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Abstract In this paper, we propose a novel preconditioned solver for generalized
Hermitian eigenvalue problems. More specifically, we address the case of a definite
matrix pencil A − λB , that is, A, B are Hermitian and there is a shift λ0 such that
A−λ0B is definite. Our new method can be seen as a variant of the popular LOBPCG
method operating in an indefinite inner product. It also turns out to be a generalization
of the recently proposed LOBP4DCG method by Bai and Li for solving product
eigenvalue problems. Several numerical experiments demonstrate the effectiveness
of our method for addressing certain product and quadratic eigenvalue problems.

Keywords Eigenvalue · Definite matrix pencil · Minimization principle · LOBPCG

1 Introduction

The Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
proposed by Knyazev [16] aims at computing the smallest eigenvalues of a matrix
pencil

A− λB, (1)
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where A,B ∈ C
n×n are both Hermitian and, additionally, B is positive definite.

LOBPCG is particularly well suited for the situation when A,B are the stiffness and
mass matrices from the finite element discretization of an elliptic PDE-eigenvalue
problem. In this case, the Lanczos method [3] applied to A (in the inner product
induced by B) can be expected to converge very slowly towards the smallest eigen-
values. In principle, this issue can be resolved by applying the Lanczos method to
A−1. However, depending on the application, the exact inversion of A may be consid-
ered too costly. In contrast to the Lanczos method, LOBPCG allows for the effective
use of a preconditioner T instead of A−1. For example, a multigrid preconditioner
T results in convergence rates that do not depend on the mesh width of the finite
element discretization [17].

In this paper, we consider variants of LOBPCG suitable for indefinite B . More
specifically, we consider the case where A,B are Hermitian and there is a shift λ0
such that A− λ0B is (positive) definite. A matrix pencil with this property is called
(positive) definite. Eigenvalue problems with positive definite matrix pencils arise,
for example, in computational quantum chemistry [4] and mechanics [37].

The theoretical properties of positive definite matrix pencils have been stud-
ied intensively, see [37] and the references therein. Also, a number of numerical
algorithms have been proposed. Often, these algorithms can be seen as “indefi-
nite extensions” of standard symmetric eigenvalue solvers, that is, they operate in
the indefinite inner product induced by B . Not all of these extensions require (or
make use of) the definiteness of the pencil. Examples of such extensions include a
Rayleigh quotient method [22], indefinite Lanczos methods [3, 22], indefinite Jacobi
algorithms [13, 36], as well as many structure-preserving methods for Hamiltonian
matrices, see [7] for an overview. In this work, we will propose an indefinite exten-
sion of LOBPCG. We are not aware of any other preconditioned eigenvalue solver
tailored to definite pencils.

This work has been inspired by the work of Bai and Li [4–6], who proposed an
LOBPCG-like algorithm for computing the smallest eigenvalues of the matrix prod-
uct KM , where K , M are Hermitian positive semidefinite matrices and one of them
is definite. This problem is equivalent to computing the eigenvalues closest to zero
of the matrix pencil

[
K 0
0 M

]
− λ

[
0 I

I 0

]
. (2)

Clearly, this pencil is positive definite (with shift λ0 = 0), when both K and M are
positive definite.

The rest of this paper is organized as follows. In Section 2, we recall existing
results on eigenvalue interlacing and trace minimization properties for definite matrix
pencils. Section 3 contains our newly proposed algorithm, along with detailed imple-
mentation remarks. Moreover, a connection to the preconditioned inverse iteration
will provide some insight into the expected convergence behavior and give rise to
a variant of the algorithm that incorporates two preconditioners. When applied to
the product eigenvalue problem (2), it will be shown in Section 4 that this algo-
rithm essentially coincides with the method by Bai and Li, after some reorganization.
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In Section 5, we illustrate the numerical behavior of our new algorithm for several
examples.

2 Preliminaries

In the following, we briefly recall some known facts for definite matrix pencils, see,
e.g., the textbooks [11, 37] for more detailed treatments.

The most fundamental property of a definite pencil is that it can be diagonalized
by a congruence transformation.

Theorem 2.1 ([21, 24]) Let A− λB be an n× n positive definite matrix pencil such
that B has inertia1 In(B) = (n+, n−, n0). Then there is an invertible matrix W such
that

WHAW − λWHBW =
⎡
⎣�+

−�−
In0

⎤
⎦ − λ

⎡
⎣In+

−In−
0n0

⎤
⎦ , (3)

where �+ = diag(λ+1 , . . . , λ+n+), �− = diag(λ−1 , . . . , λ−n−) with

λ−n− ≤ · · · ≤ λ−1 < λ+1 ≤ · · · ≤ λ+n+ . (4)

Clearly, the decomposition (3) implies that A−λ0B is positive definite if and only
if λ−1 < λ0 < λ+1 holds. In the following, any such λ0 will be called definitizing shift
and interval (λ−1 , λ

+
1 ) will be called definiteness interval.

Definition 2.2 Let B ∈ Cn×n be Hermitian. A vector x ∈ Cn is called B-positive,
B-negative, B-neutral if xHBx > 0, xHBx < 0, xHBx = 0, respectively.

Since the columns of W are eigenvectors of A − λB , it follows from (3) that an
eigenvector x belonging to any of the eigenvalues λ+1 , . . . , λ+n+ (λ−1 , . . . , λ−n−) is
B-positive (B-negative). In particular, any eigenvector x belonging to a finite eigen-
value of A − λB cannot be B-neutral. This allows to always normalize x such that
|xHBx| = 1. Moreover, eigenvectors x1, x2 belonging to different eigenvalues are
B-orthogonal: xH1 Bx2 = 0.

2.1 Eigenvalue interlacing and trace minimization

The classical Cauchy interlacing theorem for Hermitian matrices extends to definite
pencils.

1Note that the inertia In(B) of a Hermitian matrix B is defined as the triple containing the number of
positive, negative, and zero eigenvalues of B.



684 Numer Algor (2014) 66:681–703

Theorem 2.3 Let A − λB be an n × n positive definite matrix pencil and let U ∈
Cn×p have full column rank. Then the compressed matrix pencil UHAU − λUHBU

is also positive definite; hence its eigenvalues are real and can be ordered as follows:

θ−p− ≤ · · · ≤ θ−1 < θ+1 ≤ · · · ≤ θ+p+, (5)

with In(UHBU) = (p+, p−, p0). Moreover, we have the eigenvalue interlacing
properties

λ+i ≤ θ+i ≤ λ+i+n−p for 1 ≤ i ≤ p+, (6)

λ−j ≥ θ−j ≥ λ−j+n−p for 1 ≤ j ≤ p−, (7)

where we formally set λ+i = +∞ for i > n+ and λ−j = −∞ for j > n−.

Proof The statement of this theorem is a variation of a result in [20, Thm 2.1],
from which it can be easily deduced. It also follows directly from the minimax
principle [22, Thm 3.1] for definite matrix pencils.

As explained in [20, 24], the result of Theorem 2.3 can be used to prove the
following Ky-Fan-type theorem, also known as trace minimization principle.

Theorem 2.4 Let A − λB be an n × n positive definite matrix pencil with the
eigenvalues ordered as in (4). Moreover, let

Jk =
[
Ik+

−Ik−

]

for some integers k+, k− satisfying (k+, k−, 0) ≤ In(B), where the inequality is
understood elementwise. Then

min
X ∈ Cn×k

XHBX = Jk

trace (XHAX) =
k+∑
i=1

λ+i −
k−∑
j=1

λ−j . (8)

Moreover, any minimizer Xmin of (8) has the property that its first k+ columns con-
sist of eigenvectors belonging to λ+1 , . . . , λ+k+ and its last k− columns consist of

eigenvectors belonging to λ−1 , . . . , λ−k− .
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It follows from the first part of Theorem 2.3 that the conditions of Theorem 2.4
are also satisfied for

UHAU − λUHBU,

provided that U ∈ Cn×p has full column rank. If we moreover assume that

(k+, k−, 0) ≤ In(UHBU) (9)

then Theorem 2.4 implies

min
Y ∈ Cp×k

(UY )HB(UY) = Jk

trace (UY )HA(UY) =
k+∑
i=1

θ+i −
k−∑
j=1

θ−j , (10)

with the eigenvalues θ+i , θ−j of UHAU − λUHBU ordered as in (5). It now follows
from the second part of Theorem 2.3 that

min
X ∈ Cn×k

XHBX = Jk

trace (XHAX) ≤ min
Y ∈ Cp×k

(UY )HB(UY) = Jk

trace (UY )HA(UY), (11)

with equality if and only if U is spanned by eigenvectors belonging λ+1 , . . . , λ+k+ and

λ−1 , . . . , λ−k− .
Finally, we will provide a basic result which follows directly from Sylvester’s law

of inertia and will be useful to guarantee a certain property of our algorithm.

Lemma 2.5 Let B ∈ Cn×n be Hermitian, and consider a partitioned matrix U =
[X, Y ] ∈ Cn×p. Moreover, let In(XHBX) =: (k+, k−, k0) and In(UHBU) =:
(p+, p−, p0). Then

k+ ≤ p+, k− ≤ p−.

3 Algorithms

In the following, we will develop LOBPCG-like methods for approximating the inner
eigenvalues λ+1 , . . . , λ+�+ and λ−1 , . . . , λ−�− of a positive definite pencil A − λB . In
principle, the integers �+, �− can be freely chosen, but our algorithms aim at the case
when both �+ and �− are small.

In the spirit of the standard LOBPCG method we produce a sequence of matrices

X(0), X(1), X(2), . . . ∈ C
n×k, k = k+ + k− ≥ �+ + �−,
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as follows. In the ith iteration of the algorithm, we consider the subspace

U = span
[
X(i),W(i), X(i−1)],

with the preconditioned residual

W(i) = T ·
(
AX(i) − BX(i)�(i)

)

for some Hermitian positive definite matrix T ∈ Cn×n and

�(i) := (
(X(i))HBX(i)

)−1
(X(i))HAX(i).

Then we choose X(i+1) ∈ Cn×k according to the trace minimization principle (8),
but under the additional constraint span(X(i+1)) ⊂ U :

X(i+1) := arg min trace (XHAX)

span(X) ⊂ U
XHBX = Jk

= arg min trace(XHAX),

X = UY, Y ∈ C
3k×k (12)

XHBX = Jk

where U ∈ Cn×3k is any basis of U . Clearly, (13) has a finite value if and only if
(k+, k−, 0) ≤ In(UHBU). Based on (10), we can then compute X(i+1) = UY (i+1)

by letting Y (i+1) ∈ C3k×k contain the eigenvectors belonging to the eigenvalues
θ+1 , . . . , θ+k+, θ

−
1 , . . . , θ−k− of UHAU − λUHBU . We assume these eigenvectors to

be normalized such that (
Y (i+1))H (

UHBU
)
Y (i+1) = Jk. (13)

3.1 An indefinite LOBPCG method with one preconditioner

The discussion above leads to Algorithm 1, our first indefinite variant of LOBPCG.
Several remarks on the use and implementation of Algorithm 1 are in order:

Input The user is required to supply a valid initial guess X(0) in the sense that

In
(
(X(0))HBX(0)) = (k+, k−, k0) ≥ (�+, �−, 0)

holds. Note that the inequality k± ≤ p± on In
(
(U(i))HBU(i)

) = (p+, p−, p0)

then holds for all iterations. This fact follows by induction from Lemma 2.5. In
many applications, choosing such a valid initial guess is quite straightforward as B
often has a particular structure, for example when B is diagonal.

When there are clusters in the spectrum, it can sometimes be helpful to choose
k+ and/or k− strictly larger than the number of desired eigenvalues, see also the
discussion in [5].

Lines 1 and 12 For the standard LOBPCG method it has been observed that choos-
ing an orthonormal basis leads to improved numerical stability [14]. We have made
a similar observation when choosing a B-orthonormal basis in Algorithm 1. We
therefore apply a Gram-Schmidt procedure (in the B-inner product) to the columns
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Algorithm 1 Indefinite LOBPCG method with one preconditioner

Input: A, B ∈ Cn×n: coefficients of positive definite pencil A− λB;
T ∈ C

n×n: Hermitian positive definite preconditioner;
�+, �−: #desired B-positive/B-negative eigenvalues;
X(0) ∈ Cn×k: initial guess s.t. (�+, �−, 0) ≤ In

[
(X(0))HBX(0)

]
.

Output: �+ smallest B-positive eigenpairs and �− largest B-negative eigenpairs.

1: B-orthonormalize X(0).
2: (�(0), V (0)) ← RR(X(0), A, B).
3: X(0) ← X(0)V (0), P (0) ← [].
4: for i = 0, 1, . . . do
5: R(i) = AX(i) − BX(i)�(i).
6: (optional) Deflate converged eigenvalues.
7: if all desired eigenvalues are converged then
8: Exit loop.
9: end if

10: W(i) ← T · R(i).
11: U(i) ← [X(i),W(i), P (i)].
12: B-orthonormalize U(i).
13: (�(i+1), V (i+1)) ← RR(U(i), A, B).
14: P (i+1) ← U

(i)
2 V

(i+1)
2 , X(i+1) ← U

(i)
1 V

(i+1)
1 + P (i+1).

15: end for

of the current basis U(i) ≡ U = [u1, u2, . . . , up]. The first step of this proce-
dure consists of normalizing u1: u1 ← u1

/|uH1 Bu1|1/2. Let us now suppose that
the first � − 1 columns U�−1 = [u1, u2, . . . , u�−1] are already B-orthonormal.
Then the �th step takes the form

u� ← u� − U�−1JU
H
�−1Bu�,

u� ← u�
/|uH� Bu�|1/2,

where, by construction, J := UH
�−1BU�−1 = diag{±1} is a diagonal matrix with

±1 on the diagonal. As discussed in [3, Sec. 8], a careful implementation of this
scheme should use reorthogonalization or a modified Gram-Schmidt procedure to
avoid instabilities.

There is an additional complication due to the fact that the Gram-Schmidt pro-
cedure may encounter B-neutral vectors u� even when UHBU is nonsingular.
This can be avoided by preprocessing U such that |uH� Bu�| is monotonically
decreasing. One way to achieve this is to perform a factorization of the form

�HUHBU� = LDLH ,

where � is a permutation matrix and D is a diagonal matrix with diagonal entries
of decreasing magnitude.



688 Numer Algor (2014) 66:681–703

We refer, e.g., to [12] for a description of the algorithm. Zero diagonal entries
correspond to B-neutral vectors, which can (and should) be purged from the basis.
In exact arithmetic, the columns of U ← U�L−H are already B-orthogonal and
we could proceed by simply scaling the columns of U . However, we have observed
that it is numerically safer to nevertheless perform a Gram-Schmidt procedure on
the preprocessed U .

Lines 2 and 13 The function RR(U,A, B) performs standard Ritz pair extraction
by computing the eigenvalues and eigenvectors of the compressed pencil

Ã− λB̃ := UH(A− λB)U.

Suppose that these eigenvalues are ordered such that

θ−p− ≤ · · · ≤ θ−1 < θ+1 ≤ · · · ≤ θ+p+,

Note that the correct signature of the eigenvalues can be determined by, e.g.,
testing whether the corresponding eigenvector is B̃-positive or B̃-negative.

Then RR(U,A, B) returns

� = diag
(
θ−k− , . . . , θ

−
1 , θ+1 , . . . , θ+k+

)
V = [

v−k−, . . . , v
−
1 , v

+
1 , . . . , v

+
k+

]
,

where v±i is the eigenvector of Ã − λB̃ belonging to θ±i . The Ritz pairs are then
given (θ±i , Uv±i ).

Line 6 Once some Ritz pair has converged within the desired accuracy, it is sensi-
ble to deflate it to avoid unnecessary further computations. In our algorithm, we
use a conservative “deflate from the middle” strategy: A B-positive Ritz value θ+j
is deflatable if and only if all smaller Ritz values θ+i , with 1 ≤ i ≤ j − 1, are
deflatable and

‖Ax+j − θ+j Bx+j ‖2 ≤ tol · |θ+j | ‖B‖2‖x+j ‖2, (14)

where x+j = Uv+j is the corresponding Ritz vector and tol is a tolerance specified
by the user. This strategy helps reduce the chance that we deflate a Ritz value
approximating an undesired eigenvalue λ+� with � > k+, even if this seems to be a
rare event in practice. An analogous criterion is applied to B-negative Ritz values.
The deflation of Ritz pairs proceeds in the same way as in the standard LOBPCG
method [23]: Deflated Ritz vectors do not participate in the computation of R(i)

or P (i). However, they still need to participate in the B-orthonormalization process
to avoid repeated convergence to the same eigenvalue.

Lines 11 and 14 Because X(i−1) and X(i) tend to contain the same information as i
increases, the natural basis

[
X(i),W(i), X(i−1)

]
for U is severely ill-conditioned.

To avoid this effect, we choose a different basis
[
X(i),W(i), P (i)

]
, pretty much in

the same way as suggested for the standard LOBPCG method [14, 16, 23]. For
this purpose, the 3k × k matrix V (i+1) returned by RR is partitioned as

V (i+1) =
[
V

(i+1)
1

V
(i+1)
2

]
, V

(i+1)
1 ∈ C

k×k, V
(i+1)
2 ∈ C

2k×k,
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and U(i) = [U(i)
1 , U

(i)
2 ] is partitioned accordingly. Then the update

P (i+1) ← U
(i)
2 V

(i+1)
2 , X(i+1) ← U

(i)
1 V

(i+1)
1 + P (i+1).

yields a basis that — in exact arithmetic — spans the same space as the natural
basis. Note that this makes use of the fact that the first k columns of U(i) (which
are already B-orthogonal) are not changed in a careful implementation of the B-
orthogonalization process.

3.2 Convergence analysis of Algorithm 1

As for the standard LOBPCG method, a complete convergence analysis of Algo-
rithm 1 is currently out of reach. However, a connection to simpler gradient methods,
such as PINVIT [27, 28] (preconditioned inverse iteration) and the preconditioned
subspace iteration [18, 29], provides some intuition when we can expect good
convergence. For simplicity, we discuss this connection only for the setting when
Algorithm 1 is used with k = 1 and only λ+1 is desired.

Set Ã := A− λ0B for a definitizing shift λ0. Then B − μÃ is a Hermitian pencil
with positive definite Ã and its eigenvalues are related to the eigenvalues of A− λB

via μ = 1/(λ− λ0). Suppose that the preconditioner T ≈ Ã−1 satisfies

‖I − T Ã‖Ã ≤ γ < 1, (15)

where ‖ · ‖Ã denotes the matrix norm induced by Ã. Starting from an initial vector
x(0) �= 0, we consider the following gradient iteration [9, 19]:

μ(i) = (x(i))HBx(i)

(x(i))H Ãx(i)
,

x(i+1) = x(i) + 1

μ(i) − μmin
T · (Bx(i) − μ(i)Ãx(i)

)
, (16)

where μmin = 1/(λ−1 − λ0).
Provided that μ2 < μ(i) ≤ μ1 and (15) holds, the analysis in [18, 19] provides the

sharp convergence estimate

μ1 − μ(i+1)

μ(i+1) − μ2
≤ η2μ1 − μ(i)

μ(i) − μ2
with η = 1 − (1 − γ )

μ1 − μ2

μ1 − μmin
,

where μj := 1/(λ+j − λ0) for j = 1, 2. Asymptotically, as μ(i) → μ1, we have

(μ(i+1)−μ2)/(μ
(i)−μ2) → 1. In terms of the eigenvalues of A−λB , we therefore

obtain for λ(i) := 1/μ(i) + λ0 that

λ(i+1) − λ+1
λ(i) − λ+1

� η2 with η = 1 − (1 − γ )
λ+2 − λ+1
λ+1 − λ−1

· λ0 − λ−1
λ+2 − λ0

. (17)
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When applying Algorithm 1 with k = 1, the Ritz vector defining the next iterate
is chosen from a larger subspace U = span{x(i), w(i), x(i−1)}. Using

θ(i) = (x(i))HAx(i)

(x(i))HBx(i)
= 1

μ(i)
+ λ0,

the preconditioned residual satisfies

w(i) = T · (Ax(i) − θ(i)Bx(i)
) = − 1

μ(i)
T · (Bx(i) − μ(i)Ãx(i)

)
.

In particular, this shows that the next iterate x(i+1) produced by the gradient
method (16) is contained in U . Hence, the eigenvalue interlacing property of Theo-
rem 2.3 implies that the Ritz value θ+1 computed in Algorithm 1 is at least as close
to λ+1 as the eigenvalue approximation λ(i+1) = 1/μ(i+1) + λ0 computed by (16).
Hence, Algorithm 1 converges at least linearly with the asymptotic convergence rate
η2. This convergence rate crucially depends on a reasonable gap between λ−1 and λ0

relative to the gap between λ0 and λ+2 , as well as on the quality of the preconditioner
measured by (15). This shows that one needs some knowledge on the definiteness
interval to construct effective preconditioners, despite the fact that Algorithm 1 itself
does not require this information.

For k > 1, an analysis of Algorithm 1 can be performed via a similar connection
to the preconditioned subspace iteration, using the convergence analysis in [18, 29].

It is important to note that the convergence of Algorithm 1 will usually be much
faster than predicted by the analysis above. There is a variety of more refined anal-
yses, yielding improved convergence bounds for the standard LOBPCG method;
see [30, 31] and the references therein. It is not unlikely that these improved bounds
extend to Algorithm 1, see also [26].

3.3 An indefinite LOBPCG with two preconditioners

The convergence of Algorithm 1 heavily relies on a good choice of the precondi-
tioner T , especially in the presence of eigenvalue clusters. The analysis of Section 3.2
suggests that choosing T+ ≈ (A − λ+0 B)−1 with a definitizing shift λ+0 close to λ+1
yields reasonable convergence for the smallest B-positive eigenvalues. Similarly, a
preconditioner T− ≈ (A − λ−0 B)−1 with a definitizing shift λ−0 close to λ−1 is well
suited for the largest B-negative eigenvalues. However, it will be difficult to find a
shift that works equally well for both sets of eigenvalues. A pragmatic remedy is to
run Algorithm 1 two times with the two different preconditioners T+ and T−; one run
focusses on the B-positive eigenvalues and the other run focusses on the B-negative
eigenvalues.

However, there is a more elegant solution. We can simply include both precondi-
tioned residuals into the subspace:

span
[
X(i), T+R(i), T−R(i), X(i−1)],

with R(i) = AX(i) − BX(i)�(i). This increases the dimension of the subspace. To
avoid this, we split the residual in two parts: R+ and R− associated with B-positive
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Ritz values and B-negative Ritz values, respectively. Taking the focus of the precon-
ditioner into account, it makes sense to apply T+ only to R+ and T− only to R−. This
idea yields the subspace

span
[
X(i), T+R(i)

+ , T−R(i)
− , X(i−1)].

The indefinite variant of the LOBPCG method resulting from this choice is given
in Algorithm 2. The discussion of Section 3.1 concerning implementation details of
Algorithm 1 extends in a direct manner to Algorithm 2.

3.4 Error estimates for computed eigenvalues

At the termination of our algorithms, the obtained Ritz pairs satisfy the bound (14)
on the norm of their residuals. By a perturbation analysis, one can then derive
upper bounds on the accuracy of the computed eigenvalues and eigenvectors. Such
perturbation analyses for definite pencils can be found, e.g., in [34, 35].

To illustrate such an eigenvalue perturbation bound, consider a Ritz pair (λ̂, x̂)

with the corresponding residual vector r = Ax̂− λ̂Bx̂. Then one can construct back-
ward errors 
A,
B such that (λ̂, x̂) is an exact eigenpair of (A+
A)−λ̂(B+
B).

Algorithm 2 Indefinite LOBPCG method with two preconditioners

Input: A, B ∈ Cn×n: coefficients of positive definite pencil A− λB;
T+, T− ∈ Cn×n: Hermitian positive definite preconditioners;
�+, �−: #desired B-positive/B-negative eigenvalues;
X(0) ∈ Cn×k: initial guess s.t. (�+, �−, 0) ≤ In

[
(X(0))HBX(0)

]
.

Output: �+ smallest B-positive eigenpairs and �− largest B-negative eigenpairs.

1: B-orthonormalize X(0).
2: (�(0), V (0)) ← RR(X(0), A, B).
3: X(0) ← X(0)V (0), P (0) ← [].
4: for i = 0, 1, . . . do
5: R(i) = AX(i) − BX(i)�(i).
6: (optional) Deflate converged eigenvalues.
7: if all desired eigenvalues are converged then
8: Exit loop.
9: end if

10: W
(i)
+ ← T+ · R(i)

+ , W(i)
− ← T− · R(i)

− .

11: U(i) ← [X(i),W
(i)
+ ,W

(i)
− , P (i)].

12: B-orthonormalize U(i).
13: (�(i+1), V (i+1)) ← RR(U(i), A, B).
14: P (i+1) ← U

(i)
2 V

(i+1)
2 , X(i+1) ← U

(i)
1 V

(i+1)
1 + P (i+1).

15: end for
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For sufficiently small ‖r‖2, this perturbed pair remains positive definite and we
have

|λ̂− λ| ≤ 2

∣∣∣∣ λ− λ0

λ+1 − λ−1

∣∣∣∣ · ‖r‖2

‖x̂‖2
, (18)

where λ0 = (λ+1 + λ−1 )/2. This bound can be estimated once sufficiently accurate
approximations to λ±1 have been obtained.

The bound (18) is derived by applying Weyl’s inequality to an equivalent
Hermitian eigenvalue problem. Similarly, a Temple-Kato type quadratic residual
bound is derived from [32, Thm. 11.7.1]:

|λ̂− λ| ≤ 4

gap(λ̂)(λ+1 − λ−1 )
·
∣∣∣∣λ− λ0

λ̂− λ0

∣∣∣∣ · ‖r‖
2
2

‖x̂‖2
2

, (19)

where

gap(λ̂) = inf
{∣∣(λ̂− λ0)

−1 − (λ− λ0)
−1

∣∣ : λ is an eigenvalue of A− λB
}
.

Using techniques in [25, 33], the residual bounds can be extended to the case when a
subspace is computed.

4 Application to the product eigenvalue problem

In this section, we consider the application of our indefinite LOBPCG method to
compute the � smallest eigenvalues of matrix productKM for Hermitian positive def-
inite K,M ∈ Cm×m. As discussed in the introduction, this is equivalent to computing
the inner eigenvalues of the matrix pencil

A− λB =
[
K 0
0 M

]
− λ

[
0 I

I 0

]
. (20)

More specifically, λ2 is an eigenvalue of KM if and only if ±λ are eigenvalues of
A− λB . Moreover, the corresponding eigenvectors of A− λB are given by

[
x

y

]
,

[
x

−y

]
, (21)

where x and y are eigenvectors of MK and KM , respectively, belonging to λ2.
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Since the pencil A − λB in (20) is positive definite, Algorithm 2 can be applied
straightaway to it. However, it turns out that we can reorganize this algorithm to
reflect the structure (21) of the eigenvectors and reduce its computational cost. In the
following, we illustrate how this is achieved.

Trace minimization Due to the symmetry of the eigenvalues, the trace minimization
principle (8) applied to the pencil (20) reads

min
Z∈C2m×k

ZHBZ=Jk

trace(ZHAZ) =
k+∑
i=1

λ+i −
k+∑
j=1

λ−j = 2
k+∑
i=1

λ+i , (22)

where k = 2k+ and λ+1 , . . . , λ
+
k+ are the smallest positive eigenvalues of A − λB .

Because of the symmetry (21) of the eigenvectors, the minimizer Z∗ can be chosen as

Z∗ =
[
X∗ X∗
Y∗ −Y∗

]
. (23)

Hence, we can additionally require the matrix Z in (22) to have the same block struc-
ture. The B-orthogonality condition ZHBZ = Jk then becomes XHY = 1

2Ik+ for
the blocks X, Y of Z. To summarize, we arrive at a trace minimization principle of
the form

2
k+∑
i=1

λ+i = min
XHY= 1

2 Ik+
2 trace(XHKX+YHMY) = min

XHY=Ik+
trace(XHKX+YHMY).

(24)

This turns out to be identical with the minimization principle in [5], from which
LOBP4DCG is derived. A similar observation has been made in [4, Remark A.1].
This already strongly indicates that LOBP4DCG can be viewed as a special case of
Algorithm 2 applied to (20). To draw this conclusion, we need to impose additional
requirements on the initial guess and the preconditioner in Algorithm 2.

Initial guess Taking into account (23), it is sensible to choose an initial guess having
the same block structure. For instance,

[
X(0) X(0)

Y (0) −Y (0)

]
=

[
Ek+ Ek+
Ek+ −Ek+

]
(25)

is a valid initial guess, where Ek+ = [e1, . . . , ek+] contains the first k+ columns
of Im.
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Preconditioners Given two approximate eigenpairs (λ̂, [x̂; ŷ]) and (−λ̂, [x̂; −ŷ]),
the corresponding residual vectors inherit the structure:

[
rx
ry

]
= (A− λ̂B)

[
x̂

ŷ

]
⇔

[
rx
−ry

]
= (A+ λ̂B)

[
x̂

−ŷ

]
.

Again, it is sensible to require that this structure is preserved for the preconditioned
residuals T+

[ rx
ry

]
and T−

[ rx−ry

]
. This is the case in general if and only if

T− =
[
I

−I

]
T+

[
I

−I

]
.

For example, this property holds if T+ = (A − λ0B)−1 and T− = (A + λ0B)−1 for
some definitizing shift λ0.

B-orthonormalization When imposing the requirements on the initial guess and
the preconditioned residual, the basis before performing B-orthonormalization in
Algorithm 2 takes the form

U =
[
UX UX

UY −UY

]
, UX, UY ∈ C

m×p. (26)

It is important that B-orthonormalization does not destroy this structure. For this
purpose, let us consider a perfect shuffle permutation of the columns of U :

[
uX,1 uX,1 uX,2 uX,2 · · · · · · uX,p uX,p

uY,1 −uY,1 uY,2 −uY,2 · · · · · · uY,p −uY,p

]
(27)

If UX,UY are real matrices then

[
uX,j

uY,j

]T
B

[
uX,j

−uY,j

]
= 0.

Hence, the individual block columns in (27) are already B-orthogonal. The B-ortho-
gonalization procedure (e.g., Gram-Schmidt) can therefore proceed in blocks of 2
columns, which preserves the structure of (27). By shuffling back, the obtained B-
orthonormal basis inherits the structure of U in (26). Even when UX and UY are not
real, we can proceed in the same way. Note, however, that the obtained basis will not
be B-orthogonal within the block columns of (27).

Summary Based on the observations above, Algorithm 2 applied to (20) with proper
initial guess and preconditioners completely preserves the block structure (23) in
the iterates. Hence, the algorithm can be formulated in terms of m × p matrices
X(i), Y (i) instead of a 2m× 2p matrix. This reduces both, memory requirements and
computational cost. More importantly, this strategy preserves the symmetry of the
computed eigenvalues and eigenvectors. As a result of this specialization and careful
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reorganization of Algorithm 2, we obtain Algorithm 3. Because Algorithm 3 and the
LOBP4DCG algorithm proposed in [5] operate with the same projection subspace,
they are mathematically equivalent.

Algorithm 3 Indefinite LOBPCG method for product eigenvalue problem

Input: K , M ∈ Cm×m: Hermitian positive definite matrices;
T+ ∈ C2m×2m: Hermitian positive definite preconditioner;
�+ ∈ N: #desired positive eigenvalues;
X(0), Y (0) ∈ Cm×k+ : initial guess s.t. k+ ≥ �+ and (X(0))H Y (0) is nonsingular.

Output: � smallest positive eigenpairs of KM .

1: B-orthonormalize [X(0), X(0); Y (0),−Y (0)].
2: (�(0), V (0)) ← RR([X(0), X(0); Y (0),−Y (0)], A, B).
3: Update [X(i+1); Y (i+1)]; P (0)

X = P
(0)
Y ← [].

4: for i = 0, 1, . . . do
5: R

(i)
X = KX(i) − Y (i)�(i), R(i)

Y = MY(i) −X(i)�(i).
6: (optional) Deflate converged eigenvalues.
7: if all desired eigenvalues are converged then
8: Exit loop.
9: end if

10: [W(i)
X ;W(i)

Y ] ← T+ · [R(i)
X ;R(i)

Y ],
11: U

(i)
X ← [X(i),W

(i)
X , P

(i)
X ], U(i)

Y ← [Y (i),W
(i)
Y , P

(i)
Y ].

12: B-orthonormalize [U(i)
X , U

(i)
X ;U(i)

Y ,−U
(i)
Y ].

13: (�(i+1), V (i+1)) ← RR([U(i)
X , U

(i)
X ;U(i)

Y ,−U
(i)
Y ], A, B).

14: P
(i+1)
X ← U

(i)
X2

(V
(i+1)
X2

+ V
(i+1)
Y2

), P (i+1)
Y ← U

(i)
Y2

(V
(i+1)
X2

− V
(i+1)
Y2

).a

15: X(i+1) ← U
(i)
X1

(V
(i+1)
X1

+V
(i+1)
Y1

)+P
(i+1)
X , Y (i+1) ← U

(i)
Y1

(V
(i+1)
X1

−V
(i+1)
Y1

)+
P

(i+1)
Y .

16: end for
17: (�, [X; Y ]) ← (�(i), [X(i); Y (i)]).

aV (i+1) is partitioned into [VX1 , VX2 ;VY1 , VY2 ], where VX1 , VY1 ∈ Cm×k+ .

5 Numerical experiments

In the following, we present numerical experiments for three different examples. The
main purpose of these examples is to give some insight into the performance and limi-
tations of the proposed algorithms. All experiments have been performed in MATLAB

R2012a on an Intel Xeon quadcore 2.66 GHz CPU.

Example 1 We first consider a pencil A − λB of the form (20) corresponding to
a product eigenvalue problem KM . In our example, the matrices K , M are real,
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5660 × 5660 and symmetric positive definite. As the examples considered in [5],
these matrices arise in the linear response analysis of the density matrix in electronic
structure calculations. We aim at computing the four smallest positive eigenvalues,
which are given by

λ+1 ≈ 0.541812517132466, λ+2 ≈ 0.541812517132473,

λ+3 ≈ 0.541812517132498, λ+4 ≈ 0.615143209274579.

Comparisons are made between our algorithms and the LOBP4DCG algorithm
proposed in [5].

We make use of the preconditioners

T0 = A−1, T±λ0 = (A∓ λ0B)−1, (28)

where λ0 = 0.54 is a relatively close shift. We use tol = 10−7. The initial guess
proposed in (25) with k = 4 is used for Algorithms 1 and 2, while the initial guess[ E4
E4

]
is used for LOBP4DCG and Algorithm 3.

Table 1 contains the number of required iterations until all four desired eigenvalues
have converged. As expected from the discussion in Section 4, all algorithms have a
similar convergence behavior when using the same preconditioner. Not surprisingly,
using the preconditioner T±λ0 instead of T0 accelerates convergence. The execution
times are mainly provided as a reference; we have not attempted to optimize any of
the algorithms. Nevertheless, they nicely reflect that Algorithm 3 and LOBP4DCG
gain efficiency from exploiting the structure of A, B .

Figure 1 contains plots of the relative errors for the smallest four positive Ritz
values produced in the ith iteration of LOBP4DCG and Algorithm 3. Note that the
convergence observed for the first three Ritz values is much faster than for the fourth.
Moreover, we clearly see the effect of the quadratic residual bound (19); the errors in
the deflated Ritz values (∼ 10−13) are much smaller than tol = 10−7.

Next, we investigate the effect of replacing the exact inverse preconditioners (28)
with a few iterations of the CG method applied to A and A∓ λ0B , respectively. The
stopping tolerance for the inner CG iterations is set to 10−2 and we allow for 50
iterations at most. Table 2 shows the obtained results, including the total number of
inner CG iterations required until convergence of the Ritz values.

Example 2 Now we consider a quadratic eigenvalue problem (QEP)

Q(λ)x = (λ2M + λD +K)x = 0, (29)

Table 1 Product eigenvalue
problem with exact inverse
preconditioners

Solver #(iter) CPU time (sec.)

LOBP4DCG with T = T0 77 45.2

Algorithm 3 with T+ = T0 85 67.1

Algorithm 1 with T = T0 77 88.1

LOBP4DCG with T = Tλ0 19 27.7

Algorithm 3 with T+ = Tλ0 21 29.7

Algorithm 2 with T± = T±λ0 20 53.8



Numer Algor (2014) 66:681–703 697

0 10 20 30 40 50 60 70 80
10

−15

10
−10

10
−5

10
0

10
5

iteration

er
ro

r

relative error in positive eigenvalues

Err(λ
1
)

Err(λ
2
)

Err(λ
3
)

Err(λ
4
)

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

iteration

er
ro

r

relative error in positive eigenvalues

Err(λ
1
)

Err(λ
2
)

Err(λ
3
)

Err(λ
4
)

T = T0 T+ = T0

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

10
5

iteration

er
ro

r

relative error in positive eigenvalues

Err(λ
1
)

Err(λ
2
)

Err(λ
3
)

Err(λ
4
)

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

10
5

iteration

er
ro

r
relative error in positive eigenvalues

Err(λ
1
)

Err(λ
2
)

Err(λ
3
)

Err(λ
4
)

T = T 0

LOBP4DCG with Algorithm 3 with

LOBP4DCG with Algorithm 3 with T+ = T 0

a

c

b

d

Fig. 1 Relative errors of computed eigenvalues in LOBP4DCG and Algorithm 3

where M , D, K ∈ C
n×n are Hermitian and M is positive definite. Such eigenvalue

problems have motivated much of the research on definite pencils, see, e.g., [37]. A
linearization of (29) yields the Hermitian pencil A− λB with

A =
[
M

−K

]
, B =

[
M

M D

]
. (30)

The positive definiteness of this pencil is equivalent to requiring the original
QEP (29) to be hyperbolic [15, 36]. When D is positive definite, the B-positive and
B-negative eigenvectors are contained in the subspaces spanned by columns of

[
0
I

]
and

[
M−1D−I

]
, respectively. This simplifies the task of choosing appropriate initial

guesses in our algorithms.
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Table 2 Product eigenvalue
problem with CG-based
preconditioners

Solver #(iter) #(inner iter) CPU time

(sec.)

LOBP4DCG with T = T0 76 2716 284.9

Algorithm 3 with T± = T0 94 1965 243.6

Algorithm 1 with T = T0 78 2722 571.0

LOBP4DCG with T = Tλ0 20 2806 262.6

Algorithm 3 with T+ = Tλ0 27 1141 120.8

Algorithm 2 with T± = T±λ0 20 1914 363.7

As a simple scalable example, we consider

K = (n+ 1)2

⎡
⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤
⎥⎥⎥⎥⎦ , M = In, D = 2K.

In this case, the QEP can be easily verified to be hyperbolic; its eigenvalues are given
by

λ±j = −αj ±
√
α2
j − αj , where αj = 4(n+ 1)2 sin2 jπ

2(n+ 1)
, (31)

for j = 1, . . . , n. As n increases, the definiteness interval of A − λB converges to
around (−19.2258,−0.5134).

It is well known that numerical algorithms applied to linearizations of QEPs are
sensitive to the scaling of the coefficients [10], and our algorithms are no exception.
Considering that ‖D‖2 = 2‖K‖2 = O(n2), while ‖M‖2 = 1, we propose to rescale
the pencil A− λB as follows:

A− λB ←
[
I

1
n+1I

]
(A− λB)

[
I

1
n+1I

]
.

We make use of the preconditioners

T0 = (A− λ0B)−1, T ±
1 = (A− λ±0 B)−1, (32)

where λ0 = −9 is a reasonable choice nearly in the middle of the definiteness inter-
val, while λ+0 = −0.514 and λ−0 = −19.22 are very close to its boundaries. We use
again tol = 10−7 and aim at computing the eigenvalues λ±j for j = 1, . . . , 3, that is,
�+ = �− = 3 in Algorithms 1 and 2. The obtained results are reported in Table 3.
Note that we now list the number of total iterations required for B-positive and B-
negative eigenvalues separately. For example, in Algorithm 1 with k+ = k− = 3
all desired B-negative eigenvalues have converged already after 36 iterations, while
a total number of 198 iterations is required until also the desired B-positive eigen-
values have converged. This large difference is caused by the fact that the B-positive
eigenvalues are more clustered. Only when using Algorithm 2 with the tailored
preconditioners T ±

1 , this effect disappears.
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Table 3 QEP from
Example 5.2 with exact inverse
preconditioners

solver k+ = k− n = 1000 n = 2000

#(iter) #(iter) #(iter) #(iter)

B-pos. B-neg. B-pos. B-neg.

Algorithm 1

with T = T0 3 198 36 121 25

4 137 28 184 27

5 173 22 178 24

Algorithm 2

with T± = T ±
1 3 14 21 11 16

4 11 15 14 19

5 11 17 11 15

Algorithm 2

with T± = T ±
2 3 12 20 10 17

4 14 20 10 18

5 10 16 8 15

It is comforting to see that the number of iterations does not increase significantly
when n is doubled. This observation remains true when replacing the exact inverses
in (32) by algebraic multigrid (AMG) v-cycle preconditioners, see Table 4. For this
purpose, we have used the implementation HSL_MI20 [1] with the default settings.

It is interesting to note what happens when choosing T ±
2 = (A − λ±i B)−1 with

shifts λ+i = −0.51 and λ−i = −20, which are both outside the definiteness inter-
val. Hence, T ±

2 are indefinite and the assumptions in the convergence analysis of
Section 3.2 are not satisfied. Nevertheless, Table 3 clearly demonstrates that the
convergence behavior of Algorithm 2 changes little when replacing the definite pre-
conditioners T ±

1 by T ±
2 . Note that the use of indefinite preconditioners was already

discussed in [16] for the standard LOBPCG method.

Table 4 QEP from Example 5.2
with AMG preconditioners solver k+ = k− n = 1000 n = 2000

#(iter) #(iter) #(iter) #(iter)

B-pos. B-neg. B-pos. B-neg.

Algorithm 1

with T = T0 3 215 45 198 45

4 185 40 214 39

5 182 37 188 36

Algorithm 2

with T± = T ±
1 3 19 26 20 18

4 18 23 20 25

5 19 24 16 23
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Finally, we remark that choosing k± > �± can have a positive effect on the
convergence, but the findings of Tables 3 and 4 are not conclusive.

Example 3 Based on the convergence analysis in Section 3.2, we expect our algo-
rithms to perform poorly if the gaps between the desired eigenvalues and the rest of
the spectrum are tiny. The example spring from the collection NLEVP [8] is a par-
ticularly bad instance of such a problem. Specifically, consider the matrices produced
by the command nlevp(’spring’,n,1,10,5,10,5):

K =

⎡
⎢⎢⎢⎢⎣

15 −5

−5
. . .

. . .

. . .
. . . −5
−5 15

⎤
⎥⎥⎥⎥⎦ , M = In, D = 2K.

Then the corresponding QEP is hyperbolic and its eigenvalues are given by

λ±j = −αj ±
√
α2
j − αj , where αj = 5

(
3 − 2 cos

jπ

n+ 1

)
, (33)

for j = 1, . . . , n. As n increases, the definiteness interval of A − λB con-
verges to around (−9.472,−0.527). Moreover, the gaps between eigenvalues become
arbitrarily small as n → ∞, see also Fig. 2.

We make use of the preconditioners

T0 = (A− λ0B)−1, T ±
1 = (A− λ±0 B)−1, (34)

where λ0 = −5 is nearly in the middle of the definiteness interval, while λ+0 =
−0.528 and λ−0 = −9.47 are very close to its boundaries. We use again tol = 10−7

and aim at computing the eigenvalues λ±j for j = 1, . . . , 3, that is, �+ = �− = 3 in
Algorithms 1 and 2. The obtained results are reported in Table 5. It can be observed
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Fig. 2 Eigenvalues of Example 5.3 for n = 1000 and n = 2000



Numer Algor (2014) 66:681–703 701

Table 5 QEP from
Example 5.3 with exact inverse
preconditioners

n = 1000 n = 2000

solver k+ = k− #(iter) #(iter) #(iter) #(iter)

B-pos. B-neg. B-pos. B-neg.

Algorithm 1

with T = T0 3 > 1500 544 > 1500 974

4 > 1500 526 > 1500 960

5 > 1500 513 > 1500 1167

Algorithm 2

with T± = T ±
1 3 37 10 74 17

4 27 9 65 15

5 24 9 53 15

that the preconditioner T0 is not effective at all. Even worse, the effectiveness of the
excellent preconditioners T ±

1 deteriorates as n increases, due to the decrease of the
eigenvalue gaps.

6 Conclusions

We have shown that the LOBPCG method extends in a natural way to positive definite
pencils A − λB . Apart from the work by Bai and Li [5], which turns out to be a
special case of our method, we are not aware of any other extension of LOBPCG
beyond positive definite B .

Finally, it is natural to ask whether the methods developed in this paper can be
extended to semi-definite pencils A−λB , in view of the trace minimization principle
established in [20, 24]. More specifically, consider the case that A − λ0B is semi-
definite for some λ0 but there is no definitizing shift. In this situation, it appears to
be difficult to construct effective preconditioners. Quite likely, information on the
nullspace of A − λ0B needs to be incorporated, similar to the techniques discussed
in [2].
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