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Abstract. Most, if not all, unconditional results towards the abc-conjecture rely ulti-
mately on classical Baker’s method. In this article, we turn our attention to its elliptic
analogue. Using the elliptic Baker’s method, we have recently obtained a new upper
bound for the height of the S-integral points on an elliptic curve. This bound depends
on some parameters related to the Mordell-Weil group of the curve. We deduce here
a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical,
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1 Introduction

The abc-conjecture of D.W. Masser and J. Oesterlé (Conjecture 4.1 below) is
one of the most important unsolved problems in Diophantine analysis. It is well
known that it is connected with several problems in number theory. If true,
it would imply strong or quantitative versions of important theorems Indeed,
let us recall the classical Siegel’s theorem: for an affine curve of genus ≥ 1 or of
genus 0 having at least three points at infinity, the set of integral points is finite.
This theorem was later extended to S-integral points by Mahler. For curves of
genus ≥ 2, Siegel’s theorem is superseded by Faltings’ theorem, which asserts
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that the set of rational points on an algebraic curve of genus greater than 2 is
finite. These results are qualitative statements in general, that is, there is no known
proof providing an upper bound for the height of the points, i.e. a “quantitative”
result, which would allow to find these points. The only known quantitative
results on rational points concern integral points and only some particular cases,
e.g. the case of curves of genus 0, 1, or the case of curves which are Galois
coverings of P1 \ {0, 1, ∞}. All of them come from classical Baker’s method
using lower bounds for linear forms in logarithms. We refer the reader to [18],
[4] and the references therein for an overview of known results.

As noticed by Elkies [14], the abc-conjecture over number fields would
imply a quantitative version on Faltings’ theorem. As shown by the second au-
thor [41], also a quantitative Siegel’s theorem would follow, with explicit depen-
dence on the set of places S. Unfortunately only weak results are known towards
this conjecture yet, and they are insufficient to yield a quantitative Siegel’s the-
orem for new classes of curves.

On the other hand, it is worth noting that Moret-Bailly [28] showed that,
conversely, a uniform and effective version of Falting’s theorem for the curve
y2 + y = x 5 would imply abc. As shown in [42], any bound for the height of the
more restrictive set of the S-integral points on a fixed curve, explicit in the set
S and in the degree and the discriminant of the number field considered, would
suffice to imply a result towards the abc-conjecture over this number field. Using
such a bound given by a quantitative Siegel’s theorem due to Bilu [3], the second
author obtained in her thesis (see [42]) the first result towards the abc-conjecture
over an arbitrary number field. Afterwards, K. Gyory and K. Yu ([17], [19]) gave
completely explicit abc-type results using bounds for the height of solutions of
S-unit equations. When the number field isQ better inequalities were known, see
[40] for the first result obtained and [44], [45] for later improvements. Roughly
speaking, all these results differ from the conjecture from an exponential.1

All the quantitative Siegel’s theorems and the abc-type results mentioned
above depend ultimately on lower bounds for linear forms in usual logarithms,
complex as well as p-adic. In this paper, we turn our attention to the elliptic ana-
logue of Baker’s method. In fact, in order to get a quantitative Siegel’s theorem
in the case of an elliptic curve, it seems to be more natural to take advantage of
the group law and thus to use linear forms in elliptic logarithms. Following this
approach, we have recently obtained in [6] a new upper bound for the height of

1In another direction, A. Baker [1] and P. Philippon [33] suggested some conjectures on linear
forms in logarithms which would imply a weak version of abc (where 1 + ε is replaced by
some other constant). These conjectures involve simultaneously several places (archimedean and
non-archimedean) but these kinds of results are now far away from being proved.
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the S-integral points of an elliptic curve E defined over a number field K , using
the explicit lower bounds for linear forms in elliptic logarithms of S. David [12]
in the archimedean case, and of N. Hirata [21] in the ultrametric one. However,
the method leads to a bound which is not quite effective since it depends on sev-
eral parameters depending on the Mordell-Weil group E(K ) of the curve (see
Theorem 3.1 below).

This raises the question of knowing under which conditions one can get an
explicit, more manageable, upper bound in terms of the set S and the number
field K using the elliptic Baker’s method, and which kind of result towards
the abc-conjecture can be obtained in this way. This paper gives an answer to
these two questions. We will see that, following Manin’s conditional algorithm
[24, Theorem 11.1] based on the assumption of the conjecture of B.J. Birch
and H.P.F. Swinnerton-Dyer (Conjecture 3.3, BSD-conjecture for short) and the
classical Hasse-Weil conjecture, we can derive from [6] a quantitative Siegel’s
theorem whose bound is explicit in S, the degree and the discriminant of the
number field (Theorem 3.4). Thus this paper highlights some connection be-
tween Baker’s method, the BSD-conjecture and the abc-conjecture.

The paper is organized as follows. For convenience to the reader, we have
gathered in Section 2 the notation which will be used throughout the text. In Sec-
tion 3, after recalling the BSD-conjecture, we state and prove a conjectural upper
bound for the height of S-integral points (Theorem 3.4). Finally, in Section 4,
we prove Theorem 4.2 and discuss the result.

2 Notations

Throughout the text, if x is a non negative real number, we set log+ x =
max{1, log x} (with the convention log+ 0 = 1).

If K is a number field, we will denote by OK its ring of integers, by DK the
absolute value of its discriminant, and by MK the set of places of K . The set of
the archimedean places will be denoted by M∞

K and the set of the ultrametric
ones will be denoted by M0

K . For each v in MK , we define an absolute value
| · |v on K as follows. If v is archimedean, then v corresponds to an embedding
σ : K ↪→ C or its complex conjugate (we identify the place v with the embed-
ding σ ), and we set |x |v = |x |σ := |σ(x)|, where | · | is the usual absolute value
on C. If v is ultrametric, then v corresponds to a non zero prime ideal � of OK

(we will identify v and �), and we take for | · |v = | · |� the absolute value on K
normalized by |p|v = p−1, where p is the prime number such that � | p. We
denote by Kv the completion of K at v and use again the notation | · |v for the
unique extension of | · |v to Kv. If v is an ultrametric place associated to the

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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prime ideal �, we denote by e� the ramification index of � over p, by f� the residue
class degree, and by ord� : K ∗

� → Z the valuation normalized by ord�(p) = e�

(hence ord�(x) = −e� logp |x |� for all x in K ∗
� ).

If S is a finite subset of M0
K , we denote by

OK ,S = {x ∈ K ; ∀v /∈ S ∪ M∞
K , |x |v ≤ 1}

the ring of S-integers of K , and we set

�S =
∑
�∈S

log NK/Q(�).

Note that with our notation, the set S contains only non-archimedean places
of K .

Throughout the text, we denote by h the absolute logarithmic Weil height on
the projective space Pn(Q), and we denote by hK := [K : Q]h the relative
height on Pn(K ). Thus, if (α0 : . . . : αn) ∈ Pn(K ), we have:

h(α0 : . . . : αn) = 1

[K : Q]
∑

v∈MK

[Kv : Qv] log max{|α0|v, . . . , |αn|v}. (1)

For every (α1 : α2 : α3) ∈ P2(K ), we further define

radK(α1 : α2 : α3) = �S,

where S = {� ∈ M0
K ; card{ord�(α1), ord�(α2), ord�(α3)} ≥ 2}.

Let E be an elliptic curve defined over a number field K . The Mordell-Weil
group E(K ) of K -rational points of E is a finitely generated group:

E(K ) 
 E(K )tors ⊕ Zrk(E (K )).

We will often simply write r = rk(E(K )) for its rank, and we will denote by
(Q1, . . . , Qr) a basis of its free part.

We further denote by ĥ : E(K ) → R the Néron-Tate height on E . The
“Néron-Tate pairing” <, > is defined by < P, Q >= 1

2(ĥ(P + Q) − ĥ(P) −
ĥ(Q)). The regulator Reg(E/K ) of E/K is the determinant of the matrix
H = (< Qi, Q j >)1≤i, j≤r of the Néron-Tate pairing with respect to the chosen
basis (Q1, . . . , Qr), that is

Reg(E/K ) = det(H ).

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Suppose now that the elliptic curve E is embedded in P2 and given by a
Weierstrass equation

y2 = x 3 + Ax + B (2)

with A, B ∈ OK . Let us denote by O = (0 : 1 : 0) the zero element of E(K ).
If Q �= O is a point of E , we will denote its affine coordinates (in the above
Weierstrass model) as usual by (x(Q), y(Q)). For Q in E(K ) we define
hx(Q) := h(1 : x(Q)) if Q �= O and hx(O) := 0. Finally, we denote by
E(OK ,S) the set of S-integral points of E(K ) with respect to the x -coordinate,
that is

E(OK ,S) = {Q ∈ E(K ) \ {O}; x(Q) ∈ OK ,S} ∪ {O}.
In fact, in all what follows it will be crucial to distinguish the field of def-

inition of the elliptic curve from the field of rationality of the points we will
consider. More precisely, we will fix a number field K0 and an elliptic curve
E defined over K0, and we will consider points in E(K ), where K is a finite
extension of K0 (that we will think of as varying). In the estimates that will
occur we will neither be interested in the dependence on E/K0 nor try to explicit
it, and we will thus consider as a “constant” any quantity depending on E/K0.
This convention about constants will apply in particular to the various implicit
constants involved in the symbols  appearing in the text.

3 Conditional upper bound for the height of S-integral points

In this section, we fix a number field K0 and we consider an elliptic curve E
defined over K0 given by a Weierstrass equation (2), where A, B ∈ OK0 . Let K
be a finite extension of K0 and S ⊂ M0

K be a finite set of places of K . We denote
by r the rank of the Mordell-Weil group E(K ), by (Q1, . . . , Qr) a system of
generators of its free part, and we define the real number V by

log V := max{ĥ(Qi); 1 ≤ i ≤ r}.
We further set

d := [K : Q].
In [6], we have obtained an upper bound for the height of points in E(OK ,S),

which leads to the following result (recall that if x is a non negative real number,
we set log+ x = max{1, log x}, with the convention log+ 0 = 1).

Theorem 3.1. In the above set up, let Q be a point in E(OK ,S). Then there exist
positive effectively computable real numbers γ0, γ1 and γ2 depending only on A

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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and B (that is, on the curve E/K0), such that, if r = 0, then hx(Q) ≤ γ0, and,
if r > 0, then

hx(Q) ≤ CE ,K e(8r2+γ1dr)�S , (3)

where
CE ,K = γ r2

2 r2r2
d10r+15(log+ log V )r+8

× log+(Reg(E/K )−1)2
r∏

i=1

max{1, ĥ(Qi)}.
(4)

Indeed, this immediately follows from the main result of [6], where the same
bound is established with the more precise constant

CE ,K = γ r2

3 r2r2
d9r+15(log+ d)r+6(log+ log V )r+7(log+ log+ log V )2

×
r∏

i=1

max{1, ĥ(Qi)} log+(Reg(E/K )−1)(log+ log(Reg(E/K )−1))2

× (log+ log+ log(Reg(E/K )−1)).

The aim of this section is to deduce from Theorem 3.1 an upper bound for the
height of the S-integral points of E(K ), depending only on E/K0 and on the
parameters �S, d and DK . Such a bound will be obtained assuming the Hasse-
Weil conjecture and BSD-conjecture. The approach relies on Manin’s algorithm
[24]. See also Masser’s book [25, Appendix IV, p. 140], where the association
of Manin’s algorithm with linear forms in elliptic logarithms appears for the first
time to get an effective version of Siegel’s theorem. The precise statement we
prove here is given in the next section.

3.1 Statement of the result

In order to state the conjectural quantitative Siegel’s theorem we obtain, we need
to introduce the two conjectures we will use. Denote by L(E/K , s) the L-series
(or ζ -function) of E/K at s, which is an analytic function for all s satisfying
�(s) > 3

2 . Let FE/K denote the conductor of E over K . Following [30], define
the normalized L-function as

	(E/K , s) = NK/Q(FE/K )s/2 · Ds
K · ((2π)−s · �(s))[K :Q] · L(E/K , s).

We then have the classical conjecture.

Conjecture 3.2 (Hasse-Weil). Let E/K be an elliptic curve defined over a
number field. The L-series of E/K has an analytic continuation of finite order

Bull Braz Math Soc, Vol. 45, N. 1, 2014



“main” — 2014/3/12 — 12:57 — page 7 — #7

ELLIPTIC LOGARITHMS, DIOPHANTINE APPROXIMATION... 7

to the entire complex plane and satisfies the functional equation

	(E/K , 2 − s) = ε	(E/K , s), for some ε = ±1.

This conjecture is true for abelian varieties with complex multiplication ([39]),
for elliptic curves over Q ([46]) and in some special cases, this conjecture is also
true for modular abelian varieties ([38]).

Denote

X(E/K ) = ker(H 1(Gal(K/K ), EK ) →
∏
v

H 1(Gal(K v/Kv), EKv
))

the Tate-Shafarevich group, which is conjectured to be a finite group. (See [36]
and [22] for the first examples of elliptic curves for which it was proved that the
Tate-Shafarevich group is finite.) Let F(x , y) = 0 be a Weierstrass equation
for E . Denote Fy the partial derivative of F with respect to y. Then the invari-
ant differential of the Weierstrass equation, ω = dx

Fy
, is holomorphic and non

vanishing. Let E denote the Néron model of E over OK and let �1
E/OK

be the
invertible sheaf of the differential 1-forms on E. The module H 0(E, �1

E/OK
) of

global invariant differentials on E is a projective OK -module of rank 1 and can
be written as

H 0(E, �1
E/OK

) = ω�,

where � is a fractional ideal of K (depending on ω).
To every place v of K , we will associate a local number cv . For v a finite place

of K , let E0(Kv) be the subgroup of Kv-rational points which reduces to the
identity component of the Néron model E. Let μv be an additive Haar measure
on Kv such that μv(OKv

) = 1 if v is finite, μv is the Lebesgue measure if v is a
real archimedean place and twice the Lebesgue measure if v is complex. Define,
for an archimedean place v, the local period

cv =
∫

E (Kv)

|ω|μv.

Define, for a finite place v of K , cv = card(E(Kv)/E0(Kv)) and

c∞(E/K ) =
∏

v∈M∞
K

cv · NK/Q(�),

which is independent of the choice of the differential ω.
The Birch and Swinnerton-Dyer conjecture can be stated as follows [7] (see

also [15]).

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Conjecture 3.3 (Birch and Swinnerton-Dyer). Let E/K be an elliptic curve
defined over a number field.

1. The L-series L(E/K , s) has an analytic continuation to the entire com-
plex plane.

2. ords=1 L(E/K , s) = rk(E(K )).

3. The leading coefficient L�(E/K , 1) = lims→1
L(E/K ,s)

(s−1)rk(E(K)) in the Taylor
expansion of L(E/K , s) at s = 1 satisfies

L�(E/K , 1) = |X(E/K )| · Reg(E/K ) · |E(K )tors|−2

× c∞(E/K ) ·
∏

v∈M0
K

cv · D−1/2
K . (5)

We can now state the conjectural quantitative Siegel’s theorem that we obtain.

Theorem 3.4. Let K0 be a number field, and let E be an elliptic curve given by
a Weierstrass equation y2 = x 3 + Ax + B with A, B ∈ OK0 . Let K/K0 be a
finite extension, S a finite set of finite places of K , and denote by d the degree
[K : Q].

Suppose that the L-series of E/K satisfies a functional equation (Conjecture
3.2) and that the Birch and Swinnerton-Dyer Conjecture (Conjecture 3.3) holds
for E/K .

Then, there exist positive numbers α1 and α2 (depending on E/K0 only) such
that, for every point Q in E(OK ,S), we have

hx(Q) ≤ exp{αd
1 + α2 d6(log+ DK )2 [�S + log(d log+ DK )]}.

The rest of Section 3 is devoted to the proof of this theorem. To deduce The-
orem 3.4 from Theorem 3.1, we need to bound from above in terms of d, DK

and �S the following parameters : the rank r , the product
∏r

i=1 max{1, ĥ(Qi)},
the greatest height log V and the inverse of the regulator Reg(E/K )−1. In Sec-
tion 3.2, we first bound from above the rank r . Then, in Section 3.3, we bound
from above the three remaining quantities. The bounds for

∏r
i=1 max{1, ĥ(Qi )}

and log V will rely on the BSD-conjecture. Finally, we prove Theorem 3.4 in
Section 3.4.

3.2 An upper bound for the rank of the Mordell-Weil group

Explicit computations for the Weak Mordell-Weil theorem give a bound for
the rank of the Mordell-Weil group in terms of the discriminant of the number

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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field.2 The following is Theorem 1 of [32], slightly corrected by G. Rémond
([35, Proposition 5.1]), for the special case where the abelian variety is an elliptic
curve. We denote byF0

E/K the radical of the conductor of E over K , that is, the
product of the prime ideals of OK where E has bad reduction.

Lemma 3.5 (Ooe-Top, Rémond). There exist real numbers κ1, κ2 and κ3 de-
pending only on the degree d = [K : Q] such that

rkE(K ) ≤ κ1 log NK/QF0
E/K + κ2 log DK + κ3,

and one may take κ2 = 27

log 2 d, κ1 = 4dκ2 and κ3 = κ2(log 16 · d2 − 1).

Lemma 3.6. The conductors of the elliptic curve over K and over K0 satisfy

log NK/QFE/K ≤ 8[K : Q] log NK0/QFE/K0.

Proof. We will use the upper bounds for the exponents of the conductorFE/K

given in [23, Theorem 0.1] and [5, Theorem 6.2]. According to these results, if
we write the conductorFE/K of E/K as

FE/K =
∏

�

�δ�(E ),

then, for each prime ideal � lying above the prime number p, we have δ�(E) ≤ 2
if p ≥ 5, δ�(E) ≤ 2 + 3e� if p = 3, and δ�(E) ≤ 2 + 6e� if p = 2. In all
cases we thus have the bound δ�(E) ≤ 8e�. Moreover, it is well known that if
δ�(E) �= 0, then � must lie above a prime ideal � of OK0 at which E has bad
reduction. Since the prime ideals � of bad reduction are those dividing FE/K0,
we obtain

NK/Q(FE/K ) =
∏

�|FE/K0

∏
�|�

NK/Q(�)δ�(E ) ≤
∏

�|FE/K0

∏
�|�

NK0/Q(�)8e� f�/�

≤
∏

�|FE/K0

NK0/Q(�)8[K :Q] ≤ NK0/Q(FE/K0)
8[K :Q]. �

2Remark that, contrary to our situation, most often the interest in bounding the rank lies in the
dependence on the conductor of the elliptic curve, and the dependence on the number field is not
considered. For example, under Conjectures 3.2 and 3.3 and the generalized Riemann hypothesis

for L(E/Q), one would obtain rk(E(K ))  logFE/K
log logFE/K

, where the implied constant in 
depends on K . (See [29].)

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Lemmas 3.5 and 3.6, together with the fact that

NK/QF0
E/K ≤ NK/QFE/K ,

lead to the following bound for the rank.

Lemma 3.7. The rank r of the Mordell-Weil group E(K ) satisfies

r  d3(log+ DK ),

where the implicit constant depends at most on E/K0.

3.3 On the generators of the Mordell-Weil group

We give here upper bounds for log V ,
∏r

i=1 max{1, ĥ(Qi)} and Reg(E/K )−1.
For this purpose, we follow the approach of Yu. Manin [24]. We argue in two
steps. In Section 3.3.1, we obtain first unconditional upper bounds, but involv-
ing the regulator Reg(E/K ). The main ingredients used are a result on the
geometry of numbers as well as a lower bound for the Néron-Tate height of
non-torsion points due to Masser. Then, in Section 3.3.2, we bound from above
the regulator Reg(E/K ) using the BSD-conjecture.

3.3.1 An upper bound for log V ,
∏r

i=1 max{1, ĥ(Qi)} and Reg(E/K )−1

Geometry of numbers. Recall that the Néron-Tate height on E extends to a
positive definite quadratic form on E(K ) ⊗Z R. The Néron-Tate pairing gives
E(K ) ⊗Z R 
 Rr the structure of an Euclidean space. The free part of the
Mordell-Weil group, 	 := E(K )/E(K )tors, sits as a lattice in this vector space.
The regulator of E/K is the square of the volume of a fundamental domain for
the lattice. Thus we have

Reg(E/K ) = (det(	))2 = det(H ),

where H = (< Qi , Q j >)1≤i, j≤r is the matrix of the Néron-Tate pairing with
respect to the chosen basis (Q1, . . . , Qr). We begin by choosing a good basis.

Lemma 3.8 (Minkowski). We can choose a basis (Q1, . . . , Qr) for the free part
of the Mordell-Weil group satisfying ĥ(Q1) ≤ . . . ≤ ĥ(Qr ), and

r∏
i=1

ĥ(Qi) ≤ (r !)4Reg(E/K ). (6)

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Proof. Put together Minkowski’s theorem on the successive minima [9, Theo-
rem V, Chapter VIII, section 4.3] with Lemma 8 page 135 of [9] as [34, Lemma
5.1]. �

From now on, we assume that we have chosen a basis (Q1, . . . , Qr) as in
Lemma 3.8. Thus, in order to bound the regulator from below, it suffices to use a
lower bound for the ĥ(Qi)’s. In order to bound from above

∏r
i=1 max{1, ĥ(Qi )}

(resp. log V = ĥ(Qr)), we will use inequality (6) together with a lower bound
for the ĥ(Qi)’s satisfying ĥ(Qi ) < 1 (resp. for ĥ(Q1), . . . , ĥ(Qr−1)). So we
now bring our attention to the problem of giving lower bounds for the height of
non-torsion points of the Mordell-Weil group.

Lower bound for the height of non-torsion points. It is known that for non-
torsion points, the Néron-Tate height is non-zero and we can then ask for a lower
bound. Since the elliptic curve E/K0 is fixed, but not the degree [K : Q] of the
field of rationality of the point Q, we are interested in Lehmer’s type results. The
following corollary of a theorem of D. Masser [26] is enough for our purpose.3

Proposition 3.9 (Masser). There exists a positive real number κ4 < 1, de-
pending on the curve E/K0, such that, for any field extension K/K0 of degree
d = [K : Q] ≥ 2 and for all points Q in E(K ) \ Etors one has

ĥ(Q) ≥ κ4

d3(log d)2
. (7)

We then obtain the following bounds.

Lemma 3.10. The following inequalities hold:

log+(Reg(E/K )−1)  d3 (log+ d) (log+ DK ) (log+ log DK ). (8)

log V ≤
(

d3(log+ d)2

κ4

)r−1

· (r !)4 · Reg(E/K ). (9)

r∏
i=1

max{1, ĥ(Qi)} ≤
(

d3(log+ d)2

κ4

)r

· (r !)4 · Reg(E/K ), (10)

where the implicit constant in the symbol  depends at most on E/K0.
3Note that, as pointed out by Manin [24], for a given elliptic curve and a given number field K , it
is not difficult to compute an effective lower bound for ĥ(Q).

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Proof. It follows from Lemma 3.8 and from Proposition 3.9 that we have(
κ4

d3(log+ d)2

)r

≤ (r !)4Reg(E/K ).

Hence we get, using Lemma 3.7:

log+(Reg(E/K )−1) ≤ 4r log r + r log

(
d3(log+ d)2

κ4

)

 d3(log+ d) (log+ DK ) (log+ log DK ).

This proves (8). To prove (9), we simply apply Masser’s lower bound (7) to the
r − 1 smallest points of the basis and replace it in Minkowski’s inequality (6).
Finally, to prove (10), write

r∏
i=1

max{1, ĥ(Qi)} =
r∏

i=1

ĥ(Qi) ×
⎛
⎝ ∏

ĥ(Qi )<1

ĥ(Qi)

⎞
⎠

−1

,

where the second product runs over the i’s for which ĥ(Qi) < 1. Applying the
inequality (6) for the first factor and Masser’s lower bound (7) to the second one,
we get the result. �

3.3.2 A conditional upper bound for the regulator

On the BSD-conjecture. The upper bounds (9) and (10) obtained in Lem-
ma 3.10 for the height of the generators involve the regulator Reg(E/K ). In
order to bound it from above, the BSD-conjecture suggests to bound each of the
terms of the formula (5). We denote hFalt (E/K ) the Faltings’ height of E/K .
The next proposition is Proposition 3.12 of [43].

Proposition 3.11. Suppose that Conjecture 3.2 and 3.3 hold for the elliptic
curve E/K . Then

Reg(E/K ) ≤ Cd · D3/2
K ·√NK/Q(FE/K)

× (exp{hFalt(E/K )} · hFalt (E/K ))d,
(11)

where d = [K : Q] and we may take Cd = (
9

2π

)d · (3d2)d · (129.(5d −
1)(3d)6)

(1+3d/2 )8

log(1+3d/2 ) .
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Using this proposition and Lemma 3.6 for the conductor, we get a conditional
bound for the regulator as we want and we can also bound the other quantities
involving the generators of the Mordell-Weil group.

Lemma 3.12. Suppose that Conjecture 3.2 and 3.3 hold for the elliptic curve
E/K . Then there exist positive numbers κ5, κ6, κ7 (depending at most on E/K0)
such that

1. Reg(E/K )  eκd
5 D3/2

K .

2. log+ log V  κd
6 (log+ DK ) (log+ log DK ).

3.
r∏

i=1

max{1, ĥ(Qi)}  (
d · log+ DK

)κ7d3 log+ DK eκd
5 · D3/2

K ,

where the implicit constants in the symbol  depend at most on E/K0.

Proof.

1. By [10, Remark 5.1.1, Chapter IX], we have hFalt (E/K ) ≤ hFalt (E/K0).
Using now Lemma 3.6, the result is an immediate consequence of Pro-
position 3.11.

2. Use the bound (9) of Lemma 3.10, item 1 and Lemma 3.7.

3. The result follows from the bound (10) of Lemma 3.10, Lemma 3.7 and
item 1. �

3.4 Proof of Theorem 3.4

We want to apply Theorem 3.1, so we need to estimate first CE ,K . By Lemma 3.7,
Lemma 3.12 and Inequality (8) of Lemma 3.10, we have:

log CE ,K ≤ c1d6 (log+ DK )2 (log(d log+ DK )) + κd
5 ,

for some c1 = c1(E/K0). On the other hand, by Lemma 3.7 again, we have:

8r2 + γ1dr ≤ c2d6 (log+ DK )2,

for some c2 = c2(E/K0). Theorem 3.4 follows at once from these estimates and
from Theorem 3.1. �
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4 What about abc?

As already mentioned in the introduction, the second author has shown in [42]
that one can deduce an abc-type inequality over number fields from a bound
for the height of the S-integral points on a fixed curve, explicit in the set S, the
degree [K : Q] and the discriminant DK of the number field. The aim of this
section is to prove such an inequality using the conditional bound obtained for
the integral points in Theorem 3.4, following the method of [42].

With the notations of Section 2, the abc-conjecture of D. Masser [27] and J.
Oesterlé [31] over number fields can be stated as follows (see [14]).

Conjecture 4.1 (Masser-Oesterlé). (abc) Let F be a number field. For every
ε > 0, there exists a real number cε,F > 0 such that, for a, b, c non zero elements
of F satisfying a + b = c, we have

hF (a : b : c) < (1 + ε)radF(a : b : c) + cε,F .

The result that we will prove in this section is the following.

Theorem 4.2. Let a, b, c be non zero elements in the number field F satisfying
a + b = c. Let E be any elliptic curve defined over some number field K0 ⊂ F.
Suppose that for any finite extension K of F, the L-series of E/K satisfies a
functional equation (Conjecture 3.2) and that the Birch and Swinnerton-Dyer
Conjecture (Conjecture 3.3) holds for the elliptic curve E/K .

Then, there exist real positive numbers β1 and β2 depending at most on the
curve E/K0, the degree [F : Q] and the absolute value DF of the discriminant
of F, such that

hF (a : b : c) < exp{β1radF(a : b : c)3 + β2}.
In Theorem 4.2 one may take β1 = c1(E/K0) · [F : Q]6 · (log+[F : Q]) ·

(log+ DF )2 and β2 = c2(E/K0)
[F :Q], where c1(E/K0) and c2(E/K0) depend at

most on E/K0.
Roughly speaking, the known results on abc over number fields ([42], [17],

[19]) give an inequality

h(a : b : c) ≤ exp{β1radF(a : b : c) + β2}.
In [19], one may take β1 = 1 + ε. Thus the bound obtained in Theorem 4.2
is less good as the known results. However, our result is obtained by a totally
different method, which shows a connection between two conjectures of a very
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different nature, namely the BSD-conjecture and the abc-conjecture. Moreover,
improvements in the lower bounds used for linear forms in elliptic logarithms
could yield a better inequality, see the discussion in the remarks 4.6 and 4.7
below.

Observe that the validity of the hypothesis (the functional equation and the
BSD-conjecture) is only needed for a single elliptic curve E (which we may
choose as we wish), but for infinitely many field extensions K/F . In fact, it
turns out (see Section 4.1) that we need the hypothesis only for every extension
K/F of relative degree [K : F] ≤ deg( f ), where f is any fixed Belyı̆ function
associated to E . For instance, we may choose the CM curve given by the affine
equation y2 = x 3 − x and for which (x , y) �→ −1

4
(1−x)2

x is a Belyı̆ map of
degree 4. Note also that if the elliptic curve has complex multiplication or is
defined over Q, then the conjecture concerning the functional equation is true
(see [39] and [46]). On the other hand, there is some evidence for the truth of
the BSD-conjecture (see [11], [20], [36] and [22]).

It is worth noting that with different methods, D. Goldfeld and L. Szpiro [16,
Theorem 2] proved that there is a relation between the BSD-conjecture and
Szpiro’s conjecture. The latter one relates the discriminant of the curve with its
conductor, namely D = O(N6+ε). It is known to imply a weak version of the
abc-conjecture over Q (where in conjecture 4.1, 1 + ε is replaced by an absolute
constant). They proved that if the order of the Tate-Shafarevich group satisfies
|X| = O(N1/2+ε), for every ε > 0, for all elliptic curves defined over Q, then
the relation D = O(N18+ε) holds for every elliptic curve over Q. Their proof
uses the BSD-conjecture for all elliptic curves over Q in the case of rank zero,
which is a theorem in this case.

4.1 Proof of Theorem 4.2.

Let a, b, c be non zero elements of the number field F such that a + b = c.
Let S1 be the set of the prime ideals � of F such that

card{ord�(a), ord�(b), ord�(c)} ≥ 2.

We then have
radF(a : b : c) =

∑
�∈S1

log NF/Q� := �S1.

To our point (a : b : c) will correspond an integral point on an elliptic curve.
Choose E any elliptic curve defined over a subfield K0 ⊂ F . Let

y2 = x 3 + Ax + B

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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be a Weierstrass equation of E , with A, B ∈ OK0 . This curve being fixed once
for all and chosen independently of a, b, c, all the parameters depending only on
K0 and E/K0 will be considered as “constants”.

Using a uniformization theorem of G. V. Belyı̆, we can lift the point (a : b : c)
to an integral point of the elliptic curve. Indeed, by [2, Theorem 4], there exists
a finite surjective morphism f : E → P1 defined over K0, unramified outside 0,
1 and ∞, and sending the origin O = (0 : 1 : 0) of E to {0, 1, ∞}. Let Q be a
point of E(F) such that

f (Q) = (a : c) ∈ P1 \ {0, 1, ∞}.
Since b = c − a, the point (a : c) is an S1-integral point of P1 \ {0, 1, ∞} and
the point Q contains all the information about our triple (a : b : c). Moreover,
we can use the properties of the elliptic curve.

The Chevalley-Weil theorem (see [37, § 4.2] or [42, Lemma 2.4 and Lemma
2.5] for an affine version), gives us information about the lift.

Lemma 4.3 (Chevalley-Weil). The field of definition K = F(Q) of the point
Q is a finite extension of F of relative degree

[K : F] ≤ deg( f ) (12)

and which is unramified outside S = S1 ∪ S0, for some finite set of places S0 of
F depending only on the curve E/K0 and the function f . Moreover, the point
Q is S ′-integral, where S ′ is the set of places of K lying above S.4

We apply now Theorem 3.4 which gives us a conditional upper bound for the
height of the lift of (a : c) depending on the field extension K and the set of
places S ′:

hx(Q) ≤ exp{αd
1 + α2 d6(log+ DK )2 [�S ′ + log(d log+ DK )], (13)

where d = [K : Q] and α1 and α2 depend at most on E/K0.
To end the proof of Theorem 4.2, it remains to relate hx(Q) to h(a : b : c) on

the one hand, and the parameters d, �S ′ and DK to the radical radF(a : b : c) on
the other hand. This is achieved by the following lemma.

Lemma 4.4. The following inequalities hold:

1. h(a : b : c)  hx(Q).

4See [8] for a quantitative version with control on the height of the set S0.
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2. d = [K : Q]  [F : Q].
3. �S ′  radF(a : b : c)

4. log DK  radF(a : b : c) + log DF .

where the implicit constants in the symbol  depend at most on K0 and E/K0.

Proof. Using the basic properties of the heights and because the Belyı̆ map f
and the x -coordinate are both functions on E , we have

hx(Q) � h f (Q) = 1

deg( f )
h( f (Q))

= 1

deg( f )
h(a : c)

≥ 1

deg( f )
(h(a : b : c) − log 2).

Hence the first point is proved. The second point follows from (12) and from the
fact that the Belyı̆ map depends only on E/K0. To prove the third item, we first
note that

�S  radF(a : b : c) (14)

since
�S = �S0∪S1 ≤ �S0 + �S1 = �S0 + radF(a : b : c)

and since S0 depends only on E/K0 (and on the choice of f ). Now we have, by
definition of �S ′:

�S ′ =
∑
�∈S

∑
�|�

log N(�) ≤
∑
�∈S

∑
�|�

f�

f�
log N(�) ≤ [K : F] �S,

from which the third item follows, by (12) and (14). Finally, let us prove the
last inequality. From Lemma 4.3, the set of places of F on which the extension
K/F ramifies is contained in S. We can then apply the following form of the
Dedekind-Hensel inequality which is Lemma 3.17 of [8]:

log DK ≤ �S + [K : F] (log DF + 1.26) . (15)

We conclude with (12) and (14) as before. �
The proof of Theorem 4.2 is now straightforward: It suffices to insert the

inequalities of Lemma 4.4 in (13). �
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4.2 Some remarks

Remark 4.5. Observe why the bound of Theorem 4.2 has growth order
exp{radF(a : b : c)3}. The first remark is that, in the bound for the height of the
integral points of the curve obtained in Theorem 3.1, the radical of (a : b : c)
appears in several ways.

First, the radical appears, as expected, in the set of places S (see (14)):

�S  radF(a : b : c).

Next, in the bound of Theorem 3.1, the radical appears in the rank, in the
height of a system of generators and in the regulator. More precisely, by the
Weak Mordell-Weil theorem, rk(E/K ) can be bounded linearly by log DK (see
Lemma 3.7) which is in turn bounded linearly by the radical of (a : b : c) (it
comes from the method, that is, Belyı̆’s theorem, the Chevalley-Weil theorem
and the Dedekind-Hensel inequality; see Lemma 4.4, Item 4). Thus we have

rk(E/K )  log DK  radF(a : b : c).

Using Minkowski’s theorem on the successive minima and a lower bound for
the height of non-torsion points, log(Reg(E/K ))−1 is bounded by

(log DK . log log DK )

(Lemma 3.10), hence

log(Reg(E/K ))−1  radF(a : b : c) . log(radF(a : b : c)).

The factors concerning the heights of the generators are bounded under the
BSD-conjecture by Lemma 3.12:

(log+ log V )r ≤ exp{c1radF(a : b : c) · log radF(a : b : c)}
and ∏

max{1, ĥ(Qi )} ≤ exp{c2radF(a : b : c) · log radF(a : b : c)},
where c1, c2 are constants.

In the bound of Theorem 3.1 appears also a factor concerning the rank:

r2r2 ≤ exp{c3radF(a : b : c)2 log radF(a : b : c)}.
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“main” — 2014/3/12 — 12:57 — page 19 — #19

ELLIPTIC LOGARITHMS, DIOPHANTINE APPROXIMATION... 19

Finally, we have the factors

exp(γ1dr�S) ≤ exp{c4radF(a : b : c)2} (16)

and
exp(8r2�S) ≤ exp{c5radF(a : b : c)3}, (17)

the latter one being the biggest contribution to the radical. It comes from the
factor p8n(n+1) of the bound of N. Hirata (see Theorem 4.6 in [6]) for the linear
form in elliptic logarithms in the ultrametric case, where n is the number of
logarithms (essentially n = r) and p is the prime number lying below the ultra-
metric place.

Remark 4.6. According to N. Hirata, it seems possible that in the lower bound
of linear forms of elliptic logarithms in the ultrametric case, a refinement on p of
the order pn could be obtained (instead of p8n(n+1)), giving a contribution of the
form exp{c6radF(a : b : c)2}, instead of (17). This would lead to a final bound
in Theorem 4.2

hF (a : b : c) < exp{β1radF(a : b : c)2 log radF(a : b : c) + β2}.
The worse contribution in this case would be the factor r2r2

which appears both
in the ultrametric and the archimedean lower bounds for linear forms in elliptic
logarithms (theorems 4.2 and 4.6 in [6]). It seems reasonable to conjecture that
the lower bounds for linear forms in logarithms are still valid with the smaller
factor rr instead of r2r2

. In that case, the worse contributionswould be the factors
pn and exp(γ1dr�S), both yielding a factor of the shape exp{c7radF(a : b : c)2}.
The presence of the factor exp(γ1dr�S) shows that even a drastic improvement
in the dependence on p and on the number of logarithms would not be sufficient
to get a final inequality better than exp{c7radF(a : b : c)2}.

Remark 4.7. S. David and N. Hirata ([13]) suggested an elliptic analog of the
classical Lang-Waldschmidt conjecture. We quote here the following particu-
lar case.

Conjecture 4.8 (Elliptic Lang-Waldschmidt). Let n be a rational integer
≥ 1. There exists a strictly positive real number C(n) such that the follow-
ing property holds. Let K be a number field of degree d over Q. Let E/K be
an elliptic curve given by a Weierstrass equation y2 = x 3 + Ax + B. De-
note hE = max{1, h(1 : A : B)}. Let b0, b1, . . . , bn be rational integers and
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B = max1≤i≤n{|bi |}. Let γi be points in E(K ) ⊂ P2(K ) and ui be an elliptic
logarithm of γi . Put L = b0 + b1u1 + · · · + bnun. If L �= 0, then

log |L| ≥ −C(n)d2(log B + hE)

(
n∑

i=1

max{1, ĥ(γi)}
)

.

Following the results in the classical (non elliptic) case, we can expect that
C(n) = cn

1 , where c1 is some absolute constant. For the ultrametric analogue, by
considering the result stated in the introduction of [48], or Theorem 1’ of [47],
we can conjecture a constant of the form C(p, n, d) = cn

1 · pc2d , where c1 and c2

are absolute. Using Conjecture 4.8 with C(n) = cn
1 , instead of David’s theorem

(Theorem 4.2 of [6]), together with an ultrametric analogue of Conjecture 4.8
with C(p, n, d) = cn

1 · pc2d , instead of Hirata’s theorem (Theorem 4.6 of [6]),
our method would give the following abc-type inequality

hF (a : b : c) < exp{β1radF(a : b : c) · log radF(a : b : c) + β2}.
Indeed, with the notation of [6], the factor exp(γ1dr�S) comes from the fac-
tor ν2r

� , where ν� is the exponent of a certain group satisfying ν� ≤ pc8d .
If we repeat the arguments given in [6] for the proof of Theorem 3.1 using
Conjecture 4.8, we see that we now get rν2

� instead of ν2r
� , and thus the factor

exp(γ1dr�S) is replaced by r exp(γ1d�S), giving a contribution exp(c9radF(a :
b : c)) instead of (16). Hence the worse contribution here would come from∑

1≤i≤r max{1, ĥ(Qi)} which we bound, under the BSD-conjecture, by

r · max
1≤i≤r

{1, ĥ(Qi)}  r(r !)4

(
κ4

d3(log d)2

)1−r

· D3/2
K

≤ exp{c10radF(a : b : c) · log radF(a : b : c)}.
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