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Abbreviations
Acetyl-CoA  Acetyl-coenzyme A
ACL  ATP citrate lyase
ChoRe  Carbohydrate response element
ChReBP  Carbohydrate response element  

binding protein
CReB  Cyclic AMP-responsive element  

binding protein
CRTC2  cAMP-regulated transcriptional  

co-activator 2
F2  6bisP, fructose-2,6-bisphosphate
F6P  Fructose-6-phosphate
FOXA2  Forkhead box protein A2
FOXO1  Forkhead box protein O1
FXR  Farnesoid x receptor
G6P  Glucose-6-phosphate
G6Pc  Glucose-6-phosphatase
G6Pt  Glucose-6-phosphate transporter
GCK  Glucokinase
GCKR  GCK regulatory protein
GLUT  Glucose transporter
GSD-1  Glycogen storage disease type 1
HDAC  Histone deacetylase
HIF-1  Hypoxia-inducible factor 1
HK  Hexokinase
HNF-4  Hepatocyte nuclear factor 4
KAT  Lysine acetyltransferase
KLF-6  Kruppel-like factor 6
LRH-1  Liver receptor homolog 1
LXR  Liver x receptor
Mlx  Max-like protein X

Abstract The hepatic glucose-sensing system is a func-
tional network of enzymes and transcription factors that 
is critical for the maintenance of energy homeostasis and 
systemic glycemia. Here we review the recent literature 
on its components and metabolic actions. Glucokinase 
(GCK) is generally considered as the initial postprandial 
glucose-sensing component, which acts as the gatekeeper 
for hepatic glucose metabolism and provides metabolites 
that activate the transcription factor carbohydrate response 
element binding protein (ChReBP). Recently, liver recep-
tor homolog 1 (LRH-1) has emerged as an upstream reg-
ulator of the central GCK–ChReBP axis, with a critical 
role in the integration of hepatic intermediary metabolism 
in response to glucose. evidence is also accumulating that 
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) 
and acetylation can act as glucose-sensitive modifications 
that may contribute to hepatic glucose sensing by targeting 
regulatory proteins and the epigenome. Further elucida-
tion of the components and functional roles of the hepatic 
glucose-sensing system may contribute to the future treat-
ment of liver diseases associated with deregulated glucose 
sensors.
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MLXIP  Mlx interacting protein
MLXIPL  Max-like protein X interacting 

protein-like
OGA  O-GlcNAcase
O-GlcNAcylation  O-linked β-N-acetylglucosaminylation
OGT  O-GlcNAc transferase
PGC-1α  Peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha
PPARγ  Peroxisome proliferator activated 

receptor gamma
SReBP-1c  Sterol regulatory binding protein-1c
T2D  Type 2 diabetes
TCA  Tricarboxylic acid
TCFe3  Transcription factor e3
UDP-GlcNAc  UDP-N-acetylglucosamine
UTP  Uridine triphosphate
X5P  Xylulose-5-phosphate

Introduction

Glucose is a simple sugar carbohydrate that serves as a 
fundamental fuel for most species and provides precursors 
for biomolecule synthesis. In order to control metabolism, 
differentiation, and growth, cells possess evolutionary con-
served glucose-sensitive signaling pathways [1]. These glu-
cose-sensing systems ensure efficient adaptation to changes 
in environmental glucose availability in unicellular organ-
isms and allow for homeostatic maintenance of internal 
glucose pools in multicellular organisms. In higher species, 
the internal pool is represented by glucose circulating in the 
bloodstream. From here, glucose is further distributed to 
different tissues and organs to meet local needs.

The liver plays a central role in metabolic homeosta-
sis by coordinating the breakdown, synthesis, storage, 
and redistribution of nutrients. Hepatocytes possess mul-
tiple nutrient-sensing systems that interact to modulate 
biochemical pathways in order to accommodate systemic 
fuel requirements and availability. These systems ena-
ble the body to maintain its functions during periods of 
feeding and fasting and upon excessive energy demands 
such as exercise. Blood glucose concentrations fluctu-
ate during the feeding and fasting cycles [2], and one of 
the liver’s primary functions is to maintain blood glucose 
concentrations within a physiological range [3]. Hepato-
cytes are among the few cell types that possess the abil-
ity to both consume and produce glucose [4]. Glycemic 
control, which is coordinated by both extrahepatic and 
intrahepatic factors, is hence the result of a balanc-
ing act between these two processes. Most reviews have 
focused on extrahepatic glucose-sensing systems such as 
hormonal regulation by insulin and glucagon [3, 5, 6]. 
In contrast, this review will provide an overview of the 

regulatory components within the liver that are activated 
by glucose metabolites in response to glucose availability. 
we provide an overview of these regulatory components 
and discuss the role of this intrahepatic glucose-sensing 
system in health and disease.

Hepatic glucose metabolism

The concentration of glucose in the blood is a primary 
determinant of glucose availability to the liver. During the 
postprandial phase, which in humans lasts about 2 h after 
the intake of a meal, blood glucose levels rise and approxi-
mately 10–25 % of ingested glucose is taken up by hepato-
cytes [7–10]. Facilitated transport of glucose across cellular 
membranes is mediated by members of the glucose trans-
porter (GLUT) family [11]. GLUT2 is the major glucose 
transporter in the hepatocytes [11, 12] and its physiological 
role has been studied extensively [13–15]. GLUT2 is also 
expressed in pancreatic islets, intestine, kidney, and brain 
[11, 12]. The rate of GLUT2-mediated glucose transport 
into the liver is high and only saturates at glucose concen-
trations above 30 mM [11] allowing efficient glucose trans-
port and extremely rapid equilibration of glucose across 
the hepatocyte membrane [16]. Once in the cytoplasm, 
glucose is phosphorylated to glucose-6-phosphate (G6P) 
by glucokinase (GCK; also known as hexokinase Iv) [17, 
18]. G6P lies at the crossroads of different biochemical 
pathways and has multiple biochemical fates. elevated G6P 
synthesis allosterically activates glycogen synthase while 
inhibiting glycogen phosphorylase [19–21]. G6P is also 
oxidized for energy supply via glycolysis, which involves 
several steps including the production of fructose-6-phos-
phate (F6P) and triose phosphates. The pentose phosphate 
pathway represents a third route of G6P utilization that 
involves the production of ribose-5-phosphate, an interme-
diate of nucleotide synthesis, and the biological reductant 
NADPH. excess pentose phosphates can ultimately enter 
the glycolytic pathway by their conversion into F6P and tri-
ose phosphates. Pyruvate produced by glycolysis is trans-
ported into the mitochondria, where it is decarboxylated 
to acetyl-coenzyme A (acetyl-CoA), which subsequently 
enters the tricarboxylic acid (TCA) cycle, a central meta-
bolic hub that is involved in both energy production and 
biomolecule synthesis. To keep TCA cycle intermediates 
at a constant level, reactions that extract TCA metabolites 
for biosynthesis (cataplerotic reactions) are balanced by 
those that replenish TCA intermediates (anaplerotic reac-
tions) [22]. In the TCA cycle, acetyl-CoA becomes fur-
ther metabolized to generate reducing equivalents used for 
ATP production through oxidative phosphorylation. The 
TCA cycle intermediates also serve as precursors for non-
essential amino acids, which serve as substrates for protein 



1455Hepatic glucose sensing and integrative pathways in the liver

1 3

synthesis. Citrate produced in the TCA cycle is partly shut-
tled from the mitochondria into the cytosol where it is con-
verted into oxaloacetate and acetyl-CoA, the latter of which 
can be used as a substrate for lipid synthesis. These hepatic 
glucose oxidation and storage pathways are summarized in 
Fig. 1a.

Hepatic glucose uptake and metabolism decrease as 
soon as the intestinal absorption of glucose is completed. 
During this period, which is often referred to as the post-
absorptive phase, most tissues reduce their glucose con-
sumption by switching to alternate energy sources. endog-
enous glucose production by the liver now represents the 
major route of glucose supply to the bloodstream. The 
maintenance of glucose homeostasis is particularly impor-
tant for cells that partly or fully rely on glucose as ener-
getic substrate such as neurons and erythrocytes. The liver 
contributes to endogenous glucose production via two 
G6P-generating pathways. In the initial postabsorptive 
phase, hepatic G6P is derived from glycogen breakdown 
while gluconeogenesis becomes the major source of G6P 
after prolonged fasting. G6P generated through glycogen 
breakdown and gluconeogenesis is first translocated from 
the cytosol into the endoplasmic reticulum by the glucose-
6-phosphate transporter (G6Pt; also known as SLC37A4), 
and subsequently dephosphorylated into glucose by glu-
cose-6-phosphatase (G6Pc). Glucose is finally released 
into the bloodstream, presumably through the concerted 
action of GLUT2 and a membrane traffic-based mecha-
nism [13, 14, 23]. These glucose-production pathways in 
the liver are summarized in Fig. 1b.

Postprandial glucose sensing in the liver

when blood glucose concentrations rise, hepatic glucose 
sensors induce adaptive responses to shift the balance 
toward hepatic glucose consumption and storage. GLUT2 
is a high-capacity glucose transporter that allows glucose 
to flow into hepatocytes in response to increasing glycemia 
[11]. However, its activity does not appear to be critical for 
postprandial glucose sensing in the liver, as was recently 
reported [13]. In this study, hepatic GLUT2 deficiency did 
not result in major perturbations in hepatic glucose metabo-
lism in fed and refed mice, suggesting that alternate mecha-
nisms compensate for the reduction in glucose transport. 
GCK, on the contrary, is a major component of the hepatic 
glucose-sensing system. By converting glucose into G6P, 
GCK catalyzes the first step of intrahepatic glucose metab-
olism [17]. In contrast to hexokinases (HKs) I-II, GCK 
exhibits low affinity for glucose, is not feedback-inhibited 
by its product G6P [17, 24], and its activity increases sig-
moidal with increasing glycemia [18, 25]. High glucose 
concentrations furthermore inhibit the interaction of GCK 
with its regulatory protein (GCKR), hence promoting the 
translocation of free GCK to the cytoplasm where it can 
access glucose and convert it into G6P [26]. GCK conse-
quently acts as a glucose-sensitive enzyme that remains 
active over a wide range of glucose concentrations and 
enables hepatocytes to efficiently trap glucose in response 
to glycemic fluctuations. Lack of hepatic GCK expression 
in mice perturbs intrahepatic glucose metabolism [27, 28] 
while overexpression of GCK, but not HK-I, markedly 

Fig. 1  Pathways of hepatic glucose metabolism. a Simplified scheme 
depicting the major biochemical pathways activated during postpran-
dial glucose consumption and storage. b Simplified scheme depict-
ing the major biochemical pathways activated during postabsorptive 

glucose production. Glycerol, lactate, and alanine are used as gluco-
neogenic substrates upon their conversion into triose phosphate and 
pyruvate. Acetyl-CoA acetyl-coenzyme A, GCK glucokinase, GLUT2 
glucose transporter 2, TCA tricarboxylic acid



1456 M. H. Oosterveer, K. Schoonjans

1 3

induces glycogen storage and glycolysis in hepatocytes 
[29, 30]. These fundamental differences of GCK versus 
HK-mediated G6P synthesis illustrate the unique role of 
hepatocytes as compared to other cells.

Further downstream metabolism of G6P generates 
metabolites that act as signaling molecules to regulate 
the activity of enzymes within seconds to minutes after 
hepatic glucose exposure [19, 20, 31–35]. Glucose-medi-
ated control of gene transcription in hepatocytes translates 
into adaptive responses on longer timescales, i.e., within 
a timeframe of minutes to hours [36–38]. The expression 
of many glucose-sensitive genes is regulated by the car-
bohydrate response element binding protein (ChReBP; 
also known as Mondo B or Max-like protein X interact-
ing protein-like, MLXIPL) [39, 40], a transcription fac-
tor that recognizes conserved carbohydrate response ele-
ments (ChoRes) in gene promoters [41, 42]. ChReBP is a 
member of the Mondo family, which forms heterodimers 
with Max-like protein X (Mlx) to induce transcriptional 
responses [43–48]. Mondo-Mlx-dependent glucose sens-
ing is evolutionary conserved among worms, flies, and 
vertebrates [49–55]. ChReBP has been identified as the 
major mediator of ChoRe-dependent gene transcription 
in the liver [40, 48], while its paralog MondoA (or Mlx 
interacting protein, MLXIP) has been proposed to act 
predominantly in extrahepatic tissue [45, 56]. However, 
a recent study showed that MondoA also regulates tran-
scription of specific glucose-responsive genes in hepato-
cytes [49]. ChReBP is best-known for its effects on the 
expression of enzymes involved in glycolysis and fatty 
acid synthesis [57]. In addition, ChReBP suppresses sir-
tuin 1, thereby likely reducing PGC-1α-dependent glu-
coneogenesis under glucose abundant conditions [58]. 
Somewhat counter-intuitively, ChReBP also induces 
G6Pc expression, a response that may serve to maintain 
the intracellular G6P homeostasis [59]. ChIP-seq analy-
sis indicated that ChReBP not only regulates metabolism, 
but also targets genes related to transport, development, 
and cell motility [39].

Several studies have shown that hepatic ChReBP 
activation requires GCK-dependent glucose metabo-
lism [28, 60]. early work showed that the pentose phos-
phate pathway intermediate xylulose-5-phosphate (X5P) 
induces ChReBP dephosphorylation, thereby promoting 
its nuclear translocation and transcriptional activity [61]. 
However, this model has been challenged, based on the 
finding that pentose phosphate pathway inhibition leads 
to a decrease rather than an increase in ChReBP activ-
ity [62, 63]. Instead, G6P was suggested to be the major 
signaling metabolite responsible for ChReBP activation 
[62, 63]. Finally, fructose-2,6-bisphosphate (F2,6bisP), 
another glucose metabolite, has also been proposed to 
induce ChReBP-mediated transcription in hepatocytes 

[49, 64]. The mechanisms through which these three 
glucose derivatives act remain to be resolved, but likely 
involve changes in allosteric regulation and post-trans-
lational modifications [53, 65, 66]. In this respect, it 
should be noted that ChReBP activity is increased by 
acetylation and O-linked β-N-acetylglucosaminylation 
(O-GlcNAcylation) [67, 68], two enzyme-catalyzed post-
translational modifications that use glucose metabolites as 
substrates, as will be discussed in more detail below [69–
71]. The fact that several independent glucose metabolites 
(X5P, G6P, F2,6bisP, acetyl-CoA, and O-GlcNAc) acti-
vate hepatic ChReBP illustrates the unique glucose-sens-
ing ability of this transcription factor in hepatocytes [57]. 
A recent study furthermore showed that glucose promotes 
the binding of full-length ChReBP-α to a ChoRe located 
in an alternative promoter region of the Chrebp gene 
thereby inducing transcription of a potent, short ChReBP 
isoform (ChReBP-β) [72]. Future work should iden-
tify the specific glucose-dependent pathways that induce 
and activate these different isoforms in hepatocytes, and 
reveal whether ChReBP-α and ChReBP-β regulate differ-
ent target genes.

Regulation of the central hepatic glucose‑sensing axis

The GCK–ChReBP axis can be considered as the central 
glucose-sensing system in the liver. Because GCK acts as 
a gatekeeper for hepatic glucose metabolism and ChReBP 
activation [60, 73], regulation of its expression and activity 
will significantly impact hepatic glucose sensing. Interest-
ingly, glucose increases GCKR expression while it inhib-
its GCK transcription in cultured hepatocytes [59]. How-
ever, in vivo GCK expression is induced in response to an 
oral glucose load [60]. Because insulin is a major regula-
tor of GCK expression in the liver [31], the discrepancy 
between these findings can be explained by the lack of a 
concomitant insulin-mediated GCK transcription under 
in vitro conditions [74]. The mechanistic basis of insulin-
dependent GCK induction is incompletely understood [31, 
75]. Several transcription factors, i.e., hepatocyte nuclear 
factor 4 (HNF-4), hypoxia-inducible factor 1 (HIF-1), 
sterol regulatory binding protein-1c (SReBP-1c), liver x 
receptor (LXR), peroxisome proliferator activated recep-
tor gamma (PPARγ), Kruppel-like factor 6 (KLF-6) and 
transcription factor e3 (TCFe3) have been shown to con-
trol hepatic GCK transcription [60, 76–82]. Studies from 
our laboratory have indicated that the nuclear receptor liver 
receptor homolog 1 (LRH-1) coordinates multiple aspects 
of hepatic intermediary metabolism by regulating GCK-
dependent G6P synthesis [60, 83]. while initially identi-
fied as a transcriptional regulator of cholesterol and bile 
salt homeostasis [84, 85], LRH-1 has recently emerged as 
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a key integrator of hepatic glucose and fatty acid metabo-
lism [60, 83, 86, 87]. LRH-1 contributes to basal GCK 
expression under fed and fasted conditions and its activity 
is not dependent on glucose. This was based on the find-
ing that ectopic LRH-1 expression is sufficient to induce 
Gck expression in hepatoma cells, and that increasing 
glycemia fails to amplify LRH-1-mediated transcription 
[60]. Hepatic LRH-1 deficiency significantly perturbed 
the hepatic response to feeding, as illustrated by delayed 
glycogen synthesis, as well as reduced ChReBP expres-
sion and activity, which resulted in a strong attenuation of 
glycolysis and de novo fatty acid synthesis upon refeeding 
[60]. Importantly, these perturbations occurred secondary 
to reduced GCK activity, as GCK reconstitution restored 
ChReBP target gene expression in hepatocyte-specific 
LRH-1 knockout mice [60]. LRH-1-dependent glucose 
sensing in the liver also affected systemic glucose home-
ostasis. In liver-specific LRH-1 knockout mice impaired 
GCK-mediated glucose consumption triggered the pan-
creas to release more insulin, leading to elevated insulin 
levels and increased glucose disposal [60]. These findings 
place LRH-1 upstream of the central glucose-sensing sys-
tem in the liver (Fig. 2).

Similar functions have been attributed to LXR. Although 
LXR has been identified as a transcriptional regulator of 
both GCK and ChReBP [76, 88–92], its deficiency does 
not impair the hepatic response to carbohydrate refeeding 
or ChReBP activity [93, 94]. Further work will be neces-
sary to establish whether LXR is essentially required for 
postprandial glucose sensing in the liver.

Glucose‑sensitive modifications as potential glucose 
sensors in the liver

Post-translational modifications of regulatory proteins 
allow for adaptive responses to a variety of metabolic 
cues [95, 96]. Interestingly, some post-translational modi-
fications are closely linked to glucose metabolism and 
target metabolic enzymes, components of cellular signal 
transduction pathways as well as transcription factors and 
their co-regulators (reviewed in [97, 98]). These modifica-
tions are typically enzyme-catalyzed, but can also occur 
through non-enzymatic interaction between metabolites 
and proteins. Although enzyme-mediated transfer of glu-
cose metabolites has been investigated most intensively, 
a very recent study has identified a glucose-sensitive and 
enzyme-independent post-translational modification that 
controls hepatocyte function [99]. It is now also increas-
ingly recognized that glucose metabolism can induce 
epigenetic changes through glucose-dependent post-
translational modification of histone proteins (reviewed 
in [96, 100–102]). Because the composition of the his-
tone code determines the degree of chromatin condensa-
tion, glucose-dependent modification of histones may 
alter the accessibility for transcription factors and regula-
tory enzymes that may ultimately translate into changes 
in transcriptional activity. In this section, we will discus 
two enzyme-mediated glucose-sensitive post-translational 
modifications that target regulatory proteins and epig-
enome, and may as such contribute to glucose sensing in 
the liver. The metabolic origins, enzymatics, and hepatic 

Fig. 2  LRH-1 is an upstream 
regulator of the central glucose-
sensing system in the liver. 
ChReBP activation requires 
GCK-dependent synthesis of 
glucose metabolites. Because 
LRH-1 is a transcriptional 
regulator of GCK, it impacts 
postprandial G6P synthesis and 
ChReBP activity. Acetyl-CoA 
acetyl-coenzyme A, ChREBP 
carbohydrate response element 
binding protein, F2,6bisP 
fructose-2,6-bisphosphate, F6P 
fructose-6-phosphate, G6P 
glucose-6-phosphate, GCK 
glucokinase, LRH-1 liver recep-
tor homolog 1, UDP-GlcNAc 
UDP-N-acetylglucosamine, X5P 
xylulose-5-phosphate
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targets of these post-translational modifications are sum-
marized in Fig. 3.

O-GlcNAcylation of serine and threonine residues is 
a modification that occurs in the cytoplasm, nucleus, and 
mitochondria [103]. The substrate, UDP-N-acetylglucosa-
mine (UDP-GlcNAc), is generated by the hexosamine 
biosynthesis pathway, a branch of hepatic glucose metab-
olism that uses F6P, glutamine, acetyl-CoA, and uridine 
triphosphate (UTP) [104]. The addition and removal of 
UDP-GlcNAc is catalyzed by two enzymes. O-GlcNAc 
transferase (OGT) mediates the addition of UDP-GlcNAc 
to target proteins while O-GlcNAcase (OGA) catalyzes its 
removal [105, 106]. Both OGT and OGA are encoded by 
single genes that are alternatively spliced in mammals, and 
the different isoforms are located in separate subcellular 
compartments [105, 107–110]. Their activities are regu-
lated by protein–protein interactions and post-translational 
modifications including O-GlcNAcylation, however this 
domain is as yet largely unexplored [111]. O-GlcNAcyla-
tion is considered as a unique glucose-sensitive post-trans-
lational modification [112] and has wide-ranging effects 
on transcription, protein activity, and stability as well as on 

epigenetic and genomic imprinting (reviewed in [113]). In 
hepatocytes, O-GlcNAcylation has mainly been studied in 
relation to its role in metabolism. Recent work has shown 
that hepatic OGT is required to maintain circadian control 
of glucose homeostasis by regulating the clock system in 
the liver [114, 115]. OGT also targets metabolic transcrip-
tional regulators such as LXR [90] and cAMP-regulated 
transcriptional co-activator 2 (CRTC2), a coregulator of 
the gluconeogenic transcription factor cyclic AMP-respon-
sive element binding protein (CReB) [116]. Moreover, 
the activity of two other key gluconeogenic regulators, 
i.e., forkhead box protein O (FOXO1) and peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α), is regulated by O-GlcNAcylation [117–119]. 
Another key finding is that OGT modifies multiple nodes 
of the insulin signaling pathway [108, 120]. Interestingly, 
under normoglycemic conditions O-GlcNAcylation con-
tributes to insulin signaling [121], while it induces insu-
lin resistance when chronically activated [120]. Although 
these studies point to a general role for O-GlcNAcylation 
in regulating glucose homeostasis, strong evidence for a 
more specific role in glucose-sensing stems from the fact 

Fig. 3  working model depicting the metabolic origins, enzymatics, 
and targets of glucose-sensitive post-translational modifications in the 
liver. a The hexosamine biosynthesis pathway uses F6P, glutamine, 
and UTP for O-linked β-N-acetylglucosaminylation. b Glycolysis can 
link glucose metabolism to acetylation. Acetyl-CoA acetyl-coenzyme 
A, ChREBP carbohydrate response element binding protein, CRTC2 
cAMP-regulated transcriptional co-activator 2, FOXA2 forkhead box 

protein A2, FOXO1 forkhead box protein O1, F6P fructose-6-phos-
phate, FXR farnesoid x receptor, HDAC histone deacetylase, KAT 
lysine acetyltransferases, LXR liver x receptor, OGA O-GlcNAcase, 
OGT O-GlcNAc transferase, PGC-1α peroxisome proliferator-acti-
vated receptor gamma coactivator 1-alpha, SREBP-1c sterol regula-
tory element binding protein-1c, TCA tricarboxylic acid, UTP uridine 
triphosphate
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that O-GlcNAcylation activates hepatic ChReBP [68]. 
Finally, it should be mentioned that despite the fact that 
O-GlcNAcylation is emerging as a histone-modifying post-
translational modification [122], there is currently no evi-
dence that O-GlcNAcylation also contributes to hepatic 
glucose sensing via epigenetic regulation. As methodolo-
gies for high-throughput O-GlcNAc profiling are emerging 
[123, 124], more insight into the hepatic targets of O-Glc-
NAcylation and its potential contribution to hepatic glucose 
sensing is expected in the near future.

Acetylation is another post-translational modification 
that potentially reflects glucose availability. This modifi-
cation involves the enzymatic transfer of acetyl-CoA, and 
is facilitated by lysine acetyltransferases (KATs) [125]. 
These enzymes act on the lysine residues of both histones 
and non-histone proteins in different cellular compart-
ments. The reverse reaction is mediated by deacetylases, 
which can be divided into four classes. Class I, II, and Iv 
deacetylases are considered as the classical histone dea-
cetylases (HDACs). Class III deacetylases, better known 
as sirtuins, are structurally unrelated to HDACs. HDACs 
and sirtuins are localized in the mitochondria or cytoplasm, 
and are able to shuttle between the nucleus and the cytosol 
[126–129]. High-throughput analysis of human liver biop-
sies and liver cells has shown that many metabolic enzymes 
are acetylated [69, 130], either to modulate their activi-
ties or to direct them towards proteosomal or lysosomal 
degradation [131, 132]. Moreover, the activity of several 
transcriptional regulators of hepatic metabolism including 
ChReBP, LXR, CRTC2, PGC-1α, FOXO1, SReBP-1c, 
forkhead box protein A2 (FOXA2), and farnesoid x recep-
tor (FXR), is known to be modified by acetylation [67, 
133–140], in some cases in coordination with phosphoryla-
tion [134, 141]. Studies in yeast and mammalian cell cul-
tures have shown that histone acetylation is dependent on 
subcellular acetyl-CoA concentrations [142–146]. Notably, 
glucose was shown to promote histone acetylation via ATP 
citrate lyase (ACL), the enzyme that generates acetyl-CoA 
from TCA-derived citrate in mammalian cell lines [142]. 
The existence of a similar mechanism in hepatocytes chal-
lenged with glucose would point to a glucose-sensing role 
of histone acetylation in liver but needs to be confirmed. 
The observation that both histones [147] and non-histone 
proteins [130] are dynamically acetylated in response to 
feeding/fasting cycles is also suggestive of glucose-depend-
ent acetylation in liver. Moreover, it has been reported 
that hepatic acetyl-CoA levels increase upon short-term 
refeeding as compared to fasted conditions [148]. It should 
however be noted that besides being produced by decar-
boxylation of glycolytic pyruvate, hepatic acetyl-CoA can 
also be derived from fatty acid oxidation and amino acid 
metabolism. A dedicated analysis of acetylation profiles 
in glucose-challenged hepatocytes is therefore warranted 

to establish the impact of glucose metabolism on protein 
acetylation, as well as the potential contribution of protein 
acetylation to glucose sensing in the liver.

Metabolic liver diseases associated with aberrant 
glucose sensing

Glucose sensors enable the liver to respond to dynamic 
changes in glucose availability. However, when these sen-
sors are chronically activated, they may predispose to the 
development of liver diseases.

During poorly controlled diabetes, the liver is fre-
quently exposed to hyperglycemic episodes. In type 2 dia-
betes (T2D), GCK is constitutively active and GCK flux 
is increased secondary to elevated glucose concentrations 
[149, 150]. This leads to sustained activation of glucose 
sensors in the liver. For example, the hexosamine biosyn-
thesis pathway normally accounts for less than 5 % of the 
hepatic glucose flux, yet its activity is markedly increased 
by hyperglycemia [151, 152]. Aberrant glucose sensing in 
T2D results in triglyceride accumulation and excessive glu-
cose production in the liver [116, 153]. while triglyceride 
accumulation contributes to the development of liver stea-
tosis, increased hepatic glucose output leads to a further 
increase in glycemia.

A clear association exists between hepatic steatosis and 
the pathogenesis of T2D, cardiovascular disease, and stea-
tohepatitis [154]. It is, however, increasingly recognized 
that, up to a certain threshold, the accumulation of triglyc-
erides may serve as a buffering system that would actu-
ally protect the liver against metabolic dysfunction [154]. 
In mice, ChReBP plays a key role in the development of 
hepatic steatosis in T2D [153], and hepatic ChReBP func-
tion is perturbed in obese and (pre-)diabetic subjects [155, 
156]. Interestingly, a recent study revealed that ChReBP 
overexpression protects against diet-induced glucose intol-
erance and insulin resistance [157]. This finding indicates 
that under conditions of dietary fat overload, ChReBP-
mediated lipogenesis likely contributes to a metabolically 
benign state by promoting mono-unsaturated fatty acid syn-
thesis [154, 157]. It was furthermore shown that diabetic 
steatosis is associated with ChReBP hyperacetylation [67] 
and that hepatic lipid accumulation can be prevented when 
ChReBP O-GlcNAcylation is reduced [68]. Increased 
O-GlcNAcylation also contributes to uncontrolled hepatic 
glucose production under diabetic conditions. T2D is asso-
ciated with increased O-GlcNAcylation levels of the glu-
coneogenic co-regulator CRTC2 and removal of O-Glc-
NAc from CRTC2 normalizes glycemia in diabetic mice 
[116]. whether sustained CRTC2 acetylation levels also 
promote hepatic glucose production in diabetics remains 
to be established. Likewise, it is as yet unknown whether 
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aberrant acetylation and O-GlcNAcylation of the gluconeo-
genic regulators FOXO1 and PGC-1α [117–119, 135, 158] 
directly contribute to hyperglycemia in T2D.

Glucose sensors may also become deregulated by 
inherited loss-of-function mutations in enzymes that 
regulate intrahepatic glucose metabolism. An example of 
such an “inborn error of metabolism” is Glycogen Stor-
age Disease type 1 (GSD-1) [159] which is caused by 
loss of either G6Pc or G6Pt activity [160–162]. The pri-
mary consequences of perturbed hepatic G6Pase activity 
in GSD-1 are hypoglycemia and the accumulation of G6P 
in the liver [163–165]. In addition, GSD-1 is character-
ized by excessive glycogen and lipid storage in the liver 
[163, 165–167] as well as hyperlipidemia [165, 167–170]. 
Interestingly, GSD-1 is associated with a ChReBP-
dependent increase in de novo fatty acid synthesis [163, 
167, 170]. Combined, these observations indicate that 
sustained activation of hepatic glucose sensors by extra-
hepatic (diabetes) or intrahepatic (GSD-1) changes in glu-
cose homeostasis predisposes to development of hepatic 
steatosis [171].

Another consequence of both T2D and GSD-1 is the 
increased incidence of liver tumorigenesis [172–175]. 
Although steatosis has been proposed as a predisposing 
factor for liver cancer [176, 177], altered metabolism 
may be the actual driving force for tumor development. 
It is well known that tumors require specific metabolic 
adaptations to support the bioenergetic and biosynthetic 
demands of growth and proliferation [178]. More spe-
cifically, a switch to non-oxidative glucose metabolism 
combined with a predominant anabolic role of the TCA 
cycle are considered as major hallmarks of cancer metab-
olism [179]. T2D and GSD-1 are characterized by a high 
flux from hepatic G6P towards glycolysis and lipid- and 
nucleotide biosynthesis. The exact mechanisms by which 
these metabolic adaptations confer a preneoplastic status 
to hepatocytes and direct them towards tumorigenesis 
are incompletely understood [165, 172, 179]. Glucose 
sensors likely play an important role here. In support of 
this hypothesis, ChReBP mediates the switch towards 
pro-oncogenic metabolism in proliferating cells [180]. 
Moreover, ChReBP functionally interacts with the pro-
oncogenic transcription factor c-Myc, which is critical for 
ChReBP-dependent glucose sensing in the liver [45, 181, 
182]. Because mouse models of T2D and GSD-1 exhibit 
increased hepatic ChReBP activity [153, 163], ChReBP 
may play a key role in the pathophysiology of liver tumor 
development in these diseased states. The potential exist-
ence of such a mechanism urges for the exploration of 
a potential oncogenic role of hepatic LRH-1, a potent 
upstream regulator of the GCK–ChReBP axis in the liver 
([60] and Fig. 2) and a key player in the development 
of colorectal, breast and pancreatic cancers [183–185]. 

Finally, acetylation and O-GlcNAcylation have recently 
emerged as critical modifiers of the activity of metabolic 
enzymes as well as of oncogenes and tumor suppressors 
in cancer cells [123, 186–190]. These glucose-sensing 
post-translational modifications may therefore direct 
hepatocytes towards a pro-oncogenic state under condi-
tions of excessive hepatic glucose metabolism [142, 191, 
192].

Conclusions and future directions

Hepatic glucose sensing is critical for an adequate post-
prandial response and the maintenance of glycemic control. 
However, it may also contribute to liver pathology under 
conditions of excessive intrahepatic glucose metabolism. 
Research in the past years has identified GCK–ChReBP 
as the central glucose-sensing system in the liver. Further 
exploration of the mechanisms by which different glucose 
metabolites activate hepatic ChReBP, and the function of 
the different ChReBP isoforms are required to unravel the 
mechanistic basis of the glucose-sensing axis. In addition, 
it remains to be established whether ChReBP’s paralog 
MondoA, which can be activated by G6P and F2,6bisP [49, 
56], also contributes to postprandial glucose sensing in the 
liver.

Because LRH-1 has recently emerged as a potent 
upstream regulator of the GCK–ChReBP axis, modulation 
of its activity may provide opportunities for the treatment 
of diseases that are characterized by aberrant hepatic glu-
cose sensing. LRH-1 transcriptional activity can be modi-
fied by post-translational modifications or by agonists/
antagonist binding, and depends on its interaction with co-
regulators [83, 183, 193–204]. Detailed insight into these 
processes is therefore needed to define strategies that target 
LRH-1-dependent glucose sensing.

Finally, dedicated studies are required to uncover the 
exact role of O-GlcNAcylation and acetylation in hepatic 
glucose sensing. Systematic analysis of glucose-depend-
ent responses in the absence of OGT or KAT activity will 
establish to what extent, and via which mechanisms these 
post-translational modifications contribute to glucose-
sensing system in the liver. Moreover, there is extensive 
crosstalk between post-translational modifications, and 
different combinations of post-translational modifications 
on a single target may lead to distinct biological outcomes 
[112, 205]. Future research will likely uncover novel inter-
plays between GlcNAcylation/acetylation and other post-
translational modifications including protein ubiquitination 
and methylation (reviewed in [206, 207]). Such crosstalk 
may in turn unveil unexpected functions and consequences 
of chronically activated hepatic glucose sensors that go 
beyond metabolism.
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