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Abstract When elementary quantum systems, such as

polarized photons, are used to transmit digital information,

the uncertainty principle gives rise to novel cryptographic

phenomena unachievable with traditional transmission

media, e.g. a communications channel on which it is

impossible in principle to eavesdrop without a high prob-

ability of being detected. With such a channel, a one-time

pad can safely be reused many times as long as no

eavesdrop is detected, and, planning ahead, part of the

capacity of these uncompromised transmissions can be

used to send fresh random bits with which to replace the

one-time pad when an eavesdrop finally is detected. Unlike

other schemes for stretching a one-time pad, this scheme

does not depend on complexity-theoretic assumptions such

as the difficulty of factoring.

1 Introduction

In conventional information theory and cryptography, it is

taken for granted that a digital message can always be

copied easily, even by someone ignorant of its meaning.

Analog messages (e.g. handwritten signatures) are some-

what harder to copy, but not really infeasible, and digital

data can be protected to a considerable extent by inter-

posing a restrictive hardware interface between the data

and the outside world (e.g. smart credit cards); but in both

these cases, the difficulty of copying is only technological,

not fundamental. However, when elementary quantum

systems such as polarized photons are used as the trans-

mission medium, routine copying of messages is no longer

possible even in principle. In particular, there are ways of

encoding messages so that they can be copied reliably only

with the help of certain key information used in forming

the message.

Quantum coding was first described in [W], along with

two applications: making money that is in principle

impossible to counterfeit, and multiplexing two or three

messages in such a way that only one can be read. More

recently [BBBW], quantum coding has been used in con-

junction with public key cryptographic techniques to yield

several schemes for unforgeable subway tokens. Here we

show that quantum coding considerably enhances the
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usefulness of another standard cryptographic device, the

one-time pad.

Mathematically, a polarized photon acts like a two-bit

read-once memory one of whose bits (k) serves as a read key

for the other (m). Querying the memory with the correct

k yields the correct value of m. Querying with the wrong

k yields a random bit instead of m, and in either case que-

rying resets the memory so that subsequent queries yield no

new information. Even after a query, it is generally impos-

sible to infer the initial state of either bit, because the

memory gives no indication of whether its response was the

correct response to the correct key or a random response to

the wrong key. Because it represents the behavior of an

elementary quantum system, this kind of restricted-access

memory should be thought of as a natural information-pro-

cessing primitive, not as a complex technological device that

could probably be circumvented in principle.

Ordinarily, when one thinks of a technological restric-

ted-access memory, one has in mind an information-stor-

age device. Photons can also be stored (e.g. between

mirrors, or in a closed optical fiber), but they cannot in

practice be stored for very long, and their natural appli-

cation is in the transmission of information. We thus have a

situation in which restricted-access memory, as a storage

device, is possible in practice but not in principle via

conventional technology, and in principle but not in prac-

tice via storage of polarized photons. On the other hand,

restricted-access transmissions, which can be read or cop-

ied only with the help of a key, are possible both in prin-

ciple and in practice using polarized photons.

2 Essential Properties of Polarized Photons

Polarized light can be produced by sending ordinary light

through a polarizing apparatus such as a Polaroid filter or

Nicol prism. A beam of polarized light is characterized by

its polarization axis, which is determined by the orientation

of the polarizing apparatus in which the beam originates.

Although polarization is a continuous variable, and in

principle can be measured as accurately as desired by

passing the polarized beam through a second polarizing

apparatus, the uncertainty principle forbids measurements

on any single photon from revealing more than one bit

about the beam’s polarization. In particular, if a beam

with polarization axis a is sent into a polarizer oriented

at angle b, the individual photons behave dichotomously

and probabilistically, being transmitted with probability

cos2ða� bÞ and absorbed with the complementary proba-

bility sin2ða� bÞ. The photons behave deterministically

only when the two axes are parallel (certain transmission)

or perpendicular (certain absorption).

If the two axes are not perpendicular, so that some

photons are transmitted, one might hope to learn additional

information about a by measuring the transmitted photons

again with a polarizer oriented at some third angle; but this

is to no avail, because the transmitted photons, in passing

through the b polarizer, emerge with exactly b polarization,

having lost all memory of their previous polarization a.

Any other elementary two-state quantum system, such as

a spin-1/2 atom, behaves similarly dichotomously and

probabilistically.

Another way one might hope to learn more than one bit

from a single photon would be not to measure it directly,

but rather somehow amplify it into a clone of identically

polarized photons, then perform measurements on these;

but this hope is also vain, because such cloning can be

shown to be inconsistent with the foundations of quantum

mechanics [WZ].

3 Quantum Coding

In order to encode a message bit m into a photon that can

be read or copied reliably only with the help of a key bit k,

we generate a photon with a selected one of the four

polarization directions 0, 45, 90 and 135 degrees. [Gener-

ating a single photon of known polarization is possible by

variation of the Einstein-Podolsky-Rosen setup [Bo], in

which a decaying atom emits two oppositely polarized

photons. By polarizing and counting one photon, the oth-

er’s presence is assured and its polarization fixed without

measuring it directly.] If the key bit is a 0, then the photon

is polarized rectilinearly, i.e. 0 or 90 degrees according to

whether the message bit is 0 or 1. If the key bit is a 1, then

the photon is polarized diagonally, i.e. 45 or 135 degrees

according to the message bit.

Def. The quantum encoding QKðMÞ of a message M by a

key K of equal length is the train of photons obtained by

applying the above procedure bitwise to M and K.

To read a quantum-encoded message with the help of its

key, one simply reads each photon with a polarizer oriented

so as to cause it to behave deterministically, for example,

reading the rectilinear photons with a 0-degree polarizer

and the diagonal photons with a 45-degree polarizer. An

attempt to read a photon with the wrong key causes it to

behave randomly, losing its stored information. For

example, if a 45- or 135-degree photon is read with a

0-degree polarizer, it will be transmitted with 50 per cent

probability in either case, and all evidence of its original

polarization will be lost.

Suppose an eavesdropper intercepts and attempts to read

a quantum transmission QKðMÞ without being detected.

Consider first the case in which the message M and key K
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are both random. Not knowing K, the eavesdropper makes

the wrong measurement on half the photons, and thus

obtains a message M0 differing from M in 1/4 of its bit

positions (of course the eavesdropper does not know which

ones). Having destroyed the original transmission by

reading it, the eavesdropper must now, in order to remain

undetected, inject a forged transmission designed to

approximate the intercepted one as well as possible. Not

knowing which measurements are wrong, the eavesdrop-

per’s best strategy is to produce a new train of photons in

agreement with the results of the measurements, as if they

had all been right. Half of the photons in such a forged

transmission will be correct; the other half have wrong key

values (i.e. will be diagonal when they should be rectilin-

ear, or vice versa), and when subsequently measured with

the correct key by the intended receiver, these will give

wrong answers half the time. Thus the error probability is

1/4 per bit, both for reading the quantum transmission

without knowing its key, and for having a forged replace-

ment agree with what the original message would have said

when decoded by the intended receiver. Of course, if the

intended receiver knew only K but had no prior knowledge

of M, the eavesdropping would still1 go undetected, since a

random message with random errors still looks random.

Quantum money [W] corresponds to the case where the

intended receiver (the bank) has perfect knowledge of both

M and K, while the counterfeiter knows neither. The usual

message M sent over communication channels is interme-

diate between these extremes: the receiver has partial prior

knowledge of it (e.g. expecting it to be in English).

Simply encoding an arbitrary message M with a random

quantum key K has two disadvantages: 1) if the message is

too random the receiver won’t be able to detect eaves-

dropping, for the reason mentioned above; 2) if the mes-

sage is too redundant (e.g. English), eavesdropping will be

detected, but by then the eavesdropper will have gained

significant information about the message, perhaps even

enough to decrypt it uniquely, because eavesdropping

induces errors in only 1/4 of the bits. (In this respect

quantum coding differs from ordinary one-time pad

encryption, where ignorance of the key prevents the

eavesdropper from learning anything about the encrypted

message,2 though of course it can be freely copied.)

We now define a stronger kind of coding that overcomes

both these disadvantages. The trick is to make the message

redundant with an error-detecting code M ! EðMÞ, then

hide the redundancy from the eavesdropper by an ordinary

one-time pad J, before applying quantum coding.

Def. For any error-detecting code E (assumed known to

the eavesdropper) let the strong quantum code SE be

defined as follows: let J and K be two random key strings

of length jEðMÞj not known to the eavesdropper.3 Then the

strong quantum encoding SE
J;KðMÞ of message M is the

train of photons QkðJ xor EðMÞÞ.

It is obvious (because of the one-time pad J ) that the

eavesdropper can learn nothing about M from SE
J;KðMÞ.

Moreover, for suitable error-correcting codes,4 eavesdrop-

ping incurs a high risk of being detected. Even the rudi-

mentary code of repeating the message twice EðMÞ ¼ MM

suffices to detect eavesdropping with probability at least

1� 0:79k when k photons have been intercepted, quite

close to the optimum 1� 0:75k implied by the indepen-

dent, probabilistic nature of eavesdropping-induced errors.

Although the simple code EðMÞ ¼ MM is nearly optimal

for eavesdropping-detection, a more complex code would

be preferable for another reason: the detection of deliberate

message alteration. Although randomly quantum-coded

photons cannot be read reliably, they can be altered reliably.

For example, the polarization axis of a photon can be

rotated by 90 degrees, without measuring or otherwise

disturbing it, by passing the photon through an appropriate

sequence of mirrors (or, more mysteriously, through a sugar

solution). If this manipulation were applied to the first and

ðnþ 1Þst photons of a 2n-photon transmission coded as

above, both would be altered with certainty in such a way as

to induce an undetected alteration in the message. A more

complex error-detecting code, e.g. concatenating MM with

a check sum of the addresses of the ones in M, would make

such alterations unlikely to escape detection. In the next

section, where quantum transmissions are used to carry key

information for future transmissions, it will be necessary to

use an error-correcting code5 that provides some ‘diffu-

sion’, in the sense of making each bit of EðMÞ depend on

many bits of M. This prevents the eavesdropper who has

luckily guessed a few bits of the present key from thereby

efficiently inferring any bits of future keys. Finally, in1 This word (‘‘still’’) appears to be superfluous. The authors do not

understand in 2014 what they could have meant by it when they wrote

the original 1982 manuscript.
2 In 2014, the authors realize that the phrase ‘‘the encrypted

message’’ was ambiguous and confusing. They intended it to mean

‘‘the message whose meaning had been concealed by encryption’’—

i.e. the plaintext—rather than what would nowadays be seen as its

more likely meaning in a cryptologic context, ‘‘the message in

encrypted form’’—i.e. the ciphertext. Eavesdropping on a classical

one-time pad transmission of course yields complete information on

the ciphertext but none on the plaintext.

3 In 2014, the authors noticed a possible ambiguity in this sentence.

It is the random key strings J and K that are unknown to the

eavesdropper, not their length jEðMÞj.
4 In 2014, the authors noticed that they had meant ‘‘error-detecting

codes’’ here.
5 In 2014, the authors noticed that they had meant ‘‘error-detecting

code’’ here as well.
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section 5, we will need a code E that corrects errors as well

as detecting them, to make up for photons that arrive at the

receiver but fail to be detected.

4 Reusing a One-Time Pad Safely with the Help

of Quantum Coding

We consider a situation in which two users of an insecure

communications channel, who initially share a finite secret

key, wish to communicate secretly as long as they can. In a

classical setting, where eavesdropping is undetectable in

principle, they must assume that all their communications

are being listened to, and the volume of safe communication

is only linear in the size of the key, unless they resort to

pseudorandom key-expansion schemes [BM,Y], which are

at best (assuming P 6¼ NP) only computationally secure.

We show that by strongly quantum-coding their mes-

sages with suitable error-detecting codes, the sender and

receiver can safely reuse the same J and K keys indefinitely

until an eavesdrop is detected. (The safety is not absolute.

There is an exponentially small chance (Oð2�jKjÞ) that the

eavesdropper, having guessed the entire quantum key K

correctly, will be able to eavesdrop on all the transmissions

without detection and go on to break the reused J key in the

usual manner, as well as a moderate chance for the

eavesdropper to learn a few bits of the K key correctly and

go on to intercept and decrypt a few bits of each message;

but these risks do not increase with the number of times an

apparently secure key is reused.) An eavesdropper who

tampers with or suppresses messages will also be detected

with high probability, as will one who injects false

messages.

When an eavesdrop is detected, the sender and receiver

can go on communicating with only slightly diminished

safety by replacing their compromised keys by fresh random

information sent over the channel in previous uncompro-

mised transmissions. With high probability they will be able

to continue communicating in this fashion for an exponential

(2OðjKjÞ) number of key changes,6 unless the eavesdrops

become so frequent before then that they are forced to use

up key information faster than they can replace it, in which

case they will (with high probability) be able to cease

communication before any of their transmissions have

become uniquely decodable by the eavesdropper.

Because the replacement keys are truly random, rather

than being pseudorandomly computed from an original

seed, the security of the scheme would not be reduced by

allowing the eavesdropper unlimited computing power.

Neither would it be compromised by technological

improvements in the art of eavesdropping. The scheme

does incorporate one technologically unrealistic assump-

tion, viz. that photons can be detected with perfect effi-

ciency (cf. section 5, where this assumption is not made).

We sketch how these advantages can be achieved. The

ability to send many messages without loss of security

(when no eavesdropping is detected) follows from the

exponential decline of the probability of escaping detection

with the number of distinct bit positions ever subjected to

eavesdropping, whether these bit positions are listened to

all at once, or a few at a time over the course of many

transmissions. For this reason, a quantum channel could

even be used to safely send arbitrarily many copies of the

same strongly coded transmission, without the eavesdrop-

per being able to forge it accurately, provided the copies

were sent one at a time, each only on confirmation that the

preceding one had apparently not been listened to. By

contrast, if many identical transmissions were sent all at

once, the eavesdropper could intercept them all, reliably

determine each polarization by multiple measurements,

and then escape detection by forging many trains of pho-

tons with the now known sequence of polarizations.

In order to be sure that no key is reused after a detected

eavesdropping, the two communicating parties must alter-

nate strictly in their use of each key. Otherwise the

eavesdropper could, for example, intercept and absorb a

message from A without forwarding it to B and then wait

for B to use the same key on a subsequent message. The

effect of absorbing a message is thus the same as that of

spoiling it through eavesdropping: neither party reuses the

key with which it was sent. If the initial body of shared

key information included several keys reserved for first use

by A and several for first use by B, the parties could

alternate in the use of each key without strictly alternating

transmissions. Of course if multiple keys were in use, and

particularly if some transmissions were being absorbed by

the eavesdropper, the communicating parties would have to

prefix each quantum transmission by a (cleartext) indica-

tion of which key it was encoded with, to avoid reading a

message with the wrong quantum key and spoiling it.

The ability to change keys without serious loss of

security depends on using a somewhat diffusive error-

detecting code when new key information is transmitted.

With the simple non-diffusive code EðMÞ ¼ MM, an

eavesdropper who by good luck has correctly guessed the

first and ðnþ 1Þst bits of the current J and K keys will

know what measurements to make to reliably read and

forge the corresponding bits of a fresh pair of random keys

J0, K 0 when these are sent through the channel in four

transmissions strongly encoded by J and K; as well as

confirming, by the consistency of decoding of the error-

6 Note added in 2014: this 1982 use of the asymptotic notation ‘‘O’’

was an example of the common physics usage, where it may mean

either an upper or lower bound depending on context. Here, we

intended a lower bound, which in modern computer science usage

would be denoted 2XðjKjÞ.
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detecting code, that the guessed bits of J and K are indeed

correct. Subsequent lucky guessing on further generations

of keys (along with unlucky guessing causing some keys to

be rejected due to detected eavesdropping) could be used to

discover additional bits until, in linear time, some pair of

keys J00 and K 00 became entirely known.

To delay this collapse for an expected exponential num-

ber7 of key changes 2OðnÞ, it suffices to use an error-

detecting code that diffuses information about each bit of its

argument M among many bits of its value EðMÞ; so that

knowledge, say, of any n=4 bits of EðMÞ reveals little or

nothing about any bit of M. Many error-detecting codes

have this property, e.g. a random mapping from n-bit strings

to 2n-bit strings, or the linear code obtained by mod-2

multiplying MM by an appropriate nonsingular matrix. With

a diffusive code, knowledge of a few bits of J and K would

not enable the eavesdropper to make reliable measurements

of any bits of the replacement keys J0 and K 0.

5 A Practical Implementation

Although visible light photons can be polarized with nearly

perfect efficiency (e.g. a Nicol prism can split a beam into

two beams, very nearly perfectly polarized at right angles

to each other, whose total intensity is scarcely less than that

of the incoming beam), and transmitted with nearly perfect

efficiency (in a vacuum the only significant losses are due

to diffraction, and these can be made negligible by using a

beam diameter considerably greater than the square root of

the product of the transmission distance and the wave-

length of light), current technology allows them to be

detected with only about thirty per cent efficiency.8

Fortunately, the scheme of the preceding section can be

modified to accommodate finite detector efficiency, at the

cost of using a more complicated error-correcting code

M ! EðMÞ in place of the error-detecting code, and a more

complicated criterion for key rejection than the detection of

a single error on decoding EðMÞ. Somewhat surprisingly,

the modified scheme remains secure against an eaves-

dropper with a more efficient, or even perfectly efficient,

photon detector. The volume of safe communication for

this scheme is more than linear, but may be less than

exponential, in the initial key size.

The main modification is to use standard faint pulses of

polarized light instead of single photons, each pulse being

of such a size that when it is sent into a detector of the

given efficiency (e.g. 30 per cent), or split into several

fainter pulses (e.g. by a half-silvered mirror or a Nicol

prism) and sent into several such detectors, the total

number of photons detected obeys a Poisson distribution of

mean 1. Such a standard faint pulse can easily be produced

by filtering a standard bright pulse of polarized light to

reduce its intensity by the requisite constant factor.

A standard faint pulse of a given polarization resists

copying nearly as well as a single photon would. The best

strategy for an eavesdropper to copy a faint pulse is to use a

half silvered mirror and two Nicol prisms to split the incoming

pulse into four beams, one of each canonical polarization, and

monitor each beam by a photon detector. Most of the time,

only one of the detectors will register a photon, and the

eavesdropper will be no better off than in the single photon

case. Occasionally two or three detectors will register, yield-

ing more information. Only when three detectors register will

the pulse’s polarization be known unambiguously (e.g. if

both diagonal detectors and the vertical detector register, then

the pulse must have been vertically polarized). The faint pulse

works well because the chance of three detectors responding

to the same pulse is only about 2 per cent (for a Poisson

distribution of mean*1). The other 98 per cent of the time, the

eavesdropper does not learn the pulse’s polarization unam-

biguously, and, as with single photons, cannot reliably copy it.

Even a technologically advanced eavesdropper, with perfectly

efficient photon detectors, could not copy faint pulses reliably.

For example, if the advanced eavesdropper uses 100 per cent

detectors to analyze a pulse intended for 30 per cent detectors,

an average of 3.3 photons will be detected per pulse, but the

chance that these will appear in three different beams, and thus

reveal the pulse’s polarization unambiguously, would still be

only about 25 per cent.

The converse phenomenon, namely statistical failure to

detect even one photon when a pulse arrives, requires that

the rejection test be made more complicated. Even if a

transmission is not subjected to eavesdropping, about 1=e

of its light pulses go undetected, due to normal bad luck at

the detectors. The rejection test must begin by deciding

whether the number of missing light pulses is so great as to

raise the suspicion of eavesdropping (a wise eavesdropper

now might not bother to forge replacements for the inter-

cepted pulses, but instead let them remain missing, hoping

to pass them off as pulses that arrived but were not

detected). If the number of missing pulses is not too great,

the error-correcting code must reliably restore the data they

would have carried, as well as checking for polarization

errors, which as before would indicate interception and

forgery of some of the pulses. A convolutional code [G]

appears most suitable for achieving the desired high effi-

ciency of error-correction in a channel with a large number

of erasures (1=e). Depending on the purity of polarization

available from the Nicol prisms, the code could be made to

7 Note added in 2014: as in the previous footnote, modern computer

science usage would have us write an expected 2XðnÞ number of key

changes.
8 Note added in 2014: this was the approximate quantum efficiency

of photomultiplier tubes available in 1982.
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tolerate and correct a small number of polarization errors,

but reject a larger number as evidence of forgery. Since the

capacity of a binary channel with 1=e erasure probability is

0.632, a four-fold expansion in EðMÞ offers ample room for

efficient error detection and correction. This in turn means

that eight transmissions, each containing n fresh key bits,

would have to be accepted to replace the 8n bits sacrificed

in a rejection.

The most problematical aspect of the modified scheme is

the decision of when to reject a transmission and change

keys. By contrast with the scheme of the previous section,

it is now necessary to change keys periodically (at least

every n1=2 transmissions) even in the absence of any evi-

dence of eavesdropping, in order to prevent an eaves-

dropper from intercepting all of the bit positions, a few at a

time, over the course of many apparently safe transmis-

sions. The expected number of safe key changes has not

been worked out, but it is not implausible that it is still

exponential in the key size.9
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