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Abstract The participatory sensing paradigm, through the growing availability of
cheap sensors in mobile devices, enables applications of great social and business
interest, e.g., electrosmog exposure measurement and early earthquake detection.
However, users’ privacy concerns regarding their activity traces need to be ade-
quately addressed as well. The existing static privacy-enabling approaches, which
hide or obfuscate data, offer some protection at the expense of data value. These
approaches do not offer privacy guarantees and heterogeneous user privacy re-
quirements cannot be met by them. In this paper, we propose a user-side privacy-
protection scheme; it adaptively adjusts its parameters, in order to meet personalized
location-privacy protection requirements against adversaries in a measurable man-
ner. As proved by simulation experiments with artificial- and real-data traces, when
feasible, our approach not only always satisfies personal location-privacy concerns,
but also maximizes data utility (in terms of error, data availability, area coverage), as
compared to static privacy-protection schemes.

Keywords Location privacy ·Privacy requirements ·Utility ·Participatory sensing

1 Introduction

The recent advances in sensor technology have led to a wide availability of privately-
held low-cost sensors in mobile phones, vehicles, home appliances, etc. In turn, this
has led to the development of the participatory sensing paradigm, that enables vast
sensor data–from privately-held sensory devices–to be collected. In this paradigm,
mobile devices send, either continuously or on demand, sensor data along with
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their locations and timestamps to an aggregation entity. The participatory sensing
paradigm paves the way for innovative applications of great social and business
interest, such as air pollution monitoring [19], early earthquake detection [16], and
electrosmog exposure. This concept has attracted much attention from the research
community, e.g., [4, 7], as it is an alternative to the costly and difficult-to-manage
deployment of dedicated sensor-network infrastructures. However, participatory
sensing faces serious challenges: data accuracy (i.e., due to the low-cost sensors), user
privacy protection, finding incentives for users to contribute to the system, etc. Most
importantly, users who are sensitive about their private information, such as their
location (and inferred activities), are not expected to be willing to contribute to the
system. Therefore, it is necessary in such systems to implement privacy-protection
mechanisms such as anonymization of the source, and obfuscation of the location
and/or time information attached to data. The usefulness of the sensed data for the
corresponding application, however, depends on the accuracy, the availability and
the spatio-temporal correctness of the data, all of which are negatively affected by
privacy-protection mechanisms. For example, data accuracy decreases when location
or time information are obfuscated, hence a trade-off emerges between data utility
and user privacy. If a certain scheme that rewards mobile users according to the
utility of their sensed data is in place, then, assuming that users are utility maximizers,
they can more willingly provide data and enjoy a satisfactory level of privacy-
protection.

An adversary who has access to users’ spatio-temporal traces can find users’
activity schedules [31]. To this end, the main objective of a protection mechanism
is to provide untraceability. There exist location-privacy protection mechanisms
[15] employing techniques such as data hiding or location obfuscation, with limited
effectiveness against powerful adversaries that can exploit spatio-temporal associa-
bility of users’ observable events, in order to partially or fully discover user trajec-
tories. This happens because these techniques are employed with static parameters
that cannot satisfy the user privacy requirements when the correlation between
sequential user actions (i.e., user mobility and data emissions) and user’s context
lead to excessive leakage of personal information. Therefore, a user can never be
sure that a static privacy protection will be successful against adversaries at all times.
Another core problem of most of the existing approaches is the assumption that all
users require the same level of privacy. This results in an unnecessarily high level
of protection for some users and in insufficient protection for others. This second
problem was addressed by Xiao and Tao [30] in the context of anonymization of
datasets, which is not directly comparable to our context (where we do not consider
anonymization).

In this paper, we propose an innovative approach for adaptive location-privacy
protection in the participatory sensing context. Our objective is to provide the
user with a statistical privacy guarantee at the lowest possible utility loss for the
application. In order to achieve this objective, we define a personal privacy threshold
θ , which is a lower bound on user location privacy. Before taking any privacy-
protection action, in order to meet θ at the minimal utility cost, the privacy level
of the user is dynamically measured on the user’s device and compared with θ .
Our adaptive scheme for location-privacy protection is lightweight, realistic and thus
easily deployable at mobile devices. We consider two threat models: (a) A semi-
honest aggregation server that attempts to extract and exploit private location infor-
mation based on the emitted sensor data. (b) An active-tracking aggregation server,
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which employs both the (partial) location history of the user and the emitted data
for extracting and exploiting private location information. Using artificial- and real-
data traces, we experimentally show that our approach, when feasible, satisfies the
personal location-privacy protection requirements, based on the privacy techniques
employed. By comparing our results with both real and artificial trajectories, we
establish that the effectiveness of our approach is independent of mobility patterns.
Moreover, it is shown that our approach increases the utility of the participatory
sensing application, as compared to static privacy-protection policies, especially
when user mobility history is partially available at the adversary. Finally, our work
experimentally analyzes in a thorough manner the trade-off between utility and
privacy in the context of participatory sensing. Note that our approach is compatible
with most continuous or sporadic location-based applications (including location-
based services).

The remainder of this paper is organized as follows: In Section 2, we present an
overview of the related work. In Section 3, we describe our context, define per-
sonalized privacy, and set our privacy and utility-efficiency metrics. We present our
adaptive privacy-protection scheme in Section 4 and, in Section 5, we experimentally
assess its effectiveness. Finally, we conclude our paper in Section 6.

2 Related work

Privacy-preserving participatory sensing has been widely addressed by the research
community in the past [2] including privacy of data itself, of data source identity and
of user location. k-anonymity based solutions address data privacy and obfuscate a
sensitive data item with a collection of k − 1 items (referred to as anonymity set),
so that the original item cannot be distinguished. Spatial cloaking techniques are
proposed to preserve location-privacy, they often involve location generalization or
perturbation. The idea behind generalization is to report a larger area instead of the
exact user location (location obfuscation), whereas location perturbation applies a
certain function on the real location of the user, e.g., the average location of multiple
users. In addition, noise can be added to the data in an approach referred to as
randomization, dummy data can be reported, or the sensed data can be hidden (i.e.,
not submitted at all to the application server). In our adaptive scheme, we employ
location obfuscation and data hiding for privacy-protection.

The downside of any privacy-preserving mechanism in data-driven applications
such as participatory sensing is the potential loss of accuracy or precision in the
reported data and/or loss of samples. Krause et al. [14] address location privacy
and experimentally analyze the trade-off between accuracy and privacy. They em-
ploy two methods of location-privacy protection: location obfuscation and sparse
querying. The combination of these two methods diversify the users chosen for
querying in order to minimize the privacy breach of a single individual user. In our
paper, we significantly enhance the study of the trade-off between utility and privacy
by studying the effect of privacy on additional utility aspects apart from accuracy,
namely data completeness and area coverage.

According to [30], any privacy-preserving mechanism should consider the person-
alized privacy requirements of the participating users, because individuals typically
have varying privacy requirements. In addition, we argue and experimentally prove
in Section 5 that data utility can also be improved by personalized privacy protection
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that avoids excessive privacy preservation. In [30], the authors formalize personal
privacy specifications and apply a data generalization technique for satisfying indi-
vidual privacy requirements. The authors in [9] propose a location-privacy protection
mechanism based on personalized k-anonymity for location-based services (LBS).
However, they employ a trusted third-party that implements the privacy-protection
scheme, which is contrary to our approach; similarly, Vu et al. [27] also propose a
trusted third-party based k-anonymity approach. In [4, 18], the users might decide
to selectively activate sensing (and hide in other times) depending on a variety of
factors, such as presence in sensitive locations (home or office), or their current social
surroundings (presence of friends or family members). However, hiding is applied
not based on a rigorous privacy assessment, but based on a fixed probability value.
The authors in [17] analytically prove that trajectory inference is still possible in a
LBS if data hiding is the only mechanism used for location-privacy protection and
they suggest designing new policies that consider users’ past events, as we do in our
work in the context of participatory sensing.

In addition to being a client-based location-privacy preserving mechanism, our
approach supports continuous location dissemination. Several client-based solutions
exist in the literature [11, 12, 21, 23]. SybilQuery [23] generates, for each user’s query,
k − 1 other queries so that the LBS server cannot distinguish the real query from the
Sybil ones. However, this work requires the user to determine a priori the source
and destination of the real query, thus it does not support real-time continuous
dissemination. In addition, it does not apply any transformation/obfuscation on the
trajectories, which allows an adversary to obtain the full real trajectory, once it is
identified partially. A distributed k-anonymity cloaking mechanism is proposed in
[11], which identifies neighbors using on-board wireless modules and exploits secure
multi-party computation in a collaborative manner in order to compute a cloaking
region. However, this work does not support continuous querying. Finally, Jadliwala
et al. [12] present a concept called privacy-triggered communications, which is a
generic framework that fits our work; our work differs in detailed utility and privacy
analysis.

Last but not least, [3, 5] propose cryptographic approaches for protecting the
identity of the participants in participatory sensing. Groat et al. [10] consider mul-
tidimensional data to evaluate the user privacy, i.e., they consider spatio-temporal
dimensions, the sensed data and more. But, they do not take into account the
continuous data disclosure, which would be disastrous for the users in case of an
attack on a multidimensional scale. More on the privacy issues in participatory
sensing applications can be found in the survey paper by Christin et al. [2].

In summary, to the best of our knowledge, none of the existing work proposes a
location-privacy protection scheme combining the following properties: (i) dynamic
estimation of user privacy based on the history of mobility and data submissions, (ii)
adaptive satisfaction of personalized privacy requirements, (iii) user-side residence,
and (iv) independence of any trusted third parties.

3 System model and performance metrics

People are concerned about the potential (though unconfirmed) health risks due
to base stations [29]. Therefore, in this paper, we consider the application of
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electrosmog monitoring by means of participatory sensing, as this case study fits the
continuous data dissemination scenario.

We assume that a mobile user can always submit its sensor data using its own
data plan through the cellular network. In this context, mobile users (or just “users”)
sense their environment and send their sensor data to a certain data-collection entity
called an aggregation server (AS). Such data is valuable only if it is accompanied by
the location and time information, hence the reported data packets are triplets in the
form of 〈value, location, time〉. Our objective is to provide the user with a statistical
privacy guarantee at the lowest possible utility loss for the application in this setting.

In our approach, we avoid relying on a trusted third party, because in reality it is
difficult to establish such an entity that is trusted by all participants. Furthermore, we
assume that users do not collaborate with each other in order to protect their location
privacy, because this approach is energy-costly and enables users to collude in order
to breach others’ privacy. In such a setting, hiding the identities of mobile users is
rather unrealistic. Consequently, we focus on user untraceability and do not consider
hiding user identity as a protection mechanism (i.e., the AS knows the source of each
sensed data).

For presentation clarity and computational limitations, throughout the remainder
of the paper, we assume the monitored area to be partitioned into cells and the time
to be slotted. Henceforth, we use the terms ‘location’ and ‘grid cell’ interchangeably.
In the remainder of this section, we specify the adversary models, define personalized
privacy, and describe metrics for the evaluation of privacy and utility.

3.1 Threat models

We consider two threat models; the adversary in both is assumed to be the AS,
who records and exploits the private information that it obtains. The communication
between the AS and the users is assumed to be encrypted, and the AS knows the
identities of users.

In the first model, the AS is assumed to be semi-honest [1], meaning that it follows
the protocols, it does not collude with other entities and it does not tamper with the
system to obtain private information about the users. Furthermore, it does not deploy
devices to monitor the whereabouts of users (no global or local eavesdropping). As a
result, it can only try to infer private information based on the data it collects from the
users. In this model, the AS has no background information on the users’ mobility.

In the second model, the AS is assumed to be an active adversary and to deploy a
limited number of tracking devices constrained by cost and resources. In this regard,
we assume that the AS is able to detect user presence in a fraction of locations and
it uses the information collected to reconstruct the original traces. For example, the
AS can do this by sniffing the control channels of the cellular communication where
the handshakes between the users and the base stations are exchanged in clear text.
At this point, we argue the AS cannot optimally choose the monitored locations,
because it cannot know the location sensitivities of the individuals. One approach
would be to monitor the hotspot or generally-sensitive areas (such as hospitals)
in a city, but then any other user movement would not be captured. Moreover,
some users might not be very privacy-sensitive to their presence in hotspot areas.
Therefore, we assume that the AS chooses randomly the locations to monitor. The
AS uses the tracking data to build a spatio-temporal probability distribution for
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each user. For example, on Mondays 9am with probability 0.8 a particular user is
at work, and the probabilities assigned to user’s other possible locations sum up to
0.2. To reveal the user trajectories, this background knowledge is combined with the
location information contained in the emitted data from the mobile users. Note that
the notion of the spatio-temporal probability distribution is very generic and can
model other kinds of background knowledge as well, i.e., user habits, user location
sensitivity, location semantics, etc.

We also assume that, in both threat models, the only other background informa-
tion that the AS has about the users is their maximum possible speed (also known
to the users themselves). Nevertheless, mobile users are assumed to be honest,
which means that they do not attempt to tamper with their sensor measurements
or collude with the adversary, but they might reduce the data accuracy (in terms
of location/time), in order to protect their privacy. Last, we assume no interaction
among users; consequently, there is no risk of potentially malicious users aiming to
track other ones.

3.2 Personalized privacy

In most of the existing location-privacy protection approaches [15], fixed parameters
are statically employed in the proposed mechanisms for all the users. This approach
has a negative effect on both the privacy levels of the users and the utility of the
system, as will be shown in Section 5.

First of all, such a static approach does not take into account the trajectory history
of users. It implicitly assumes that a uniform parameter for a particular location-
privacy protection mechanism will always provide the same level of protection, which
is not the case because spatio-temporal correlation between disclosed events might
reveal partial or full trajectories of users.

Another problem resulting from this approach is the negative effect on the utility
of the system due to the fact that in some cases the provided location privacy can be
much higher than what a user actually wants. For example, a user might still achieve
satisfactory privacy-protection by providing 4 grid cells in an obfuscated area instead
of 6, and therefore increase the system utility.

According to Westin [28], “each individual is continually engaged in a personal
adjustment process in which he balances the desire for privacy with the desire for
disclosure and communication of himself to others, in light of the environmental
conditions and social norms set by the society in which he lives”. In this spirit,
considering the aforementioned issues about the static/uniform parameter selection,
we define personalized privacy as follows:

Definition 1 Given a set P of protection mechanisms and Pai ⊆ P being the subset
of mechanisms that can be implemented by the user i with ability ai, the personalized
privacy for user i with privacy threshold θi is defined by the formula:

∃p ∈ Pai : p(z, ω, H) ≥ θi, (1)

where z ∈ Z is an instantiation of adversary capabilities Z , ω ∈ � is a particular user
action from the set of available actions �, H is the history of user actions, and p(.) is
the privacy level resulting from the mechanism p as estimated by the user.
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According to this definition, personalized privacy is the individual’s ability to
employ all the necessary privacy protection mechanisms so as to adapt to privacy
leakage resulting from his/her activities and/or the changing privacy-breaching capa-
bilities of the adversary, as observed by the individual.

3.3 Privacy metrics

In the literature, several metrics have been proposed for measuring the level of
location privacy. Some approaches, such as [9], utilize as metrics the parameters
of the privacy-protection mechanism, e.g., the size of the anonymity set, the size
of the obfuscation area. However, these simple metrics do not assess the actual
location-privacy protection level of users, because they do not take into account the
adversary’s capabilities, users’ history of events and the correlations between users’
events.

Dwork proposes the concept of differential privacy [8], which is a privacy mea-
surement approach for statistical databases. In this approach, the privacy is measured
by the predictability of the existence of a single record based on a statistical result
obtained from a database. In our work, single data values are provided to the server;
thus, differential privacy is not a suitable metric in our case.

A more useful metric is entropy, which is an information theoretical approach to
privacy measurement. In [6, 22], entropy H is proposed as an anonymity metric to
measure the privacy offered by a system. It is defined as H = −∑

i pi log2 pi, where
pi is the attacker’s estimate of the probability that a participant i is responsible for
some observed action. In our context of participatory sensing, the observed actions
consist of reported locations at a specific time, thus entropy can be used to measure
how well the actual location is hidden among this location set, i.e., the uncertainty of
the adversary about the actual location of a user.

Although entropy adequately assesses the uncertainty of the adversary, it does
not measure the correctness of adversary’s estimation. To this end, Shokri et al.
[24] propose a distortion-based metric, where the uncertainty and the correctness
of the adversary are measured by assigning probabilities to all possible trajectories
of a user and by calculating the distances of the fake trajectories from the real ones.
The distances are multiplied with their respective probabilities in order to obtain the
expected distortion (ED) of location inference for a corresponding user. ED is given
by the following formula:

ED(u, t) =
∑

�

D(actual(u, t), �(t)) · Pr(�, t) (2)

where ED(u, t) is the expected distortion of user u at time t and � represents all the
observed trajectories of user u. actual(u, t) gives the actual location of user u at time
t and �(t) is the location on trajectory � at time t. Pr(�, t) is the probability assigned
to trajectory � at time t by the adversary. In our work, we define D(loc1, loc2) as
a normalized distance function that gives distance between locations loc1 and loc2

in [0, 1] and therefore, the privacy level computed is in the interval [0, 1], where 0
means no privacy protection and 1 means full privacy protection. This is done by
normalizing the actual distance by an upper bound distance per time step (e.g., the
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maximum driving speed in our case).1 We employ the Euclidean distance function,
but other choices of distance functions are possible as well.

Shokri et al. [25, 26] further extend the idea behind the distortion-based metric and
present a comprehensive location-privacy quantification framework. This framework
formalizes the attack of the adversary, takes into account its background information
on users’ mobility patterns and calculates users’ location-privacy protection levels
based on the adversary’s accuracy, correctness and certainty about users’ actual
trajectories. The authors also propose a software tool, called Location Privacy Meter
(LPM), which implements this framework. The LPM consists of several attack
strategies based on complex algorithms. In our context, since it suits our scenario, we
consider the localization attack, which is explained in [26]. This attack is an attempt
to find the most likely location, at each time instant, for a particular user among all
of her observed locations, based on her observable events both in the past and in the
future. The complexity of this attack is O(T M2) [26] for one trace, where T is the
number of time instants and M is the number of locations in the area of interest (i.e.,
the monitored area).

3.4 Utility metrics

The utility of participatory sensing applications is crucial to their emergence and
economic sustainability. The utility in this context depends on the data quality, the
data relevance to the application and the data availability. Here, we focus on data
quality and availability aspects, namely the data accuracy, the data completeness and
the area coverage. We analyze the effect of privacy protection on utility, based on
the aspects explained below:

– Data Accuracy: As the users report imprecise or coarse-grained location (and/or
time) information in their sensed data, an error is introduced in the measure-
ments of other locations(and/or time instants). We measure the data inaccuracy
by means of the average absolute error (L1 norm) introduced to the sensed data
due to location/time obfuscation. We express the average absolute error as a
percentage of the data range.

– Data Completeness: One important factor that affects data availability is data
loss; some of the sensed data collected by the users might not be emitted (data
hiding) to the AS due to privacy concerns. We define the data completeness as
the percentage of the sensed data received by the AS.

– Area Coverage: Another component of the data availability is the percentage
of the area of interest, where sensor measurements are done by users. Various
privacy-enabling techniques differently affect the size of the total monitored
area: e.g. while data hiding tends to decrease it, location obfuscation tends to
increase it, as observed by the AS. As higher data hiding and larger obfuscation
negatively affect the data availability, we define the area coverage as the fraction
of the areas in which data is sensed over all areas where data is reported by the

1 D(loc1, loc2) can be the absolute distance function, in which case the expected distortion would be
in km or meters. We choose to normalize it for the sake of presenting results with a uniform upper
bound on the privacy level.
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users. Note that this metric is maximized at 1, i.e., all areas where data is reported
correspond to real points of sensor measurements.

4 Our adaptive scheme

In this section, we introduce a simple, yet effective location-privacy protection
scheme, that is built upon the existing privacy-preserving techniques of location
obfuscation and hiding. The main idea is that before each user submits data, she
should be able to estimate locally her expected privacy-level and configure the
protection mechanisms accordingly. This requires us to emulate an adversary’s
attack on user devices; however, due to limitations on processing power and also
battery capacities, we need to achieve this by implementing a light-weight approach.
The location-privacy quantification framework proposed by Shokri et al. [25, 26]
is very comprehensive and useful, but it is computationally heavy, as explained
in Section 3.3. Thus, we employ the distortion-based metric [24] and a Bayesian-
network approach on the user-side, in order to calculate locally an estimate of user
privacy-level on mobile devices. Note that in the remainder of this section, the term
‘node’ is used to refer to the users’ mobile devices, because it is user’s devices where
the scheme runs and users do not take action.

We employ location obfuscation for confusing the aggregation server (AS) about
the actual location of the sensed data. Location obfuscation is the generalization of
the fine-grained location information; we designate its granularity with λ, which is the
obfuscation parameter. As stated in Section 3, a location is a grid cell, and therefore,
an obfuscated area is a set of grid cells. In our strategy, a reasonable upper bound
λmax on λ is assumed, so that the sensor data remains useful for the participatory
sensing application.

In our scheme, we want to let people have the privacy protection level they desire.
In order to provide this, we define θ , the personal privacy threshold, which expresses
the desired level (i.e., the lower bound) of expected distortion (i.e., distance) from the
actual user location. This privacy threshold depends on the user’s sensitivity about
her privacy at a particular location, and it can be chosen by a user-specific function
of the desired absolute distance from the sensitive location (cf. Fig. 1).

The algorithm for determining the obfuscation is as follows. When a node has data
to submit, it calls the location obfuscation module with the lowest λ, i.e., λ = 1. Then,
it provides the output of this module—a set of locations constituting the obfuscation

Fig. 1 Absolute distance vs.
distortion. θ is the desired
privacy threshold and dθ is the
corresponding absolute
distance to achieve θ
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area—to the privacy level estimation module. The estimation is then compared
against the node’s privacy threshold θ . If θ is reached, then the node submits the
data to the AS with the last generated obfuscation area. Otherwise, it increases λ

and repeats the process. If λmax is reached, but not θ , then the data is not submitted.
Our obfuscation algorithm randomly determines the obfuscation area as ex-

plained in Section 4.1. A randomly chosen obfuscation area might be ineffective,
whereas another obfuscation area of the same size can provide sufficient privacy pro-
tection. Finding the optimal obfuscation area would be time and energy consuming,
hence we introduce a limit (i.e., by means of a counter) on the number of obfuscation
areas we try: αmax per λ level. α is the number of obfuscation areas that have been
tried for satisfying θ with the same λ value. As long as θ is not reached and α < αmax,
another obfuscation area of the same size is generated and privacy level is estimated
based on this new area. Otherwise, if λ < λmax, then λ is incremented and the process
is repeated. Figure 2 shows this adaptive privacy protection strategy as a flowchart.

We explain, in Section 4.1, the obfuscation mechanism we employ and in
Section 4.2 how local estimation is done.

4.1 Location obfuscation mechanism

The location obfuscation mechanism we employ in our proposed scheme and in the
static mechanisms takes two inputs: the obfuscation level λ and the actual location l
that is subject to obfuscation. Since the area of interest is discretized, the obfuscation
area to be generated consists of a set of grid cells including the actual location/cell l.

Fig. 2 Adaptive location-privacy protection system. Expected distortion estimation keeps track of
user history in case of active adversary assumption
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λ actually encodes the size of the obfuscation area in terms of cells. First, we
determine the size sx × sy of the obfuscation area according to λ as follows:

sx := 1 + �λ/2	
sy := 1 + 
λ/2� ,

where �.	 and 
.� are the ceiling and floor operations, respectively. Then, the area
of size sx × sy cells is randomly positioned over the actual location l. Note that
any deterministic choice for this positioning would render the area generalization
ineffective in terms of privacy, because the adversary can find the actual location by
trying different obfuscation areas iteratively. Randomization avoids adversary from
finding the actual location l, because in this case any of the locations in an obfuscation
area is equally likely the actual location without any a priori knowledge. Note that
some of the locations in an obfuscation area may be infeasible to reach from observed
location in the previous time instant due to the maximum speed constraint. Such
constraints are taken into account in the local privacy-level estimation described in
the next subsection.

Figure 3 shows an example of this obfuscation mechanism over a gridded area,
where the actual location l is in the center and λ = 6. The obfuscation area can
be positioned in the bounding box in this figure, so long as l remains part of it.
The two 4 × 4 squares in the figure represent the top-left and bottom-right possible
obfuscation areas with λ = 6.

4.2 Local privacy-level estimation

We calculate locally the expected privacy-level at the node, as explained below.
We maintain locally an event linkability graph at each node, as the one depicted
in Fig. 4. Each vertex in this graph represents an event observable by an adversary
at the corresponding time instant. An observable event corresponds to a data item
associated to a particular location, which is sent to the AS. The linkability graph
helps us to identify the trajectories that the AS observes and also to estimate its
belief about their authenticity.

In order to build the linkability graph, a node needs to know the geographical
topology of the area, i.e., it needs to know the potential connectivity among different
locations. It also needs to know the assumptions made by the AS for inferring
user trajectories. To this end, one important assumption made by the AS is the
maximum possible speed of a mobile node, which also determines the maximum

Fig. 3 The area in which an
obfuscation area of size 4 × 4
(sx = sy = 4) can be
positioned based on actual
location l given λ = 6
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(a)

(b) (c)

Fig. 4 Example of estimation of probabilities of possible trajectories for 3 time steps of a node.
a Possible moves in a single step for a node on the given area. b Real trace of a node and its
obfuscation decisions at each time instant. c Inferred linkability graph, on which the probabilities of
being there are assigned to each edge and vertex. Each vertex on this graph represents an observed
event from the node and the indices on the vertices are the location ids w.r.t. the area in Fig. 4a and b

possible distance between sequential vertices in time. A node can extract its own
maximum speed from its traces, but it is not practical for the AS to know this value for
each individual node. Nevertheless, he can make a global estimation on the average
maximum speed and choose it as the upper bound for all the nodes he wants to attack.
A node can construct, based on this knowledge, its linkability graph by connecting
the vertices (i.e., the observable events) that are adjacent in time and space.

Since the user may have to continuously disclose her data, hiding at a specific
time instant does not provide her with full privacy protection. Technically, hiding,
as perceived by the adversary, produces yet another obfuscation area that is the
maximum feasible one based on the maximum speed and the user’s previous reported
locations. In practice, for the current time instant, this yields all the locations that are
reachable from the locations in the previous time instant, and we consider all such
locations as observable events in the privacy-level estimation.

The linkability graph is progressively constructed as new events are produced over
time. The vertices corresponding to the current time-instant are connected to the
vertices from the previous time-instant, based on the feasibility of being adjacent in
space and time. If there are vertices with no children in the previous time instants,
then these vertices are identified to be impossible and are removed. The same is
applied to the vertices with no parents in the current time-instant. Note that the
elimination of vertices needs to be propagated in the whole graph because some
vertices in older time instants might lose all their children, which suggests that they
are no longer probable locations of the node.

We use the linkability graph and employ the Bayes rule to calculate the probability
that an observed event corresponds to the actual location of the node. The first time
observed events are inserted to the graph, a uniform probability 1/k is assigned
to each vertex, as dictated by the k-anonymity employed by the chosen location
obfuscation level, where k is the number of vertices. As new vertices are added
at a subsequent time-instant, they can only be children of those in the previous
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time-instant and their probabilities of being genuine are calculated according to
the Bayes rule. Also, after the elimination of impossible events, the probabilities
assigned to the siblings or parents of these events are updated and these updates are
propagated in the graph. The probability of an event being genuine is depicted in
Fig. 4 as a label beside its corresponding vertex. We explain the calculation of these
probabilities following the example of Fig. 4. Initially, at time t1, locations (1, 3) and
(1, 4) are reported by the node and thus Pr(loct1 = (1, 3)) = Pr(loct1 = (1, 4)) = 1/2.
Then, at time t2, the node reports two locations to the AS, namely (2, 4) and (2, 5).
We calculate the probability that location (2, 4) is genuine as follows:

Pr(loct2 = (2, 4))

= Pr(loct2 = (2, 4)|loct1 = (1, 3)) · Pr(loct1 = (1, 3))

+Pr(loct2 = (2, 4)|loct1 = (1, 4)) · Pr(loct1 = (1, 4))

= 1 · 1
2
+ 1

2
· 1

2
= 3

4

The same approach is applied for location (2, 5) and for the 4 observed locations
reported by the node at time t3. 2

After having calculated the probability of each leaf vertex being genuine, a node
calculates its expected distortion (ED) according to Eq. 2. For example, the ED of
the node in our example at time t3 is calculated as follows:

ED(u, t) =
∑

�

D(actual(u, t), �(t)) · Pr(�, t)

= 1 · 7
16

+ 0 · 7
16

+√
2 · 1

16
+ 1 · 1

16
,

where D(.) stands for the Euclidean distance in this example.

Background information So far, we have explained how the privacy leakage is
estimated locally by a mobile node, under the assumption of no background in-
formation about the node’s mobility at the adversary side. Now, we consider that
some background information on node’s mobility is possessed by the adversary.
Specifically, we assume that the adversary has, for each mobile node, a prior spatio-
temporal probability distribution with PDF π(X, t) over the locations X at time t
that is built based on partial leakage of location information. As the mobile node
does not know the exact leakage of its mobility, it samples its mobility history and
builds a similar prior distribution, in order to accurately estimate its privacy leakage
to the adversary by its emitted data. The prior distribution is employed to calculate
the transition probabilities between successive locations.

2Note that the size of the obfuscation area at time t3 is 2 × 2 (as shown in Fig. 4b), therefore there
are 4 vertices corresponding to 4 reported locations at this time instant.
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For example, in Fig. 5, assume a prior spatio-temporal distribution as follows:

π(X = (1, 3), t = t1) = 1/16, π(X = (1, 4), t = t1) = 1/8

π(X = (2, 4), t = t2) = 1/10, π(X = (2, 5), t = t1) = 1/20

π(X = (1, 5), t = t3) = 1/10, π(X = (2, 5), t = t3) = 1/5

π(X = (1, 6), t = t3) = 1/10, π(X = (2, 6), t = t3) = 1/20 .

By employing this prior distribution for calculating the transition probabilities, we
derive that:

Pr(loct1 = (1, 3)) = π(X = (1, 3), t = t1)
π(X = (1, 3), t = t1) + π(X = (1, 4), t = t1)

= 1/3

Pr(loct1 = (1, 4)) = π(X = (1, 4), t = t1)
π(X = (1, 3), t = t1) + π(X = (1, 4), t = t1)

= 2/3

Pr(loct2 = (2, 4) | loct1 = (1, 3)) = 1

Pr(loct2 = (2, 4) | loct1 = (1, 4))

= π(X = (2, 4), t = t2)
π(X = (2, 4), t = t2) + π(X = (2, 5), t = t2)

= 2/3

Pr(loct2 = (2, 5) | loct1 = (1, 4))

= π(X = (2, 5), t = t2)
π(X = (2, 4), t = t2) + π(X = (2, 5), t = t2)

= 1/3

Then, based on these transition probabilities, Pr(loct2 = (2, 4)) can be calculated
again as follows:

Pr(loct2 = (2, 4))

= Pr(loct2 = (2, 4)|loct1 = (1, 3)) · Pr(loct1 = (1, 3))

+Pr(loct2 = (2, 4)|loct1 = (1, 4)) · Pr(loct1 = (1, 4))

= 1 · 1
3
+ 2

3
· 2

3
= 7

9

Therefore, the background information can significantly affect the expected dis-
tortion that can be achieved by a privacy-protection strategy.

Fig. 5 Inferred linkability
graph when background
information is assumed to be
available at the adversary. The
prior spatio-temporal
distribution is employed to
find transition probabilities
between successive locations
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Complexity analysis The complexity of our algorithm is dominated by the main-
tenance of the linkability graph. Each time a data submission is about to be made,
the obfuscation module generates a maximum number of L locations constituting an
obfuscation area. This operation has time complexity O(L). The pairwise connec-
tivity check between the locations in consecutive time instants takes O(L2) times.
Later, the probabilities assigned to the current observed events are calculated in
O(L). Therefore, the time complexity of the whole process is O(L2). Note that
this process has to be repeated until θ is met. The number of repetitions, however,
is bounded by a constant maximum obfuscation parameter λ, thus, the total time
complexity of the whole estimation and protection operation remains O(L2). This is
a better performance than the LPM, as we explain in the following example: Given
an area of interest of 20 × 25 grid cells (i.e. M = 500) and a maximum obfuscation
parameter λ = 10, our complexity is O(362), whereas the LPM complexity is O(5002),
i.e., almost 250 times slower.

Our approach is lightweight in terms of space requirements as well. In addition
to map topology—which would be required by any client-side location-privacy
protection mechanism—our scheme only stores the linkability graph, where each
vertex has a probability value and location information. This results in O(T L)

vertices and O(T L2) edges in the worst-case, where T is the number of elapsed
time instants. These storage requirements can be easily handled by modern mobile
devices, that presumably have several GBs of storage capacity.

5 Evaluation

In this section, we assess the performance of our adaptive approach for protecting
location-privacy and compare its effectiveness with that of static protection policies
in terms of utility and privacy. To this end, we perform simulation experiments, with
not only artificial data sets, but also real data traces (explained in Section 5.1). The
estimate of the privacy level of a user, as observed by the AS, is measured by the
LPM [25, 26]. This software tool provides an objective estimate of the privacy level
of users, and its output belongs in [0, 1], with 0 meaning no privacy protection and 1
meaning maximum protection.

We replayed real data traces in a simulation environment, that we developed in
C++, and ran experiments using artificial data traces (cf. Section 5.2). We imple-
mented our adaptive strategy, along with static protection mechanisms of obfuscation
and hiding, which works with fixed λ and hiding probability Prh, respectively. λmax

was set to 10, which means that the largest possible obfuscation area is of size 6 × 6
grid cells. For expected distortion computation, we used Euclidean distance.

For the scenario in which some background information is assumed to be available
at the adversary, we let the AS monitor all user presence in 25 random locations.
Given a total of 500 grid cells in the sensed area, the expected number of node events
observable at the adversary is given by the formula below:

500∑

i=1

25
500

· (# events generated in li) (3)

In our dataset, each node has around 20,000 events on the average. Given the above
formula, the expected number of exposed events of a node corresponds to 1 % of
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Table 1 Parameters λ, Prh of
the Avg and Max static
policies experimentally found
to satisfy the various privacy
thresholds on average and
most of the time respectively

θ Avg Static Max Static

w/out BK w/ BK w/out BK w/ BK

λ Prh λ Prh λ Prh λ Prh

0.1 1 0 1 0.2 1 0.1 2 0.3
0.2 1 0.1 3 0.3 1 0.2 3 0.5
0.3 2 0.1 3 0.5 2 0.2 4 0.6
0.4 4 0.1 4 0.6 4 0.2 5 0.7
0.5 4 0.2 6 0.7 4 0.3 7 0.8
0.6 8 0.2 6 0.8 8 0.3 8 0.4
0.7 8 0.4 7 0.9 7 0.5 8 0.5
0.8 9 0.6 9 0.6 9 0.7 9 0.8
0.9 10 0.8 10 0.9 10 0.9 10 0.98

its generated events. The mobile node does not know which locations are monitored
by the adversary. Although, knowing that the expected total number of its leaked
events to the adversary is 1 %, it can consider a random 1 % of its generated events as
the background knowledge available at the adversary. This gives the node a chance
to take into account the adversarial background knowledge in the local inference
module.

First, we compare our adaptive strategy to combinations of the aforementioned
static mechanisms and experimentally prove the ineffectiveness of static policies at
satisfying user privacy requirements. Then, we demonstrate that our simple local
estimation of privacy is an accurate measurement. Subsequently, we analyze the
trade-off between utility (i.e., accuracy, area coverage, data completeness) and
privacy for different static policies and our adaptive privacy-enabling policy. To this
end, we define two different static policies for a given θ :

– Avg Static: This policy defines fixed Prh and λ that meet θ on the average; privacy
violations are allowed from time to time.

– Max Static: This policy defines fixed Prh and λ so that θ is met most of the time.
This is a rather conservative privacy-protection policy.

Note that these static policies employ the obfuscation mechanism described in
Section 4.1 and apply this mechanism statically with the predefined parameters.
They do not consider past or future events of the node when obfuscating the actual
location.

Table 1 shows the experimentally identified static privacy-protection policies
corresponding to each privacy threshold adapted in simulations, and Table 2 shows
the parameters we have used for the experiments.

Table 2 Experiment
parameters

Adaptive Static

θ 0.1–0.9 N/A
λ Adaptive 1–10
Prh N/A (Adaptive hiding) 0–0.9
# of nodes 20
Monitored area 25 × 20
λmax 10
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5.1 Real data trace

During the Lausanne Data Collection Campaign (LDCC) [20], run by Nokia Re-
search Center (Lausanne), a dataset of around 200 users collected. The data was
collected over a year from 2009 to 2011, from smart-phones that were provided to
the participants. We utilize 20 time-continuous user traces and we consider an area of
1.25 × 1.00 km2 from this dataset and partition it into 25 × 20 grid cells. The traces we
used in our simulations are one-day long and the time is slotted into 40 instants. We
fixed the maximum possible speed to 4 grid cells per time instant after analyzing the
maximum speed achieved in the real traces. Finally, for electrosmog measurements,
we employ the logged signal strength in dBm from the campaign.

5.2 Artificial data trace

To facilitate the comparison of our results with artificial data to those obtained with
real data, we assume an area of the same size (25 × 20 grid cells) as in the case of the
experiments with real data. We assume 20 mobile nodes that move around with the
random waypoint mobility model. The maximum speed is assumed to be 4 grid cells
per time slot. At each time slot, a mobile node senses an electrosmog measurement
(i.e., the signal strength) and submits through privacy protection mechanisms.

We model the electrosmog generation for our simulations with artificial data
as follows. The transmission power of base stations ranges from 10 W to 40 W,
depending on the network characteristics; we choose 20 W as the base station
transmission power in our setting. The frequency of channel is set to 900 MHz as
in GSM. We implement free space path loss on this value for each grid cell. There is
one base station centered in the area of interest and it covers the whole area in our
simulation. We also apply the Rayleigh fast-fading model upon the free-space path
loss to simulate a realistic urban area electromagnetic field distribution. Equation 4
shows the free-space path loss PL, where f is frequency in MHz and d is distance in
meters. Equation 5 shows the Rayleigh distribution, where R is the power in Watt,
and σ is the parameter of the Rayleigh distribution; we use the Rayleigh simulator
proposed by Komninakis [13] to apply Rayleigh fading in this setup. Note that, for
different frequencies, the characteristics of the electrosmog change, but currently
the other existing frequencies in use are greater than 900 MHz, which means that the
path loss will be much higher. Therefore, the measurements will yield lower values of
electrosmog as the distance increases. In this sense, the loss of generality is negligible
in regard to our choice of channel frequency.

PL = 20 log( f ) + 20 log(d) − 27.55 (4)

Pr(R) = R
σ 2 e−

R2

2σ2 (5)

5.3 Results

5.3.1 Inef fectiveness of static policies

As explained in Section 3.2, as nodes move and emit sensor data, the spatio-
temporal correlation between events can occasionally violate user θ when a static
privacy policy is employed. For example, we consider the time series of electrosmog
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Fig. 6 Privacy levels measured
by the LPM over time (40 time
instants in this example) for
part of one real trajectory in
cases of adaptive and average
static policies given θ = 0.5
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measurements emitted by a certain real user. We assume that θ = 0.5 for this user.
As depicted in Fig. 6, a static protection policy, which satisfies θ on the average, often
results in significant privacy violations. Our adaptive privacy-protection strategy, on
the contrary, dynamically adjusts location obfuscation and hiding behavior to almost
always meet θ . Note, at this point, that we measure user privacy in an objective way
from the AS point of view by employing the LPM in this figure. The LPM tends
to be a bit more conservative than the privacy level estimated locally at the node
(although highly correlated as shown later), which does not violate the user privacy
requirement by definition, as long as hiding is not chosen (hiding is the last resort for
a node to protect privacy. If θ is not met with even the largest λ, then it is possible that
hiding is also not enough). Another interesting aspect in Fig. 6 is that our adaptive
privacy policy meets θ as minimally as possible, given the employed techniques for
location obfuscation.

For all nodes from the real-data traces, the adaptive privacy policy needs to use
a number of different obfuscation levels and hiding probabilities in order to meet
different θ values, as depicted in Fig. 8. Evidently, due to the fluctuations of the
privacy exposure of the users caused by their mobility patterns, a wide spectrum of
parameters has to be used for achieving different privacy thresholds. This result is
also experimentally verified by artificial data traces. In addition, as shown in Fig. 7,
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Fig. 7 Level of privacy achieved by adaptive vs. static policies with a real and b artificial data traces.
c Level of privacy achieved in the case of background information available to the adversary with
real data traces
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Fig. 8 Parameters (λ = sx + sy − 2) chosen by the adaptive strategy for all (real) users over all
time steps vs. the local estimations of privacy levels a without background information and b with
background information

the “Avg Static” policy violates thresholds almost half of the time, whereas the
adaptive strategy almost always meets them for both real and artificial data. Average
values over all users and over all times are plotted in this figure, with a confidence of
interval 95 %. Note that meeting θ = 0.9 is very strict and sometimes infeasible with
the employed location privacy-enabling techniques, as Figs. 7 and 8 show.

5.3.2 Local estimation of privacy

Figure 9 shows the privacy levels achieved by the adaptive strategy, as estimated
locally at the nodes and externally by the LPM for different θ values. These results
represent average values and confidence intervals over all nodes. As shown for both
real- and artificial-data traces, privacy estimations by our simple approach are highly
correlated to the estimations by the LPM (i.e. Pearson correlation > 0.5) for all θ

values. Therefore, our simple approach is accurate enough to locally estimate the
level of location-privacy of mobile users.
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Fig. 9 Comparison of local privacy estimation (Node) to measurements by LPM (AS) over time with
a real and b artificial data traces
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Fig. 10 Percentaged absolute error (dBm) for a real and b artificial traces

5.3.3 Utility vs. privacy

In Fig. 7, observe that the adaptive protection strategy meets the various privacy
thresholds more narrowly, as compared to the “Max Static” policy. As a result, the
adaptive strategy is expected to deteriorate the utility of the participatory sensing
application less than any static one, while satisfying the privacy requirements of the
users. Indeed, the absolute error as a percentage of the data range introduced by
the adaptive strategy is lower than the respective errors by the two static policies,
as shown in Fig. 10. The results in this and the subsequent figures are average values
over all data items from all users and over all times with a confidence interval of 95 %.
Note that the results of the real- and the artificial-data traces are similar, despite the
significant difference in the mobility behavior of the users.

Moreover, we show the data loss from the two static policies and our adaptive
policy in Fig. 11. Notice that the data loss is significantly lower for reasonable privacy
requirements of the users, i.e., lower than 0.8 for real data and always for artificial
data. Also, the data loss for θ ≤ 0.6 is almost insignificant (∼15 % or less) for the
adaptive policy, and it is double or more for the two static policies for θ ≥ 0.2. This
was expected, as static policies need to employ a non-zero Prh throughout the sensing
process in order to satisfy even low θ values, as opposed to our adaptive strategy that
hides sensor data only when needed.

We measure the deterioration of the area coverage by the ratio of the actual
sensed area over the total area reported as sensed. As shown in Fig. 12, this utility
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Fig. 11 Data completeness with a real and b artificial traces
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Fig. 12 Area coverage with a real and b artificial traces

metric deteriorates significantly with high θ values. Although, the area coverage
degrades smoothly when the adaptive strategy is employed, as opposed to the static
policies. Note that in Figs. 10 and 11 there are small fluctuations; this is due to
mobility patterns of the users and also the probabilistic nature of data hiding for
static policies.

Overall, Figs. 10, 11, and 12 clearly demonstrate the trade-of f between utility
and privacy. Our results can be employed to derive feasibility conditions on the
application-utility and user-privacy requirements for the realization of a participa-
tory sensing application. Our adaptive privacy-protection strategy dominates any
static strategies that involve the same location-privacy protection techniques in terms
of utility for any user-privacy requirements that render the participatory sensing
application feasible.

5.3.4 Adversary background information

Here, we run experiments with the threat model that involves background infor-
mation at the adversary. The impact of adversarial background information on the
chosen privacy parameters by the adaptive privacy-protection strategy is depicted
in Fig. 8b. As observed therein, our adaptive strategy performs almost as well as in
the case of no background information (cf. Fig. 8a). In fact, the prior background
information causes the adversary to be biased and therefore enable the nodes to
choose parameters lower than before. For example, for θ = 0.3, some nodes chose
strategy 2, 2 in Fig. 8b, as opposed to the case in Fig. 8a. Also, as depicted in Fig. 7,
the user loses some privacy due to the adversary background information, but the
amount of loss is negligible. Our adaptive approach is still adaptive enough to protect
the user privacy in this threat model, despite the existence of background information
at the adversary.

Regarding utility, comparing the data completeness in the cases with background
information at the adversary (cf. Fig. 13) and without background information
(cf. Fig. 11), we observe that they exhibit similar trends. Thus, introducing some
background information to the adversary does not cause utility deterioration when
the adaptive privacy-protection strategy is employed. However, notice that both
static privacy-protection strategies significantly deteriorate utility, since they need
to employ larger static parameters than before, in order to meet the various privacy
thresholds. Similar findings are observed for the other utility parameters, namely
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Fig. 13 Data completeness in
percentage in the case of
adversarial background
information
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data accuracy and area coverage, when background information is available at the
adversary. Therefore, in the presence of background information at the adversary,
the employment of an adaptive privacy-protection scheme becomes more important.

5.4 Discussion

In our work so far, we have considered the maximum speed of users, known real
identities of sensor-data sources, and additional background information on user
mobility history as background knowledge at the adversary. Repetitive trajectories
of a user can be another type of background knowledge, which, when accumulated
at the adversary, can pose additional privacy threats for the user: People generally
move in regular patterns (i.e., on a daily basis), for example from home to work
in the morning. If a user generates a different obfuscated trajectory each time he
moves along the same trajectory, then an adversary can find the real trajectory in
time. However, a simple modification to our adaptive privacy-preserving scheme can
eliminate this threat. Specifically, a mobile user has to keep track of her privacy
preserving actions along repetitive trajectories (i.e., the obfuscated area for each
actual location, per repetitive trajectory) and reuse them in the future. In this
way, the privacy leakage due to repetitive trajectories would be limited. Moreover,
in order to keep storage overhead bounded, a LRU replacement policy could be
employed. The experimental evaluation of this approach is left for future work.

Also, an adversary might employ other background information, such as location
semantics, which could be of great help for identifying the real user traces and the
user activities. This kind of background information can be modeled as probability
distributions over space and time for each user and included in Bayesian inference
model employed on the user device.

Another issue that needs addressing is the usability of our approach. We designed
our scheme with an automated software tool embedded in localization modules in
mind. The average mobile user would not like having to interact with his device
every time his location is used by an application. Therefore, our system should be
triggered automatically whenever an application asks for the user’s location. Such an
automation will provide users with a peace of mind in terms of privacy protection.
Furthermore, it might not be straightforward for mobile users to interpret the privacy
levels, i.e., the expected distortion values, and hence their θ inputs. Here, the privacy



Geoinformatica (2014) 18:165–191 187

levels need to be conveyed to users in the form of “average confusion from actual
location in meters”, which can be done using the normalization factor used in the
estimation. For example, in our experiments, the normalization is done by 4-hop
distance (i.e., the max-speed) which is around 200 meters. In this case, a privacy level
of 0.7 yields a confusion of around 140 meters from the actual location.

Last but not least, our system can be extended with location sensitivities, where
users input different θ values for their sensitive locations. This would result in an
even more dynamic and personalized privacy-protection system. Such an extension
can even take into account location semantics, which would enable the batch setting
of the user privacy thresholds.

6 Conclusion

In the context of participatory sensing, we have defined a simple, yet effective,
adaptive location-privacy protection scheme. Our approach is based on estimating
locally in real-time the expected location-privacy level at the user-side, which enables
her to adapt her privacy parameters with respect to her mobility, in order to satisfy
an individual privacy constraint. We have experimentally showed the accuracy of
our approach for privacy estimation and the effectiveness of our adaptive privacy-
protection strategy, as opposed to static ones. Our adaptive approach achieves more
application utility than static policies, and satisfies the individual privacy require-
ments of the users in case whether background information on the user’s mobility
history is available to the adversary or not. Furthermore, we have demonstrated the
trade-of f between application utility and user privacy in the context of participatory
sensing. As experimentally found, our adaptive privacy-protection scheme is able to
maintain high data utility, while satisfying the user privacy requirements. Our results
can be used to derive feasibility conditions on the desired application utility and user
privacy requirements. The proposed approach is easy to deploy on current mobile
devices and supports continuous and sporadic location dissemination by users.

As future work, we plan to consider the existence of application-related back-
ground information and topological information that constrains the location obfus-
cation of the user; we also plan to include additional privacy-enabling techniques in
our adaptive policy.
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