
Des. Codes Cryptogr. (2014) 73:355–368
DOI 10.1007/s10623-014-9918-8

PotLLL: a polynomial time version of LLL
with deep insertions

Felix Fontein · Michael Schneider · Urs Wagner

Received: 29 July 2013 / Revised: 24 December 2013 / Accepted: 1 January 2014 /
Published online: 22 January 2014
© Springer Science+Business Media New York 2014

Abstract Lattice reduction algorithms have numerous applications in number theory, alge-
bra, as well as in cryptanalysis. The most famous algorithm for lattice reduction is the LLL
algorithm. In polynomial time it computes a reduced basis with provable output quality. One
early improvement of the LLL algorithm was LLL with deep insertions (DeepLLL). The out-
put of this version of LLL has higher quality in practice but the running time seems to explode.
Weaker variants of DeepLLL, where the insertions are restricted to blocks, behave nicely in
practice concerning the running time. However no proof of polynomial running time is known.
In this paper PotLLL, a new variant of DeepLLL with provably polynomial running time, is
presented. We compare the practical behavior of the new algorithm to classical LLL, BKZ as
well as blockwise variants of DeepLLL regarding both the output quality and running time.

Keywords Lattice reduction · LLL algorithm · Deep insertion

Mathematics Subject Classification 68R05 · 94A60

1 Introduction

The well-known LLL lattice reduction algorithm was presented in 1982 by Lenstra,
Lenstra, Lovász [6]. Apart from various other applications (e.g. [12, Chapters 9, 10])

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Coding and Cryptography”.

F. Fontein (B)· U. Wagner
Universität Zürich, Zurich, Switzerland
e-mail: felix.fontein@math.uzh.ch

U. Wagner
e-mail: urs.wagner@math.uzh.ch

M. Schneider
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: mischnei@cdc.informatik.tu-darmstadt.de

123

356 F. Fontein et al.

it has already at an early stage been used to attack various public key cryptosystems.
Nevertheless lattice problems remain popular when it comes to the construction of prov-
ably secure cryptosystems (e.g. [9]). Consequently improvements in lattice reduction still
have a direct impact on the security of many cryptosystems and rise high interest in the
crypto-community.

Many lattice reduction algorithms used in practice are generalizations of the LLL algo-
rithm. The Block–Korkine–Zolotarev (BKZ) reduction algorithm by Schnorr and Euch-
ner [14] is probably the most used algorithm when stronger reduction than the one achieved
by LLL is required. It can be seen as a generalization of LLL to higher blocksizes, and while
the running time seems to behave well for small blocksizes [4], no useful upper bound has
been proven so far. If the BKZ algorithm is terminated early, polynomial runtime can be
proven, while still reaching results of similar quality [5]. Another improvement of the LLL
algorithm has also been suggested in [14]. While in LLL adjacent basis vectors are swapped
if certain conditions are satisfied, in the so called LLL with deep insertions (DeepLLL in
the sequel), basis vectors can be swapped even when not adjacent. The practical behavior
of DeepLLL when it comes to the reducedness of the output basis is superior the one of LLL.
Unfortunately also the running time explodes and does not seem to be polynomial in the
dimension of the lattice. One attempt to get across this problem is to restrict the insertions to
certain blocks of basis vectors. While the authors in [14] claim that these blockwise restric-
tion variants of DeepLLL run in polynomial time, we are not aware of any proof thereof.
A different approach to produce DeepLLL reduced bases is taken in [2]; unfortunately, no
proven bound on the running time is provided in that paper. Their approach does not fit into
our framework of LLL-type algorithms.

For an overview on the practical behavior of the different variants and improvements
on LLL, we refer to [4,11]. There the practical behavior of the reduction algorithms is
investigated using the widely used fplll and NTL libraries, respectively.

In this paper we present two new versions of DeepLLL, called PotLLL and PotLLL2. To
our knowledge it is the first improvement of LLL with regard to deep insertions which prov-
ably runs in polynomial time. The practical behavior of PotLLL and PotLLL2 regarding both
the output quality and running time is empirically tested and compared to BKZ and DeepLLL
with different blocksizes. The tests are performed with a completely new implementation
of the different reduction algorithms. This additionally allows an independent review of the
results in [4,11]. The tests indicate that our algorithm can serve as a serious alternative to
BKZ with low blocksizes. This paper is an extension of the work presented at WCC 2013 in
Bergen [3].

The paper is organized as follows. In Sect. 2 all necessary notations and definitions are
given. In Sect. 3 the reduction notion and the new algorithm is presented and a theoretical
analysis is provided. Sect. 4 contains the empirical results and conclusions are drawn in
Sect. 5.

2 Preliminaries

A lattice L ⊂ R
m of rank n and dimension m is a discrete subgroup of R

m generated by
integer linear combinations of n linearly independent vectors b1, . . . , bn in R

m :

L = L(b1, . . . , bn) :=
{ n∑

i=1

xi bi

∣∣∣∣ ∀i : xi ∈ Z

}
.

123

A polynomial time version of LLL 357

We will often write the basis b1, . . . , bn as rows of a matrix B in the following way B =
[b1, . . . , bn]. In order to have exact representations in computers, unless explicitly stated
otherwise, only lattices in Q

n are considered. Simple scaling by the least common multiple
of the denominators allows us to restrict ourselves to integer lattices L ⊆ Z

m . The volume
of a lattice L(B) equals the volume of its fundamental parallelepiped vol (L) = √det(B Bt).
For n ≥ 2, a lattice has infinitely many bases as L(B) = L(B ′) if and only if ∃U ∈
GLn(Z) : B = U B ′. Therefore, the volume of a lattice is well defined. By πk : R

m →
span {b1, . . . , bk−1}⊥ we denote the orthogonal projection from R

m onto the orthogonal
complement of span {b1, . . . , bk−1}. In particular, π1 = idRm and b∗i := πi (bi) equals
the i-th basis vector of the Gram–Schmidt orthogonalization B∗ = [b∗1, . . . , b∗n] of B. By
μi, j := 〈bi , b∗j 〉/〈b∗j , b∗j 〉, j < i , we denote the Gram–Schmidt coefficients. The Gram–

Schmidt vectors can iteratively be computed by πi (bi) = b∗i = bi −∑i−1
j=1 μi, j b∗j .

Throughout this paper, by ‖·‖ we denote the Euclidean norm and by λ1(L) we denote
the length of a shortest non-zero vector in L with respect to the Euclidean norm: λ1(L) :=
minv∈L\{0}‖v‖. Determining λ1(L) is commonly known as the shortest vector problem (SVP)
and is proven to be NP-hard (under randomized reductions) (see e.g. [8]). Upper bounds with
respect to the determinant exist, for all rank n lattices L we have [7, Chapter 2]

λ1(L)2

vol (L)2/n
≤ γn ≤ 1+ n

4
,

where γn is the Hermite constant in dimension n. Given a relatively short vector v ∈ L,
one measures its quality by the Hermite factor ‖v‖/vol (L)1/n it achieves. Modern lattice
reduction algorithms achieve a Hermite factor which is exponential in n and no polynomial
time algorithm is known to achieve linear or polynomial Hermite factors.

Let Sn denote the group of permutations of n elements. By applying σ ∈ Sn to a basis
B = [b1, . . . , bn], the basis vectors are reordered σ B = [bσ(1), . . . , bσ(n)]. For 1 ≤ k
≤ � ≤ n we define a class of elements σk,� ∈ Sn as follows:

σk,�(i) =
⎧⎨
⎩

i for i < k or i > � ,

� for i = k ,

i − 1 for k < i ≤ � .

(2.1)

Note that σk,� = σk,k+1σk+1,k+2 . . . σ�−1,� and that σk,k+1 is swapping the two elements k
and k + 1.

Definition 1 Let δ ∈ (1/4, 1]. A basis B = [b1, . . . , bn] of a lattice L(b1, . . . , bn) is called
δ-LLL reduced if and only if it satisfies the following two conditions:

1. ∀1 ≤ j < i ≤ n : |μi, j | ≤ 1
2 (size-reduced).

2. 1 ≤ k < n : δ · ‖πk(bk)‖2 ≤ ‖πk(bk+1)‖2 (Lovász-condition).

A δ-LLL reduced basis B = [b1, . . . , bn] can be computed in polynomial time [6] and
provably satisfies the following bounds:

‖b1‖ ≤
(
δ− 1/4

)−(n−1)/2 · λ1(L(B)) and ‖b1‖ ≤
(
δ− 1/4

)−(n−1)/4 · vol (L(B))1/n .

(2.2)
While these bounds can be reached, they are worst case bounds. In practice, LLL reduc-
tion algorithms behave much better [11]. One early attempt to improve the LLL reduction
algorithm is due to Schnorr and Euchner [14] who came up with the notion of a DeepLLL
reduced basis:

123

358 F. Fontein et al.

Definition 2 Let δ ∈ (1/4, 1]. A basis B = [b1, . . . , bn] of a lattice L(b1, . . . , bn) is called
δ-DeepLLL reduced with blocksize β if and only if it satisfies the following two conditions:

1. ∀1 ≤ j < i ≤ n : |μi, j | ≤ 1
2 (size-reduced).

2. ∀1 ≤ k < � ≤ n with k ≤ β ∨ �− k ≤ β : δ · ‖πk(bk)‖2 ≤ ‖πk(b�)‖2.

If β = n we simply call this a DeepLLL reduced basis. While the first basis vector of
DeepLLL reduced bases in the worst case does not achieve a better Hermite factor than
classical LLL (see Sect. 3.4), the according reduction algorithms usually return much shorter
vectors than pure LLL. Unfortunately no polynomial time algorithm to compute DeepLLL
reduced bases is known.

The following definition is used in the proof (see e.g. [8]) of the polynomial running time
of the LLL reduction algorithm and will play a main role in our improved variant of LLL.

Definition 3 The potential Pot(B) of a lattice basis B = [b1, . . . , bn] is defined as

Pot(B) :=
n∏

i=1

vol (L(b1, . . . , bi))
2 =

n∏
i=1

‖b∗i ‖2(n−i+1) .

Here it is used that vol (L) = ∏n
i=1‖b∗i ‖. Note that, unlike the volume of the lattice, the

potential of a basis is variant under basis permutations. The following lemma describes how
the potential changes if σk,� is applied to the basis.

Lemma 1 Let B = [b1, . . . , bn] be a lattice basis. Then for 1 ≤ k ≤ � ≤ n

Pot(σk,� B) = Pot(B) ·
�∏

i=k

‖πi (b�)‖2
‖πi (bi)‖2 .

Proof First note that it is well-known that Pot(σk,k+1 B) = ‖πk(bk+1)‖2/‖πk(bk)‖2 ·Pot(B).
This property is used in the proofs of the polynomial running time of LLL [6,8].

We prove the claim by induction over � − k. The claim is true for k = �. For k < �,
σk,� = σk,k+1σk+1,�. As b� is the (k + 1)-th basis vector of σk+1,� B, with the above identity

we get Pot(σk,� B) = Pot(σk,k+1σk+1,� B) = ‖πk (b�)‖2
‖πk (bk)‖2 · Pot(σk+1,� B), which completes the

proof. ��

3 The Potential-LLL reduction

In this section we present our polynomial time variant of DeepLLL. We start with the defi-
nition of a δ-PotLLL reduced basis. Then we present an algorithm that outputs such a basis
followed by a runtime proof.

Definition 4 Let δ ∈ (1/4, 1]. A lattice basis B = [b1, . . . , bn] is δ-PotLLL reduced if and
only if

1. ∀1 ≤ j < i ≤ n : |μi, j | ≤ 1
2 (size-reduced).

2. ∀1 ≤ k < � ≤ n : δ · Pot(B) ≤ Pot(σk,� B).

Lemma 2 A δ-PotLLL reduced basis B is also δ-LLL reduced.

Proof Lemma 1 shows that δ · Pot(B) ≤ Pot(σi,i+1 B) if and only if δ‖πi (bi)‖2 ≤
‖πi (bi+1)‖2. Thus the Lovász condition is implied by the second condition in Definition 4
restricted to consecutive pairs, i.e. � = k + 1. ��

123

A polynomial time version of LLL 359

Lemma 3 For δ ∈ (
4−1/(n−1), 1

]
, a δ-DeepLLL reduced basis B is also δn−1-PotLLL

reduced.

Proof We proceed by contradiction. Assume that B is not δn−1-PotLLL reduced, i.e. there
exist 1 ≤ k < � ≤ n such that δn−1Pot(B) > Pot(σk,� B). By Lemma 1 this is equivalent to

δn−1 >

�∏
i=k

‖πi (b�)‖2
‖πi (bi)‖2 =

�−1∏
i=k

‖πi (b�)‖2
‖πi (bi)‖2 .

It follows that there exist a j ∈ [k, �−1] such that ‖π j (b�)‖2/‖π j (b j)‖2 < δ(n−1)/(�−k) ≤ δ

which implies that B is not δ-DeepLLL reduced. ��
3.1 High-level description

A high-level version of the algorithm is presented as Algorithm 1. The algorithm is very
similar to the classical LLL algorithm and the classical DeepLLL reduction by Schnorr and
Euchner [14]. During its execution, the first �−1 basis vectors are always δ-PotLLL reduced
(this guarantees termination of the algorithm). As opposed to classical LLL, and similar to
DeepLLL, � might decrease by more than one. This happens precisely during deep insertions:
in these cases, the �-th vector is not swapped with the (�− 1)-th one, as in classical LLL, but
is moved to the k-th position for k < � − 1. In case k = �− 1, this equals the swapping of
adjacent basis vectors as in classical LLL. The main difference of PotLLL and DeepLLL is
the condition that controls insertion of a vector: in DeepLLL, the designated insertion index k
is chosen as k = min

{
j ∈ {1, . . . , �} ∣∣ ‖π j (b�)‖2 ≤ δ · ‖π j (b j)‖2

}
, while in PotLLL it is

chosen as k = argmin1≤ j≤�Pot(σ j,� B).

Algorithm 1: Potential LLL
Input: Basis B ∈ Z

n×m , δ ∈ (1/4, 1]
Output: A δ-PotLLL reduced basis.
δ-LLL reduce B1
�← 12
while � ≤ n do3

Size-reduce(B)4
k ← argmin1≤ j≤�Pot(σ j,� B)5

if δ · Pot(B) > Pot(σk,� B) then6
B ← σk,� B7
�← k8

else9
�← �+ 110

end11
end12
return B13

3.1.1 Preprocessing

On line 1 we LLL reduce the input basis before proceeding. It turns out that while omitting
this preprocessing does not change the output quality of the bases on average (see Fig. 5a),
it is on average beneficial when it comes to the running time (see Fig. 5b). Note that most
implementations of BKZ also preprocess the input basis with LLL and a more detailed
discussion in Sect. 4.2.

123

360 F. Fontein et al.

3.1.2 PotLLL2

On line 5 the insertion depth is chosen such that the potential of the basis is minimal under
the insertion. Alternatively one can choose the insertion place k as min{k : Pot(σk,� B) <

δ · Pot(B)}. Neither the running time analysis nor the fact that the output basis is PotLLL
reduced is changed. We refer to this variant of PotLLL as PotLLL2.

3.2 Detailed description

There are two details to consider when implementing Algorithm 1. The first one is that since
the basis vectors b1, . . . , b�−1 are already δ-PotLLL reduced, they are in particular also
size-reduced. Moreover, the basis vectors b�+1, . . . , bn will be considered later again. So in
line 4 of the algorithm it suffices to size-reduce b� by b1, . . . , b�−1 as in classical LLL. Upon
termination, when � = n + 1, the whole basis will be size-reduced.

Another thing to consider is the computation of the potentials of B and σ j,� B for 1 ≤ j ≤ �

in lines 5 and 6. Computing the potential of the basis is a rather slow operation. But we do not
need to compute the potential itself, but only compare Pot(σk,� B) to Pot(B); by Lemma 1,
this quotient can be efficiently computed. Define Pk,� := Pot(σk,� B)/Pot(B). The “if”-
condition in line 6 will then change to δ > Pk,�, and the minimum in line 5 will change to
argmin1≤ j≤� Pj,�. Using P�,� = 1 and

Pj,� = Pot(σ j,� B)

Pot(B)
= Pj+1,� · ‖π j (b�)‖2

‖π j (b j)‖2 = Pj+1,� ·
‖b∗�‖2 +

∑�−1
i= j μ2

�,i‖b∗i ‖2
‖b∗j‖2

(3.1)

for j < � (Lemma 1), we can quickly determine argmin1≤ j≤� Pj,� and check whether δ > Pk,�

if j minimizes Pj,�.
A detailed version of Algorithm 1 with these steps filled in is described as Algorithm 2. On

line 8 of Algorithm 2, Pj,� is iteratively computed as in Eq. (3.1). Clearly, the algorithm could
be further improved by iteratively computing ‖π j (b�)‖2 from ‖π j+1(b�)‖2. Depending on
the implementation of the Gram–Schmidt orthogonalization, this might already have been
computed and stored. For example, when using the Gram–Schmidt orthogonalization as
described in Fig. 4 of [10], then ‖π j (b�)‖2 = s j−1 after computation of ‖b∗�‖2 and μ�, j for
1 ≤ j < �.

3.3 Complexity analysis

Here we show that the number of operations in the PotLLL algorithm is bounded polynomially
in the dimension n and the logarithm of the input size. We present the runtime for Algorithm 2.

Proposition 1 Let δ ∈ (1/4, 1) and C = maxi=1...n‖bi‖2. Then Algorithm 2 performs
O(n3 log1/δ(C)) iterations of the while loop in line 3 and a total of O(mn4 log1/δ(C))

arithmetic operations.

Proof Let us start by bounding from above the potential I of the input basis with respect to
C . Let d j := vol

(L(b1, . . . , b j)
)2 = ∏ j

i=1‖b∗i ‖2 for j = 1, . . . , n. Recall that ‖b∗i ‖2 ≤
‖bi‖2 ≤ C for i = 1, . . . , n and hence d j < C j . Consequently we have the following upper
bound on the potential

I =
n−1∏
j=1

d j · vol (L)2 ≤
n−1∏
j=1

C j · vol (L)2 ≤ C
n(n−1)

2 · vol (L)2 . (3.2)

123

A polynomial time version of LLL 361

Algorithm 2: Potential LLL, detailed version
Input: Basis B ∈ Z

n×m , δ ∈ (1/4, 1]
Output: A δ-PotLLL reduced basis.
δ-LLL reduce B1
�← 12
while � ≤ n do3

Size-reduce(b� by b1, . . . , b�−1)4

Update(‖b∗
�
‖2 and μ�, j for 1 ≤ j < �)5

P ← 1, Pmin ← 1, k ← 16
for j = �− 1 down to 1 do7

P ← P · ‖b
∗
�
‖2+∑�−1

i= j μ2
�,i ‖b∗i ‖2

‖b∗j ‖28

if P < Pmin then9
k ← j10
Pmin ← P11

end12
end13
if δ > Pmin then14

B ← σk,� B15

Update(‖b∗k‖2 and μk, j for 1 ≤ j < k)16

�← k17
else18

�← �+ 119
end20

end21
return B22

Note that the first equality also shows that the potential of any basis of an integer lattice L is
bounded from below by vol (L)2 as d j ≥ 1.

Now, by a standard argument, we show that the number of iterations of the while loop is
bounded by O(n3 log1/δ(C)). In each iteration, either the iteration counter � is increased by
1, or an insertion takes place and � is decreased by at most n − 1. In the insertion case, the
potential is decreased by a factor at least δ. So after N swaps the potential IN satisfies I ≥
(1/δ)N IN ≥ (1/δ)N · vol (L)2 using IN ≥ vol (L)2. Consequently the number of swaps N
is bounded by N ≤ log1/δ(I/vol (L)2). By Eq. 3.2 we get that N ≤ log1/δ

(
Cn(n−1)/2

)
. Now

note that the number M of iterations where � is increased by 1 is at most M ≤ (n−1) ·N+n.
This shows that the number of iterations is bounded by O(n3 log1/δ(C)).

Next we show that the number of operations performed in each iteration of the while
loop is dominated by O(nm) operations. Size-reduction (line 4) and the first update step
(line 5) can be done in O(nm) steps. The for-loop consists of O(n) iterations where the
most expensive operation is the update of P in line 8. Therefore the loop requires O(nm)

arithmetic operations. Insertion can be done in O(n) operations, whereas the second update
in line 16 requires again O(nm) operations.

It follows that each iteration costs at most O(nm) arithmetic operations. This shows that
in total the algorithm performs O(mn4 log(C)) operations. ��
3.4 Worst-case behavior

For δ = 1, there exist so called critical bases which are δ-LLL reduced bases and whose
Hermite factor reaches the worst case bound in (2.2) [15]. These bases can be adapted to
form a DeepLLL reduced basis where the first vector reaches the worst case bound in (2.2).

123

362 F. Fontein et al.

Proposition 2 For α = √3/4, the rows of B = An(α) (see below) define a δ-DeepLLL
reduced basis with δ = 1 and ‖b1‖ = 1

(δ−1/4)(n−1)/4 vol (L(An))1/n.

An(α) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0

1
2 α

. . .
...

... α
2 α2 . . .

...
...

... α2

2

. . .
. . .

...
...

...
...

. . . αn−2 0
1
2

α
2

α2

2 . . . αn−2

2 αn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

It is worth mentioning that the lattice in Proposition 2 is defined over R and not over Q. By
approximating α = √3/4 by rational numbers from above, we can find a sequence of lattices
which are δ-DeepLLL reduced with δ = 1 and satisfy ‖b1‖ → 1

(3/4)(n−1)/4 vol (L(An(α)))1/n ,
which is the worst-case bound on LLL for δ = 1.

Proof From the diagonal form of An it is easy to see that vol (L) = det(An) = αn(n−1)/2.
Hence ‖b1‖ = 1 = 1/α(n−1)/2vol (L). It remains to show that An is DeepLLL reduced. Note
that the orthogonalized basis B∗ is a diagonal matrix with the same entries on the diagonal as
B. Note that it is size reduced as for all 1 ≤ j < i ≤ n we have μi, j = 〈bi , b∗j 〉/〈b∗j , b∗j 〉 =
1
2α2(j−1)/α2(j−1) = 1

2 . Further, using that π j (bi) = b∗i +
∑i−1

�= j μi,�b∗� , we have that

‖π j (bi)‖2 = α2(i−1) + 1

4

i−1∑
�= j

α2(�−1) = α2(j−1)

⎛
⎝1

4

i− j−1∑
�=0

α2� + α2(i− j)

⎞
⎠ .

As for α = √3/4, we have that 1
4

∑i− j−1
�=0 α2� + α2(i− j) = 1, and hence ‖π j (bi)‖2 =

α2(j−1) = ‖π j (b j)‖2. Therefore, the norms of the projections for fixed j are all equal, and
An(α) is δ-DeepLLL reduced with δ = 1. ��

Using Lemma 3, we obtain:

Corollary 1 For α = √3/4, the rows of An(α) define a δ-PotLLL reduced basis with δ = 1
and ‖b1‖ = 1

(δ−1/4)(n−1)/4 vol (L(An))1/n.

4 Experimental results

Extensive experiments have been made to examine how the classical LLL reduction algorithm
performs in practice [4,11]. We ran extensive experiments to compare our PotLLL algorithms
to our implementations of LLL, DeepLLL, and BKZ.

4.1 Setting

We run the following algorithms, each with the standard reduction parameter δ = 0.99:

1. classical LLL,
2. PotLLL and PotLLL2,

123

A polynomial time version of LLL 363

3. DeepLLL with blocksize β = 5 and β = 10,
4. BKZ with blocksize 5 (BKZ-5) and 10 (BKZ-10).

The implementations all use the same arithmetic back-end. Integer arithmetic is done using
GMP, and Gram–Schmidt arithmetic is done as described in [10, Figs. 4 and 5]. As floating
point types, long double (x64 extended precision format, 80 bit representation) and
MPFR arbitrary precision floating point numbers are used with a precision as described in
[10]. The implementations of DeepLLL and BKZ follow the classical description in [14].
PotLLL was implemented as described in Algorithm 2. Our implementation will be made
publicly available.

We ran experiments in dimensions 40–400, considering the dimensions which are mul-
tiples of 10. Some algorithms become too slow in high dimensions, whence we restrict the
dimensions for these as follows: For DeepLLL with β = 10 we ran experiments up to
dimension 300 and for PotLLL2 and BKZ-10 up to dimension 350.

In each dimension, we considered 50 random lattices. More precisely, we used the HNF
bases of the lattices of seed 0–49 from the SVP Challenge.1

All experiments were run on Intel® Xeon® X7550 CPUs at 2 GHz on a shared memory
machine. For dimensions 40 up to 160, we used long double arithmetic, and for dimen-
sions above 160, we used MPFR. In dimension 160, we did the experiments both using long
double and MPFR arithmetic. The reduced lattices did not differ. In dimension 170, float-
ing point errors prevented the long double arithmetic variant to complete on some of the
lattices.

4.2 Preprocessing

As mentioned in Sect. 3.1, we added a “preprocessing” step to PotLLL, PotLLL2 and
DeepLLL, by first running LLL without any deep insertions and with the same reduction
parameter on the basis, and only then running PotLLL resp. DeepLLL. We performed all
experiments both with and without this preprocessing, except that without preprocessing,
we left out certain higher dimensions. More precisely, PotLLL was run until dimension 400,
PotLLL2 was run until dimension 300, DeepLLL with β = 5 up to dimension 320, and
DeepLLL with β = 10 up to dimension 250.

Figure 5a shows the average n-th root Hermite factor for the resulting bases. It appears that
while preprocessing can have both a positive and negative impact on the output quality, it in
general does not change the average n-th root Hermite factor. This was to be expected, since
essentially we applied PotLLL resp. DeepLLL to two different bases of the same lattice: one
in Hermite Normal Form, and the other 0.99-LLL reduced.

When comparing the timing results, on the other hand, there are large differences. Figure 5a
shows the timing in dimensions 160 up to 400 for DeepLLL and PotLLL with and without
preprocessing. The times for the algorithms with preprocessing include the time needed
for applying LLL with α = 0.99. It is clear that the algorithms with preprocessing are
significantly faster than the ones without.

We conclude that while preprocessing does not change the output quality in average, it
has a huge impact on the running time. For this reason, and also to have a better comparison
to BKZ which always applies LLL first, we restricted to the algorithms with preprocessing
for the rest of the experiments.

1 http://www.latticechallenge.org/svp-challenge

123

http://www.latticechallenge.org/svp-challenge

364 F. Fontein et al.

1.01221

1.0127

1.01318

1.01367

1.01416

1.01465

1.01514

1.01562

1.01611

1.0166

1.01709

1.01758

1.01807

1.01855

1.01904

1.01953

1.02002

1.02051

1.021

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 4000

LLL
BKZ-5
PotLLL
DeepLLL-5
PotLLL 2
BKZ-10
DeepLLL-10

Fig. 1 Average n-th root Hermite factor (y axis) for dimension n (x axis) from 40 to 400

Table 1 Worst case bound and average case estimate for δ-LLL reduction, δ-DeepLLL reduction, δ-PotLLL

reduction and δ-BKZ reduction of the n-th root Hermite factor ‖b1‖1/n · vol (L)−1/n2

Dimension n = 100 n = 200 n = 300 n = 400

Worst-case bound (proven) ≈ 1.0774 ≈ 1.0778 ≈ 1.0779 ≈ 1.0780

Empirical 0.99-LLL 1.0186 1.0204 1.0212 1.0212

Empirical 0.99-BKZ-5 1.0152 1.0160 1.0162 1.0164

Empirical 0.99-PotLLL 1.0146 1.0151 1.0153 1.0155

Empirical 0.99-PotLLL2 1.0142 1.0147 1.0149 –

Empirical 0.99-DeepLLL with β = 5 1.0137 1.0146 1.0150 1.0152

Empirical 0.99-BKZ-10 1.0139 1.0144 1.0145 –

Empirical 0.99-DeepLLL with β = 10 1.0129 1.0134 1.0138 –

The entries are sorted in descending order with respect to the observed Hermite factors

4.3 Results

For each run, we recorded the length of the shortest vector as well as the required CPU time
for the reduction. Our main interest lies in the n-th root of the Hermite factor ‖b1‖

vol (L)1/n , where
b1 is the shortest vector of the basis of L returned.

Figure 1 compares the average n-th root Hermite factor achieved by the different reduction
algorithms in all dimensions. Also indicated are the confidence intervals for the average value
with a confidence level2 of 95 %. The average values for dimensions 100, 200, 300 and 400 are
additionally summarized in Table 1, where also values of the worst-case bound from Eq. (2.2)
are given. Note that our data for LLL is similar to the one in [11] and [4, Table 1]. However,
we do not see convergence of the n-th root Hermite factors in our experiments, as they are

2 To be able to compute confidence intervals, we assume that the data is distributed normally. We did some
more experiments in dimensions 40, 50 and 60 to verify this conjecture: in case of the logarithm of the running
time, this conjecture is quite accurate for most experiments; in case of the n-th root Hermite factor, it seems
to be fine for most values, but there is some deviation at the tails.

123

A polynomial time version of LLL 365

11.3 s

13.5 s

16 s

19 s

22.6 s

26.9 s

32 s

38.1 s

45.3 s

53.8 s

1.07 m

1.27 m

1.51 m

1.79 m

2.13 m

2.54 m

3.02 m

3.59 m

4.27 m

5.07 m

6.03 m

80 90 100 110 120 130 140 150 1600

LLL
BKZ-5
PotLLL
DeepLLL-5
PotLLL 2
BKZ-10
DeepLLL-10

14.4 m
17.1 m
20.3 m
24.1 m
28.7 m
34.1 m
40.6 m
48.3 m
57.4 m
1.14 h
1.35 h
1.61 h
1.91 h
2.28 h
2.71 h
3.22 h
3.83 h
4.55 h
5.41 h
6.44 h
7.65 h
9.1 h
10.8 h
12.9 h
15.3 h
18.2 h
21.6 h
1.07 d

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

LLL
BKZ-5
PotLLL
DeepLLL-5
PotLLL 2
BKZ-10
DeepLLL-10

12.1 m

Fig. 2 Average logarithmic CPU time (y axis) for dimension n (x axis) from 40 to 400. The left graph uses
long double arithmetic, the right graph MPFR arithmetic

1.01221

1.0127

1.01318

1.01367

1.01416

1.01465

1.01514

1.01562

1.01611

1.0166

1.01709

1.01758

1.01807

1.01855

1.01904

1.01953

1.02002

0.25 s 0.354 s0.5 s 0.707 s1 s 1.41 s 2 s 2.83 s 4 s 5.66 s 8 s 11.3 s 16 s 22.6 s 32 s 45.3 s 1.07 m 1.51 m 2.13 m 3.02 m 4.27 m 6.03 m 82

LLL
BKZ-5
PotLLL
DeepLLL-5
PotLLL 2
BKZ-10
DeepLLL-10

Fig. 3 long double arithmetic. The highlighted areas represent dimensions 40, 60, 80, 120 and 160

still increasing in high dimensions n > 200, respectively even slightly decreasing in the case
of LLL. Our PotLLL algorithm clearly outperforms LLL and BKZ-5, however not PotLLL2,
DeepLLL with β = 5, 10 and BKZ-10. DeepLLL with β = 10 seems the strongest of the
considered lattice reduction algorithms. It is very interesting to see that PotLLL2 performs
remarkably better than the original PotLLL when it comes to the Hermite factor achieved.

Figure 2 compares the average logarithmic running time of the algorithms for all dimen-
sions. Recall that we used different arithmetic for dimensions below and above 160, whence
two separate graphs are given. We see that the observed order is similar to the order induced
by the Hermite factors. The only somewhat surprising fact is that PotLLL2 is even slower
than BKZ-10, i.e. it is only faster than DeepLLL with β = 10.

Figures 3 and 4 allow to compare the different reduction algorithms with respect to the
running time and the achieved Hermite factor at the same time. Every line connecting bullets

123

366 F. Fontein et al.

1.0127

1.01318

1.01367

1.01416

1.01465

1.01514

1.01562

1.01611

1.0166

1.01709

1.01758

1.01807

1.01855

1.01904

1.01953

1.02002

1.02051

1.021

m 12.1 m 17.1 m 24.1 m 34.1 m 48.3 m 1.14 h 1.61 h 2.28 h 3.22 h 4.55 h 6.44 h 9.1 h 12.9 h 18.2 h 1.07 d

LLL
BKZ-5
PotLLL
DeepLLL-5
PotLLL 2
BKZ-10
DeepLLL-10

1.02148

Fig. 4 MPFR arithmetic. The highlighted areas represent dimensions 160, 220, 280, 340 and 400

corresponds to the behavior of one algorithm in different dimensions. The gray box sur-
rounding a bullet is the cartesian product of the two one-dimensional confidence intervals
with confidence level 95 %. The shaded regions show which Hermite factors can be achieved
in every dimension by these algorithms. Algorithms on the border of the region are optimal
for their Hermite factor: none of the other algorithms in this list produces a better average
Hermite factor in less time.

The only algorithm which is never optimal is PotLLL2, which is slower than DeepLLL
with β = 5 or BKZ-10 and provides worse average Hermite factors up to dimension 160.
PotLLL2 produces slightly better average Hermite factors than DeepLLL with β = 5 in
high dimensions, for example from 280 on, but is there beaten by BKZ-10 which is in these
dimensions far more efficient and provides better Hermite factors.

Another interesting observation is that in dimensions 40–80, PotLLL is both faster than
BKZ-5 and yields shorter vectors. While the running time difference in dimension 80 is
quite marginal, it is substantial in dimension 40. This shows that PotLLL could be used for
efficient preprocessing of blocks for enumeration in BKZ-style algorithms with large block
sizes, such as Chen’s and Nguyen’s BKZ 2.0 [1].

4.4 Comparison to fplll

To show the independence of the PotLLL concept from the concrete implementation, we
added a PotLLL implementation to version 4.0.1 of the fplll library;3 a patch can be down-
loaded at http://user.math.uzh.ch/fontein/fplll-potlll/. We ran the experiments with fplll’s
LLL implementation and our PotLLL addition in dimensions 40–320. For lower dimensions
(up to 160 at least), the fplll-reduced lattices (both LLL and PotLLL) were identical to the
ones of our implementation. For higher dimensions, the output quality in terms of the n-th
root Hermite factor was essentially the same as for our implementation. While fplll was
somewhat faster than our implementation, the relative difference between LLL and PotLLL
was the same as for our implementation.

3 http://perso.ens-lyon.fr/damien.stehle/fplll/

123

http://user.math.uzh.ch/fontein/fplll-potlll/
http://perso.ens-lyon.fr/damien.stehle/fplll/

A polynomial time version of LLL 367

1.01208
1.01221
1.01233
1.01245
1.01257
1.0127
1.01282
1.01294
1.01306
1.01318
1.01331
1.01343
1.01355
1.01367
1.01379
1.01392
1.01404
1.01416
1.01428
1.0144
1.01453
1.01465
1.01477
1.01489
1.01501
1.01514
1.01526
1.01538

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

PotLLL (w/o pp.)
PotLLL (w/ pp.)
PotLLL 2 (w/o pp.)
PotLLL 2 (w/ pp.)
DeepLLL-5 (w/o pp.)
DeepLLL-5 (w/ pp.)
DeepLLL-10 (w/o pp.)
DeepLLL-10 (w/ pp.)

(a)

14.4 m
17.1 m
20.3 m
24.1 m
28.7 m
34.1 m
40.6 m
48.3 m
57.4 m
1.14 h
1.35 h
1.61 h
1.91 h
2.28 h
2.71 h
3.22 h
3.83 h
4.55 h
5.41 h
6.44 h
7.65 h
9.1 h
10.8 h
12.9 h
15.3 h
18.2 h
21.6 h
1.07 d

160 180 200 220 240 260 280 300 320 340 360 380 400

DeepLLL-10 (w/o pp.)
DeepLLL-10 (w/ pp.)
DeepLLL-5 (w/o pp.)
DeepLLL-5 (w/ pp.)

14.4 m
17.1 m
20.3 m
24.1 m
28.7 m
34.1 m
40.6 m
48.3 m
57.4 m
1.14 h
1.35 h
1.61 h
1.91 h
2.28 h
2.71 h
3.22 h
3.83 h
4.55 h
5.41 h
6.44 h
7.65 h
9.1 h
10.8 h
12.9 h
15.3 h
18.2 h
21.6 h
1.07 d

160 180 200 220 240 260 280 300 320 340 360 380 400

PotLLL 2 (w/o pp.)
PotLLL 2 (w/ pp.)
PotLLL (w/o pp.)
PotLLL (w/ pp.)

(b)
12.1 m12.1 m

1.28 d 1.28 d

Fig. 5 Comparing PotLLL, PotLLL2 and DeepLLL variants with and without LLL preprocessing. a Com-
parison of the approximation factors with and without preprocessing. b Comparison of the running times with
and without preprocessing (MPFR arithmetic)

5 Conclusion and future work

We define the notion of a PotLLL reduced basis and give two algorithms to compute such
bases. Both algorithms are polynomial time improvements of LLL and are based on the
concept of deep insertions as in Schnorr and Euchner’s DeepLLL. While the provable bounds
of the achieved Hermite factor are not better than for classical LLL—in fact, for reduction
parameter δ = 1, the existence of critical bases shows that better lattice-independent bounds
do not exist—the practical behavior is much better than for classical LLL and they outperform
BKZ-5. A comparison of the algorithms with respect to other quality measures, possibly
including all basis vectors, is left for further work.

It is striking to see that although our two algorithms to compute a PotLLL reduced basis
only differ in the strategy of choosing the insertion depth, their practical behavior is different.

123

368 F. Fontein et al.

We therefore believe that it might be worth to consider yet other strategies of choosing
the insertions. Further an insertion can be seen as a special kind of permutation of the
basis vectors. Ensuring that an insertion only happens when it results in a proper decrease
of the potential of the basis ensures the polynomial running time of the algorithms. This
concept could be generalized to other classes of permutations. The crucial point is the easy
computation of the change of the potential under the different permutations.

It is likely that the improvements of the L2 algorithm [11] and the L̃1 algorithm [13] can
be used to improve the runtime of our PotLLL algorithm, in order to achieve faster runtime.
We leave this for future work.

Acknowledgments This work was supported by CASED (http://www.cased.de). Michael Schneider was
supported by project BU 630/23-1 of the German Research Foundation (DFG). Urs Wagner and Felix Fontein
are supported by SNF Grant no. 132256. The authors would like to thank the anonymous referees for their
helpful comments. F. F. would also like to thank Kornelius Walter for the helpful discussions about statistics.

References

1. Chen Y., Nguyen P.Q.: BKZ 2.0: better lattice security estimates. In: Lee D.H., Wang X. (eds.) Advances
in Cryptology—ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011).

2. Cong L., Mow W.H., Howgrave-Graham N.: Reduced and fixed-complexity variants of the lll algorithm
for communications. IEEE Trans. Commun. 61(3), 1040–1050 (2013).

3. Fontein F., Schneider M., Wagner U.: A polynomial time version of LLL with deep insertions. In: Pre-
proceedings of the International Workshop on Coding and Cryptography, WCC ’13 (2013).

4. Gama N., Nguyen P.Q.: Predicting lattice reduction. In: Smart N. (ed.) Advances in Cryptology—
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008).

5. Hanrot G., Pujol X., Stehlé D.: Analyzing blockwise lattice algorithms using dynamical systems. In:
Rogaway P. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 6841, pp. 447–464. Springer,
Heidelberg (2011).

6. Lenstra A.K., Lenstra Jr H.W., Lovász L.: Factoring polynomials with rational coefficients. Math. Ann.
261(4), 515–534 (1982).

7. Martinet J.: Perfect lattices in Euclidean Spaces. Grundlehren der Mathematischen Wissenschaften (Fun-
damental Principles of Mathematical Sciences), vol. 327. Springer-Verlag, Berlin (2003).

8. Micciancio D., Goldwasser S.: Complexity of Lattice Problems: A Cryptographic Perspective. The Kluwer
International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Boston
(2002).

9. Micciancio D., Regev O.: Lattice-based cryptography. In: Bernstein D.J., Buchmann J., Dahmen E. (eds.)
Post-quantum Cryptography, pp. 147–191. Springer, Heidelberg (2008).

10. Nguyen P.Q., Stehlé D.: Floating-point LLL revisited. In: Cramer R. (ed.) Advances in Cryptology—
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005).

11. Nguyen P.Q., Stehlé D.: LLL on the average. In: Hess F., Pauli S., Pohst M.E. (eds.) ANTS. Lecture Notes
in Computer Science, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).

12. Nguyen P.Q., Vallée B.: The LLL Algorithm: Survey and Applications. Information Security and Cryp-
tography. Springer, Heidelberg (2010).

13. Novocin A., Stehlé D., Villard G.: An LLL-reduction algorithm with quasi-linear time complexity:
extended abstract. In: STOC, pp. 403–412. ACM, New York (2011).

14. Schnorr C.-P., Euchner M.: Lattice basis reduction: improved practical algorithms and solving subset sum
problems. Math. Program. 66(2), 181–199 (1994).

15. Schnorr C.-P.: Block reduced lattice bases and successive minima. Comb. Prob. Comput. 3, 507–522
(1994).

123

http://www.cased.de

	PotLLL: a polynomial time version of LLL with deep insertions
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Potential-LLL reduction
	3.1 High-level description
	3.1.1 Preprocessing
	3.1.2 PotLLL2

	3.2 Detailed description
	3.3 Complexity analysis
	3.4 Worst-case behavior

	4 Experimental results
	4.1 Setting
	4.2 Preprocessing
	4.3 Results
	4.4 Comparison to fplll

	5 Conclusion and future work
	Acknowledgments
	References

