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Abstract Patent prior art search is a type of search in the patent domain where doc-

uments are searched for that describe the work previously carried out related to a patent

application. The goal of this search is to check whether the idea in the patent application

is novel. Vocabulary mismatch is one of the main problems of patent retrieval which

results in low retrievability of similar documents for a given patent application. In this

paper we show how the term distribution of the cited documents in an initially retrieved

ranked list can be used to address the vocabulary mismatch. We propose a method for

query modeling estimation which utilizes the citation links in a pseudo relevance feed-

back set. We first build a topic dependent citation graph, starting from the initially

retrieved set of feedback documents and utilizing citation links of feedback documents to

expand the set. We identify the important documents in the topic dependent citation

graph using a citation analysis measure. We then use the term distribution of the doc-

uments in the citation graph to estimate a query model by identifying the distinguishing

terms and their respective weights. We then use these terms to expand our original query.

We use CLEF-IP 2011 collection to evaluate the effectiveness of our query modeling

approach for prior art search. We also study the influence of different parameters on the

performance of the proposed method. The experimental results demonstrate that the

proposed approach significantly improves the recall over a state-of-the-art baseline which

uses the link-based structure of the citation graph but not the term distribution of the cited

documents.
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1 Introduction

A patent is a legal document that, when granted by a country’s patent office, gives a set of

rights of exclusivity and protection to the owner of an invention. Patent search is a general

term that covers different types of search processes such as technology survey, prior art

search, freedom to operate, validity and patent portfolio search. These search processes

differ in terms of the information need of the searcher, the corpora and the output of the

search. Notice, however, that the precise names and definitions of these search processes

vary between those who deal with patents, like for example, information specialists, private

patent searchers, patent examiners, and patent lawyers (Lupu and Hanbury 2013). In this

paper we focus our attention on the prior art search which is a critical step in the exam-

ination and evaluation process of a patent application.

Patent prior art search (also referred to as Patentability and Novelty) is mainly com-

posed of a search over previously published patent and non-patent documents with the

aim of verifying whether the idea of a patent application is novel, i.e. has not been

previously patented by someone else, has not been described in a scientific paper or

disclosed to the public through any other medium. The objective of this type of search is

to retrieve all relevant documents that may invalidate or at least describe prior art work in

a patent application (Lupu et al. 2011). This type of search addresses the challenging task

of finding relevant, highly technical and domain-specific content of patents (Atkinson

2008).

The challenges of patent prior art search are different from those of standard ad hoc text

and web search (Baeza-Yates and Ribeiro-Neto 2011). The first difference is associated

with the query length: patent prior art queries are full patent applications comprising

hundreds of words as opposed to ad hoc and web searches where queries are usually rather

short (Magdy et al. 2009).

The second issue is related to the fact that patent prior art search is a recall oriented task

where the goal is to retrieve all relevant documents at early rank positions. Ad hoc and web

search, on the other hand have the goal of retrieving only a few relevant documents at the

top of a ranking and thus achieving high precision (Bashir and Rauber 2009). Patent

examiners are therefore required to have a vast knowledge of all relevant and related

patents. In such a search scenario even missing one relevant patent can lead to a multi-

million Euro law suit due to patent infringement, and so a high recall is demanded in this

type of search.

The third property is attributed to the vocabulary usage in the patent domain. The

language of patents is unique and contains highly specialized or technical words not found

in everyday language (Joho et al. 2010). The abstract and description section of a patent

use a technical terminology while the claims section uses a legal jargon. Patent retrieval is

often cumbersome and distinct from other information retrieval tasks. This is because of

the inherent properties of patents, namely, exceptional vocabulary, curious grammatical

constructions, and legal requirements (Atkinson 2008). Patent authors purposely use many

vague terms and a non-standard terminology in order to avoid narrowing down the scope of

their invention. This exacerbates the retrieval problem and can confuse standard IR

approaches and systems.

Because of these challenges, the work performed by patent examiners involves manual

query formulation from the query patent in order to find invalidating claims. They consider

high term frequency in the document to be a strong indicator of a good query term. The

keyword-based searches built from the query patent are then completed using other

metadata associated with the patent applications such as International Patent Classification

Inf Retrieval (2014) 17:412–429 413

123



(IPC classes)1 and date tags. IPC classes are language independent keywords assigned as

metadata to the patent documents with the purpose of categorizing their content. Such

classes describe the field of technology that a patent document belongs to. These IPC

classes resemble tags assigned to documents in standard information retrieval tasks.

Behavioral studies of patent examiners in patent offices show that, besides the keyword

based query and the classification based query, the other sources that are influencing the

most the searching practice of patent examiners are the bibliographic information (Lupu

et al. 2011). This includes both backward and forward citations. Forward citations denote

the citations to a given patent document from patents which are forward in time from the

patent of interest. In contrast, the backward citations indicate the citations made by the

patent to patents which are backward in time with respect to the given patent.

The question is how can building queries from different information sources such as

classifications and citations lend additional power to the original query itself. As patent

authors try to obfuscate their invention by using non standard terminology, there is often a

gap between the terms in the query document and the documents relevant to that query

(Bashir and Rauber 2010; Magdy et al. 2009). We must cope with the fact that documents

relevant to a given query may not contain the exact terms used by the author, which are

given to our system as specific query terms.

We are interested in overcoming this gap by tapping the power of the community of

inventors related to the subject of the invention of the query. To this end, we want to boost

the original query with the terms used in the cited documents. In other words, through

citation link analysis we identify a set of terms which are relevant to a given query

document and appear in the cited documents. These terms can be exploited for improving

the original ranking. Thus, the main research questions we aim to answer in this paper are:

• Does using the content of the cited documents in addition to their link-based structure

lead to improvements?

• Does the language model of the cited documents complement the language model of

the original query?

We try to capture the influence of the citation links in the graph structure of patent

documents in two scenarios and compare them. We first use a link-based measure to

compute the importance of each document in the graph in a topic-sensitive manner. We

then use the term distribution of cited documents to estimate a query model from the cited

documents by identifying distinguishing terms and their corresponding weights. We

perform a query expansion using the estimated query model from the cited documents to

improve the language model of the original query.

We evaluate our work on CLEF-IP 2011 patent retrieval corpus. The experimental

results show that our query expansion model using the distribution of the cited documents,

achieves significant improvement in terms of recall over a baselines which uses solely the

citation links.

The rest of this paper is organised as follows: Sect. 2 reviews the related work. Section 3

defines the original query model. Section 4 explains the construction of a citation graph for

a given patent application and describes the citation analysis over the graph. Section 5

describes a method to estimate a query model from the cited documents exploiting the

citation-based measures. Sections 6 and 7 report the setup and results of the experiments

aimed at proving the validity of the approach. Section 8 describes the analysis carried out

1 http://www.wipo.int/classifications/ipc/en/.
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to study the influence of different parameters on the performance of the proposed method.

Finally, Sect. 9 reports the conclusions of the work and some directions for future work.

2 Related work

Recently, patent processing has attracted considerable attention in the academic research

community, in particular from information retrieval and natural language processing

researchers (Fujii et al. 2007).

The main research in patent retrieval started after the third NTCIR workshop in

2003(Iwayama et al. 2003), where a few patent test collections were released. Starting

from the fourth NTCIR workshop in 2004 (Fujii et al. 2004), a search task related to the

prior-art search was presented which was referred to as an invalidity search run2. The goal

was to find prior-art before the filing date of the application in question that conflicts with

the claimed invention. The citation parts of the applications are removed and counted as

relevant documents used for the evaluation of results. Participants performed different term

weighting methods for query generation from the claims. They applied query expansion

techniques by extracting effective and concrete terms from the description section of the

patent document to enhance the initial query.

2.1 Generating query from a patent application

In (Takaki et al. 2004) the authors study the rhetorical structure of a claim. They seg-

mented a claim into multiple components, each of which is used to produce an initial

query. They then searched for candidate documents on a component by component basis.

The final result was produced from the candidate documents. Similar work was introduced

in (Mase et al. 2005) where the authors analyzed the structure of claims to enhance

retrieval effectiveness. A claim structure usually consists of the premise and invention

parts, which describe existing and new technologies, respectively. The authors proposed a

two stage process where they first extract query terms from the premise part to increase the

recall. They then aim to increase the precision by extracting another query from the

invention part. The final relevance score of each document is calculated by merging the

scores of the two stages.

IPC classification has been used as an extra feature besides the content of the patent.

Different methods for combining text content and classification were proposed. In (Takaki

et al. 2004) the authors use IPC codes for document filtering and show how this feature can

help in patent retrieval. In (Fujita 2004) the authors integrate IPC codes into a probabilistic

retrieval model, employing the IPC codes for estimating the document prior.

In (Fujii 2007), author applied link analysis techniques to the citation structure of

patents. He calculated two different scores based on textual information and citation

information. He showed that by combining these two scores he can achieve better

performance.

A recent line of work advocated the use of the full patent application as the query to

reduce the burden on patent examiners. This direction was initiated by Xue and Croft

(2009), who conducted a series of experiments in order to examine the effect of different

2 Invalidity search (also called validity search) is performed over all public documents prior to the priority
date of a granted patent. The difference between invalidity search and prior art search is that the input of the
former is a granted patent, while the input of the latter is a patent application.
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patent fields on the query formulation and concluded with the observation that the best

Mean Average Precision (MAP) is achieved using the text from the description section of

the query patent with raw term frequencies.

The current developments in the patent search are driven by the Intellectual Property

task within the CLEF3 initiative. Several teams participated in the prior art search task of

the CLEF-IP 2010 and proposed approaches to reduce the query patent by extracting a set

of key terms from it. Different participating teams experimented with term distribution

analysis in a language modeling setting employing the document structure of the patent

documents in various ways (Piroi and Tait 2010). We now discuss with details the two best

performing approaches in CLEF-IP 2010. Lopez et al. (Lopez and Romary 2010) construct

a small corpus by exploiting the citation structure and IPC metadata. They then perform the

retrieval on this initial corpus. In (Magdy and Jones 2010a) generate the query out of the

most frequent unigrams and bigrams. In this work the effect of using bigrams in query

generation was studied but the retrieval improvement was not significant. This is perhaps

because of the unusual vocabulary usage in the patent domain.

So far, one of the most comprehensive descriptions of the problem and possible solu-

tions for the prior art search is presented by Magdy et al. (2010). The authors showed that

the best performing run of CLEF-IP 2010 (Lopez and Romary 2010) uses citations

extracted by training a Conditional Random Field (CRF). The second best run (Magdy and

Jones 2010a) used a list of citations extracted from the patent numbers within the

description field of patent queries. They also showed that the best run employed sophis-

ticated methods of retrieval using two complementary indices, one constructed by

extracting terms from the patent collection and the other built from external resources such

as Wikipedia. They compared this two approaches and concluded with an interesting

observation that the second best run achieves a statistically indistinguishable performance

compared to the best run.

A recent study (Ganguly et al. 2011) studies the effect of using Pseudo Relevance

Feedback (PRF) for reducing patent queries. The authors decompose a patent application

into constituent text segments and compute language modeling similarities by calculating

the probability of generating each segment from the top ranked documents. Another work

(Mahdabi and Crestani 2012) employs a learning to rank based framework for estimating

the effectiveness of a document in terms of its performance in PRF. They use the

knowledge of effective feedback documents on past queries to estimate effective feedback

documents for new queries. They introduced features correlated with feedback document

effectiveness. A recent work on query expansion used a learning-based approach to predict

the quality of a query (Mahdabi et al. 2012). This work uses noun phrases for query

expansion from the query patent document. Because cited documents can be a good source

for extracting noun phrases, our citation based measure for estimating the importance of a

citation document can be integrated as a feature in their learning-based model to improve

their performance.

2.2 Citation analysis

We now explain in more detail the previous approaches that is more in line with our

experiments in this paper. In (Fujii 2007; Lopez and Romary 2010) the authors focused on

studying the link-based algorithms by using citations as links between documents with the

goal of improving the ranking of the documents.

3 http://www.ir-facility.org/clef-ip.
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Fujii applies link analysis techniques to the graph structure of patent documents (Fujii

2007) and uses the citation links for re-ranking an initially retrieved list. He computes a

composite score based on textual information and citation links. The cited paper, shows

that ranking based on this composite score improves upon the ranking based on the textual-

derived score alone. Fujii also uses the citation link structure of patent documents to

measure the influence of each patent document, developing two distinct methods. In the

first method he calculates the PageRank score (Brin and Page 1998) for each document by

considering the graph structure of all documents in the collection. This method is not

specific to the query. In the second method, he computes the PageRank score for a query-

specific citation graph, which is composed of the top-k documents initially retrieved for a

given query topic and their cited documents. His experimental results on the NTCIR-6 test

collection demonstrate that the citation analysis is helpful for invalidity patent search and

the query-specific PageRank score is more effective than the traditional PageRank score.

As a baseline for this paper, we implemented the work of Fujii on the CLEF-IP 2011

collection. Similar to his work, we use the PageRank measure on a query-specific citation

graph to calculate a score for quantifying the authoritativeness of each document.

Lopez and Romary use citation information in a different way (Lopez and Romary 2010).

They extract all patent and non patent literature references in the collection using a Con-

ditional Random Field model on an annotated corpus. They estimate the importance of each

key term in a supervised manner. They use key terms selected by authors and readers and

feed them into a bagged decision tree. Our work in this paper is different from this work, as

our approach is completely unsupervised and we do not have any annotated tag terms.

2.3 An evaluation metric for patent retrieval

In addition to the well known MAP and Recall metrics, we report the effectiveness of our

proposed method in terms of the Patent Retrieval Evaluation Score (PRES) (Magdy and

Jones 2010b). This metric is a modification over the well known IR evaluation metric

called Normalized Recall (Rnorm) (Rocchio 1964; van Rijsbergen 1979). Rnorm measures

the effectiveness in ranking documents relative to the best and worst ranking case, where

the best ranking case is the retrieval of all relevant documents at the top of the list, and the

worst case is the retrieval of all relevant documents only after retrieving the full collection.

Rnorm is calculated as the area between the actual and worst cases divided by the area

between the best an worst cases. Normalized recall is greater when relevant documents are

retrieved earlier in the ranked list thus it can be seen as a good representative measure for

recall-oriented applications. However, the disadvantage of the normalized recall is related

to the fact that it requires ranking the full collection which might not be feasible for very

large collections.

In order to address this problem, Magdy and Jones (2010b) propose a modification of

the calculation of Rnorm. They suggest an approximation of the worst case scenario by

considering any relevant document not retrieved in the top Nmax to be ranked at the end of

the collection. The new assumption for the worst case scenario is to retrieve all the relevant

documents just after the maximum number of documents to be checked by the user, Nmax.

PRES uses this new assumption for the worst case scenario and the following equation

shows how PRES is calculated.

PRES ¼ 1�

P
ri

n
� nþ1

2

Nmax

ð1Þ
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where Nmax is the number of documents to be checked by the user (cut-off value), n is the

number of relevant documents, and
P

ri is the summation of ranks of relevant documents,

which is shown in the following:

X
ri ¼

XnR

i¼1

ri þ nRðNmax þ nÞ � nRðnR� 1Þ
2

ð2Þ

where R denotes the Recall value defined as the number of relevant and retrieved docu-

ments in the first Nmax documents.

3 Establishing a baseline query

We now describe our approach to estimate a unigram query model from the query patent

document. We first create a language model HQ for the query patent:

PðtjHQÞ ¼ PMLðtjDÞ ð3Þ

where the maximum likelihood estimate PML is calculated as follows:

PMLðtjDÞ ¼
nðt;DÞ

P
t0 nðt0;DÞ

ð4Þ

where n(t, D) denotes the term frequency of term t in document D.

We then introduce a unigram query model by estimating the importance of each term

according to a weighted log-likelihood-based approach as expressed below:

PðtjQorigÞ ¼ Zt PðtjHQÞ log

 
PðtjHQÞ
PðtjHCÞ

!

ð5Þ

where Zt ¼ 1=
P

t2V PðtjQorigÞ is a normalization factor that is defined as the Kullback-

Leibler divergence between HQ and HC. This approach favors terms that have high

similarity to the document language model HQ and low similarity to the collection lan-

guage model HC (Mahdabi et al. 2011). All sections of the query document are considered

in this estimation.

We build a query by selecting the top k terms from Qorig. This query is used to retrieve

an initial ranked list of documents to build the root set. In the remainder of this paper we

refer to Qorig as the unigram baseline. In the next sections we explain how the original

query is expanded utilizing citation links and the term distribution of documents in the

citation graph. Figure 1 illustrates the general scheme of our proposed method of query

expansion.

4 Query-specific citation graph

In this section we discuss the basics of the patent collection as a graph and explain how to

build it.

In the CLEF-IP 2011 dataset, the citations of query topics have been removed by the

organizers and used for building the relevance judgments. However, we have access to the

citations of all other documents apart from the query topics in the collection. A recent work

(Mahdabi et al. 2011) tried to extract these citations with regular expressions but the
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reported accuracy was low. Another previous work (Lopez and Romary 2009) used a web

service offered by the European Patent Office (EPO)4 to retrieve the citations of documents

in the collection. We used this web service to extract all the citations of the documents in

the collection with the exception of the query documents. We extracted the citation links

and stored them in a relational database.

4.1 Building the query-specific citation graph

As previous work (Fujii 2007) suggests, computing PageRank values as a measure of static

quality of documents in the collection (calculated independently of any query a system

might receive) has a clear disadvantage compared to conditioning the computation of

PageRank values on the query being served. Thus we will focus on how to assemble a

subset of patent documents around the topic of the query, from the graph induced by their

citation links. By doing so we are able to derive PageRank values relative to particular

queries.

Our approach is inspired by the technique used by the HITS algorithm (Kleinberg

1999), where a small subgraph of the entire web related to the query (as opposed to the

whole web graph) is chosen for estimating the importance of a webpage.

We build such a graph by gathering a subset of linked documents in the patent col-

lection related to a query following the two steps below:

Fig. 1 The general scheme of our proposed method for query expansion using citation information.
Numbers indicate the sequence flow of operations

4 http://www.epo.org/searching/free/ops.html.
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1. Given a patent query, we perform a search and we retrieve an initial ranked list of

documents. We take the top-n documents from this list and call this the root set of

documents.

2. We construct the base set of documents, by including the root set as well as any

document that either cites a document in the root set, or is cited by a document in the

root set. Lookups are performed to retrieve node and connectivity information from

the citation links stored as a relational database.

4.2 Citation analysis of the graph structure

In our query-specific citation graph, each vertex is a patent document and there is an edge

between two vertices if one of the vertices cites the other. The assumption is that if patent

p is cited by patent q, then the author of patent q is implicitly saying that patent p is

somehow important to q. The basic idea is that each citation link from patent document q to

patent document p can be seen as an endorsement of document p. Therefore, the vocab-

ulary usage of patent p might be useful to bridge the gap between the query q and its

relevant documents. We now compute the query-specific PageRank values for all nodes in

the citation graph to estimate the importance of each node.

The PageRank value of the document p is determined by the sum of the votes from other

documents in the citation graph. The computation of the PageRank value for any document

p is performed based on the following equation:

PRðpÞ ¼
X

q2D�!p

PRðqÞ
Dq!�

ð6Þ

where D�!p is the set of patent documents that cites p, and Dq!� is the set of patent

documents cited by q. If p is cited by a large number of documents, a high score is given to

p. However, if a document cites n documents, the vote for each cited documents is divided

by n. This means that the influence from citing documents is shared among the documents

it cites.

We calculate the PageRank values for all the documents in our query-specific citation

graph iteratively. We start by assuming equal PageRank values for all the nodes in the

citation graph. This value is set to 1
NGcit

, where 1
NGcit

denotes the size of the graph. We then

perform multiple iterations of this calculation until PageRank values converge to the final

values.

The calculated PageRank values are used to guide the priority assignment to documents

while estimating a query model from citations. This procedure is described in Sect. 5

5 Query expansion guided by the citation-based measure

Our approach for query modeling aims to improve the language model of the original

query by using the term distribution of documents in the citation graph. The key

assumption of this paper is that documents with more importance in the citation graph are

more likely to be relevant and thus term selection from them is more effective.

We identify and weight the most distinguishing terms in the documents in the citation

graph and we use the calculated PageRank value as a document prior in a language

modeling framework. This term sampling is performed as follows:
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PðtjQcitÞ ¼ Zd

1

NGcit

X

D2Gcit

PðtjDÞPðDjGcitÞ ð7Þ

where Gcit is the citation graph and NG_cit is the number of documents in this graph.

P(D|Gcit) is the probability of a document given the citation graph. We use the PageRank

value of a document D, as previously explained in Sect. 4.2, to denote this probability.

Zd ¼ 1=
P

D2Gcit
PðDjGcitÞ is a normalization factor.

We interpolate the citation query with the original query (as estimated in Eq. 5):

PðtjQÞ ¼ kPðtjQorigÞ þ ð1� kÞPðtjQcitÞ ð8Þ

The M highest terms from the updated query model is then used as a query to retrieve a

final ranked list of documents.

As an example, Table 1 shows the terms selected from two different information

resources, namely the query itself and the documents in the citation graph. The terms are

selected based on Eqs. 5 and 7, respectively.

6 Experimental setup

In order to answer the research questions listed in the first Section of the paper, we run a set

of experiments. We now discuss our experimental setup.

We described the procedure of building a query-specific citation graph in Sect. 4

Generation of this graph is sensitive to the choice of the following parameters. The first

parameter is top-k query terms, selected from the estimated unigram query model QOrig,

which is used for retrieving an initial ranked list of documents. The second parameter is

top-n documents selected from the initial ranked list to form the root set. The third

parameter is top-m feedback terms extracted from the expanded query model, which is

used for retrieving the final ranked list of documents. The fourth parameter is related to the

citation depth that is considered while assembling the base set. The number of query terms

used in the original query model is experimentally set to 100. The influence of the citation

depth on the performance of the proposed method for query expansion is analysed in Sect.

7 We study the influence of the rest of the parameters in Sect. 8.

The value of k for interpolation in Eq. 8 is empirically set to 0.5. We used the Language

Modeling approach with Dirichlet smoothing (Zhai and Lafferty 2001) to score documents

and build the initial and final ranked lists. We only calculate score for documents that have

one IPC class in common with the query topic and not for the entire collection. We

empirically set the value for the smoothing parameter to 1500.

We note that patent topics are unexamined patent applications and they are temporally

prior to all other documents in the corpus. The task of prior art search is defined as a search

Table 1 Comparison between the list of terms derived from the patent query and the terms sampled from
documents belonging to the query-specific citation graph for the patent application ‘‘EP-1832953-A2’’
belonging to CLEF-IP 2011 topic set, with title ‘‘method and apparatus for managing a peer-to-peer
collaboration system’’

Query document Documents in the citation graph

manage, server, collaborate transact, handle, service

client, soap, peer access, command
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backward in time, to find possible relevant documents. Therefore our query-specific

citation graph includes documents that are backward in time compared to our query

document. This ensures that topics (patent applications) could have not been cited inside

the collection and thus the setting of our experiments utilizing citation links is valid.

6.1 Test set and pre-processing of the data

CLEF-IP 2011 contains 2.6 million patent documents pertaining to 1.3 million patents

from the European Patent Office (EPO). These documents are extracts of the MAREC

dataset. This documents are extended by documents from World Intellectual Property

Organization (WIPO) and their content is available in English, German and French.

We used the Terrier Information Retrieval System5 to index the CLEF-IP 2011 col-

lection. We used the default stemming and stop-word removal. According to our experi-

ments we obtained better results by removing terms with length shorter than 3 characters

from the query. We also removed terms including numbers from the query. In our

experiments we used the English subsection of the collection. The English topic set of

CLEF-IP 2011 consists of 1351 topics.

6.2 Evaluation

We report the retrieval effectiveness of our proposed method in terms of Mean Average

Precision (MAP), Recall and Patent Retrieval Evaluation Score (PRES) (Magdy and Jones

2010b). MAP and Recall are popular metrics used for search engines and are applied to

report results at the Text Retrieval Conference (TREC)6 and Cross Lingual Evaluation

Forum (CLEF).7 PRES (Magdy and Jones 2010b) is a modification of the well known

Rnorm metric. This metric measures the system recall and the quality of ranking in one

single score. We used a Perl script,8 provided by authors of (Magdy and Jones 2010b), for

calculating these evaluation metrics.

To be consistent with the reports of CLEF-IP participants, we also report the evaluation

results in terms of normalized Discounted Cumulative Gain (nDCG) and geometric Mean

Average Precision (gm-map). nDCG measures the usefulness of a document based on its

grade of relevance and position in the ranked list. The gm-map measure is designed for

situations where one is interested to highlight the improvements of the low-performing

topics. We used trec-eval for calculating these two evaluation metrics.

7 Experimental results

In this section we describe the experiments that we conducted to evaluate the usefulness of

our proposed method, present their results and formulate answers to the research questions.

We now describe the structure of our experiments. We compare three methods using the

CLEF-IP 2011 corpus. The first method is related to the original query we refer to which as

the baseline method. Our original query model, which was explained in Sect. 3, is built

5 See: http://ir.dcs.gla.ac.uk/terrier/.
6 http://trec.nist.gov/.
7 http://www.clef-initiative.eu.
8 http://www.computing.dcu.ie/*wmagdy/PRES.htm.
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from the query document. The second method corresponds to our implementation of the

work reported in (Fujii 2007). This method is focused on computing a composite score

using the textual information of the query together with the link-based structure of the

query-specific citation graph. This method is referred to as Score-cit. The last method is

our proposed model which estimates a query model from the documents in the citation

graph and expands the original query using the estimated model from the term distribution

of the documents in the citation graph. This method is referred to as QM-cit.

We study the influence of the size of the citation graph on the effectiveness of query

expansion by considering two alternative versions of Score-cit and QM-cit. The first

version considers a citation graph exploiting one level depth of citation links, constructed

by collecting documents in the root set and base set as explained in Sect. 4 We call these

methods Score-cit1 and QM-cit1. The second variation takes into account a citation graph

using two levels of citation links. We refer to the methods in this category as Score-cit2

and QM-cit2.

Table 2 shows the evaluation results of different methods of our experiments using the

CLEF-IP 2011 dataset. Results marked with y achieved statistically significant improve-

ment over the baseline, while z represents a statistical significant difference compared to

Score-cit1 and Score-cit2. The reported statistical difference is calculated using t test and

has a p-value of 0.05. The reported results for QM-cit1 and QM-cit2 are obtained using the

top 100 feedback terms selected from the expanded query model. Top 30 feedback doc-

uments are selected and used to generate the root set.

The results of Table 2 suggest that neither of the versions of Score-cit method achieves

statistical significance over the baseline. However, we can see that QM-cit1 and QM-cit2

achieve statistical significant difference compared to the baseline in terms of recall without

decreasing the precision. Comparing the performance of QM-cit1 and QM-cit2 with Score-

cit1 and Score-cit2 allows us to answer our first research question by concluding that using

the link-based structure of the citations together with their textual content is more useful

than using the link-based structure alone.

By comparing the performance of the proposed methods (QM-cit1 and QM-cit2) with

the baseline, we can also observe that the proposed methods achieved a better performance

in comparison to the baseline. In other words, using the term distribution of the documents

in the citation graph enabled us to estimate a query model which improves over the

language model of the original query. This is due to the fact that the estimated query from

the cited documents complements the original query (made from the patent application)

and alleviates the term mismatch between the query document and documents relevant to

it. This observation answers our second research question.

Table 2 Performance of different methods over CLEF-IP 2011 dataset with a cut-off value of 1,000

CLEF-IP 2011 test set

Method Run description MAP Recall PRES

baseline - 0.099 0.540 0.450

Score-cit1 citation depth level 1 0.091 0.543 0.453

Score-cit2 citation depth level 2 0.095 0.550 0.459

QM-cit1 citation depth level 1 0.105 0.560 y 0.465

QM-cit2 citation depth level 2 0.105 0.579 yz 0.481 yz

Inf Retrieval (2014) 17:412–429 423

123



As shown in the explanation of the experiments, increasing the depth of the citation

graph (from depth 1 to depth 2) has a positive effect on the performance of both Score-cit

and QM-cit methods. We also carried out experiments with a citation graph of depth 3,

where 3 consecutive iterations of the steps described in Sect. 4 are considered. The

obtained performance is statistically indistinguishable from the results for Score-cit2 and

QM-cit2 presented in Table 2. We therefore did not present these results here.

We hypothesize that the expansion of the root set into the base set as explained in Sect.

4, results in including documents in the base set that have different languages compared to

the language of the query. This cross-language retrieval effect of the base root is very

desirable for capturing patent documents relevant to the query but in other languages. In

this paper, we ignore non English documents, as we only perform the search and indexing

on the English subsection of the collection.

8 Sensitivity analysis of different parameter settings

As mentioned before, the reported results in Table 2 are obtained using the top 100 terms

extracted from the expanded query model using the top 30 feedback documents. In this

section, we conduct experiments to study the impact of these parameters on the retrieval

effectiveness of our proposed method QM-cit2. We used test topics of CLEF-IP 2011

during these evaluations.

8.1 Effect of the number of query terms

We study the impact of the number of query terms selected from the original query model

on the retrieval effectiveness of the baseline method. Figure 2 shows the results of this

study. We can observe that by increasing the number of query terms we achieve

improvement in terms of recall. In Fig. 2, the best performance in terms of recall is

achieved when the number of query terms is around 100. On the other hand, when selecting

more than 100 query terms MAP drops.
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Fig. 2 Sensitivity analysis of the baseline method to the number of query terms selected from the original
query model on CLEF-IP 2011
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8.2 Effect of the number of feedback terms

We run QM-cit2 by varying the number of feedback terms from 10 to 150. Table 3 shows

the effect of these parameters on the performance of the system in terms of MAP, Recall,

PRES, nDCG and gm-map at cut-off value of 1000. Results marked with y achieved

statistically significant improvement over the baseline. We observe that QM-cit2 achieves

the best performance, selecting 100 feedback terms, regardless of the number of feedback

documents. In Table 3, selecting more than 100 query terms does not lead to an

improvement. We notice the positive effect of increasing the number of expansion terms

on all the evaluation metrics.

We report the performance of QM-cit2 method considering MAP and Recall metrics in

Fig. 3.

Tables 4 and 5 report the results of QM-cit2 method in terms of MAP, Recall, PRES at

cut-off value of 100 and 500, respectively. The results of Tables 4 and 5 are consistent with

the observations made from Table 3.

Table 3 QM-cit2 results over CLEF-IP 2011 dataset with a cut-off value of 1,000

Feedback terms Metric Feedback documents

10 20 30 40 50

10 MAP 0.080 0.074 0.085 0.082 0.075

Recall 0.545 0.548 0.550 0.546 0.540

PRES 0.445 0.445 0.450 0.445 0.440

nDCG 0.200 0.203 0.236 0.227 0.211

gm-map 0.010 0.010 0.015 0.013 0.011

20 MAP 0.082 0.082 0.097 0.082 0.076

Recall 0.549 0.551 0.564 0.551 0.539

PRES 0.447 0.451 0.467 0.451 0.440

nDCG 0.210 0.232 0.254 0.232 0.223

gm-map 0.011 0.013 0.019 0.013 0.013

50 MAP 0.096 0.104 0.104 0.098 0.090

Recall 0.560 0.575 0.577 0.575 0.570

PRES 0.463 0.479 0.480 0.479 0.476

nDCG 0.221 0.250 0.264 0.250 0.232

gm-map 0.013 0.018 0.022 0.018 0.014

100 MAP 0.098 0.104 0.105 0.104 0.102

Recall 0.561 0.578 y 0.579 y 0.575 0.572

PRES 0.465 0.481 0.481 0.481 0.480

nDCG 0.225 0.252 0.251 0.250 0.235

gm-map 0.014 0.018 0.019 0.018 0.015

150 MAP 0.098 0.103 0.105 0.103 0.099

Recall 0.561 0.576 0.579 y 0.574 0.570

PRES 0.465 0.479 0.481 0.479 0.477

nDCG 0.225 0.250 0.251 0.250 0.235

gm-map 0.013 0.018 0.019 0.018 0.015
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8.3 Effect of the number of feedback documents

We investigate the effect of the number of feedback documents by varying this number

from 10 to 50. We plot the sensitivity of QM-cit2 method for varying values of feedback

documents in Fig. 4. We observe the best performance is achieved when the number of

feedback documents is around 30. We can see that values higher that 30 hurt the

performance.
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Fig. 3 Sensitivity analysis of QM-cit2 to the number of feedback terms on CLEF-IP 2011

Table 4 Recall, MAP and PRES results over CLEF-IP 2011 dataset with a cut-off value of 100

Feedback terms Metric Feedback documents

10 20 30 40 50

10 MAP@100 0.076 0.077 0.078 0.082 0.078

Recall@100 0.300 0.310 0.310 0.313 0.314

PRES@100 0.221 0.227 0.227 0.230 0.228

20 MAP@100 0.077 0.080 0.080 0.082 0.078

Recall@100 0.310 0.324 0.325 0.315 0.328

PRES@100 0.226 0.245 0.245 0.2327 0.247

50 MAP@100 0.078 0.080 0.080 0.084 0.080

Recall@100 0.327 0.342 0.342 0.354 0.344

PRES@100 0.247 0.257 0.257 0.262 0.257

100 MAP@100 0.079 0.081 0.081 0.090 0.082

Recall@100 0.329 0.344 0.344 0.354 0.342

PRES@100 0.250 0.258 0.258 0.266 0.258

150 MAP@100 0.079 0.081 0.081 0.090 0.082

Recall@100 0.329 0.344 0.344 0.353 0.342

PRES@100 0.250 0.258 0.258 0.266 0.258
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9 Conclusions and future work

Previous work showed that using the link-based structure of the citations leads to

improvements over a strictly textual-based method (using the term distribution of the query

document). It remained to investigate whether the link-based structure of the citation graph

together with the term distribution of cited documents can be effective to improve the

ranking. To answer this question, we introduced a query model built from the citation

graph. This query model provides a principled way to calculate the importance of terms

selected from the linked documents.

We analyzed the effectiveness of this query model on the CLEF-IP 2011 test collection.

The results demonstrated significant improvements in terms of recall, without decreasing

Table 5 Recall, MAP and PRES results over CLEF-IP 2011 dataset with a cut-off value of 500

Feedback terms Metric Feedback documents

10 20 30 40 50

10 MAP@500 0.079 0.078 0.080 0.081 0.082

Recall@500 0.476 0.482 0.483 0.489 0.489

PRES@500 0.374 0.380 0.381 0.389 0.389

20 MAP@500 0.080 0.080 0.082 0.082 0.083

Recall@500 0.495 0.497 0.497 0.490 0.492

PRES@500 0.394 0.398 0.398 0.389 0.392

50 MAP@500 0.084 0.084 0.086 0.087 0.087

Recall@500 0.495 0.505 0.505 0.492 0.494

PRES@500 0.398 0.401 0.401 0.398 0.398

100 MAP@500 0.960 0.977 0.977 0.960 0.960

Recall@500 0.494 0.508 0.508 0.494 0.493

PRES@500 0.405 0.411 0.411 0.405 0.405

150 MAP@500 0.968 0.978 0.978 0.968 0.968

Recall@500 0.494 0.508 0.508 0.494 0.494

PRES@500 0.407 0.411 0.411 0.407 0.407
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Fig. 4 Sensitivity analysis of QM-cit2 to the number of feedback documents on CLEF-IP 2011
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precision. The results showed the advantage of using the term distribution of the cited

documents for query expansion.

As future work we could quantify the language model of different information resources

such as classifications and the citation graph to perform a comparison. This would enable

us to use characteristics of these vocabularies to better estimate a unified query model

composed from all of these resources.

An interesting extension to this work could be to use the publication date tags of the

patent documents in the citation graph to detect the change in the vocabulary over time.

The importance of each document (taken from the citation graph) in estimating the query

model can be discounted based on its time difference to the query document. We plan to

investigate these directions in the future.
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