226 Bouc and Thévenaz, The algebra of essential relations on a finite set

(which contains many references), [5, 7, 12]. But the algebra R still needs to be better under-
stood. The dimension of R grows extremely fast (as a function of the cardinality of the set X ),
so R seems quite difficult to handle.

The idea of passing to the quotient by all elements obtained from something smaller
is quite elementary and is a first way for decreasing the size of the algebra and simplifying its
structure (although the quotient E still has a very large dimension). Analogous ideas are widely
used, in particular in the representation theory of finite groups. In the theory of G-algebras,
the notion of Brauer quotient is of this kind (see [17]). In the more recent development of the
theory of biset functors for finite groups (see [3]), the same idea plays a key role in [4]. The use
of a similar idea for sets instead of groups yields the notion of essential relation, which does
not seem to have been studied. It is one of the purposes of this paper to fill this gap.

The essential algebra E is a very natural quotient of R. It is therefore remarkable that
a lot can be said about the structure of E , despite its very large dimension, and that all simple
E-modules can be described. We view this as an interesting phenomenon which motivates
further investigation.

Finally, another motivation for studying R and E comes from the representation theory of
the category C of all finite sets, where morphisms in C are all correspondences between finite
sets. It is known that the simple functors C ! k-Mod are parametrized by all pairs consist-
ing of a finite set and a simple module for the corresponding algebra E . Thus the knowledge
of all simple E-modules gives fundamental information on such simple functors. A deeper
investigation of this representation theory will appear in a future paper.

2. Essential relations

Given a correspondence R � X � Y between a set X and a set Y , then for every a 2 X
and b 2 Y we write

aR D ¹y 2 Y j .a; y/ 2 Rº and Rb D ¹x 2 X j .x; b/ 2 Rº:

We call aR a column of R and Rb a row of R.
We first characterize inessential relations. Any subset of X � Y of the form U � V will

be called a block (where U � X and V � Y ).

Lemma 2.1. Let X; Y;Z be finite sets.

(a) Let R � X �Z be a correspondence between X and Z. Then R factorizes through Y if
and only if R can be decomposed as a union of blocks indexed by the set Y .

(b) Let R be a relation on X , where X has cardinality n. Then R is inessential if and only
if R can be decomposed as a union of at most n � 1 blocks.

Proof. (a) IfR factorizes through Y , thenR D ST , where S � X �Y and T � Y �Z.
Then we can write

R D
[
y2Y

Sy � yT;

as required.
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Suppose conversely thatR D
S
y2Y Uy�Vy , where eachUy is a subset ofX and each Vy

is a subset of Z. Then we define

S D
[
y2Y

Uy � ¹yº � X � Y and T D
[
y2Y

¹yº � Vy � Y �Z:

Then S is a correspondence betweenX and Y , and Uy D Sy , the y-th row of S . Similarly, T is
a correspondence between Y and Z, and Vy D yT , the y-th column of T .

We now claim that R D ST . If .x; z/ 2 R, then there exists an element y 2 Y such
that .x; z/ 2 Uy � Vy . It follows that .x; y/ 2 S and .y; z/ 2 T , hence .x; z/ 2 ST , proving
that R � ST . If now .x; z/ 2 ST , then there exists an element y 2 Y such that .x; y/ 2 S
and .y; z/ 2 T . It follows that x 2 Sy D Uy and z 2 yT D Vy , hence .x; z/ 2 Uy � Vy � R,
proving that ST � R. We have shown that R D ST , proving the claim.

(b) This follows immediately from (a).

Corollary 2.2. Let R be a relation on X . If two rows of R are equal, then R is inessen-
tial. If two columns of R are equal, then R is inessential.

Proof. Suppose that aR D bR D V . Then

R D .¹a; bº � V / [

� [
c2X

c¤a; c¤b

¹cº � cR

�
;

a union of n � 1 blocks, where n D Card.X/. The proof for rows is similar.

Corollary 2.3. Let R be a relation on X . If a row of R is empty, then R is inessential.
If a column of R is empty, then R is inessential.

Proof. Assume that aR D ;. Then

R D
[
c2X
c¤a

¹cº � cR;

a union of n � 1 blocks, where n D Card.X/. The proof for rows is similar.

Corollary 2.4. Let R be a relation on X . If R is an equivalence relation different from
the equality relation (i.e. R ¤ � where � is the diagonal of X �X ), then R is inessential.

Proof. Suppose that a and b are equivalent and a ¤ b. Then the rows Ra and Rb are
equal and Corollary 2.2 applies.

We need a few basic facts about reflexive relations. Recall that a relation S on X is
reflexive if S contains � D ¹.x; x/ j x 2 Xº. Moreover, a preorder is a relation which is
reflexive and transitive, while an order is a preorder which is moreover antisymmetric.
(Note that, throughout this paper, the word “order” stands for “partial order”.) Associated to
a preorder R, there is an equivalence relation �R defined by x �R y if and only if .x; y/ 2 R
and .y; x/ 2 R. Then �R is the equality relation if and only if R is an order.
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228 Bouc and Thévenaz, The algebra of essential relations on a finite set

We will often use the containment of relations on X (as subsets of X �X ). Note that
if R � S , then RT � ST and TR � TS for any relation T on X . If S is a reflexive relation,
then S � S2 � S3 � � � � and there exists an m 2 N such that Sm D SmC1, hence Sm D SN

for all N � m. The relation S ´ Sm is called the transitive closure of S . It is reflexive and
transitive, that is, a preorder. Note that any preorder is an idempotent relation.

Proposition 2.5. Let R be a preorder on a finite set X of cardinality n.

(a) If R is not an order, then R is inessential.

(b) If R is an order and if Q is a reflexive relation contained in R, then Q is essential.
In particular, if R is an order, then R is essential.

(c) If R is a total order, then R is maximal among essential relations.

Proof. (a) If R is not an order, then the associated equivalence relation �R is not the
equality relation. Let a and b be equivalent under �R with a ¤ b. Then, by transitivity of R,
the rows Ra and Rb are equal. By Corollary 2.2, R is inessential.

(b) Suppose now that R is an order and that Q is reflexive with Q � R. We claim that,
if a ¤ b, then .a; a/ and .b; b/ cannot belong to a block contained in Q. This is because,
if .a; a/; .b; b/ 2 U � V � Q, then we have .a; b/ 2 U � V (because a 2 U and b 2 V )
and .b; a/ 2 U � V (because b 2 U and a 2 V ), and therefore .a; b/ 2 Q and .b; a/ 2 Q,
hence .a; b/ 2 R and .b; a/ 2 R, contrary to antisymmetry. It follows that, in any expression
of Q as a union of blocks, the diagonal elements .a; a/ all lie in different blocks, so that the
number of blocks is at least n. This shows that Q is essential.

(c) Without loss of generality, we can assume that the total order R is the usual total
order on the set X D ¹1; 2; : : : ; nº, i.e. .x; y/ 2 R ” x � y. Let S be a relation strictly
containing R. Then S�R ¤ ; and we choose .j; i/ 2 S�R with i maximal, and then j maxi-
mal among all x with .x; i/ 2 S�R. In other words, .j; i/ 2 S , but j > i because .j; i/ … R,
and moreover

.x; y/ 2 S�R H) y � i and .x; i/ 2 S�R H) x � j:

If i D j � 1, then the rows Si and Sj are equal, so S is inessential by Corollary 2.2.
Assume now that j � 1 > i . Then we claim that

S D .Si � ¹i; j º/ [ .Sj�1 � ¹j�1; j º/ [

� [
k¤i;j�1;j

Sk � ¹kº

�
:

To show that the first block is contained in S , let x 2 Si . Then x � j if .x; i/ 2 S�R,
and also x � j if .x; i/ 2 R, i.e. x � i . Hence x � j in both cases, and thus .x; j / 2 R � S .
This shows that Si � ¹j º � S .

To show that the second block is contained in S , let x 2 Sj�1. Then .x; j�1/ cannot
belong to S�R, by maximality of i (because j�1 > i). Thus .x; j�1/ 2 R, that is, x � j�1.
Then x < j , hence .x; j / 2 S . This shows that Sj�1 � ¹j º � S .

Next we show that S is contained in the union of the blocks above. This is clear for
any .x; y/ 2 S such that y ¤ j . Now take .x; j / 2 S . By maximality of i and since j > i ,
we have .x; j / 2 R, that is, x � j . If x D j , then .j; j / 2 Si � ¹i; j º because .j; i/ 2 S ,
that is, j 2 Si . If x < j , then x � j�1, hence .x; j�1/ 2 S , that is, x 2 Sj�1, and therefore
we have .x; j / 2 Sj�1 � ¹j�1; j º.
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Bouc and Thévenaz, The algebra of essential relations on a finite set 229

This proves the claim about the block decomposition. It follows that S is a union of n � 1
blocks, so S is inessential.

Example 2.6. Let n D Card.X/. Let � be the diagonal of the product X �X and let
R D .X �X/ ��. It is not difficult to see thatR is essential if 2 � n � 4. However, for n � 5,
we prove that R is inessential. Without loss of generality, we can choose X D ¹1; : : : ; nº.
If U � X , we write U c for the complement of U in X . Then it is easy to prove that

R D

 
n�3[
iD1

¹i; iC3ºc�¹i; iC3º

!
[.¹n�2; n�1; nºc�¹n�2; n�1; nº/[.¹1; 2; 3ºc�¹1; 2; 3º/:

This is a union of n � 1 blocks, so R is inessential.

3. Permutations

As before, X denotes a finite set. We let † be the symmetric group on X , that is, the
group of all permutations of X . For any � 2 †, we define

�� D ¹.�.x/; x/ 2 X �X j x 2 Xº:

This is actually the graph of the map ��1, but the choice is made so that ���� D ��� for
all �; � 2 †. With a slight abuse, we shall often call�� a permutation. We also write� D �id.

The group † has a left action on the set of all relations, � acting via left multiplication
by �� . Similarly, † also acts on the right on the set of relations. It is useful to note how
multiplication by �� behaves. Given any relation R on X ,

.x; y/ 2 R ” .�.x/; y/ 2 ��R ” .x; ��1.y// 2 R�� :

Lemma 3.1. Let R be a relation on X and let �� be a permutation.

(a) R is essential if and only if ��R is essential.

(b) �� is essential.

(c) The left action of † on the set of all essential relations is free.

Proof. (a) If R factorizes through a set of cardinality smaller than Card.X/, then so
does ��R. The converse follows similarly using multiplication by ���1 .

(b) This follows from (a) by takingR D � (which is essential by Proposition 2.5 because
it is an order).

(c) Suppose that ��R D R for some � ¤ id. Then

.x; y/ 2 R ” .�.x/; y/ 2 R;

hence we have xR D �.x/R. Since � ¤ id, two columns of R are equal and so R is inessential
by Corollary 2.2. Thus if R is essential, ��R ¤ R for all � ¤ id.

Our next result will be essential in our analysis of essential relations.
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Theorem 3.2. Any essential relation contains a permutation.

We shall provide two different proofs. The first is direct, while the second uses a theorem
of Philip Hall. In fact, a relation containing a permutation is called a Hall relation in a paper
of Schwarz [15], because of Hall’s theorem, so Theorem 3.2 asserts that any essential relation
is a Hall relation.

First proof. Let R be a relation on X and let n D Card.X/. We have to prove that,
if R is essential, then there exists a � 2 † such that R contains���1 , that is, R�� contains�
(or in other wordsR�� is reflexive). LetD� D R�� \� and suppose that Card.D� / < n for
all � 2 †. Then we have to prove that R is inessential.

We choose � 2 † such that Card.D� / � Card.D� / for all � 2 †. We let S D R�� and
we aim to prove that S is inessential (hence R too by Lemma 3.1). Note that D� � S by
construction. Define

A D ¹a 2 X j .a; a/ 2 D�º; in other words D� D ¹.a; a/ j a 2 Aº:

In particular Card.A/ D Card.D� / < n. By maximality ofD� , we have the following property:

(�) Card.S�� \�/ � Card.A/ for all � 2 †:

Given x; y 2 X , define a path from x to y to be a sequence x0; x1; : : : ; xr of elements
of X such that x0 D x, xr D y, and .xi ; xiC1/ 2 S for all i D 0; : : : ; r � 1. We write x Ý y

to indicate that there is a path from x to y, and also x ! y whenever .x; y/ 2 S (path of
length 1). Define Ac to be the complement of A in X (so Ac is nonempty by assumption).
Define also

A1 D ¹a 2 A j there exists z 2 Ac and a path z Ý aº;

A2 D ¹a 2 A j there exists z 2 Ac and a path aÝ zº:

We claim that there is no path from an element of A1 to an element of A2. Suppose by
contradiction that there is a path a1 Ý a2 with ai 2 Ai . Then there exist elements zi 2 Ac and
paths z1 Ý a1 Ý a2 Ý z2, in particular z1 Ý aÝ z2 with a 2 A. In the path z1 Ý a, let w1
be the element of Ac closest to a, so that the path w1 Ý a does not contain any element of Ac

except w1. Similarly, let w2 be the element of Ac closest to a in the path aÝ z2 , so that the
path aÝ w2 does not contain any element of Ac except w2. We obtain a path w1 Ý aÝ w2
having all its elements in A except the two extremities w1 and w2. By suppressing cycles
within A, we can assume that all elements of A in this path are distinct. We end up with a path

w1 ! x1 ! � � � ! xr ! w2

where x1; : : : ; xr 2 A are all distinct.
Let � 2 † be the cycle defined as follows: �.w1/ D x1, �.xi / D xiC1 for 1 � i � r�1,

�.xr/ D w2, and finally �.w2/ D w1 in case w2 ¤ w1. In case w2 D w1, then �.w2/ is
already defined to be �.w2/ D �.w1/ D x1. We emphasize that �.y/ D y for all the other
elements y 2 X . Then we obtain

.w1; x1/ 2 S hence .w1; w1/ 2 S�� ;

.xi ; xiC1/ 2 S hence .xi ; xi / 2 S�� ;

.xr ; w2/ 2 S hence .xr ; xr/ 2 S�� ;

.y; y/ 2 S hence .y; y/ 2 S�� for all y 2 A � ¹x1; : : : ; xrº:
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Thus we obtain .a; a/ 2 S�� for all a 2 A, but also .w1; w1/ 2 S�� . Therefore

Card.S�� \�/ > Card.A/;

contrary to property (�). This proves the claim that there is no path from A1 to A2.
In particular, A1 \ A2 D ; because if a 2 A1 \ A2, we would have a path of length 0

from A1 to A2 (since .a; a/ 2 S ). Let A3 be the complement of A1 [ A2 in A. Thus X is the
disjoint union of the four subsets Ac , A1, A2 and A3.

We now claim the following:

(a) There is no relation between Ac and Ac , that is, S \ .Ac � Ac/ D ;.

(b) There is no relation between Ac and A2 [ A3, that is, we have S \ .Ac � A2/ D ; and
S \ .Ac � A3/ D ;.

(c) There is no relation between A1 and Ac , that is, S \ .A1 � Ac/ D ;.

(d) There is no relation between A1 and A2, that is, S \ .A1 � A2/ D ;.

(e) There is no relation between A1 and A3, that is, S \ .A1 � A3/ D ;.

To prove (a), suppose that .w; z/ 2 S wherew; z 2 Ac . Choose � 2 † such that �.a/ D a
for all a 2 A and �.w/ D z. Then .a; a/ 2 S�� for all a 2 A but also .w;w/ 2 S��, contrary
to property (�).

To prove (b), we note that the definition of A1 implies that, if .z; a/ 2 S with z 2 Ac

and a 2 A, then a 2 A1. Thus a … A2 [ A3.
To prove (c), suppose that .a; z/ 2 S with a 2 A and z 2 Ac . Then a 2 A2 by the defi-

nition of A2 and in particular a … A1.
Property (d) follows immediately from the previous claim that there is no path from A1

to A2.
To prove (e), suppose that .a1; a3/ 2 S with a1 2 A1 and a3 2 A3. Then by the definition

ofA1, there is a path z Ý a1 ! a3 where z 2 Ac , but this means that a3 2 A1, a contradiction.

It follows that the relation S has the property that there is no relation between Ac [ A1
andAc[A2[A3. Therefore S is the union of the columns indexed by .Ac [ A1/c D A2 [ A3
and the lines indexed by .Ac [ A2 [ A3/c D A1, that is,

S D

� [
b2A2[A3

bS

�
[

� [
a2A1

Sa

�
:

Since Card.A2 [ A3/C Card.A1/ D Card.A/, we obtain a union of Card.A/ blocks. But we
have Card.A/ < n by assumption, so S is inessential, as was to be shown.

Second proof. Let R be an essential relation on X . For any subset A of X , define

RA D ¹x 2 X j there exists a 2 A such that .x; a/ 2 Rº D
[
a2A

Ra:

Then R decomposes as a union of blocks

R D

�[
y…A

.Ry � ¹yº/

�
[

� [
x2RA

.¹xº � xR/

�
:

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 4:43 PM



232 Bouc and Thévenaz, The algebra of essential relations on a finite set

SinceR is essential, Card.X � A/C Card.RA/ cannot be strictly smaller than Card.X/. There-
fore Card.RA/ � Card.A/ for all subsets A of X , that is,

Card
�[
a2A

Ra

�
� Card.A/:

This is precisely the assumption in a theorem of Philip Hall (see [9, Theorem 5.1.1], or [10]
for the original version which is slightly different). The conclusion is that there exist ele-
ments xy 2 Ry , where y runs over X , which are all distinct. In other words � W y 7! xy is
a permutation and

.�.y/; y/ D .xy ; y/ 2 R for all y 2 X:

This means that R contains �� , as required.

Corollary 3.3. Let R be an essential relation on X . Then there exists an m 2 N such
that Rm is a preorder.

Proof. By Theorem 3.2,R contains�� for some � 2 †. If � has order k in the group†,
then Rk contains ��k D �, so Rk is reflexive. Then the transitive closure of Rk is some
power Rkt . This is reflexive and transitive, that is, a preorder.

We know that any order is an essential relation (Proposition 2.5), hence contains a per-
mutation (Theorem 3.2). But in fact, we have a more precise result.

Lemma 3.4. If R is an order on X , then R contains a unique permutation, namely �.

Proof. Suppose that R is reflexive and transitive and contains a nontrivial permuta-
tion �� . Then � contains a nontrivial k-cycle, say on x1; : : : ; xk , for some k � 2. It follows
that .xiC1; xi / 2 R for 1 � i � r � 1, hence .xk; x1/ 2 R by transitivity of R. Now we also
have .x1; xk/ 2 R because �.xk/ D x1. Thus the relationR is not antisymmetric, hence cannot
be an order.

In the same vein, we have the following more general result.

Lemma 3.5. Let R be an order and let S; S 0 be two relations on X . The following two
conditions are equivalent:

(a) � � S 0S � R.

(b) There exists a permutation �� such that � � ���1S � R and � � S 0�� � R.

Moreover, in condition (b), the permutation � is unique.

Proof. If (b) holds, then

� D �2 � .S 0�� /.���1S/ D S
0S � R2 D R;

so (a) holds.
If (a) holds, then S 0S is essential, by Proposition 2.5. It follows that S is essential, and

therefore S contains a permutation �� , by Theorem 3.2. Then we obtain

� � ���1S and S 0�� � S
0S � R:
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Similarly, S 0 is essential, hence contains a permutation �� , and we obtain

� � S 0���1 and ��S � S
0S � R:

NowR contains���� D ��� and Lemma 3.4 implies that �� D id, that is, we have � D ��1.
Then (b) follows.

If moreover S contains a permutation �� (that is, � � ���1S ), then

���1� D ���1�� � S
0S � R;

and so ��1� D id by Lemma 3.4, proving the uniqueness of � .

4. The essential algebra

Let X be a finite set and let k be a commutative ring. We shall be mainly interested in
the cases where k is either the ring Z of integers or a field, but it is convenient to work with an
arbitrary commutative ring.

Let R be the k-algebra of the monoid of all relations onX . This monoid is a k-basis of R

and the product in the monoid defines the algebra structure. The set of all inessential relations
onX spans a two-sided ideal I of R. We define E D R=I and call it the essential algebra. It is
clear that E is a k-algebra having as a k-basis the set of all essential relations on X . Moreover,
if R and S are essential relations but RS is inessential, then RS D 0 in E .

Both R and E have an anti-automorphism, defined on the basis elements by R 7! Rop,
where .x; y/ 2 Rop if and only if .y; x/ 2 R. It is easy to see that .RS/op D SopRop.

As before, we let † be the symmetric group of all permutations of X . We first describe
an obvious quotient of E .

Lemma 4.1. LetH be the k-submodule of the essential algebra E spanned by the set of
all essential relations which strictly contain a permutation. Then H is a two-sided ideal of E

and E=H Š k†, the group algebra of the symmetric group †.

Proof. Let us write � for the strict containment relation. Let R be an essential relation
such that �� � R and let S be any essential relation. Then S contains a permutation �� , by
Theorem 3.2. We obtain ��� D ���� � R�� � RS , showing that RS 2 H . Similarly we
find that SR 2 H and therefore H is a two-sided ideal of E .

The quotient E=H has a k-basis consisting of all the permutations �� , for � 2 †.
Moreover, they multiply in the same way as permutations, so E=H is isomorphic to the group
algebra of the symmetric group †.

If k is a field, it follows, not surprisingly, that every irreducible representation of the
symmetric group † gives rise to a simple E-module. In short, the representation theory of the
symmetric group † is part of the representation theory of E .

We now want to describe another E-module, which is simple when k is a field. We fix
a total order T on X (e.g. the usual total order on X D ¹1; : : : ; nº). Then any other total
order on X is obtained by permuting the elements of X . Since permuting via � corresponds to
conjugation by �� , we see that ¹T� ´ ��T���1 j � 2 †º is the set of all total orders on X .
All of them are maximal essential relations on X , by Proposition 2.5.
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Lemma 4.2. Let T be a total order on X .

(a) If � 2 †, then T��T D 0 in E if � ¤ id and otherwise T�T D T 2 D T .

(b) The set ¹T� ´ ��T���1 j � 2 †º is a set of pairwise orthogonal idempotents of E .

Proof. (a) Observe that T T� contains both T and T� (because both T and T� contain�).
Since T ¤ T� if � ¤ id, the product T T� contains strictly T and is therefore inessential by
Proposition 2.5. Thus T��T is also inessential, that is, T��T D 0. On the other hand T 2 D T
because any preorder is idempotent.

(b) It follows from (a) that

T�T� D ��T���1�T���1 D

´
0 if � ¤ �;

��T���1 D T� if � D �;

as was to be shown.

Proposition 4.3. Fix a total order T on X . Let L be the k-submodule of the essential
algebra E spanned by the set ¹��T j � 2 †º. Then L is a left ideal of E and is free of rank nŠ
as a k-module, where n D Card.X/. If k is a field, thenL is a simple E-module of dimension nŠ.

Proof. Write S� D ��T for all � 2 †. Let R be an essential relation on X . Then we
have �� � R for some � 2 † by Theorem 3.2. Therefore � � ���1R and this implies that

S� D �S� � ���1RS�

and
T D ���1S� � ���1���1RS� :

If this containment is strict, then���1���1RS� is inessential (by Proposition 2.5) and soRS�
is inessential too (by Lemma 3.1). Otherwise

S� D ���1RS� ;

hence
RS� D ��S� D ���T D S�� :

Therefore, in the algebra E , either RS� D 0 or RS� D S�� . This proves that L is a left ideal
of E . Clearly L has rank nŠ with basis ¹S� j � 2 †º. The action of E on L induces a k-algebra
map

� W E !MnŠ.k/

and L can be viewed as an MnŠ.k/-module (consisting of column vectors with entries in k).
By Lemma 4.2, the action of ��T���1 on basis elements is given by

.��T���1/ � S� D .��T���1/ ���T D

´
0 if � ¤ �;

S� if � D �:

This means that �.��T���1/ is the elementary matrix with a single nonzero entry 1 in posi-
tion .�; �/. Therefore the map � is surjective. This implies that, if k is a field, the module L is
simple as an E-module, because the space of column vectors is a simple MnŠ.k/-module.
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5. A nilpotent ideal

The purpose of this section is to construct a suitable nilpotent ideal N of the essential
algebra E . We shall later pass to the quotient by N and describe the quotient E=N . In order to
find nilpotent ideals, the following well-known result is often useful.

Lemma 5.1. Let k be a commutative ring and let B be a k-algebra which is finitely
generated as a k-module. Let I be a two-sided ideal of B which is k-linearly spanned by a set
of nilpotent elements of B.

(a) If k is a field, then I is a nilpotent ideal of B.

(b) If k D Z and if B is a finitely generated free Z-module, then I is a nilpotent ideal of B.

(c) Suppose that B is defined over Z, that is, B Š k ˝Z BZ for some Z-algebra BZ which
is finitely generated free as a Z-module. Suppose that I is defined over Z, that is,
I Š k˝Z IZ, where IZ is a two-sided ideal of BZ which is Z-linearly spanned by a set
of nilpotent elements of BZ. Then I is a nilpotent ideal of B.

Proof. (a) The assumption still holds after extending scalars to an algebraic closure of k.
Therefore we can assume that k is algebraically closed. Let J.B/ be the Jacobson radical of B.
Then J.B/ D

Tr
iD1Mi , where Mi is a maximal two-sided ideal of B. Moreover, by Wedder-

burn’s theorem, B=Mi is isomorphic to a matrix algebra Mni .k/, because k is algebraically
closed. We will show that I �Mi for all i D 1; : : : ; r . It then follows that I � J.B/, so I is
nilpotent (because it is well known that the Jacobson radical of a finite-dimensional k-algebra
is nilpotent).

Let I be the image of I in B=Mi . Then I is spanned by nilpotent elements of Mni .k/.
But any nilpotent matrix has trace zero (because its characteristic polynomial is Xni and the
coefficient of Xni�1 is the trace, up to sign). It follows that I is contained in Ker.tr/, which is
a proper subspace ofMni .k/. Now I is a two-sided proper ideal of the simple algebraMni .k/,
hence I D ¹0º, proving that I �Mi .

(b) Let F be a basis of B as a Z-module. Extending scalars to Q, we see that F is
a Q-basis of the Q-algebra Q˝Z B and B embeds in Q˝Z B. By part (a), the ideal Q˝Z I

is nilpotent in Q˝Z B. Since I embeds in Q˝Z I , it follows that I is nilpotent.
(c) By part (b), IZ is a nilpotent ideal of BZ. Extending scalars to k, we see that I is

a nilpotent ideal of B.

Recall that † denotes the symmetric group on X and that, if R is a reflexive relation,
then R denotes the transitive closure of R.

Lemma 5.2. If S D ���1R�� where � 2 † and R is a reflexive relation, then

S D ���1R�� :

Proof. We have R D Rm for some m and we obtain

Sm D .���1R�� /
m
D ���1R

m�� D ���1R�� :

Therefore Sm is a preorder, because it is conjugate to a preorder, and so S D Sm D ���1R�� ,
as claimed.
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Theorem 5.3. Let F be the set of all reflexive essential relations on X . Let N be the
k-submodule of the essential algebra E generated by all elements of the form .S � S/�� with
S 2 F and � 2 † (where S denotes the transitive closure of S ).

(a) N is a nilpotent two-sided ideal of E . In particular, N is contained in the Jacobson
radical J.E/.

(b) The quotient algebra P D E=N has a k-basis consisting of all elements of the form S�� ,
where S runs over the set of all orders on X and � runs over the symmetric group †.

Proof. (a) Let E1 be the subalgebra of E which is k-linearly generated by the set F of all
reflexive essential relations. It is clearly a subalgebra since the product of two reflexive relations
is reflexive. Let N1 be the k-submodule of E1 generated by all elements of the form S � S

with S 2 F . We claim that N1 is a two-sided ideal of E1.
If T 2 F , then T S D TS (because TS contains both T and S , hence T S , and T S

contains both T and S , hence TS ). Therefore

T .S � S/ D .TS � TS/ � .T S � TS/ D .TS � TS/ � .T S � T S/:

Note that if TS is inessential (hence zero in E1), then its transitive closure TS cannot be an
order by Proposition 2.5 and is therefore also zero in E1 (again by Proposition 2.5). Thus, in
the expression above, we obtain either generators of N1 or zero. The same argument works for
right multiplication by T (or use the anti-automorphism of E) and this proves the claim.

The ideal N1 is invariant under conjugation by † because, for every � 2 †,

���1.S � S/�� D ���1S�� ����1S�� D ���1S�� ����1S��

by Lemma 5.2. Therefore the generators of N can also be written �� .S 0 � S 0/ with S 0 2 F

and � 2 † (namely S 0 D ���1S�� ). It follows that N D N1�† D �†N1, where we write
for simplicity �† D ¹�� j � 2 †º.

If R is an essential relation on X , then R contains a permutation �� (for some � 2 †)
by Theorem 3.2, so R D Q�� with Q 2 F , and also R D ��Q0 where Q0 D ���1Q�� .
Since N1 is an ideal of E1, it follows that N is invariant by right and left multiplication by R.
Thus N is a two-sided ideal of E .

The generators of N1 are nilpotent, because if S D Sm, then

.S � S/m D .S � Sm/m D

mX
jD0

 
m

j

!
.�1/jSm�jSmj

D

 
mX
jD0

 
m

j

!
.�1/j

!
Sm D .1 � 1/mSm D 0:

Thus N1 is a nilpotent ideal of E1, by Lemma 5.1 (because clearly E1 and N1 are defined
over Z). Since N1 is invariant under conjugation by †, we obtain N n D .N1�†/

n D N n
1�†

for every n 2 N. Since Nm
1 D 0 for some m, the ideal N is nilpotent.

(b) In the quotient algebra E=N , any reflexive relation Q is identified with its transitive
closureQ. Moreover, by Theorem 3.2, any essential relationR onX can be writtenR D Q�� ,
with Q reflexive, and Q�� is identified with Q�� in the quotient algebra E=N . Note that Q
is a preorder and that Q is zero in E if it is not an order, by Proposition 2.5.
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On each basis element R of E , the effect of passing to the quotient by N consists of just
two possibilities.

� IfR can be writtenR D Q�� , withQ reflexive andQ is not an order, thenR is identified
with Q�� , so R is zero in E=N because Q is zero.

� If R can be written R D Q�� , with Q reflexive and Q is an order, then R is identified
with an element of the form S�� where S is an order (namely S D Q).

In the second case, �� is the unique permutation contained in R (or in other words the
expression R D Q�� is the unique decomposition of R as a product of a reflexive relation
and a permutation). This is because if �� 0 � R, we obtain

�� 0��1 D �� 0���1 � R���1 D Q � Q;

so that � 0��1 D id since Q is an order (Lemma 3.4). Thus � 0 D � . This uniqueness property
shows, on the one hand, that both possibilities cannot occur simultaneously and, on the other
hand, that in the second case the order S D Q is uniquely determined by R.

It follows that the nonzero images in E=N of the basis elements of E form a k-basis
of E=N consisting of (the images of) the elements S�� , where S is an order and � 2 †.

The quotient algebra P D E=N will be called the algebra of permuted orders on X ,
because every basis element S�� is obtained from the order S by applying a permutation �
to the rows of S . Moreover, �� is the unique permutation contained in S�� , because � is the
unique permutation contained in S by Lemma 3.4. This defines a †-grading on P :

P D
M
�2†

P� ;

where P� is spanned by the set of all permuted orders containing�� . Clearly P� �P� D P�� ,
so we have indeed a†-grading. We also write P1´ Pid and call it the algebra of orders onX .
Moreover,

P� D ��P1 D P1�� ;

so that the product in P is completely determined by the product in the subalgebra P1, the
product in the symmetric group†, and the action of† on P1. Hence we first need to understand
the subalgebra P1.

6. The algebra of orders

Let P1 be the algebra of orders on X defined above. It has a k-basis O consisting of all
orders on X . The product of basis elements R; S 2 O will be written R � S and is described
as follows.

Lemma 6.1. Let � be the product in the k-algebra P1.

(a) Let R; S 2 O. Then the product R � S is equal to the transitive closure of R [ S if this
closure is an order, and zero otherwise.

(b) The product � is commutative.
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Proof. (a) By definition of the ideal N , the product RS in the algebra P D E=N is
identified with the transitive closure RS , which is also the transitive closure of R [ S , because
the inclusions

R [ S � RS � .R [ S/2 � R [ S � RS

force the equality R [ S D RS . Now RS is a preorder. If this is an order, then R � S D RS . If
this preorder is not an order, then it is zero in E (by Proposition 2.5), hence also zero in P1.

(b) This follows from (a) and the fact that R [ S D S [R.

Theorem 6.2. The following statements hold.

(a) There exists a k-basis ¹fR j R 2 Oº of P1 consisting of mutually orthogonal idempotents
whose sum is 1 and such that, for every R 2 O, the ideal generated by fR is free of rank
one as a k-module.

(b) P1 is isomorphic to a product of copies of k, indexed by O,

P1 Š
Y
R2O

k�fR:

Proof. We know that P1 is commutative, with a basis O consisting of all orders on X .
Any such basis element is idempotent. Moreover O is a partially ordered set with respect to the
containment relation and we make it a lattice by adding an element1 and definingR _ S D1
whenever the transitive closure of R [ S is not an order, while R _ S is the transitive closure
of R [ S otherwise. The greatest lower bound of R and S is just the intersection R \ S .

Now define gR D R if R 2 O and g1 D 0. By Lemma 6.1, these elements satisfy the
condition gR � gS D gR_S . Therefore Theorem A.1 of the appendix applies. We let

fR D
X
S2O
R�S

�.R; S/S;

where � denotes the Möbius function of the poset O, so by Möbius inversion, we have

R D
X
S2O
R�S

fS :

The transition matrix from ¹R 2 Oº to ¹fR j R 2 Oº is upper-triangular, with 1 along the
main diagonal, hence invertible over Z. It follows that ¹fR j R 2 Oº is a k-basis of P1. By
Theorem A.1 of the appendix, ¹fR j R 2 Oº is a set of mutually orthogonal idempotents in P1
whose sum is 1. Moreover, by the same theorem,

fR � T D

´
fR if T � R;

0 if T 6� R:

Since T runs over a k-basis of P1, this proves that the ideal P1fR generated by fR is equal to
the rank one submodule k�fR spanned by fR. Thus we obtain

P1 Š
Y
R2O

P1fR D
Y
R2O

k�fR;

as was to be shown.

Note that if k is a field, then each idempotent fR is primitive.
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7. The algebra of permuted orders

We know from the end of Section 5 that the algebra P of permuted orders is †-graded,

P D
M
�2†

P� :

If R; S 2 O and �; � 2 †, then the product in P satisfies

.R�� /.S�� / D .R � .��S���1//���� D .R � .��S���1//��� ;

where � denotes the product in P1 described in Lemma 6.1. Note that this definition makes
sense because��S���1 is an order, since S is. Note also that we can write the basis elements
as ��S with S 2 O, because R�� D �� .���1R�� / and ���1R�� 2 O.

Instead of O, we can use the basis ¹fR j R 2 Oº of P1, consisting of the idempotents
of P1 defined in Theorem 6.2. The group † acts by conjugation on the set O of all orders,
hence also on the set ¹fR j R 2 Oº. We first record the following easy observation.

Lemma 7.1. Let R be an order and let fR be the corresponding idempotent of P1. For
every � 2 †,

��fR���1 D f �R;

where �R´ ��R���1 .

Proof. This follows immediately from the definition of fR in Section 6.

Since P D
L
�2†P� , this has a k-basis ¹��fR j � 2 †; R 2 Oº. We now describe the

product in P with respect to this basis.

Lemma 7.2. The product of basis elements of P is given by:

.��fS /.��fR/ D

´
0 if S ¤ �R;

���fR if S D �R;

for all S;R 2 O and all �; � 2 †.

Proof. We have
.��fS /.��fR/ D ��fSf �R�� :

This is zero if S ¤ �R. Otherwise we obtain ��f �R�� D ����fR D ���fR.

Corollary 7.3. Let R be an order and let fR be the corresponding idempotent of P1.
The left ideal PfR has a k-basis ¹��fR j � 2 †º.

Proof. We have

.��fS /fR D

´
0 if S ¤ �R;

��fR if S D �R;

and we know that the set ¹��fR j � 2 †º is part of the basis of P .
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Now we introduce central idempotents in P . Let R be an order, let †R be the stabilizer
of R in†, and denote by Œ†=†R� a set of coset representatives. By Lemma 7.1,†R is also the
stabilizer of fR and we define

eR D
X

�2Œ†=†R�

��fR���1 D
X

�2Œ†=†R�

f �R;

the sum of the †-orbit of fR.

Lemma 7.4. Let Œ†nO� be a set of representatives of the†-orbits in the set O. Then the
set ¹eR j R 2 Œ†nO�º is a set of orthogonal central idempotents of P , whose sum is 1P D �.

Proof. We compute

��fSeR D
X

�2Œ†=†R�

��fSf �R D

´
0 if S does not belong to the orbit of R;

��fS if S D �R:

On the other hand

eR��fS D
X

�2Œ†=†R�

f �R��fS D
X

�2Œ†=†R�

f �Rf �S�� :

This is zero if �S does not belong to the †-orbit of �R, that is, if S does not belong to the
†-orbit of R, while if �S D �R, then we get f �S�� D ��fS . This shows that eR is central.

We know that ¹fR j R 2 Oº is a set of orthogonal idempotents with sum 1. Since we
have just grouped together the†-orbits, it is clear that the set ¹eR j R 2 Œ†nO�º is also a set of
orthogonal idempotents of P , whose sum is 1P D �.

It follows from Lemma 7.4 that

P Š
Y

R2Œ†nO�

P eR

and we have to understand the structure of each term.

Theorem 7.5. Let R be an order on X and let †R be its stabilizer in †. Then

P eR ŠMj†W†Rj.k†R/;

a matrix algebra of size j† W †Rj on the group algebra k†R. In other words

P Š
Y

R2Œ†nO�

Mj†W†Rj.k†R/:

Proof. By Corollary 7.3, the left ideal PfR is a free k-submodule of P spanned by the
set ¹��fR j � 2 †º. The group †R acts on the right on this set, because fR�h D �hfR for
every h 2 †R. Therefore PfR is a free right k†R-module with basis ¹��fR j � 2 Œ†=†R�º.

Clearly, the left action of P commutes with the right action of k†R. The left action of P

on this free right k†R-module induces a k-algebra map

�R W P !Mj†W†Rj.k†R/:
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By Lemma 7.2, eR acts as the identity on PfR, while eS acts by zero if S does not belong to
the †-orbit of R. Therefore we get a k-algebra map

�R W P eR !Mj†W†Rj.k†R/;

because �R.eS / D 0 whenever S does not belong to the †-orbit of R. Putting all these maps
together, we obtain a k-algebra map

� D
Y

R2Œ†nO�

�R W P !
Y

R2Œ†nO�

Mj†W†Rj.k†R/:

Lemma 7.2 shows that, if �; �; � 2 Œ†=†R� and g 2 †R, we have

.��fR�g���1/ ���fR D

´
0 if � ¤ �;

��fR�g if � D �;

using the fact that fR�g D �gfR. This means that �R.��fR�g���1/ is the elementary
matrix with a single nonzero entry equal to �g in position .�; �/. Moreover, we also have

�S .��fR�g���1/ D 0

whenever S does not belong to the †-orbit of R. Therefore the map � is surjective.
Finally, we prove that � is an isomorphism. It suffices to do this in the case where k D Z,

because all the algebras are defined over Z (that is, they are obtained by extending scalars
from Z to k) and the algebra map � is also defined over Z. Now if k D Z, then all algebras
under consideration are finitely generated free Z-modules and we know that the map � is
surjective. So it suffices to show that the source and the target of � have the same rank as
Z-modules. The rank of P is j†jCard.O/. On the other hand,

rank.Mj†W†Rj.k†R// D j† W †Rj
2
j†Rj D j† W †Rjj†j:

Summing over R 2 Œ†nO�, we obtainX
R2Œ†nO�

j† W †Rjj†j D j†j
X

R2Œ†nO�

Card.orbit of R/ D j†jCard.O/;

as was to be shown.

Remark 7.6. Since a matrix algebra Mr.A/ is Morita equivalent to A (for any k-al-
gebra A), it follows from Theorem 7.5 that the algebra P is Morita equivalent to a product
of group algebras, namely B D

Q
R2Œ†nO� k†R. The bimodule which provides the Morita

equivalence is
M D

M
R2Œ†nO�

PfR;

which is clearly a left P -module by left multiplication, and a right module for each group
algebra k†R, acting by right multiplication on the summand PfR, and acting by zero on the
other summands PfS , where S ¤ R in Œ†nO�. Notice that PfR is the bimodule appearing in
the proof of Theorem 7.5.

Then the bimodule inducing the inverse Morita equivalence is M_ D
L
R2Œ†nO� fRP .

Indeed, we obtain

M ˝B M
_
Š

M
S2Œ†nO�

M
R2Œ†nO�

PfSfRP D
M

R2Œ†nO�

PfRP D P
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and on the other hand

M_ ˝P M Š
M

S2Œ†nO�

M
R2Œ†nO�

fSPfR D
M

R2Œ†nO�

fRPfR

D

M
R2Œ†nO�

k†R�fR Š
M

R2Œ†nO�

k†R D B:

Each module PfR has rank j†j, because it has a k-basis ¹��fR j � 2 †º, but we view it as
a free right k†R-module of rank j† W †Rj.

8. Simple modules for the essential algebra

By standard commutative algebra, we know any simple E-module is actually a module
over k=m˝k E , wherem is a maximal ideal of k. Replacing k by the quotient k=m, we assume
from now on that k is a field. Let E be the essential algebra of Section 5 and let P D E=N be
the algebra of permuted orders. Since N is a nilpotent ideal and since nilpotent ideals act by
zero on simple modules, any simple E-module can be viewed as a simple P -module. So we
work with P and we wish to describe all simple left P -modules.

There is a general procedure for constructing all simple modules for the algebra of
a semigroup S , using equivalence classes of maximal subgroups of S , see [6, Theorem 5.33],
or [11, Section 3] for a short presentation. But our previous results allow for a very direct and
easy approach, so we do not need to follow the method of [6].

First notice that the simple P1-modules are easy to describe, because P1 is a product of
copies of k (by Theorem 6.2). More precisely, P1 Š

Q
R2O k � fR and each one-dimensional

space k � fR is a simple P1-module (where R runs through the set O of all orders).

Theorem 8.1. Assume that k is a field. Let W be the set of all pairs .R; V /, where R
is an order on X and V is a simple k†R-module up to isomorphism. The group † acts on W

via �.R; V /´ .�R; �V /, where �R D ��R���1 and �V is the conjugate module, a module
for the group algebra k†�R D kŒ�†R ��1�.

(a) The set of isomorphism classes of simple P -modules is parametrized by the set †nW
of †-conjugacy classes of pairs .R; V / 2 W .

(b) The simple module corresponding to .R; V / under the parametrization of part (a) is

SR;V D WR ˝k V;

where WR is the unique (up to isomorphism) simple module for the matrix algebra
Mj†W†Rj.k/ and WR ˝ V is viewed as a module for the algebra

Mj†W†Rj.k/˝k k†R ŠMj†W†Rj.k†R/;

which is one of the factors of the decomposition of P in Theorem 7.5.

(c) The simple P -module SR;V is also isomorphic to PfR ˝k†R V , with its natural struc-
ture of P -module under left multiplication.

(d) The simple P -module SR;V has dimension j† W †Rj � dim.V /.
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Proof. By Theorem 7.5, any simple P -module is a simple module for one of the fac-
tors Mj†W†Rj.k†R/, where R belongs to a set Œ†nO� of representatives of †-orbits in O.
In view of the isomorphism

Mj†W†Rj.k†R/ ŠMj†W†Rj.k/˝k k†R;

any such simple module is isomorphic to a tensor product WR ˝k V as in the statement. This
proves (a) and (b).

By Theorem 7.5, P eR ŠMj†W†Rj.k†R/ and its identity element eR decomposes as
a sum of orthogonal idempotents

eR D
X

�2Œ†=†R�

f �R:

Cutting by the idempotent fR, we obtain the left ideal PfR, which is a free right k†R-module,
isomorphic to the space of column vectors with coefficients in k†R. Now PfR is the bimodule
providing the Morita equivalence between Mj†W†Rj.k†R/ and k†R (see Remark 7.6). There-
fore, it follows that, for any simple left k†R-module V , the corresponding simple module for
P eR ŠMj†W†Rj.k†R/ is the left P -module PfR ˝k†R V . Since PfR is the space of column
vectors with coefficients in k†R, while WR is the space of column vectors with coefficients
in k, we get PfR Š WR ˝k k†R. Therefore our simple P -module is

PfR ˝k†R V Š WR ˝k k†R ˝k†R V Š WR ˝k V Š SR;V ;

proving (c).
Finally, the dimension is

dim.SR;V / D dim.WR ˝k V / D dim.WR/ � dim.V / D j† W †Rj � dim.V /;

proving (d).

Example 8.2. Consider the trivial order �. Then †� D † and the matrix algebra
reduces to

Mj†W†�j.k†�/ ŠM1.k/˝k k† Š k†:

The simple module W� for the algebra M1.k/ is just k and the simple module

S�;V D W� ˝k V Š V

is just a simple k†-module. In that case, the central idempotent eS of P acts by zero on V
for any order S ¤ �, hence fS too (because fS eS D fS ). Then R D

P
R�S fS also acts by

zero for any order R ¤ �. For any essential reflexive relation Q with Q ¤ �, the action of Q
is equal to the action of Q (because Q �Q belongs to the nilpotent ideal N ), and therefore Q
also acts by zero on V . Then so does the action of the essential relation ��Q containing the
permutation �� . This shows that the simple modules S�;V Š V are just the modules for k†
viewed as a quotient algebra as in Lemma 4.1.

Example 8.3. Consider a total order T . Then†T D ¹idº and the matrix algebra reduces
to

Mj†W†T j.k†T / ŠMnŠ.k/˝k k ŠMnŠ.k/:
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244 Bouc and Thévenaz, The algebra of essential relations on a finite set

In that case, there is a unique simple k†T -module, namely V D k, the trivial module for the
trivial group. We obtain the single simple module

ST;k D WT ˝k k Š WT

for the algebra MnŠ.k/. Equivalently, with the approach of part (c) of Theorem 8.1, we have
fT D T (by maximality of T in O) and so

ST;k D PfT ˝k†T V D PT ˝k k Š PT:

So we obtain just the left ideal PfT D PT , which turns out to be simple in that case. But it
is also the left ideal L appearing in Proposition 4.3. So we have recovered the simple module
of Proposition 4.3.

We also mention another byproduct of Theorem 7.5.

Theorem 8.4. If the characteristic of the field k is zero or greater than n, then P is
a semi-simple k-algebra.

Proof. It suffices to see that each factor in the decomposition of Theorem 7.5 is semi-
simple. Now we have the isomorphism

Mj†W†Rj.k†R/ ŠMj†W†Rj.k/˝k k†R;

and Mj†W†Rj.k/ is a simple algebra. Moreover the group algebra k†R is semi-simple by
Maschke’s theorem, because the characteristic of k does not divide the order of the group †R,
by assumption. The result follows.

Every simple P -module SR;V is a simple R-module, because of the successive quo-
tients R! E ! P . We now give a direct description of the action on SR;V of an arbitrary
relation in R. Since SR;V Š PfR ˝k†R V , it suffices to describe the action on PfR, and
for this we can work again with an arbitrary commutative base ring k. Recall that PfR has
a basis ¹��fR j � 2 †º.

Proposition 8.5. Let k be a commutative ring. Let R be an order on X and let Q be
an arbitrary relation (in the k-algebra R). The action of Q on PfR is described on the basis
elements as follows:

Q ���fR D

´
���fR if there exists � 2 † such that � � ���1Q �

�R;

0 otherwise:

Proof. Suppose first that S is an order. By Lemma 7.2, the action of fS is given by

fS ���fR D

´
��fR if S D �R;

0 otherwise:

Now
S D

X
T2O
S�T

fT
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and the action of fT is nonzero only if T D �R. So we obtain the action of S as follows:

S ���fR D

´
��fR if S � �R;

0 otherwise:

Next we suppose that S is reflexive and that its transitive closure S is an order. Since S � S
belongs to the nilpotent idealN of Section 5, which acts by zero because P D E=N , the action
of S coincides with the action of S . Moreover, the condition S � �R is equivalent to S � �R,
because �R is transitive. Therefore the action of S is the following:

S ���fR D

´
��fR if S � �R;

0 otherwise:

Now suppose that S is reflexive and that S is not an order. Then S is inessential by Proposi-
tion 2.5, hence zero in E . So S acts by zero, and since S � S acts by zero, the action of S is
also zero. On the other hand, S cannot be contained in �R, otherwise S � �R, which would
force S to be an order since �R is an order. Therefore the condition S � �R is never satisfied
in that case. So the previous formula still holds, because we have zero on both sides:

S ���fR D

´
��fR if S � �R;

0 otherwise:

Now suppose thatQ contains a permutation�� . Then S D ���1Q is reflexive andQ D ��S .
Thus the action of Q is

Q ���fR D

´
����fR if S � �R;

0 otherwise;

D

´
���fR if ���1Q �

�R;

0 otherwise;

D

´
���fR if � � ���1Q �

�R;

0 otherwise:

The last equality holds because the condition���1Q �
�R is equivalent to� � ���1Q �

�R,
since S D ���1Q is reflexive. This proves the result for such a relation Q.

Finally ifQ does not contain a permutation, thenQ is inessential by Theorem 3.2, hence
acts by zero. On the other hand the condition that there exists � 2 † such that � � ���1Q
cannot be satisfied since Q does not contain a permutation. Therefore the previous formula
still holds, because we have zero on both sides:

Q ���fR D

´
���fR if � � ���1Q �

�R;

0 otherwise:

This proves the result in all cases.

Remark 8.6. In the description of the algebra P (Theorem 7.5) and in the description
of its simple modules (Theorem 8.1), we may wonder which groups appear as†R for some or-
derR. The answer is that the group†R is arbitrary. More precisely, by a theorem of Birkhoff [2]
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(and further improvements by Thornton [18] and Barmak–Minian [1]), any finite group is
isomorphic to †R for some order R on a suitable finite set X . However, for a given finite
set X , it is not clear which isomorphism classes of groups †R appear.

Another question is to determine whether or not the simple modules of Theorem 8.1 are
absolutely simple. But again this depends on the group †R, because the field k may or may
not be a splitting field for the group algebra k†R.

9. A branching rule

In this section, we letX D ¹1; : : : ; nº for simplicity. In order to let n vary, we use a super-
script .n/ for all objects depending on n, such as X .n/ for the set X , †.n/ for the symmetric
group on X .n/, O.n/ for the set of all orders on X .n/, P

.n/
1 for the algebra of orders on X .n/,

P .n/ for the algebra of permuted orders on X .n/, etc.
In the representation theory of the symmetric group†.n/, there are well-known branching

rules, describing the restriction of simple modules to the subgroup †.n�1/ of all permutations
of X .n�1/, and the induction of simple modules from †.n�1/ to †.n/. In a similar fashion,
working again over an arbitrary commutative base ring k, we will describe how modules
for P .n�1/ behave under induction to P .n/. For this we need to view the former as a sub-
algebra of the latter. We first define

� W P
.n�1/
1 ! P

.n/
1 ; �.R/ D R [ ¹.n; n/º;

for any order R on X .n�1/. It is clear that �.R/ is an order on X .n/. Since †.n�1/ is a sub-
group of †.n/ (by fixing the last letter n), the map � clearly extends to an injective algebra
homomorphism � W P .n�1/ ! P .n/.

Now we want to compute the image under � of the idempotents f .n�1/R . For a given
order R on X .n�1/, we define

SR D ¹S 2 O.n/ j S \ .X .n�1/ �X .n�1// D Rº:

Lemma 9.1. Let R be an order on X .n�1/ and let f .n�1/R be the corresponding idem-
potent of P

.n�1/
1 .

(a) If S is an order on X .n/ and if f .n/S is the corresponding idempotent of P
.n/
1 , then

�.f
.n�1/
R / � f

.n/
S D

´
f
.n/
S if S 2 SR;

0 otherwise:

(b) We have
�.f

.n�1/
R / D

X
S2SR

f
.n/
S :

Proof. We have
f
.n�1/
R D

X
Y2O.n�1/

R�Y

�.R; Y /Y

and
�.Y / D Y [ ¹.n; n/º:
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Therefore, using part (a) of Theorem A.1, we obtain

�.f
.n�1/
R / � f

.n/
S D

X
Y2O.n�1/

R�Y

�.R; Y /.Y [ ¹.n; n/º/ � f
.n/
S

D

� X
Y2O.n�1/

R�Y;Y[¹.n;n/º�S

�.R; Y /

�
f
.n/
S

D

� X
Y2O.n�1/

R�Y�S\.X.n�1/�X.n�1//

�.R; Y /

�
f
.n/
S :

We get zero if R 6� S \ .X .n�1/ �X .n�1// and also if R � S \ .X .n�1/ �X .n�1// (by the
definition of the Möbius function). If now R D S \ .X .n�1/ �X .n�1//, that is, if S 2 SR,
then the sum reduces to �.R;R/ D 1 and we obtain f .n/S , proving (a).

Now we have

�.f
.n�1/
R / D

X
S2O.n/

�.f
.n�1/
R / � f

.n/
S D

X
S2SR

f
.n/
S ;

proving (b).

Theorem 9.2. Let R be an order on X .n�1/, let f .n�1/R be the corresponding idempo-
tent of P

.n�1/
1 , and let V be a k†.n�1/R -module. Then, inducing to P .n/ the P .n�1/-module

SR;V D P .n�1/f
.n�1/
R ˝

k†
.n�1/
R

V ;

we obtain

P .n/
˝P .n�1/

�
P .n�1/f

.n�1/
R ˝

k†
.n�1/
R

V
�

Š

M
S2SR

P .n/f
.n/
S ˝

k†
.n/
S

Ind
†
.n/
S

†
.n�1/
R \†

.n/
S

Res
†
.n�1/
R

†
.n�1/
R \†

.n/
S

V:

Proof. Using Lemma 9.1, we obtain

P .n/
˝P .n�1/

�
P .n�1/f

.n�1/
R ˝

k†
.n�1/
R

V
�

D P .n/�.f
.n�1/
R /˝

k†
.n�1/
R

V

Š

M
S2SR

P .n/f
.n/
S ˝

k†
.n�1/
R

V

Š

M
S2SR

P .n/f
.n/
S ˝

k†
.n/
S

k†
.n/
S ˝kŒ†.n�1/R \†

.n/
S �

kŒ†
.n�1/
R \†

.n/
S �˝

k†
.n�1/
R

V

Š

M
S2SR

P .n/f
.n/
S ˝

k†
.n/
S

Ind
†
.n/
S

†
.n�1/
R \†

.n/
S

Res
†
.n�1/
R

†
.n�1/
R \†

.n/
S

V;

proving the result.
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Assume for simplicity that the base ring k is a field of characteristic zero and let V be
a simple k†.n�1/R -module. The k†.n/S -module

Ind
†
.n/
S

†
.n�1/
R \†

.n/
S

Res
†
.n�1/
R

†
.n�1/
R \†

.n/
S

V

is a direct sum of simple modules W , and each W gives rise to a simple P .n/-module

P .n/f
.n/
S ˝

k†
.n/
S

W :

Moreover, every such simple P .n/-module occurs with multiplicities, appearing for instance
whenever we have � running in a set of representatives of cosets

Œ†
.n�1/
R =†

.n�1/
R \†

.n/
S �:

For any such � , we have �S 2 SR and �V Š V , since V is a k†.n�1/R -module and � 2 †.n�1/R .
Therefore the corresponding term in the direct sum is

P .n/f
.n/
�S ˝k†.n�1/R

V Š P .n/f
.n/
�S ˝k†.n�1/R

�V ;

but this gives rise to the same simple P .n/-modules as the ones coming from S , by Theo-
rem 8.1. Thus the multiplicity of these simple P .n/-modules is at least j†.n�1/R =†

.n�1/
R \†

.n/
S j.

A. Appendix: Möbius inversion

In this appendix, we prove a general result on Möbius inversion involving idempotents in
a ring. This was already used by the first author in other contexts (see [3, Section 6.2]) and can
be of independent interest.

Let .P;�/ be a finite lattice. Write 0 for the minimal element of P and write x _ y for
the least upper bound of x and y in P .

Theorem A.1. Let P be a finite lattice. Let ¹gx j x 2 P º be a family of elements in
a ring A such that g0 D 1 and gxgy D gx_y for all x; y 2 P . For every x 2 P , define

fx D
X
y2P
x�y

�.x; y/gy ;

where � denotes the Möbius function of the poset P .

(a) For all x; y 2 P , we have

gzfx D fxgz D

´
fx if z � x;

0 if z 6� x:

(b) The set ¹fx j x 2 P º is a set of mutually orthogonal idempotents in P whose sum is 1.

Note that our assumption implies that every gx is idempotent, because x _ x D x.
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Proof. By Möbius inversion, we have

gx D
X
y2P
x�y

fy ;

and in particular 1 D g0 D
P
y2P fy .

Next we compute products. If x; z 2 P , then

fxgz D

�X
y2P
x�y

�.x; y/gy

�
gz D

X
y2P
x�y

�.x; y/gygz

D

X
y2P
x�y

�.x; y/gy_z

D

X
w2P
x_z�w

� X
y2P

x�y; y_zDw

�.x; y/

�
gw :

Note that gzfx D fxgz since gzgy D gz_y D gy_z D gygz . If x is strictly smaller than x_z,
the inner sum runs over the set of all elements y in the interval Œx; w�´ ¹v 2 P j x � v � wº
such that y _ .x _ z/ D w. But we haveX

x�y
y_zDw

�.x; y/ D
X
x�y

y_.x_z/Dw

�.x; y/ D 0;

by a well-known property of the Möbius function ([16, Corollary 3.9.3]). Thus fxgz D 0 if x
is strictly smaller than x _ z, that is, if z 6� x.

If now x D x _ z, that is, z � x, we get y D y _ z (because z � x � y), hence y D w,
so that the inner sum has a single term for y D w. In that case, we get

fxgz D
X
w2P
x�w

�.x;w/ gw D fx :

Therefore

fxgz D

´
fx if z � x;

0 if z 6� x;

proving (a).
If now x; u 2 P , then

fxfu D
X
y2P
u�y

�.u; y/fxgy D
X
y2P
u�y�x

�.u; y/fx :

If u 6� x, the sum is empty and we get zero. If u < x, thenX
u�y�x

�.u; y/ D 0

by the very definition of the Möbius function. This shows that fxfu D 0 if u ¤ x. Finally,
if u D x, then we get fxfx D fx , thus fx is idempotent, and the proof is complete.
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Corollary A.2. Let P be a finite lattice. Write t for the maximal element of P and
write x ^ y for the greatest lower bound of x and y in P . Let ¹gx j x 2 P º be a family of
elements in a ring A such that gt D 1 and gxgy D gx^y for all x; y 2 P . For every x 2 P ,
define

fx D
X
y2P
y�x

�.y; x/gy ;

where � denotes the Möbius function of the poset P . Then the set ¹fx j x 2 P º is a set of
mutually orthogonal idempotents in P whose sum is 1.

Proof. This follows from Theorem A.1 by using the opposite ordering on P .
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