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Abstract Speech and hand gestures offer the most natural

modalities for everyday human-to-human interaction. The

availability of diverse spoken dialogue applications and the

proliferation of accelerometers on consumer electronics

allow the introduction of new interaction paradigms based

on speech and gestures. Little attention has been paid,

however, to the manipulation of spoken dialogue systems

(SDS) through gestures. Situation-induced disabilities or

real disabilities are determinant factors that motivate this

type of interaction. In this paper, six concise and intuitively

meaningful gestures are proposed that can be used to

trigger the commands in any SDS. Using different machine

learning techniques, a classification error for the gesture

patterns of less than 5 % is achieved, and the proposed set

of gestures is compared to ones proposed by users.

Examining the social acceptability of the specific interac-

tion scheme, high levels of acceptance for public use are

encountered. An experiment was conducted comparing a

button-enabled and a gesture-enabled interface, which

showed that the latter imposes little additional mental and

physical effort. Finally, results are provided after recruiting

a male subject with spastic cerebral palsy, a blind female

user, and an elderly female person.

Keywords Gestured-controlled mobile applications �
Gesture and speech interfaces � Gesture classification �
Mobile accessibility

1 Introduction and motivation

According to [12], people prefer a combination of speech

and gestures over speech and gestures alone while inter-

acting with a computer system. The proliferation of mobile

devices imposes new patterns of interaction as these

devices usually compete for the same human resources

needed for other mobility tasks [17] and as users, while

mobile, perceive information differently [27]. Although

previous work provides some guidelines regarding gesture-

based interfaces [14, 24], little attention has been paid to

the question of how to control spoken dialogue systems

(SDS) with gestures, while most efforts were directed to

parallel combine these two distinct input modalities in

order to control multimodal interfaces [20, 21]. A notable

exception is the newly introduced feature of iPhone’s Siri,

which activates the microphone after lifting the handset to

the ear.

This work tries to alleviate this deficiency by introduc-

ing a novel solution to the problem, where concise and

intuitively meaningful gestures are used to trigger the

commands to any SDS. Specifically, a set of six gestures is

used for moving forward and backward in the dialogue

flow, starting and stopping speaking, getting help, and

aborting an ongoing action. As a proof of concept, these

gestures have been incorporated in the mobile version of

the CALL-SLT system [3], which is a spoken conversa-

tional partner designed for beginner- to intermediate-level

language students who wish to improve their spoken flu-

ency in a limited domain.

Special kinds of disabilities related to user’s current

situation can pose hurdles to the efficient usage of a mobile

speech system. Anyone who has tried using a similar

application with one hand while carrying a child, reading

the screen display during a sunny day, or interacting with
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the screen while wearing gloves knows how he or she can

become ‘‘effectively’’ impaired. The concept of ‘‘situation-

induced disabilities’’ [37] has been introduced to describe

similar non-optimal conditions where the user’s behavior is

dictated by both the environmental conditions and the

characteristics of the device. Although the move in the

direction of gesture-driven interfaces was motivated by

feedback from non-disabled people who have used the

application, it becomes apparent that all the arguments

apply even more strongly to users who are vision-impaired

or lack fine motor control. The coordination required to use

the normal button-controlled interface is experienced as

challenging by many non-disabled people and would be

beyond the reach of almost all users who experience

problems with sight or fine motor skills.

In contrast, it is likely that the gesture-based interface

could be operated in many of these situations. If, for

example, the device is strapped to the user’s hand (like a

smart watch [26]), it can be operated using only gross

motor movements. The fact that gesture identification is

trained from the user’s own repertoire of movements

means that it can potentially be adapted to a wide range of

conditions.

In this work, apart from introducing the gestures, eight

users were asked to perform and to evaluate them. Using

machine learning techniques, the aim was to quantify how

well each gesture pattern can be separated and thus obtain a

good estimate of what can be expected from a future

deployed system. Participants were also asked to propose

their own set of gestures and evaluate the ones presented by

us. The social acceptability of this type of interaction was

also examined, since handheld devices are part of one’s

public appearance. Finally, eight participants were asked to

use CALL-SLT using both the button-enabled and gesture-

enabled interfaces. Tests were also performed with a male

subject with mild cerebral palsy, a blind female user, and

an elderly female person.

The rest of the paper is organized as follows. Section 2

describes the CALL-SLT gesture-based interface, and Sect.

3 describes the data collection protocol. Section 4 presents

a series of experiments designed to evaluate performance

issues. The final section concludes.

2 Gesture-driven interfaces

Gesture-driven interfaces augment traditional graphical

user interfaces by incorporating specific hand poses, spatial

trajectories of the hands or stylus, motions to indicate an

object, or motions of almost any body part [25]. The

growing interest in multimodal interface design is inspired

largely by the need to offer friendlier interfaces that allow a

more natural user interaction. Gestures are an alternative or

complementary modality for application control. There is a

broad spectrum of hardware and software applications that

leverage gestures as an input source especially in the game

industry (cf. Microsoft Kinect, Nitendo Wiimote) as well

as hundreds of mobile accelerometer-based applications for

Android and iOS.

Different technologies can be used to capture these

gestures either in active or in passive mode. Dedicated

devices such as position trackers or sensing data gloves can

be incorporated in the active mode [18]. In passive mode,

user input can be monitored with one or more cameras, and

computer vision algorithms are used to segment and clas-

sify the image data [4]. While passive modes may be

‘‘attentive’’ and less obtrusive, active modes generally are

more reliable indicators of user intent [29]. The interface

that will be described in the next subsection works in active

mode.

In everyday life, people may use gestures as the only

means of communication; in most cases, however, gestures

occur along with other modalities such as speech. Since the

appearance of the ‘‘Put-That-There’’ demonstration system

[2], which processed speech in parallel with touch-pad

pointing, a variety of new multimodal systems that utilize

hand gestures have emerged. Most efforts have been

directed toward seamlessly combining speech and gestures

in order to control multimodal interfaces [20, 21], while

others have focused on the synergies among them to

accomplish a task [31, 39]. Gestures have also been

incorporated in physical spaces for interacting with large

displays [28] or with digital home environments [40].

Additionally, work from [8] investigated the usability of

gestures and how they could be used to express the most

frequently used remote control commands. Studies agree,

however, that different people usually prefer different

gestures for the same task [16, 28].

2.1 A gesture-based interface

CALL-SLT is a generic multilingual Open Source platform

based on the ‘‘spoken translation game’’ idea of [42]. The

core idea is to give the student a prompt, formulated in

their own (L1) language, indicating what they are supposed

to say; the student then speaks in the learning (L2) lan-

guage and is scored on the quality of their response. When

the student has practiced sufficiently on the current prompt,

they can ask for the next one. At any time, they can request

help; the system responds by giving textual and/or spoken

representations of a correct response to the current prompt.

A detailed overview of CALL-SLT functionality can be

found in [3] and the top-level software architecture of the

system in [9].

The system also offers several ways to control both the

flow of prompts and the way in which the matching process
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is performed. For example, prompts are grouped into les-

sons, each of which will typically be arranged around a

theme, and recognition can be adjusted so as to make it

more or less forgiving of imperfect pronunciation. The

student will sometimes use these features, perhaps selecting

a new lesson or making the recognition more forgiving if

they are having difficulties. Most of the time, however, they

will be in an interaction loop which only uses a small set of

core commands. They get the next prompt, optionally ask

for help, start recognition, stop it when they have finished

speaking, and see whether the system accepted their spoken

response. If it did, they move to the next prompt; otherwise,

they try again. It is consequently very important to make the

core commands ergonomically efficient. The left side of

Fig. 1 shows a screenshot of the GUI for the mobile version

of the CALL-SLT system, whereas in the right side some

typical readings of the accelerometer are presented.

For the mobile version of the system, a button- con-

trolled interface poses many problems. Few users will have

a headset, and the majority will use the tablet’s onboard

microphone; this involves lifting the tablet to the user’s

mouth while speaking and makes a push-and-hold interface

extremely inconvenient.

Another important point is that there is no tactile feed-

back from the touch screen, increasing the user’s uncer-

tainty about the interaction status. All of these problems

become more acute when one considers that a crucial point

of deployment on a mobile device is to be able to access

the system in outdoor environments, where the screen is

less easily visible and the user may be walking or inside a

moving vehicle.

For these reasons, the use of an interface has been

investigated, which controls the key CALL-SLT func-

tionalities using the intuitive gestures shown on Fig. 2. The

current version of the interface supports six gestures. ‘‘Get

next prompt’’ and ‘‘Return to previous prompt’’ are sig-

naled by tipping the tablet right and left. ‘‘Start recogni-

tion’’ is triggered by moving the tablet so that the

microphone is in front of the user’s mouth (this involves

rotating the device by about 90�, since the Galaxy Tab’s

microphone is on the upper left side), and ‘‘End recogni-

tion’’ is triggered by moving the tablet away from the

mouth again. ‘‘Help’’ is requested by moving the device so

that the speaker is next to the subject’s ear, the natural

position for listening to spoken help in a noisy environ-

ment. ‘‘Abort’’ is signaled by shaking the device from side

to side. In essence, these gestures constitute the minimum

set that covers the basic functionalities of any spoken

dialogue system.

3 Data collection

Galaxy Tab’s onboard accelerometer was used, which

returns measurements of the G-force experienced by the

device along each of the three component axes, and sam-

pled these values every 50 ms for one second while per-

forming examples of the six commands. Twenty examples

of each command from eight subjects were collected, half

male and half female, between 20 and 50 years old with

higher academic education; half of them had no IT back-

ground. The six right-handed subjects used the device as

depicted in the diagram (Fig. 2), holding it in their left

hand while seated. The registration of each gesture was

initiated by pressing a start button. This has the advantage

that each interaction starts from the initial position and that

the acquired accelerometer data correspond only to the

gesture performed.

Fig. 1 Left CALL-SLT

English-for-French application

running on the Samsung Galaxy

Tab. The middle pane shows the

prompt; the top pane, the

recognition result; the bottom

pane, text help examples.

Button controls are arranged

along the bottom. Right Typical

readings of the axes when the

device is in various positions
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This configuration is the natural one for a right-handed

person; they hold the tablet in their left hand, since they

wish to press the buttons with the fingers of their right

hand. The two left-handed subjects held the device in their

right hand and used their left hand to manipulate the con-

trols. Similar data were also collected for eight common

non-gesture conditions shown in Table 1.

The mean and Root Mean Square (RMS) values for the

X, Y and Z axis components were extracted and used as the

main features. RMS is a useful statistical measure when

variates are positive and negative as in this case. The plots

in Fig. 3 show the data-points for the XY plane, tagged by

gesture, for one of the subjects. Even with a very basic

feature-space, Fig. 3 suggests that the gestures should be

easy to separate from each other.

4 Experiments

4.1 Gestures classification

Different methodologies have been proposed in the litera-

ture for performing the classification of gestures, e.g.

Dynamic Bayesian Networks [5], Support Vector

Machines (SVM) [32, 44], Hidden Markov Models (HMM)

[15] and Dynamic Time Warping and k-means clustering

[6]. The trade-off among these methods is in accuracy

versus the processing time and the amount of training data

required. The following three subsections present an

experimentation with a subset of these methodologies by

utilizing either features from the acceleration vectors or all

the data available.

Fig. 2 Proposed gestures set: From left to right, bottom down next, previous, start recognize, stop recognize, help, abort

Table 1 Non-gesture

movements used in experiment
Lying The device is lying on the table

Sitting, holding The user is sitting, holding the device in front of him

Standing, holding The user is standing, holding the device in front of him

Standing, relaxing The user is standing, holding the device vertically

Running The user is running

Climbing The user is climbing a flight of stairs

Descending The user is descending a flight of stairs

Walking The user is walking
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4.1.1 Feature-based classification

Experimentation with some standard machine learning

algorithms confirmed the intuitive impression that the

gestures could easily be separated, and also showed that

the gestures could be separated reasonably well from the

non-gesture conditions. For each subject, 75 % of the data

(both gesture and non-gesture) were used for training and

25 % for testing. Classification was performed using

Naive Bayes, Ensembles of Nested Dichotomies [7],

Multilayer Perceptron with back propagation (one hidden

layer with 10 hidden nodes, learning rate 0.3 and

momentum 0.2, 500 epochs sigmoid for activation),

Decision Trees implementing C4.5 pruned algorithm,

Random Forest of 10 trees considering 4 random features

classifiers and Functional Trees [10], SVM (polynomial

kernel and trade-off between training error and margin

5,000), and Nearest-neighbor using non-nested generalized

exemplars [23].

The results of the different classification methods using

the Weka Toolkit [11] are shown in Table 2, where it can

be seen that most of the methods offer low error rates. Note

that the classification tasks were performed using data from

both gesture and non-gesture movements. The confusion

matrix for SVMs presented in Table 3 provides a better

overview of the classification task. As one can observe, the

‘‘descending’’’ movement seems to cause the most recog-

nition errors, where only 24 out of 40 test samples (60 %)

were correctly classified. In general the six gestures of

interest can be easily recognized.

4.1.2 Hidden Markov Model classification

The analysis in the previous subsection was based on

features extracted from the sampled acceleration frames (X,

Y, Z values every 50 ms). In this subsection and the fol-

lowing, two different classification methods that process

each one of the frames instead of the calculated features

will be applied. The immediate benefit of feature extraction

is the dimensionality reduction, which can offer faster

processing times and reduced storage sizes. However,

when these issues are not of prime importance the

exploitation of every single data element by statistical

models like HMM can offer better results.

HMMs have been extensively used in speech recog-

nition systems, and due to their ability to classify

temporal data of no fixed length, they are a good

candidate for gesture recognition. Different studies

claim high gesture recognition rates; according to [16]

up to 98.8 %, according to [36] between 85 and 95 %,

and according to [33] 97.6 % on average. The results

shown in Table 4 were produced after training a left-

to-right HMM with six states in the Weka Toolkit, for

each gesture and user.

Continuing the analysis, the aim was to investigate the

effects of vector quantization on the data. As it has been

already mentioned the accelerometer was sampled every

Fig. 3 Separation of gestures in

acceleration-space: RMS (left)

and mean (right) values of the

X and Y components of

acceleration for one of the

subjects

Table 2 Classification error (percentage) on gesture recognition

using 8 classifiers

Classifier 6 Features(X-Mean, Y-Mean, Z-Mean, X-RMS,

Y-RMS, Z-RMS)

Correctly

classified (%)

Precision

(%)

Recall

(%)

F-measure

(%)

Naı̈ve bayes 91.61 92.48 91.61 91.64

END 90.18 91.14 90.20 89.71

SVM 92.50 92.81 92.50 92.34

Decision tree C4.5 87.14 88.45 87.15 86.45

Functional trees 90.89 91.75 90.90 90.81

Random forest 89.82 90.44 89.84 89.4

Nearest neighbor 93.39 94.45 93.41 93.01

Multilayer

Perceptron

92.50 93.19 92.51 92.29
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50 ms for 1 s yielding a sequence of frames containing the

X, Y, Z acceleration force. As depicted in Fig. 4, the

quantization process of the training data is the following:

1. Get the input movement (next, previous, walking, etc).

2. Eliminate similar frames using the Euclidean distance.

Keep the frames that are dissimilar above a cutoff

threshold. This was empirically chosen equal to 0.055.

3. If n is the desired codebook size and m the frame array

size, cluster the frames into n groups. Besides hierar-

chical and k-means clustering one can create a

codebook with n random vectors from the frame array

(random) or sort the frame array and get the vectors at

position m/n, 2 m/n, …, nm/n(simple).

4. The result is a codebook for each movement, cluster-

ing method and codebook size.

Table 5 summarizes the percentages of input vector that

remained for the follow-up analysis after performing the

preprocessing step. The results provide an indirect indica-

tion of how complex a gesture is. For example, if you just

sit and hold the device in front of you, the remaining

vectors are 6.46 % of the initial ones, whereas if you

descend a flight of stairs the ratio rises to its highest value

of 92.32 %. A correlation test was performed between the

gesture recognition error using the SVM classifier and the

remained vector percentage; it was found that the two

variables are negative correlated (Pearson’s r(12) = -0.54,

p \ 0.05), so the gesture complexity has an impact on the

recognition performance.

Figure 5 presents a visualization of the ‘‘next’’ gesture

acceleration vectors after the clustering process. As it can

be observed, the methods offer a quite good distribution of

prototype vectors of the sample vectors. During the testing

phase the 3-dimensional vectors which are less distant than

0.055 from the preceding vector are filtered out. The vector

quantizer maps the remaining input vectors to codebooks

of sizes 8, 14, 20 or 28. All movement codebooks with the

same size were merged into a single one and the HMM

classification produced the results presented in Fig. 6. The

hierarchical clustering seems to outperform the others;

when using codebooks with more than 14 vectors the

results are comparable to the ones of Sect. 4.1.1.

Two-way ANOVA, identified significant main effects of

clustering method (F(3,127) = 7.32, p \ 0.001) and code-

book size (F(3,127) = 16.67, p \ 0.001) on the correct

classification rate. A post-hoc Tukey’s HSD (p \ 0.05)

pairwise comparison revealed the significant differences

shown in Table 6.

4.1.3 Template classification

Unlike the machine learning and statistical methods pre-

sented in the previous subsections that require sufficient

number of samples to be trained, it is often desirable to use

alternative classification methods based on template

matching. These can start working even with one sample

per gesture and thus minimize training time. In this sub-

section, the $1 recognizer [43] has been incorporated,

Table 3 Confusion matrix for the support vector machine classifier

Movements a b c d e f g h i j k l m n

a Next 38 0 0 0 2 0 0 0 0 0 0 0 0 0

b Previous 0 37 2 1 0 0 0 0 0 0 0 0 0 0

c Help 0 3 36 1 0 0 0 0 0 0 0 0 0 0

d Abort 0 0 1 39 0 0 0 0 0 0 0 0 0 0

e Start recognition 0 0 0 0 38 2 0 0 0 0 0 0 0 0

f Stop recognition 1 0 0 0 3 34 0 0 1 0 0 0 1 0

g Lying 0 0 0 0 0 0 40 0 0 0 0 0 0 0

h Sitting, holding 0 0 0 0 0 0 0 40 0 0 0 0 0 0

i Standing, holding 0 0 0 0 0 0 0 0 40 0 0 0 0 0

j Standing, relaxing 0 0 0 0 0 0 0 0 0 40 0 0 0 0

k Running 0 0 0 0 0 0 0 0 0 0 40 0 0 0

l Climbing 0 0 0 0 0 0 0 0 0 0 0 32 8 0

m Descending 6 0 0 0 0 1 0 0 0 0 0 9 24 0

n Walking 0 0 0 0 0 0 0 0 0 0 0 0 0 40

Table 4 Classification error (percentage) on gesture recognition

using HMM

Classifier Use the X, Y, Z acceleration frames (sampled every 50 ms

for 1 s)

Correctly

classified (%)

Precision

(%)

Recall

(%)

F-measure

(%)

HMM 95.54 96.36 95.53 95.34
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which is a small footprint recognizer of gestures made by

path-making instruments like pens and fingers in the two

dimensional space; according to the authors, it can achieve

99 % accuracy of recognizing 2-D single-stroke paths on a

display. The $1 recognizer performs template classification

by matching the geometric specifications of two hand-

writings. The algorithm involves four steps: (1) resample

the input points, (2) rotate the points at 0�, (3) scale points

in a bounding box and (4) match points against a set of

templates. Despite the fact that the gestures in this case

study are performed in the three-dimensional space, it was

desired to investigate the classification performance of this

approach in the XY, XZ and YZ planes.

In a similar manner as before, 75 % of the data (both

gesture and non-gesture) were used for training and 25 %

for testing. Figure 7(left) shows the results of the

Table 5 Rate of the input

vectors that remained after the

preprocessing step

Fig. 4 Quantization process using the training data of each movement

Fig. 5 Quantization of the ‘‘next’’ gesture using different clustering methods (codebook size = 20)

Fig. 6 Classification with HMMs using different clustering methods

and codebook sizes
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recognition performance (XY, XZ, YZ), where the XZ plane

demonstrates the highest correct classification rate. For real

applications, however, this is far from acceptable. There-

fore, the analysis was repeated by removing the non-ges-

ture movements (sitting, walking, etc) as a compromise

with what a user might do during interaction with the

system. Moreover, the number of training samples (15, 10,

5) was altered, and the corresponding results are also

depicted in Fig. 7(left) for the XZ and YZ planes. The best

rate is again for XZ with 15 training samples and it is equal

to 87.92 %. One-tail t-tests between pairs of XZ, YZ for the

same number of training samples show statistical signifi-

cant differences. Specifically, for 15 samples: t = 2.31,

df = 7, p \ 0.01, for 10 samples: t = 2.94, df = 7,

p \ 0.01 and for 5 samples: t = 3.52, df = 7, p \ 0.005.

Although the results are less than optimal, the devel-

opers may benefit from the low requirements of this

approach by using an even smaller set of gestures or

introducing an alternative, easier recognizable set. How-

ever, a more promising approach is to combine the rec-

ognition results in the different planes and ultimately to

implement a similar algorithm in three-dimensional space.

To finesse the limitations of the previous template

matching technique, which can be used efficiently for

certain types of user interface gestures, the uWave algo-

rithm [22] was incorporated based on Dynamic Time

Warping (DTW) in order to classify our gestures. The data

are used again directly without doing any feature extraction

and are processed in the time domain as specified by the

DTW. The algorithm bases recognition on the matching of

two time series of forces, measured by the single three-axis

accelerometer. The analysis yields to a recognition accu-

racy result equal to 88.66 % (Fig. 7(right)). As before, the

minimum set of gestures (6 gestures) and different sizes of

training data sets (15, 10, 5) were used. When all the

training data are used the correct classification rate is

96.25 %. A single-factor ANOVA showed no significant

differences in the classifications rates for the various sizes

of the training data.

4.2 Gestures survey

Before providing the data analyzed in the previous sub-

section, the same users were asked to participate in an

evaluation of the proposed gesture set. After a short

introduction of the non-gesture GUI and the presentation

of a short video clip, they had to improvise gestures that

would provide the same functionality. It was emphasized

to the users that help is acoustic as well as visual and

that one had to speak close to the microphone of the

device. Following the presentation of the gesture reper-

toire, the users were asked to fill out a questionnaire that

asked how difficult it was to perform each gesture, if it

was intuitive or not, and if they preferred it to their own

Fig. 7 Left Classification using

the $1 recognizer in the XY, XZ,

YZ planes and with different

size of training data. Right

Classification using the uWave

algorithm with different size of

training data

Table 6 Significance

difference of clustering methods

and codebook sizes in pairwise

comparisons using Tukey’s

HSD test
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suggestion. The results of this survey are shown in

Fig. 8.

As one can observe, most of the subjects agree that the

proposed gestures are easy to perform and are intuitive.

They also prefer the proposed set compared to theirs, with

a small exception on the ‘‘abort’’ gesture. It is suggested

that this has to do with the user’s personal feelings con-

cerning the specific movement. As a matter of fact three of

them had chosen the same gesture for ‘‘abort’’; just flip the

device, related to the metaphor of how you hang up the

telephone set. According to another user, this metaphor

applies when one is using the system inside the car; the

user simply puts the device down to signify ‘‘stop recog-

nizing’’. Cultural differences were also encountered as one

subject proposed for ‘‘help’’ the hand gesture that signifies

question for many Greeks (rotating clockwise the palm

close to the face). Apart from one subject, all participants

recommended gestures that were easy to execute. Finally,

one of the participants suggested that he would prefer an

interface that combined both hand gestures and voice

commands.

It is not proposed that this suggestion on how to perform

each gesture is unique and applicable to any person. As

stated in the introduction of this paper, the idea is to train

the system from the user’s own repertoire of movements,

which can obviously change between user types and con-

ditions. In another domain (interacting with large displays)

different subjects seemed to prefer different gestures for

the same activity [28], something that was expected to

encounter in the present case. Moreover, the tablet used has

a physical size significantly larger than that of a typical

smartphone, so one may reasonably argue that the proposed

gesture set is not applicable to all devices. From the

authors’ point of view there is a lack of a large scale

metaphor for gesture-based mobile SDS. Visual user

interfaces have significantly benefited from the introduc-

tion of WIMP widgets that offer a unified interaction

scheme. A new WIMP-based interface can rely on the

knowledge accumulated over the years so that users do not

need to learn new ways of doing things. However, a good

analogy for gesture-based interfaces is lacking, so the work

presented in the current paper can be considered as a

contribution toward this direction.

4.3 Social acceptability

As well as trying to determine how well gesture recogni-

tion works or if users prefer the proposed set of gestures to

theirs, another follow-up question was whether users would

be willing to execute them in public. Although much work

has been carried out on the technical aspects of gesture

recognition, little attention has been paid to the social

acceptability of interacting using gestures. Notable excep-

tions are [34, 35]. Social factors have an influence on

technology acceptance [19], so it is necessary to offer

guidelines for the design and evaluation of socially

acceptable gestures. Therefore, the study continued by

asking the same subjects as before to identify in which

location (6 alternatives) and in front of which audience (6

alternatives) they would be willing to execute each of the

Fig. 8 Charts of the easiness,

impression and preference for

each one of the proposed

gestures
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proposed gestures. As our focus has been on the gesture

modality, we made clear to subjects that their answers

should be irrelevant to the type of the application used (in

our case a language learning system). The corresponding

checklist is shown in Table 7.

The plots of Fig. 9 were constructed according to the

users’ answers. As it can be observed, the proposed set of

gestures receives a high level of acceptability even in

public places. Pavements, public transportation and work-

places do not impose any usage limitations. On the other

hand, users seem reluctant to interact using gestures while

driving, probably due to safety reasons as explicitly

reported by many of them. Concerning the audience of

usage, there is a universal positive agreement with a small

exception on the ‘‘abort’’ gesture, which, as seen in the

previous subjection, was the most controversial one.

Compared to the aforementioned studies, the intuitiveness

of the proposed gestures for the specific applications task

has a beneficial impact on their social acceptance. During

the design phase, effort was made to design the gestures as

simple as possible and also to exploit any commonly

acceptable interaction pattern. By putting the device close

to the ear (help) or in front of the mouth (start recognition),

a user simply re-uses patterns that have long been avail-

able. Likewise, the execution of ‘‘next’’ and ‘‘previous’’

commands resemble to playing a mobile video game.

Conversely, executing ‘‘abort’’ in public areas may attract

undesired attention.

In order to statistically verify the differences presented

in Fig. 9(down), a significance test was performed. The

response variables of Table 7 can take two possible out-

comes (coded as 0 and 1), so a Cochran’s Q test was

executed. It was found that there exist significant differ-

ences in gesture usage in diverse places (X2(5) = 106.9,

Fig. 9 Average percentage of

gestures acceptability in

different locations and in front

of different people (error bars

show one standard deviation)

Table 7 Location and audience

checklist

266 Univ Access Inf Soc (2014) 13:257–275

123



p \ 0.001). A pairwise comparison using continuity-cor-

rected McNemar’s tests with Bonferroni correction

revealed what the significant differences are, as shown in

Table 8.

4.4 Interacting with gestures

In the next part of this work a user study was conducted,

where subjects were asked to use both the button-enabled

and the gesture-enabled versions of the mobile CALL-SLT

system. Specifically, 8 right-handed participants between

20 and 40 years old were recruited and asked to use the

proposed set of gestures. It was decided to use native L2

speakers (3 French, 3 Greeks, and 2 Germans) to avoid

excess recognition errors that could skew the aim of the

study. Each experiment was completed when 30 spoken

interactions were performed. Users had to follow a specific

pattern which included three steps; going back or forward

in the prompt list, asking for help and initiating recogni-

tion. It was ensured that the list of prompts contained

around 20 elements so that subjects would practice both

‘‘next’’ and ‘‘previous’’ gestures. Participants started either

with the button version or with one of the gesture-enabled

versions while sitting in an office environment. They also

used the application after it was trained with their own

personal data. In the gesture-based interface shown in

Fig. 10(left), the button bar has been replaced with an

image.

Due to source code availability and implementation

easiness it was decided to transcribe the SVM classification

algorithm of [13] in Actionscript 3.0. The specific imple-

mentation concerned only the recognition part, whereas the

training task using participants’ data was done offline. For

the specific test only 8 of the movements presented earlier

were included (6 gestures ? sitting holding ? lying). On

average the recognition algorithm running on the device

takes 7.6 ms (SD = 2.7 ms). The initial design of the

experiment presupposed that the accelerometer would

always be on. However, an initial pilot study revealed the

deficiencies of this approach as the gesture recognition

error was too high for any real experimentation. Although

one might argue that a different classification method could

offer better results, this is not the case. As shown in Sect.

4.1, most of the errors originate from the non-gesture

movements, which even after being removed from the

training corpus did not yield any significant improvement

Fig. 10 Left Gesture-based

interface. Right Scatter plot of

the screen points chosen by

users to initiate gesture

recognition. Users with odd id

started with the buttons version

(error bars show one standard

deviation)

Table 8 Significance

difference of places in pairwise

comparisons using continuity-

corrected McNemar’s tests with

Bonferroni correction
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during user tests. Essentially, the main problem is that the

system does not know when the gesture starts. Therefore,

polling the accelerometer every 50 ms for one second

might not give the whole data range of the gesture the user

tries to provide as input. Commercial systems like Wii rely

on a combination of sensors, besides the accelerometer, to

decipher the gesture being performed. IR sensors inside the

remote control, detect motion by tracking the relative

movement of IR transmitters mounted on the display.

Pressing hardware buttons may also signify the start of a

movement; unfortunately, however, the development

framework of the current test device prohibited access to

this functionality. So before testing an ‘‘open-accelerome-

ter’’ approach the authors resorted to a solution of ‘‘push-

to-move’’ (similar to the analogy of ‘‘open-mike’’ and

‘‘push-to-talk’’).

In the push-to-move configuration, initiation of the

gesture recognition was manually triggered by tapping

anywhere on the tablet’s screen (size of the screen: 7 in.).

End of recording was done automatically after 2.5 s,

which was selected empirically from previous studies.

Figure 10(right) shows the average point that each user has

chosen to tap in order to initiate the gesture recognition.

From the one standard deviation of the points it can be

suggested that users always tap on the same area. In a way

this area represents a virtual button. Additionally, only

participants who started with the gesture version (even-

numbered id) picked a point outside the area of the pre-

viously located button bar and presented a more substantial

deviation from the average point. Subjects marked with the

odd-numbered id were probably biased by their first session

with the button version.

In the second configuration the accelerometer was

always on. In order to avoid the problems presented earlier a

simple movement activity detector was implemented. The

three-dimensional input signal (X, Y, Z) was merged into

one acceleration magnitude. This was calculated by taking

the Euclidean magnitude of the three individual values

according to the formula:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. The activity

threshold was chosen empirically equal to 1:2 M=s2.

The reduced set of gestures under study provided high

rates of correct gesture recognition. On average, a 94.5 %

correct classification for push-to-move was obtained and

89.5 % for open-accelerometer (t = 5.55, df = 7,

p \ 0.0001). The box-plot of Fig. 11a shows the distribu-

tion among participants. Further analysis focused on alter-

native objective measurement around users’ performance on

the game per se. As user score the ratio between the correctly

recognized sentences and the total number of sentences

uttered is defined (in the present case 30). No significant

differences in average scores was found between the three

versions (89.26 % for button, 87.34 % for open-accel and

89.67 % for push-to-move), which is encouraging consid-

ering the challenges of using a new input modality for the

first time (Fig. 11b). The similar score performance was also

verified by the WER in the three versions. Using a 95 %

confidence interval after a per-utterance bootstrap resam-

pling [1] no significant difference was indicated in the three

rates, specifically 92.3 % (C.I. 89.9–94.7 %) in the button

version, 90.1 % (C.I. 88.2–93.6 %) in the open-accel and

91.2 % (C.I. 88.6–93.8 %) in the push-to-move. Concerning

the average completion time of the experiments, the analysis

reveals a difference of 3 min on average (button: 6.8 min

and push-to-move: 9.77 min, t = 6.61, df = 7, p \ 0.0001,

Fig. 11c). At first glance this might seem quite high so

further processing of the data was necessary in order to

extract specific measurements that explain this difference.

As already mentioned, the experiment was organized

around a specific pattern that users had to follow (next-

help-speak). This pattern is considered as a turn in the

experiment so that ideally participants had to perform 30

turns. First, the aim was to extract the average amount of

Fig. 11 a Box-plot of the

gestures recognition rate,

b Box-plots of the users score,

c Box-plot of the completion

time for each experiment. Each

box is constructed to contain the

50 % of values closest to the

mean, whereas the horizontal

line represents the median value
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time users spend on the turns in each of the three versions.

The turn completion time is defined as the elapsed time

between the dispatch of the next/previous message and the

acquisition of the recognition result. The average time in

the button version is 8.9, 12.6 s for open-accel and 13.5 s

for the push-to-move (F(3,127) = 102.83, p \ 0.0001). The

specific difference (around 4 s) has an immediate expla-

nation; the gesture processing step which takes roughly 1 s

(1 s for the data acquisition and 7.6 ms for the recogni-

tion). In each turn duration this sums up to an accumulated

overhead of 3 s. The corresponding probability density

function is shown in Fig. 12a.

Continuing the analysis in respect to the difference in

turn times, the time spent by users before interacting was

examined. This quantity is named as ‘‘user time’’ defined

as the elapsed time between the presentations of a prompt,

a help example or a recognition result and user’s inter-

action with the interface. During the ‘‘system time’’ the

gesture is captured and recognized, the corresponding

request is served and the result is presented. In Fig. 12b

the user and system times in each turn are decomposed.

The comparison of users’ time between the two versions

is an indication of how much more they had to think

before interacting; in essence the additional mental load

imposed on them. In Fig. 12c–f the plots that correspond

to user time before the ‘‘next’’, ‘‘previous’’, ‘‘help’’ and

‘‘recognize’’ commands respectively are presented. As it

can be observed, there are slight differences between the

button and the gesture versions. A two-way ANOVA,

identified significant main effects of interface type

(F(3,119) = 8.51, p \ 0.001) and gesture performed

(F(3,119) = 23.97, p \ 0.001) on the thinking time,

showing that interacting with gestures does indeed impose

a small mental overhead. A post-hoc Tukey’s HSD

(p \ 0.05) pairwise comparison revealed the significant

differences shown in Table 9.

Fig. 12 a Probability density

function of completion duration

of each turn. b Decomposition

of user and system times.

c PDFs of thinking time before

next, d previous, e help,

f recognition gestures.

Distributions approximated

using kernel density functions
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According to these results, the mental effort is

increased when the gesture is preceded by the extra action

of tapping on the screen and not to the gesture per se. If

different values for the button and the push-to-move are

juxtaposed, the results are as follows: 2.1 versus 2.3 s

(not statistically significant) when the input gesture is

‘‘next’’, 2.2 versus 2.8 s (t = 3.9, df = 7, p \ 0.01) for

‘‘previous’’, 2.5 versus 3.2 s (t = 2.8, df = 7, p \ 0.01)

for ‘‘help’’ and 3.2 versus 3.8 s (t = 2.09, df = 7,

p \ 0.01) for initiating recognition.

The analysis concludes with the subjective evaluation of

the interaction. In order to elicit the subjective opinion of

participants a series of questions were asked in a paper-

pencil questionnaire after the completion of each experi-

ment. The answers were registered using a 1–10 Visual

Analog Scale. Specifically, the aim was to assess issues

like physical effort, concentration effort, performance of

the system, user conformability and interaction preference.

The average answers are presented in the radar plot of

Fig. 13. As one can observe, participants report low levels

or tiredness and medium levels of thinking effort. In

accordance with the objective evaluation users corrobo-

rated the fact that the system worked well for both gesture

and voice recognition. Concerning gesture recognition,

users assigned a score of 8.4 for push-to-move and 6.6 for

open-accel (t = 4.26, df = 7, p \ 0.0001). Once again, the

social acceptance of this type of interaction is verified with

the low levels of users stating feeling uncomfortable while

performing the gestures although it should be mentioned

that the survey took place in an office environment with the

presence of two observers at most. Users express a strong

agreement that the gesture interface can help in cer-

tain situations and they have a very positive overall

impression from the system. Finally, there is no evident

consensus to which version users prefer most, although

there is a tendency toward the button interface.

4.5 Accessibility for all

According to the World Report on Disability 20111, the

number of disabled people in the world is presently

estimated at around one billion, corresponding approxi-

mately to 15 % of the current world population. Similarly,

the number of people older than 65 will reach 14 % of the

world population in the next 30 years, rising to 1.4 billion

by 2040 [41]. As stated in [38], disabled people prefer of-

the-shelf devices over custom-made ones. Moreover, users

with physical disabilities may prefer speech and hand

gestures to keyboard or mouse to control computer sys-

tems [30]. The variety of accessibility techniques and the

lack of interface consistency, however, force these users

to learn new interactions models for every application

they use. The authors strongly believe that the interaction

paradigm provided in this work, where users can utilize

a spoken dialogue application with their own gesture

repertoire is a possible remedy for the aforementioned

concerns.

In order to address possible issues related to different

target groups, like users of lack fine motor control or

vision-impaired users, three experiments were executed.

Results will be presented, following an interview with a

male subject aged 22 with mild cerebral palsy. Objectively,

with no obvious communication disabilities, the person

experiences kinetic problems that, besides others, prohibit

efficient use of the keyboard. From the very first moment

he was engaged in the conversation that lasted more than

an hour. According to him, each person with cerebral palsy

is a unique case, which makes the design of accessible

interfaces a challenging task. He, as a regular user of dic-

tation systems and other assistive technologies, had a very

good idea of the hurdles posed in human computer

interaction.

The first half of the interview concentrated on the

introduction of the application and discussing common

pitfalls encountered in other systems that should be avoi-

ded. Initially, the main concern posed by the participant

was the poor results he experienced with other systems like

eye blinking sensors. In this respect, the issue of the sen-

sitivity in recognizing users’ gestures was deemed of prime

importance. The participant proposed to have a training

phase before using the application, a feature that was

already available in the system. Notwithstanding, the time

and effort devoted for training should be the least possible

given issues of physical and mental fatigue.

Table 9 Significance

difference of interface versions

and performed gestures in

pairwise comparisons using

Tukey’s HSD test

1 http://www.who.int/.
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The lack of many assistive systems to cover all the

functionalities offered to regular users restricts their effi-

cient usage and imposes the invention of alternative

workarounds to perform them. Therefore, all these func-

tionalities should be supported either by gestures or by

other modalities (e.g. speech commands). Even before the

proposed gestures for regular users were presented, issues

related to social acceptability and discreteness of this type

of interaction were discussed. The user stated that he would

perform the gestures in front of everybody and in any place

besides the pavement and the bar.

In the second phase of the interview he was asked to

propose his own set of gestures and train the system. In

order to facilitate the easy registration of the gestures, an

interface that informed the user which one should perform

each time was created. By utilizing a 3-s countdown

counter the user was notified when to initiate the action. As

explained to the participant, he could manipulate the device

as he wished, in portrait or landscape orientation and by

using one or both hands. He decided to hold the device

with both hands in front of him (initial position) in portrait

orientation and proposed the following gesture set:

1. Next. From the initial position move the device to the

right.

2. Previous. From the initial position move the device to

the left.

3. Help. From the initial position move the device

upwards.

4. Start speaking. From the initial position move the

device horizontally toward the torso.

5. Stop speaking. From the initial position move the

device horizontally away from the torso.

6. Abort. From the initial position flip the device

vertically parallel to the torso.

Each of the gestures had to be registered five times with

the interface presented earlier. From the beginning of the

registration process it was evident what the deficiencies of

that approach were. The subject had difficulties coordi-

nating his movements as dictated by the interface and

considered the time allocated before the initiation of the

action quite short (3 s). This miscoordination had a nega-

tive impact on the data provided, as sometimes the user

executed the wrong gesture. More important, however, was

the time he spent to execute a gesture that frequently sur-

passed the limit of 1 s in which the accelerometer was

polled. The specific problems were reflected to the gesture

recognition rate, as for the SVM case 74.29 % correct

classification was obtained.

In order to quantify the energy of the acceleration

signal, a non-disabled person was asked to execute the

same gestures. Table 10 presents the RMS values in each

of the axes and for each movement. The table provides

an indication of the intensity of each gesture executed.

The energy of the signal in the primary acceleration axis

related to the gesture performed is depicted in bold. In

combination with the standard deviation the user seems

to have trouble executing the gestures intensively,

something that was obvious during the experiment.

Acceleration data were also acquired while the user was

holding the device in front of him (initial position).

Fig. 13 Subjective evaluation

results for the two gesture

versions
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Spectral analysis did not show any indication of tremor

that could influence the results.

The user proposed to combine voice commands and

gestures, especially for picking list items. Another con-

structive remark was the lack of a ‘‘repeat’’ gesture that

could facilitate the interaction. However, the deficiencies

presented earlier prohibited efficient usage of the system

and it was therefore decided to hold a second round of

experiments after these issues had been resolved.

After introducing the movement activity detection

component to the training interface the user was invited for

a new experiment. This time another set of gestures was

proposed, which was executed by holding the device in

landscape orientation with the two hands (as a steering

wheel). Gestures ‘‘next’’ and ‘‘previous’’ were performed

by turning the wheel right and left respectively, and ‘‘help’’

by shaking the device right and left. To initiate recognition

the tablet had to be brought close to the mouth and for

stopping recognition the opposite; ‘‘abort’’ was signified by

facing the screen display upwards.

In this case, the gesture recognition rate was 94 %,

which shows that this set was well suited to the user’s

needs. The average turn time lasted 13.8 s (SD = 2.1 s)

and the user achieved a score of 93 %. Figure 14(left)

presents the average thinking times before each gesture.

Similarly to non-disabled users the ‘‘recognize’’ movement

imposes the higher mental effort as it must be combined

with the speaking task. Finally, the accidental press of the

hardware buttons of the tablet, located near the left palm of

the user, caused temporal inconvenience.

The second experiment was conducted with a 25 year

old blind female subject with 0.01 % vision capability. The

interaction paradigm presented new challenges as the user

had to be notified about the outcome of her gesture. For this

reason a set of brief, distinctive sounds (earcons) was

embedded to signify ‘‘next’’, ‘‘previous’’ and ‘‘recognize’’.

After a ‘‘help’’ gesture the system started playing back the

corresponding help prompt as before. Nonetheless, no

feedback was provided about the recognition result (suc-

cess or failure), a deficiency that should be addressed in a

future experiment. During the training phase the registra-

tion of each movement started after a distinctive sound.

However, the user was informed in advance which gesture

to execute.

The gesture recognition rate was similar to the one for

non-disabled users and equal to 89 %. The average turn

time lasted 13.2 s (SD = 1.9 s) and the user achieved a

score of 85 %. Figure 14(right) summarizes again the

average thinking times before each gesture, which are

comparable to the results of using the open-accel version

presented earlier. With regard to the social acceptability of

this type of interaction, the user did not state any concerns

performing the gesture in front of different audiences nei-

ther in diverse environments. Some privacy issues were

addressed as the user would prefer to get feedback with

vibrations instead of earcons.

For the third experiment a female 65 year old subject,

who had poor familiarity with technology and no previous

exposure to similar systems was recruited. The participant

was asked to use both the button and the gesture (open-

Fig. 14 Average thinking times

for the user with cerebral palsy

(left) and the blind subject

(right). Error bars show one

standard deviation

Table 10 Mean X- Y- Z- RMS

and standard deviation value of

each gesture signal

The row with the gray

background corresponds to the

disabled person. RMS value for

the principal acceleration axis is

in bold
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accelerometer) interfaces. The aim of the study and the

required tasks were explained as before and the subject

started with the gesture version. Despite the fact that she

did not express any concerns about the assigned task, the

first reaction after holding the device was to replace her

long distance glasses with the short distance ones. In

general, the interaction was unhindered in both interfaces

and real problems occurred only when the gesture recog-

nition was unsuccessful. The user seemed to be preoccu-

pied with performing each turn (next-help-speak) without

really examining what was displayed on the screen. Even

the different earcons associated with each gesture did not

help a lot, as the user continued performing each step of the

interaction pattern without checking the results of her

actions. It was therefore needed to intervene when neces-

sary, explain what the problem was and asked her to repeat

the gesture. For this reason it was not possible to extract

comparative results between the two interface versions.

Finally, the correct gesture recognition rate was approxi-

mately 74 %, as the participant did not always perform

them in a consistent way.

Figure 15 presents the subjective evaluation results. All

participants were very positive about the already imple-

mented system and its potential to help in certain situations.

Neither of them expressed concerns or discomfort during its

usage and all confirmed that it worked well. Moreover, the

subject from the third experiment, having used two inter-

faces, seems to prefer the one containing buttons. Finally

they all reported low levels of tiredness after 30 turns,

although the user with cerebral palsy had to think more

before performing a gesture.

5 Conclusions

This paper has described a prototype version of a gesture-

driven spoken dialogue system hosted on a mobile tablet

computer, and presented a series of evaluation tasks. Spe-

cifically, a concise and intuitively meaningful gesture set

that can be used to trigger commands to any SDS has been

introduced. A series of classification tests for this appli-

cation task has also been performed. Guidelines for

designing socially acceptable gesture interface were also

provided. It has been illustrated that interacting with hand

gestures imposes little physical and mental effort and

results have been provided following interviews with a user

with cerebral palsy, one blind user and an elderly person.

The proposed gesture set can be consider as a case study

that may be interesting to designers that intend to embed

motion sensing functionalities in their speech-enabled

applications. Future extensions of this work include follow-

up studies where subjects interact using their own set of

gestures and also perform them in public settings. Inves-

tigation of more robust open-accelerometer techniques in

combination with advanced gesture activity detection

algorithms will exploit this idea to its full extent. More

feedback from less studied target groups or from people

with functional diversities would also be beneficial.

Fig. 15 Subjective evaluation

results for the three subjects
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Finally, experimentation with other classification tech-

niques or by combining different set of features could

provide even more accurate results and more efficient

usage of the device’s resources.

Applications emanating from the game industry have

made everyone aware of the potential of interfaces based

on motion sensing; speech-enabled applications on mobile

devices have only become common the last few years, and

connections between the two technologies have not yet

been widely discussed. It is surprising to see what rich

synergies are available, which need to be explored further.
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