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Abstract In an analogy from symmetric ordinary differential equation numerical inte-
grators, we derive a three-stage, weak 2nd-order procedure for Monte-Carlo simula-
tions of Itô stochastic differential equations. Our composite procedure splits each time
step into three parts: an h/2-stage of trapezoidal rule, an h-stage martingale, followed
by another h/2-stage of trapezoidal rule. In n time steps, an h/2-stage deterministic
step follows another n−1 times. Each of these adjacent pairs may be combined into a
single h-stage, effectively producing a two-stage method with partial overlap between
successive time steps.
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1 Introduction

It is often the case that a time evolving system of differential equations permits a
splitting

ẋ = f (x)+ g(x), (1)

where each piece can be chosen for some computational advantage. For example, in
Hamiltonian systems where x = (q, p) and ẋ = (q̇, ṗ) = (p, g(q)), the natural
splitting contains two pieces: one containing only p variables on the right-hand side
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802 C. Perret, W. P. Petersen

of (1) and the other containing only q [6,17]. Similarly, when using a finite difference
scheme for a 2-D partial differential equation, there are significant advantages to
splitting the right-hand side of (1) into pieces which contain only differencing in
orthogonal directions, say x1, respectively x2 [5,15].

In both cases, a composition of approximate flows for the f (x) problem, then an
approximation for the g(x) problem yields methods with highly desirable properties.
The idea is to write the separate approximate flows for f and g and the initial values
(x0, y0) at the beginning of the step:

x(t) = φt (x0), where ẋ = f (x), and

y(t) = ψt (y0), where ẏ = g(y).

One simple composition, called a symmetric method [6] or Yoshida splitting [17] is
as follows:

xh = φh/2 ◦ ψh ◦ φh/2(x0), (2)

where x0 is the value of the process at the beginning of the h-step. A similar analogy
can be made in the stochastic case when

dx = b(x(t)) dt + σ(x(t)) dω(t), orinintegralform,

xt0+h = x0 +
∫ t0+h

t0
b(x(t)) dt

︸ ︷︷ ︸
ΔA

+
∫ t0+h

t0
σ(x(t)) dω(t)

︸ ︷︷ ︸
ΔM

. (3)

The drift term ΔA(h) = ∫ t0+h
t0

b(x(t))dt has bounded variation, while ΔM(h) =∫ t0+h
t0

σ(x(t))dω(t) is a martingale [9]. The distinctly different diffusion term ΔM
characterizes the splitting:

φφφ: φh approximates one step of the drift, A(h), advancing one h-step, while
ψψψ : ψh approximates the advancement of x one step of the martingale term M(h).

The paper is organized as follows. In Sect. 2, we give a simple justification for using
trapezoidal rule to improve stability. Numerical results shown in Sect. 6.5 confirm
this perspective. Our main result (10) of Sect. 4 is actually given by (2) in detailed
terms specific to the semi-martingale problem (3). Section 3 frames the general multi-
dimensional problem, and our main result is proven in Sect. 5. Our complex linear test
problem with oscillating mean is given in Sect. 6 and its numerical simulation results
are shown in Figs. 1 through 13.

2 Some remarks on stability

Our test examples have a complex oscillating mean: E[X (t)] = (X0 − i)eit + i .
Textbook treatments on numerical methods for ordinary differential equation stability
usually examine the decreasing real process, ẋ = −λx , with λ > 0 [4]. There,
forward Euler stepping, xnh = (1− hλ)n x0, does not decrease the absolute size |xnh |
as n increases if h is so large that |1− hλ| > 1. Conversely, backward Euler stepping,
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Split-step method for SDEs 803

xnh = (1 + hλ)−n x0, always decreases |xnh | for λ > 0. Canonically, the backward
Euler method is thus considered more stable for transients with time scale 1/λ.

Here we worry about a complex oscillator, ẋ = iλx , where again we assume λ
is real. In this case, forward Euler stepping, xnh = (1 + ihλ)n x0, systematically
increases the amplitude because |1+ ihλ| = (1+ h2λ2)1/2 > 1. Alternatively, back-
ward Euler stepping, xnh = (1 − ihλ)−n x0, systematically decreases the amplitude
because |(1 − ihλ)−1| = (1 + h2λ2)−1/2 < 1. One of our principal points in this
paper is that choosing φh to be trapezoidal rule yields a more neutral stability. Namely,
even if h is too large, the integrator will not diverge to infinity (forward Euler), nor
to zero (backward Euler). Trapezoidal rule for the simple complex linear oscillator,
ẋ = iλx , is

xnh =
((

1− i
h

2
λ

)−1 (
1+ i

h

2
λ

))n

x0,

but now its one-step fundamental matrix [3] has norm

∣∣∣∣∣
(

1− i
h

2
λ

)−1 (
1+ i

h

2
λ

)∣∣∣∣∣ = 1.

In the textbook case, ẋ = −λx , trapezoidal rule, xnh =
(
(1+ h

2λ)
−1(1− h

2λ)
)n

x0,
graciously does not blow up if h is too big. This stability only helps somewhat if the
size of the distribution grows, as we will see in Sect. 6.3.

3 The general problem in multi-dimensions

We first express (3) in component form the elements of the real n-dimensional process
x indexed by α = 1, . . . , n, drift b is also n-dimensional and real, while σ is an n× n
real array, possibly degenerate:

dxα = bα(x)dt + σαβ(x) dωβ, (4)

driven by a vector ω ∈ R
n of independent Brownian motions. Our notation in (4) uses

the summation convention, wherein repeated indices, in this case the β = 1, . . . , n,
are always summed over. Additionally, the following shorthand notation for partial
derivatives will be found convenient: ∂αg ≡ ∂g/∂xα (for some function g(x)).

For a weak 2nd-order approximation, what is necessary is for any C4 function f (x)
of vector x = (x1, . . . , xn)�, andΔx is the change in x in a time step h, that we have

Ext

[
f (x(t + h))

] = f (x(t))+ ∂ f (x(t))

∂xα
Ext

[
Δxα

]

+ 1

2

∂2 f (x(t))

∂xα∂xβ
Ext

[
ΔxαΔxβ

]
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+ 1

3!
∂3 f (x(t))

∂xα∂xβ∂xγ
Ext

[
ΔxαΔxβΔxγ

]

+ 1

4!
∂4 f (x(t))

∂xα∂xβ∂xγ ∂xδ
Ext

[
ΔxαΔxβΔxγΔxδ

]+ o(h2), (5)

where Ext [Y ] is the conditional expectation of some process Y given x(t) = xt [13].
Increments of the n independent Brownian motions ωβ(t) are independent Gaussians
and satisfy the following relations (for α, β=1, . . . , n). The Kronecker delta, δαβ=1,
if α = β, zero otherwise; while δ(t1 − t2) is Dirac’s [10]. We have:

ωα(0) = 0, (6a)

E[dωα(t)] = 0, (6b)

E[dωα(t1) dωβ(t2)] = δαβ δ(t1 − t2) dt1dt2. (6c)

Because the infinitesimal ω-increments are Gaussian, all higher moments are deter-
mined by the relations (6). Equation (5) is satisfied by finite incrementsΔx satisfying
a stochastic Taylor series. Fortunately, we do not need all the terms.

Simplified Taylor series

In [13], a stripped down Taylor series of weak order 2 is derived. Similar results are
given in Kloeden and Platen [10], and Milstein [11]. Because only some terms of the
increments {Δxα} contribute to the expectations of each of their four monomials in
(5), some simplifications are possible. This requires a little explanation. The model

εγ ≈ ∫ t0+h

t0
ωεdωγ is well known (e.g. see Talay [16]) and is written out explicitly in

Eq. (9). This approximation (denoted≈) means all Ext

[
Δxα · · ·Δxδ

]
expectations in

(5) are O(h2) accurate. In particular, E[
εγΔωη] = 0 and E[
εγ
ηι] = h2

2 δ
εηδγ ι.

Two other facts must be laid out. Since we want the martingale increment (ΔM) to
have vanishing expectation to all orders in stepsize h, any term of O(h2) in ΔM(h)
may be ignored. It will have zero expectation and thus cannot contribute to any moment
in (5) to O(h2). Furthermore, the following substitution is permissible

h�ωεΔωγ ≈ h2δεγ , (7)

because the approximation on the right-hand side of (7) is the only contribution the
left-hand side can make to any moments in (5) to O(h2). Likewise, any O(h3/2) term,
say F , inΔM which also has the property E[FΔωβ1 ] = 0 for allβ, can also be ignored
since it will never contribute to (5) to O(h2) either. Otherwise, the truncated Taylor
series is a tedious but straightforward exercise in repeated substitution and its details
are given in [13]. In every occurrence, the Brownian increments are approximated by
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Split-step method for SDEs 805

ξk ≈
√

hzk , k = 0, 1, where z0, z1 are Gaussian random variables with mean zero
and variance one. The simplified Taylor series of weak order 2 reads

xαt0+h = xα0

+bα0 h + (∂βbα0 ) σ
βγ
0

h

2
ξ
γ
1 driftΔAα(h)

+1

2

{
(∂βbα0 ) bβ0 h + 1

2
(∂β∂γ bα0 )σ

βε
0 σ

γ ι
0 ξε1 ξ

ι
1

}
h

+σαβ0 ξ
β
1 + (∂βσαγ0 ) σ

βε
0 
εγ diffusionΔMα(h)

+1

2

{
(∂βσ

αγ
0 ) bβ0 h + 1

2
(∂β∂κσ

αγ
0 ) σ

βμ
0 σκε0 ξ

μ
0 ξ

ε
0

}
ξ
γ
1 . (8)

In Eq. (8), the model 
εγ for the stochastic integral
∫
ωεdωγ over one time step is

usually called the Milstein term [11], as noted above. This is explicitly given by the
model [13,16]

∫ t0+h

t0
ωε(s) dωγ (s) ≈ 
εγ =

⎧⎪⎪⎨
⎪⎪⎩

h
2 (z

ε
1zγ1 − z̃εγ ), if ε > γ,

h
2 (z

ε
1zγ1 + z̃γ ε), if ε < γ,

h
2 ((z

ε
1)

2 − 1), when ε = γ.
(9)

In this model, the {z̃γ ε} are n(n− 1)/2 independent Gaussian random variables, each
of mean zero, unit variance, and independent of the sets of random variables {zε0} and
{zε1}.

4 Our main result

The following three-stage split-step procedure is proven to be 2nd-order weak accurate
in Sect. 5. Applied to (3), the procedure begins at some time t0 with process value x0,
and proceeds from t0 �→ t0 + h via the following algorithm. The � and �� indicate
intermediate stages (see also Sect. 5).

φh/2 : x0 �→ x� is the mapping

x� = x0 + h

4
(b(x�)+ b(x0)), to be solved for x�,

(10a)

ψh : x� �→ x�� uses Eqs. 9 and 11 to approximate

x�� = x� +
∫ t0+h

t0
σ(x(s))dω(s), start at x�, compute x��, and

(10b)

φh/2 : x�� �→ xt0+h is the same as 10a, but starts at x�� instead of x0 :
xt0+h = x�� + h

4
(b(xt0+h)+ b(x��)), to be solved for xt0+h .

(10c)
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A similar approach was given in Higham et al. [8] and uses two stages. Their first stage
is an implicit backward Euler h-stage for the drift, followed by an explicit h-stage for
the martingale. Their approach is only 1st-order weak accurate, whereas (10) is 2nd-
order weak accurate, as we prove below. Their idea is a good one because the implicit
drift stage provides good stability and the stochastic h-stage is explicitly a discrete
martingale. Ours shares the same properties and also ends up being a two stage method
with only h/2-stages at the ends of the composition chain: (22) compared with (19)
as we will show.

Our procedure (10) is the stochastic analog of Eq. (2) and has the following three
qualities:

– The drift-stages are implicit for stability, but with enough flexibility that certain
parts can be made explicit (for example, a Heun scheme [13]): see Sect. 5.1.

– Composite deterministic steps of pairs φh/2 ◦φh/2 follow each ψh , but φh = φh/2 ◦
φh/2 to the same O(h2) accuracy. These φh/2 ◦ φh/2 pairs from adjacent time steps
may thus be compressed into φh steps in the n-chain as we will show in Sect. 5.1.

– The stochastic diffusion stage is an explicit martingale whose expectation value
E[ΔM] = 0 to all orders in the stepsize h.

5 Proof of order in the split-step procedure Eq. (10)

Given the simplified Taylor series (8), proven in [10,13], two things remain to be done.
First, we need a general approximation to the martingale stage (10b), ΔM. For that,
we use the following:

xα�� = xα� +
1

2

{
σαβ

(
x� + 1√

2
σ�ξ0

)
+ σαβ

(
x� − 1√

2
σ�ξ0

)}
ξ
β
1

+ (∂βσαδ� ) σβε� 
εδ. (11)

Note that we used the shorthand notation σ� = σ(x�), as in Sect. 4. Next, we need to
show that an expansion of (10) gives the result (8). We will explore two special cases
in Sect. 6.4 when x is a scalar: the additive noise case σ = constant, and a strictly
linear multiplicative noise case, σ(x) = μx , where μ is also constant.

The proof that (10) is a weak 2nd-order approximation is a just a lengthy expansion.
We start with the first stage (10a)

xα� = xα0 +
h

4

(
bα(x�)+ bα(x0)

)
,

which when expanded to second order by repeated substitution yields

xα� = xα0 + bα(x0)
h

2
+ (∂γ bα(x0))b

γ (x0)
h2

8
+ o(h2). (12)
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Now, expanding (11) to order O(h3/2) (we may ignore the O(h2) term which has
vanishing expectation), gives

xα�� = xα� + σαβ� ξ
β
1︸ ︷︷ ︸

H1

+ 1

4
(∂γ ∂ησ

αβ
� )σ

γ ε
� σ

ηι
� ξ

ε
0 ξ

ι
0ξ
β
1︸ ︷︷ ︸

H2

+ (∂βσαδ� )σβε� 
εδ︸ ︷︷ ︸
H3

+O(h2), (13)

where again the O(h2) term may be ignored because it has vanishing expectation.
We examine these in reverse order, H3, H2, H1, because there is little to do for H3
and H2 since σ� = σ0 + O(h), and because 
 has vanishing expectation. In H3, the
O(h) ·
εδ = O(h2) term may be ignored, thus

H3 = (∂βσαδ0 )σ
βε
0 
εδ + O(h2). (14)

The H2 term is just as easy, because again using σ� = σ0 + O(h), we obtain

H2 = 1

4
(∂γ ∂ησ

αβ
0 )σ

γ ε
0 σ

ηι
0 ξ

ε
0 ξ

ι
0ξ
β
1 + O(h5/2). (15)

Thus, the only term in (13) which requires further expansion is H1:

H1 = σαβ0 ξ
β
1 + (∂γ σαβ0 )bγ0

h

2
ξ
β
1 + O(h5/2). (16)

Finally, the last stage (10c) gives the end value,

xαh = xα�� + bα1
h

2︸︷︷︸
J1

+ (∂γ bα1 )b
γ
1

h2

8︸ ︷︷ ︸
J2

.

The last term J2 is easy because it is already O(h2), thus

J2 = (∂γ bα0 )b
γ
0

h2

8
. (17)

From (13), we can get bα1 in J1 = bα1
h
2 , with the result

bα1
h

2
= bα0

h

2
+ (∂κbα0 )

{
σκλ0 ξλ1 + bκ0

h

2
+ (∂φσ κμ0 )σ

φχ
0 
χμ

}

+(∂κ∂μbα0 )σ
κλ
0 σ

μφ
0

h

4
ξλ1 ξ

φ
1 .
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Here, hξλ1 ξ
φ
1 ≈ h2δλφ to order O(h2), as in (7). Combining everything, Eq. (12) for

x�, (16) for H1, (15) for H2, and (14) for H3 to form x�� in Eq. (13), along with J1
and J2 (17) to form the final stage xh , we get

xαt0+h = xα0 + σαβ0 ξ
β
1 + bα0 h + (∂βσαγ0 )σ

βε
0 
εγ

+ (∂γ σαβ0 )bγ0
h

2
ξ
β
1 + (∂κbα0 )σ

κλ
0

h

2
ξλ1 +

1

4
(∂γ ∂ησ

αβ
0 )σ

γ ε
0 σ

ηι
0 ξ

ε
0 ξ

ι
0ξ
β
1

+ (∂γ bα0 )b
γ
0

h2

2
+ (∂κ∂μbα0 )σ

κλ
0 σ

μλ
0

h2

4
+ o(h2). (18)

Again, we used (7) in the last contributing term. Comparing (18) with (8), term by
term, the proof that (10) is second-order weak accurate is now complete. 
�

5.1 Compression

An n-step computation of xt0+nh starting with x0 is a composition rule with n triplets
(2) of φh/2 ◦ ψh ◦ φh/2:

xt0+nh = φh/2 ◦ ψh ◦ φh/2︸ ︷︷ ︸
xnh← �x(n−1)h

◦ · · · ◦
≈φh︷ ︸︸ ︷

φh/2 ◦ φh/2 ◦ψh ◦ φh/2 ◦ φh/2 ◦ ψh ◦ φh/2︸ ︷︷ ︸
xh← �x0

(x0). (19)

To the same order, O(h2), of accuracy, each triplet overlaps its next neighbor to the
left, that is φh/2 ◦ φh/2, by essentially a full h-step trapezoidal rule φh , where

φh : x�� �→ x�, in which x� = x�� + h

2
(b(x�)+ b(x��)) , (20)

is to be solved for the intermediate value x�, which is the input to the following
martingale step ψh . Straightforward repeated back-substitutions in the composition
φh/2 ◦ φh/2(x��) compared to that of one full h-step φh(x��) from (20), show that

φh(x��)− φh/2 ◦ φh/2(x��) = h3

16

(
(b��)

2b′′�� + (b′��)2b��
)
+ O(h4), (21)

where b, b′, and b′′ are evaluated at x��. By occasionally computing both φh and
φh/2 ◦ φh/2, an estimate of the truncation error/step is possible, suggesting a step-size
monitor [14] (sec. 7.2.5). This truncation error estimate is four times the O(h3) term
of (21). The compression eliminates n − 1 trapezoidal rule steps.

A compressed version of (19) is thus

xt0+nh = φh/2 ◦ ψh ◦ φh ◦ · · · ◦ φh ◦ ψh ◦ φh ◦ ψh ◦ φh/2(x0), (22)

where only the first and last of the compositions have half-stepsφh/2. This compression
reduces the n triplets (3n operations of φ or ψ) down to 2n + 2 such operations: that
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Split-step method for SDEs 809

is, one ψh , n − 1 (ψh ◦ φh) pairs, and the ends. The end corrections are familiar from
trapezoidal formula integrations: see Sect. 18.9 of [7]. Also notice that (22) remains
left–right symmetric, as is (19).

5.2 A semi-implicit variant

A further remark is in order. Our basic trapezoidal rule steps of the form (20) require
solving non-linear algebraic equations for x�. In general this will be awkward, partic-
ularly in the vector case. An easier version is apparent when b(x) = Ax + q(x) has
a linear part. Here, q(x) is a non-linear part which we may be hesitant to deal with in
implicit form. In this situation, a semi-implicit procedure

x� = x�� + h

2
(Ax� + q(xE )+ b(x��)) ,

where xE = x�� + hb(x��) is the Euler estimate, can be solved easily. Namely,

x� =
(

1− h

2
A

)−1 (
x�� + h

2
(q(xE )+ b(x��))

)

only requires the solution of one linear system. The order of this semi-implicit method
remains O(h2) accurate: see [13], or Section 2.3 of [4]. It works here because our
φ – ψ splitting defines φh to be deterministic. Alternatively, replacing any x�� term in
b(x��) with xE would lead to another variant on this theme.

6 Test example

An SDE example having both linear drift and diffusion is given by

d X = (a0 + a1 X)dt + (c0 + c1 X)dw(t), with initial value X (0) = X0. (23)

Here X is a complex scalar process driven by a real one-dimensional Brownian motion
w(t) (see Kloeden and Platen [10], equation (4.4.9)). If a1, c1 �= 0, one of the constants
a0 or c0 may be set to zero without loss of generality. To see this, either set X (t) =
Z(t)−a0/a1, which eliminates a0 in the drift, or set X (t) = Z(t)−c0/c1 to eliminate
c0 in the diffusion, with suitable changes to {a1, c0, c1}, or {a0, a1, c1}, respectively,
in the resulting SDE for Z(t). It is not particularly difficult to get a formal solution to
(23) using an integrating factor [9,10], as we now show.

6.1 A formal solution to the test example

Let M(t) = exp(−c1w(t)− (a1 + c2
1/2)t), which has the Itô SDE [9]

d M = −a1 Mdt − c1 Mdw(t). (24)
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810 C. Perret, W. P. Petersen

Furthermore, for all t <∞, M(t) has the inverse

M−1(t) = ec1w(t)+(a1+c2
1/2)t .

Thus, using (23) and (24),

d(M X) = d M X + M d X + d M d X

= (a0 − c0c1)Mdt + c0 Mdw(t)− c2
1 M Xdt.

By using the integrating factor ec2
1 t , we get

d(ec2
1 t M X) = ec2

1 t ((a0 − c0c1)Mdt + c0 Mdw(t)),

and thus

ec2
1 t (M X)(t)− X (0) = (a0 − c0c1)

∫ t

0
ec2

1s M(s)ds + c0

∫ t

0
ec2

1s M(s)dw(s).

Now let

P(t) = e−c2
1 t M−1(t) = ec1w(t)+(a1−c2

1/2)t ,

which satisfies the SDE [compare with (24)]

d P = a1 Pdt + c1 Pdw(t). (25)

This yields the formal solution [10]

X (t) = X (0)P(t)+ (a0 − c0c1)P(t)
∫ t

0
P−1(s)ds + c0 P(t)

∫ t

0
P−1(s)dw(s),

(26)
where, of course,

P−1(t) = e−c1w(t)−(a1−c2
1/2)t .

6.2 E[X (t)] test statistic

This solution (26) is only formal in the sense that neither integral in (26) can be
evaluated as a function of (t, ω(t)). However, Eq. (26) can be used to compute the
expected value E[X (t)], which we will use as a test statistic for our integrator (10).
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We have

E[X (t)] = X (0) E[P(t)]︸ ︷︷ ︸
E0

+(a0 − c0c1) E
[

P(t)
∫ t

0
P−1(s)ds

]
︸ ︷︷ ︸

E1

+c0 E
[

P(t)
∫ t

0
P−1(s)dw(s)

]
︸ ︷︷ ︸

E2

.

Finding that E0 = ea1t is easy enough. Likewise, evaluating E1 is straightforward:

E1 =
∫ t

0
E[P(t)P−1(s)]ds

=
∫ t

0
e(a1− c2

1
2 )(t−s)E

[
ec1(w(t)−w(s))]ds

=
∫ t

0
e(a1− c2

1
2 )(t−s)e

c2
1
2 (t−s)ds

= ea1t
∫ t

0
e−a1sds = ea1t − 1

a1
.

Finally, although E2 looks awkward, considering its differential d E2 and remembering
d P(t) = a1 Pdt + c1 Pdω(t) from (25) are helpful. We have

d E2 = E
[
(a1 P(t)dt + c1 P(t)dωt)

(∫ t

0
P−1(s)dω(s)

)]

+E
[

P(t)P−1(t)dω(t)+ c1 P(t)P−1(t)dt
]

= a1 E2 dt + c1 dt. (27)

To get (27), we used E[P(t)dω(t) ∫ t
0 P−1(s)dω(s)] = 0. To see why this vanishes,

apply E applied to the Itô martingale: E
[ ∫ t

0 dω(u)(P(u)
∫ u

0 P−1(s)dω(s))
] = 0.

This must hold for all t and therefore t+dt . From (27), the integrating factor exp(−a1t)
gives

E2 = c1
ea1t − 1

a1
.

All together, we have

E[X (t)] =
(

X (0)+ a0

a1

)
ea1t − a0

a1
. (28)

It is important to note that this expectation result is independent of c0, c1, although
the X (t) distributions are very different for each choice of these coefficients.
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6.3 Numerical test examples

In Sect. 6.4, we test two complex oscillating cases with a1 = i : a scalar additive noise
problem (N1), and a multiplicative noise case (N2). For convenience, the shorthand
notations Xt = X (t) and Zt = Z(t) will be freely used.

N1: The choices a0 = 1, a1 = i, c0 = 1 and c1 = 0 give the SDE

d X = (1+ i X)dt + dω(t), whose mean (29)

E[X (t)] = (X (0)− i)eit + i, (30)

is known from (28). For this problem, we can compute the absolute variance using
the substitution Z(t) = X (t) − i : we get E[|X (t) − ((X0 − i)eit + i)|2] =
E[|Z − Z0eit |2]. Therefore,

E
[|Z − Z0eit |2] = E

[(
eit

∫ t

0
e−isdω(s)

) (
e−i t

∫ t

0
eiudω(u)

)]

=
∫ t

0
e−is

∫ t

0
eiu E[dω(s)dω(u)]

=
∫ t

0
e−is

(∫ t

0
eiuδ(u − s)du

)
ds

= t. (31)

The variance for N1 thus grows linearly with t , and we might expect poor numerical
results for E[X (t)] when t � |E Z(t)|2 = |Z0|2 = 2, that is when X0 = 1, as in
our examples.
N2: From the choices a0 = 1, a1 = i, c0 = 0, and c1 = 1 we have the SDE

d X = (1+ i X)dt + Xdω, (32)

whose mean, E[X (t))] is also given by (28) and is the same as (30). For this
problem, we can also compute the absolute variance by again using the substitution
Z(t) = X (t)− i :

E
[|Zt − Z0eit |2] = E

[(∫ t

0
e−is(Zs + i)dω(s)

) (∫ t

0
eiu(Zu − i)dω(u)

)]

= E
[∫ t

0
Q(s)dω(s)

∫ t

0
Q(u)dω(u)

]
,
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where we used the abbreviation Q(t) = e−i t (Zt + i) and Z is the complex
conjugate of Z . By the same trick used to get (27), we have

d E[|Zt |2] = d
(

E[|Zt |2] − |Z0|2
)

= E[|Q(t)|2]dt

= E[|Zt + i |2]dt

=
(

E[|Zt |2] + 2 Im{E[Zt ]} + 1
)

dt

=
(

E[|Zt |2] + 2 Im{Z0eit } + 1
)

dt.

So, by using the integrating factor e−t , we get an expression for the variance

var = E[|Zt |2] − |Z0|2
= (|Z0|2 + 1)(et − 1)+ Im {Z0(1+ i)(eit − et )}.

From the Taylor expansion et + 2 cos(t) + e−t − 4 = 4
∑∞

k=1
t4k

(4k)! ≥ 0, we get

2(et − 1)2 ≥ |et − eit |2, which yields a useful sharp lower bound for var :

var ≥ (|Z0|2 + 1)(et − 1)−√2|Z0||et − eit |
≥ (|Z0|2 + 1)(et − 1)− 2|Z0||et − 1|
= (|Z0| − 1)2(et − 1). (33)

Hence, the variance for N2 grows exponentially as t gets large. We can estimate when
the variance becomes much larger than |E[Z(t)]|2 = |Z0|2 = |X0 − i |2, namely if

(|Z0| − 1)2(et − 1)� |Z0|2.

For our test, X0 = 1, so |Z0|2 = 2, and thus the variance is larger than this and
growing rapidly when

t > log

{
1+ 2

(
√

2− 1)2

}
≈ 2.54.

This is consistent with the results in Figs. 8, 10, and 12, where, by eyeball inspection,
the simulated means move away from the circle when t > 2.5.

6.4 Numerical solutions

In turn, we can write down the algorithm (10) for the problems N1 and N2 of Sect. 6.3.
In the last case, from (9) we have
11 = (ξ2

1 −h)/2, and in both cases ξ1 =
√

hz1 (see
Sect. 3). All our N1 and N2 plots shown here were from the simple forms of stage1,
stage2, and stage3, neither combined nor alternate.
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Fig. 1 Le f t : N1 scatter-plot, N = 500, t = 3. Right : same for N2. Both radius = √2 orbits of E [X (t)]
are shown as circles: N2’s looks very small. Method (10) was used with h = 0.01

Fig. 2 Numerical results for problem N1 using our 3-stage (10) method with h = 1/10, 1/100, 1/1,000
and all other parameters given in the notes on page 16

N1’s numerical solution. In the additive noise SDE (29) for N1, we have σ = 1,
a constant. The stages of (10) in this case are:

stage1

X� =
(

1− ih

4

)−1 ((
1+ ih

4

)
X0 + h/2

)
(34)

stage2 is simply
X�� = X� + ξ1 (35)

stage3

Xh =
(

1− ih

4

)−1 ((
1+ ih

4

)
X�� + h/2

)
(36)

stage3 and the next stage1 combined together have the analytic form

X� = φh(X��) = eih X�� + i(1− eih). (37)

123
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Fig. 3 Fiber-box plots of the distributions for N1 of the variance around the analytic mean E[X (t)] using
trapezoidal rule (10). Each box triplet (h = 10−1, 10−2, 10−3) shares the same t-value indicated in the
labeling. See the notes on page 16

Fig. 4 Numerical results for problem N1 using Euler’s method, which is the same as Milstein’s in this
case. Note the outward spiraling for as step size h increases. See the notes on page 16

N2’s numerical solution. From (32), the stages of (10) are:
stage1 is the same as (34).
stage2, where again 
11 is from eq. (9) and page 15

X�� =
(

1+ ξ1 +
11
)

X�,

an alternate stage2 would be the explicit version

X�� = eξ1−h/2 X�. (38)
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Fig. 5 Fiber-box plots of the distribution over sub-sample means for N1 using the forward Euler method.
Each box triplet (h = 0.02, 0.01, 0.0001) shares the same t-value indicated in the labeling. See the notes
on page 16

Fig. 6 Numerical orbits for N1 using HMS showing inward spiral. See the notes on page 16

stage3 is the same as (36).
stage3 combined with stage1 φh(X��) = φh/2 ◦ φh/2(X��) is also eq. (37).

6.5 Numerical results

The simulation conditions were as follows. Programs providing data for all the figures
were written in C, and compiled with gcc 4.2.1 (-O3). The plotters were from
Matlab R2012b. The machine was a Mac Mini, OS 10.6.8, with an Intel Core 2 Duo
chip. The sample sizes there were N = 217 = 131072, with fixed time steps having
sizes noted in the figures: for h = .001, runtime was ∼5 min. The random number
generator was the WELL512a [12], with linear congruential (ggl) seeding [2]. To test
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Fig. 7 Numerical results for problem N1 using the HMS method [8]. Each box triplet (h =
0.02, 0.01, 0.001) shares the same t-value indicated in the labeling. See the notes on page 16

Fig. 8 Numerical mean orbits for problem N2 using method (10). See the notes on page 16

consistency, k independent sub-samples were taken from total N , k = (2N )1/3 = 64,
with N/k = 211 = 2,048 independent paths per sub-sample.

Notes on the figures

– Monte-Carlo mean estimates for E[X (t)] are denoted by 〈X〉 = 1
N

∑N
l=1 Xl for

the full N sample, and
– 〈X〉N/k for a size N/k sub-sample.
– Functionals over all sub-samples are written 〈 f (X)〉k
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Fig. 9 Fiber-box plots of the mean distributions for problem N2 using (10). Each box triplet (h =
10−1, 10−2, 10−3) shares the same t-value in the labeling. See the notes on page 16

Fig. 10 Numerical results on the orbits for problem N2 using Milstein’s method. The forward Euler
treatment of the drift causes outward spiraling. See the notes on page 16

In particular, for sub-sample m which begins at X1+(m−1) N
k

, its mean is

〈X〉[m] = k

N

N/k∑
j=1

X j+(m−1) N
k
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Fig. 11 Fiber box plots for the means of problem N2 using Milstein’s method. Each box triplet (h =
10−1, 10−2, 10−3) shares the same t-value indicated in the labeling. See the notes on page 16

Fig. 12 Numerical orbits of the mean in problem N2 using the HMS method. Backward Euler treatment
of the drift causes inward spiraling. See the notes on page 16

and we compare these sub-sample means to the analytic expectation E[X (t)] = (1−
i)eit + i by computing the variance

〈|〈X〉N/k − E[X (t)]|2〉k = 1

k

k∑
m=1

|〈X〉[m] − E[X (t)]|2,

which defines the labeling in the fiber-box plots. Consistent sampling means 〈X〉[m]
should give a good approximation to E[X (t)] for each m. Because the forward Euler
method spirals toward infinity while backward Euler (HMS) goes toward zero for
large h, we only plotted values h = 0.02, 0.01, 0.001 for these methods on N1. Other
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Fig. 13 Fiber box plots for the means of problem N2 using the HMS method [8]. Each box triplet
(h = 10−1, 10−2, 10−3) shares the same t-value as labeled on this axis. See the notes on page 16

figures have h = 10−1, 10−2, 10−3. Each box shows the median of the 64 sub-sample
means 〈X〉n/k in target mode [1]. Box ends denote first (lower) and the fourth (upper)
quartiles. Exponential growth in variance (33), required outliers for N2 be cut off at
value 1.5 for plot legibility. It is worthwhile to see what examples N1, Eq. (31), and N2,
Eq. (33), really mean. Figure 1 shows scatter-plots of 500 path samples at time t = 3.
In particular, the exponential growth (33) in the variance, i.e. scatter, in problem N2
indicates why the E[X (t)] statistic becomes poorly determined as t gets large. Other
notation: tr means trapezoidal rule, gM denotes G. Milstein’s method [11], and HMS
refers to the method in [8].

7 Conclusions

To summarize, we have devised a three-stage, 2nd-order weak accurate integration
scheme for Monte-Carlo integration of stochastic differential equations driven by
Brownian motion. The procedure is based on trapezoidal rule, but the stochastic stage
is isolated, as in [8]. By combining adjacent h/2-sized drift steps, it becomes a two-
stage method, as we showed in Sect. 5.1. For oscillating problems, like our N1 and N2
examples, the numerical results for the statistic E[X (t)] stay on the proper orbit—for
long times in case N1, but for shorter times in case N2. Trapezoidal rule does a good
job keeping the sample paths on circular orbits for reasons noted on page 3. It is well
known (see Figs. 1.2 and 1.4 in [6]) for oscillating ordinary differential equations that
forward Euler solutions tend to spiral out, while backward Euler solutions tend to
spiral in. Our results for both problems N1 and N2 show these same properties and
are illustrated in Figs. 2, 4, 6, 8, 10, and 12. Problem N2 has an exponentially growing
variance, so long time estimates of E[X (t)] become inaccurate. All three integrators—
Milstein’s method [11], Higham et al. [8], and ours (10)—simulate reasonably well
what the process should do. Thus, integrations of problem N2 behave as expected for
all three of these integrators but the comportment of method (10) is better for larger
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step sizes. Finally, we also ran the simulations with alternate and combined forms
enumerated in Sect. 6.4 with results virtually indistinguishable from those shown in
Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13.
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