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Abstract. We show that the maximum total perimeter of k plane con-
vex bodies with disjoint interiors lying inside a given convex body C is equal to
per (C)+2(k−1)diam(C), in the case when C is a square or an arbitrary triangle.
A weaker bound is obtained for general plane convex bodies. As a consequence,
we establish a bound on the perimeter of a polygon with at most k reflex angles
lying inside a given plane convex body.

1. Introduction

It is well known that if C and D are two plane convex bodies such that
C � D, then

per (C) � per (D).

In other words, the maximum perimeter of a convex body lying inside a
given convex body D is equal to per (D). While some generalizations of this
classical result are known (in particular, the straightforward generalization
to higher dimensions, see e.g. [4,13,18]), it comes as a surprise that the sit-
uation when several disjoint bodies lie inside another convex body, has not
been investigated before. In this paper we are interested in answering the
following general question:

∗The authors gratefully acknowledge support from the Russian government project
11.G34.31.0053 and the Swiss National Science Foundation Grants 200020-144531 and 20021-
137574.

†Corresponding author.
Key words and phrases: convex body, diameter, perimeter, area, geometric inequality, simple

polygon, reflex angle.
Mathematics Subject Classification: 52A10, 52A38, 52A40.

0236-5294/$20.00 c© 2013 Akadémiai Kiadó, Budapest, Hungary
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UPPER BOUNDS FOR THE PERIMETER OF PLANE CONVEX BODIES 367

Question 1. For a given k ∈ N, what is the maximum total perimeter
of k plane convex bodies with disjoint interiors lying inside a given plane
convex body D?

Observe that for any k and D one can construct a family of con-
vex bodies satisfying the conditions whose total perimeter is as close to
per (D) + 2(k − 1) diam (D) as needed (see Fig. 1, left). Can we do better?

Fig. 1: Left: a family of k convex bodies of total perimeter close to
per (S) + 2(k − 1) diam (S). Right: a polygon with 2 reflex angles and

(near) maximum perimeter inside a unit square

We show that if D is a square, one cannot do better than per (D) +
2(k − 1) diam (D).

Theorem 1. If C1, . . . ,Ck are convex bodies with disjoint interiors lying
inside a unit square, then

per (C1) + · · ·+ per (Ck) � 4 + 2
√
2(k − 1).

This inequality is tight.

Similarly, we have a tight result for the case of an arbitrary triangle.

Theorem 2. Let T be a triangle with longest side of length d. If C1,
. . . , Ck are convex bodies with disjoint interiors lying inside T , then

per (C1) + · · ·+ per (Ck) � per (T ) + 2(k − 1)d.

This inequality is tight.

What happens for general figures? The following theorem, which is not
tight, gives a good upper bound.
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Theorem 3. If C1, . . . , Ck are plane convex bodies with disjoint interi-
ors lying inside a plane convex body S, then

k∑

i=1

per (Ci) � 1.22195 per (S) + 2(k − 1) diam (S).

We believe the constant 1.22195 in the last theorem can be reduced to 1,
giving a tight bound.

Conjecture 4. Given a plane convex body S and k ∈ N, the total
perimeter of k convex bodies with disjoint interiors lying inside S is at most
per (S) + 2 diam (S)(k − 1).

Let us note also that the proof of Theorem 3 gives the following result
that does not need the condition that S be convex.

Theorem 5. If C1, . . . , Ck are plane convex bodies with disjoint interi-
ors lying inside a plane (not necessarily convex) body S, then

k∑

i=1

per (Ci) �
4√
3

area (S)

diam (S)
+ 2k diam (S).

Note that the inequality of Theorem 5 is tight when S is an equilateral
triangle.

A generalization of our results to higher dimensions remains elusive. The
following might be the right way to generalize.

Conjecture 6. Given a convex body S ⊂ R
d and k ∈ N, the total sur-

face area of k convex bodies with disjoint interiors lying inside S is at most
surf (S)+2 sect (S)(k−1), where surf (S) and sect (S) denote respectively the
surface area of S and the maximum area of a section of S by a hyperplane.

Auxiliary inequalities. The auxiliary results we used to prove Theo-
rems 1 and 2 seem to be of independent interest. In fact, our main theorems
are simple consequences of these inequalities. We show a refined version of
the inequality per (C) � 4 for a convex body C inside a unit square.

Theorem 7. If C is a convex body inside a unit square, then

per (C) � 2
√
2 +

(
4− 2

√
2
)
area (C).

An analogous result that strengthens the well-known inequality per (C)
� per (T ) (see the notation below), is proven for a triangle.

Theorem 8. Let T be a triangle with longest side of length d. If C is a
convex body inside T , then

per (C)− 2d

area (C)
� per (T )− 2d

area (T )
.
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Remark. At first, one might be tempted to believe that for any two
convex bodies C ⊂ D one has

per (C)− 2d

area (C)
� per (D)− 2d

area (D)
,

where d = diam (D). This is, however, false in general, already for quadri-
laterals. Indeed, suppose that a polygon has a diameter that divides it into
two polygons whose perimeters are P1 + d and P2 + d, and whose areas are
A1 and A2, respectively. Then it is easy to check that the inequality fails
whenever

P1 − d

A1
�= P2 − d

A2
.

The above inequality is false even for some centrally symmetric polygons D:
e.g., if D = abcdef is a regular hexagon and C = ace.

Finally, in the proof of Theorem 3 we need the following inequality, that
we prove in Section 3.

Theorem 9. For any plane convex body C we have

4√
3

area (C)

diam (C)
+ 2 diam (C) � 1.22195 per (C).

Using standard inequalities (see Theorem 11 below), one can easily
obtain a weaker inequality with the constant 1/

√
3 + 1 ≈ 1.577 instead

of 1.22195. The latter constant coincides in the first five digits with the
tight constant. Although it is not needed for our purposes, it would be in-
teresting to get a general form of Theorem 9 as described in the following
question.

Question 2. For every α ∈ [0, 1], determine the smallest constant c(α)
such that for any plane convex body C we have

α area (C) + (1− α)
(
diam (C)

) 2 � c(α) per (C) diam (C).

The method we used to prove Theorem 9 can in principle give a tight
constant for every fixed α. It is not clear, however, how c(α) behaves as a
function of α. More generally, one may try to describe all inequalities of the

form α area (C)+β
(
diam(C)

) 2
+ γ per (C) diam(C) � 0 that hold for every

plane convex body C.

Relation to reflex angles. Let us present an application of our re-
sults to a problem that was our original motivation for this work. Consider
a convex body S of perimeter 1. We know that any convex polygon con-
tained in S has perimeter at most 1. However, as long as our polygon has at
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least one reflex angle (that is, an internal angle larger than π), its perimeter
can exceed 1 (see Fig. 1, right). Intuitively, the more reflex angles our poly-
gon has, the larger perimeter it can achieve. The following general question
was posed by the second author at the 10th Gremo’s Workshop on Open
Problems [10]:

Question 3. For a given k, what is the largest perimeter of a polygon
having at most k reflex angles that is contained in a given convex body of
perimeter p and diameter d?

Denote the number of reflex angles of a polygon P by ref (P ). It is easy
to see that any polygon P can be cut into ref (P ) + 1 convex polygons. This
allows us to use Theorems 1, 2 and 3 to derive the following inequalities.

Theorem 10. If P is a polygon contained in a plane convex body S,
then

• per (P ) � per (S) + 2 ref (P ) diam (S), if S is a triangle or a square;
• per (P ) � 1.22195 per (S) + 2 ref (P ) diam (S), in general.

Relation to total curvature. Interestingly, our results are also re-
lated to some classical inequalities bounding the perimeter of a curve inside
a convex body in terms of its total curvature. An old result of Chakerian [5]
says that for any curve C in the plane (note that in this case we do not have
a surrounding curve), the following inequality holds:

L(C) � 1√
3
diam (C)

(
2 +K(C)

)
,

where L(C) and K(C) are the length and the total absolute curvature of C,
respectively (also, a generalization of this result to higher dimensions is given
in [5]). Assuming that C is a polygon whose internal angles are α1, . . . , αn,
we have

K(C) =
n∑

i=1

|π − αi| � 2π + 2π · ref (C),

which together with Chakerian’s inequality gives an inequality similar to
those in Theorem 10, but with worse constants.

The famous DNA theorem, conjectured by Tabachnikov [23] and proved
by Lagarias and Richardson [15] and later in full generality by Nazarov and
Petrov [19] (see also [20]), states that whenever a (possibly non-convex)
closed curve γ lies inside a convex closed curve Γ (see Fig. 2), then AK(γ)
� AK(Γ), where by AK we denote the average curvature, that is, the total
absolute curvature of the curve divided by its perimeter. Similarly as above,
with the notation from Theorem 10, this implies

per (P ) � per (S) + ref (P ) per (S),
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Fig. 2: DNA in a cell

which is again weaker than Theorem 10.
Motivated by the above results, we can ask the following question.

Question 4. For a given k, what is the largest perimeter of a polygon
having total absolute curvature at most k that is contained in a given convex
body of perimeter p and diameter d?

Related work. Geometric inequalities being a classical topic in dis-
crete geometry, there is a vast related literature and numerous surveys, of
which we recommend e.g. [3,4,18]. Bounding the perimeter of non-convex
polygons was investigated by Audet, Hansen and Messine [1], who found for
every n a tight upper bound on the perimeter of a simple n-gon contained
in a disk of radius one, thereby answering a question of Brass [3]. A dif-
ferent proof was given later by Dumitrescu [7], and also by Lángi [16] who
gave some further extensions. In [8], Dumitrescu and Tóth solved the prob-
lem of finding (asymptotically) the maximum total perimeter of n pairwise
disjoint disks lying in the unit square S and touching the boundary of S.
Reinhard [21] determined the n-gons with a given diameter and maximal
perimeter for all values of n that are not powers of two, while the cases
when n = 2r for r � 3 are still open [3]. Similarly, Bezdek and Fodor [2]
proved the exact analogue of Reinhardt’s theorem, with the same extremal
configurations and with the same missing cases, for the maximum width in
place of the maximum perimeter. Another old problem of Reinhardt [21]
that asks for the maximum area of a convex n-gon of unit diameter is still
open for even n � 10 [3].
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2. Proofs of Theorems 1, 2 and 3

Theorem 1 is an easy consequence of Theorem 7 that is proven in the
next section.

Proof of Theorem 1. Let S be the unit square. By Theorem 7 we
have

k∑

i=1

per (Ci) � 2
√
2k +

(
4− 2

√
2
) k∑

i=1

area (Ci)

� 2
√
2k +

(
4− 2

√
2
)
area (S) = 4 + 2

√
2(k − 1). �

In a similar manner, Theorem 2 follows from Theorem 8.

Proof of Theorem 2. By Theorem 8 we have

k∑

i=1

per (Ci) �
per (T )− 2d

area (T )

k∑

i=1

area (Ci) + 2dk � per (T ) + 2d(k − 1). �

In the proof of Theorem 3 we will use some well-known inequalities for
convex bodies, given in the next theorem.

Theorem 11. For any plane convex body C we have

(a) [9,14] area (C) �
√
3
4

(
per (C)− 2 diam (C)

)
diam (C);

(b) [13] per (C) � π diam (C);
(c) [11] 4 area (C) � per (C) diam (C).

All the above inequalities are also listed in [22]. Note that in [12] the
inequality (a) is quoted with a wrong constant.

Proof of Theorem 3. We can assume without loss of generality that
per (Ci) � 2 diam (S), since we can discard those of the k bodies for which
that condition fails and apply induction to the rest (clearly, the inequality
is true for k = 1). By Theorem 11 we have

k∑

i=1

area (Ci) �
√
3

4

k∑

i=1

(
per (Ci)− 2 diam (Ci)

)
diam (Ci)

�
√
3

4

k∑

i=1

(
per (Ci)− 2 diam (S)

)
diam (S).

The last inequality is due to the fact that the function f(x) =
(
per (Ci)−

2x
)
x is decreasing for x � per (Ci)

4 and per (Ci)
4 � diam (Ci) � diam (S) (note

that we used Theorem 11).
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Rearranging terms and using the fact that
∑

area (Ci) � area (S) and
Theorem 9, we get

k∑

i=1

per (Ci) �
4√
3

area (S)

diam (S)
+ 2k diam (S)

� 1.22195 per (S) + 2(k − 1) diam (S). �

3. Proof of Theorem 9

In this section we give a proof of Theorem 9, based on an idea commu-
nicated to us by Dmitri Panov [6]. The proof reduces to the problem of
computing the maximum of a certain trivariate function subject to several
constraints, which we solve using the program Wolfram Mathematica 9.0.
We use in the proof the notion of a circular segment which is a part of a disk
cut off by a chord. The chord we call the base of the circular segment, and
by the angle of the circular segment we mean its central angle in radians.

Proof of Theorem 9. Without loss of generality we can assume that
diam (C) = 1. By Theorem 11 we have that area (C) ∈ [0, π4 ]. It suffices
to prove the following statement: if C is a plane convex body such that
there are two points a, b ∈ ∂C with |ab| = 1 (this condition is equivalent with
diam (C) � 1), then

4√
3
area (C) + 2

per (C)
� 1.22195.

To prove this inequality, let us consider two convex bodies C1 and C2 in
which C is split by the segment ab. The crucial observation is the follow-
ing. For i = 1, 2, denote by C ′

i the circular segment with base ab such that
area (C ′

i) = area (Ci) (we assume that C ′
i lies on the same side of the line ab

as Ci). Then we claim that per (C ′
i) � per (Ci). Indeed, if we denote by C ′′

i
the circular segment with base ab lying on the opposite side of the line ab
from Ci and such that C ′

i ∪C ′′
i is a disk (Fig. 3), then using the isoperimetric

inequality (see e.g. [4]) we have that

(
per (Ci) + per (C ′′

i )− 2|ab|
)2 � 4π

(
area (Ci) + area (C ′′

i )
)

= 4π
(
area (C ′

i) + area (C ′′
i )
)
=

(
per (C ′

i) + per (C ′′
i )− 2|ab|

)2
,

which implies per (C ′
i) � per (Ci), as needed. Hence, we have

4√
3
area (C) + 2

per (C)
�

4√
3

(
area (C ′

1) + area (C ′
2)
)
+ 2

per (C ′
1) + per (C ′

2)− 2|ab| .
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Fig. 3: Applying the isoperimetric inequality

Denote by θ1 and θ2 the angles of C ′
1 and C ′

2 (we have θ1, θ2 ∈ (0, 2π)). It
suffices to show that the maximum of the function

f(A, θ1, θ2) =

4√
3
A+ 2

θ1
2 sin

θ1
2

+ θ2
2 sin

θ2
2

,

subject to the constraints

θ1 − sin θ1

8 sin2 θ1
2

+
θ2 − sin θ2

8 sin2 θ2
2

= A, 0 � θ1 � 2π, 0 � θ2 � 2π, 0 � A � π

4
,

is not more than 1.22195. This we confirm, however, by using the program
Mathematica. By executing the following commands

g[x_, y_] := x/(2 Sin[x/2]) + y/(2 Sin[y/2])
h[x_, y_] := (x - Sin[x])/((Sin[x/2])^2) + (y - Sin[y])/((Sin[y/2])^2)
NMaximize[{(4/Sqrt[3] A + 2)/g[x, y], h[x, y] == 8 A &&
0 <= A <= Pi/4 && 0 <= x <= 2 Pi && 0 <= y <= 2 Pi}, {x, y, A},
AccuracyGoal -> 20, PrecisionGoal -> 20, WorkingPrecision -> 50]

we get the result

{1.2219490754..., {x -> 2.4749823726...,

y -> 2.4749823726..., A -> 0.5198034269...}},

which shows that the maximum is equal to 1.2219490754 . . . , finishing the
proof. �

An idea for a simpler proof of Theorem 9 was given to us by Prof. Endre
Makai [17]. It is shown in [13], Aufgabe 77a on page 53, that among all
convex figures of diameter d and perimeter p, the largest area is attained by
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the union of two identical circular segments whose common base is a segment
of length d (and the segments lie on the opposite sides of the base). Using
this result, in order to prove Theorem 9, it suffices to find

max
0�θ�π

1√
3 sin2 (θ/2)

(θ − sin θ) + 2

θ
sin (θ/2)

.

Again with the help of Mathematica, we get that the maximum is equal to
1.2219490754 . . . (attained at θ = 2.4749823726 . . . ), which coincides with
the result we obtained before.

Another way to simplify the above proof of Theorem 9, proposed by the
referee, is to perform first a Steiner symmetrization on C in direction ab. In
this way, the diameter and the area remain the same, while the perimeter
does not increase. Also, the resulting figure will be symmetric with respect
to ab, so we can continue the analysis as before, with the assumption that
area (C1) = area (C2), which would in turn simplify the constrained maxi-
mization problem we face at the end.

Remark. One can see from the proof that Theorem 9 is “tight” in the
sense that the first five significant digits of the constant on the right hand
side cannot be improved.

4. Proofs of Theorems 7 and 8

We start with a few standard lemmas that we need for the proof.

Lemma 4.1. The function f(x) =
√

(x− a)2 + b2 +
√
(x+ a)2 + b2 is

strictly decreasing for x � 0 and strictly increasing for x � 0.

Proof. Since the function is even, it suffices to show that it is increasing
for x � 0. We will show that f ′(x) > 0 for x > 0. We calculate

f ′(x) =
x− a√

(x− a)2 + b2
+

x+ a√
(x+ a)2 + b2

,

so the inequality f ′(x) > 0 is obvious if x > a or a = 0, while for 0 < x � a
it is equivalent to

(a− x)

√
(x+ a)2 + b2 < (x+ a)

√
(x− a)2 + b2,

which is, after squaring, equivalent to b2ax > 0. �
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Corollary 4.1. If abcd is a trapezoid such that ab ‖ cd and ∠bad >
∠abc, then

|ad|+ |bd| > |ac|+ |bc|.

Proof. Let d′ be the symmetric image of d with respect to the per-
pendicular bisector of ab. Then c lies on the segment dd′. Without loss of
generality, suppose that |cd| > |cd′|. Lemma 4.1 implies that

|ac|+ |bc| < |ad′|+ |bd′| = |ad|+ |bd|. �

Lemma 4.2. Let S be a plane convex body. If C is a convex polygon
lying inside S, then there exists a polygon C ′ whose all vertices lie on the
boundary of S and such that area (C) = area (C ′) and per (C) � per (C ′).

Proof. Among the convex bodies C ′ � S such that area (C) = area (C ′),
choose one for which per (C ′) is maximum. Denote by n the number of ver-
tices of C ′ and let C ′ = a1a2 . . . an. We claim that C ′ has no internal vertices,
i.e., all its vertices lie on the boundary of S as needed. Suppose the contrary.
Let ai be an internal vertex. By Lemma 4.1 we can move the vertex ai along
a vector parallel to ai−1ai+1, so that the area of C ′ remains the same, while
its perimeter strictly increases. This would contradict the choice of C ′. �

Proof of Theorem 7. Let S = abcd be the given unit square. If suf-
fices to prove the statement for the case when C is a convex polygon. More-
over, by Lemma 4.2 we can assume that the vertices of C lie on the boundary
of the square. The goal is to show that the function

f(C) = per (C)−
(
4− 2

√
2
)
area (C)

attains its maximum for C = S, or, in other words, we need to show that
for any convex polygon C whose vertices are on the boundary of S we have
f(C) � f(S) = 2

√
2.

Suppose that C has two consecutive vertices lying on two consecutive
sides of the square, say, x lying on ab and y lying on bc, while the triangle
xby is disjoint from C (see Fig. 4, left). Let C ′ be the union of C and the
triangle xby. Denote |bx| = p and |by| = q and assume that p, q > 0. The
inequality f(C) � f(C ′) is equivalent to

√
p2 + q2 � p+ q −

(
2−

√
2
)
pq ⇔

0 �
(√

2− 1
)
pq −

√
2(p+ q) +

√
2 + 1.

The last inequality is easy to verify: the function ϕ(p, q) =
(√

2− 1
)
pq

−
√
2(p+ q) +

√
2 + 1 is linear in q, while ϕ(p, 0) > 0 and ϕ(p, 1) � 0. We
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Fig. 4: Gluing the yellow part increases f(C)

showed that in this case f(C) � f(C ′), that is, by gluing the corner triangle
xby to C the value of f(C) does not decrease. Let us call this a 1-operation.

Suppose now that C has two consecutive vertices on two opposite sides
of the square, e.g., x on ab and y on cd, such that the quadrilateral xbcy is
disjoint from C (see Fig. 4, right). Assume without loss of generality that
|bx| � |cy| and let z be a point on the segment xb such that |xz| = |cy|.
Denote by C ′ the union of C and the parallelogram xzcy and let C ′′ be
the union of C and the quadrilateral xbcy. We have f(C) � f(C ′) � f(C ′′),
where the first inequality is obvious, while the second one follows from what
we proved before. We showed that in this case by gluing the quadrilateral
xbcy to C the value f(C) does not decrease. We call this a 2-operation.

Finally, suppose that C is a “corner triangle”, e.g., C = axy, where x
and y are points on the sides ab and ad, respectively. Denoting |ax| = p and
|ay| = q, the inequality f(C) � 2

√
2 is equivalent to

p+ q +
√

p2 + q2 � 2
√
2 +

(
2−

√
2
)
pq.

Since
√
p2 + q2 �

√
2max {p, q}, assuming p � q, it suffices to show the in-

equality
(√

2 + 1
)
p+ q � 2

√
2 +

(
2−

√
2
)
pq,

which is easy to check (due to linearity, it is enough to check the cases q = 0
and q = 1).

It remains to notice that by applying (possibly several) 1-operations and
2-operations to any polygon C whose vertices lie on the boundary of S, we
can obtain either a corner triangle or the whole square. This finishes the
proof. �

The strategy in proving Theorem 8 is similar, although the proof is
slightly more difficult. We need an additional lemma.
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Lemma 4.3 (Ptolemy Inequality). If a, b, c, d are points in the plane,
then

|ab| × |cd|+ |bc| × |ad| � |ac| × |bd|.

Proof of Theorem 8. Let T = abc be the given triangle. As in the
proof of Theorem 7, by Lemma 4.2 we may assume that C is a polygon whose
all vertices lie on the boundary of T . For technical reasons, it is convenient
to consider interchangeably the following two functions:

f(C) =
per (C)− 2d

area (C)
and g(C) = per (C)− per (T )− 2d

area (T )
· area (C),

so that the inequality that we need to prove becomes equivalent to f(C)
� f(T ) and also to g(C) � 2d. We first prove the inequality in two special
cases.

Suppose that C is a triangle that shares a side with T , say, C = abx,
where x lies on the side bc. Let us use the following notation: |ab| = p,
|bx| = q, |cx| = s, |ac| = t. The inequality f(C) � f(T ) is equivalent to

p+ q + r − 2d
1
2pq sin∠abc

� p+ q + s+ t− 2d
1
2p(q + s) sin∠abc

⇔ ps+ qr + rs � 2ds+ qt.

From Theorem 4.3 we have that

ps+ r(q + s) � 2ps+ qt � 2ds+ qt,

so in this case we are done.
As for the next case, suppose that C is a “corner” triangle, e.g., C = axy,

where x and y are on the sides ab and ac, respectively. Since either ∠abc �
∠axy or ∠acb � ∠ayx, we can assume without loss of generality that ∠acb �
∠ayx. Let z be the point on ab such that xy ‖ cz (see Fig. 5, left). Denoting
|ac|
|ay| =

|az|
|ax| = k � 1 and C ′ = acz, we have that the inequality f(C) � f(C ′)

is equivalent to

per (C)− 2d

area (C)
� k per (C)− 2d

k2 area (C)
⇔ k per (C) � 2d(k + 1).

The last inequality is true, since

k per (C) = per (C ′) � 3d � 2d(k + 1).

By the preceding case f(C ′) � f(T ), so we can conclude that f(C) � f(T ).
Having covered two special cases, we continue with the general case.

By compactness, the function g(C) attains its maximum for some convex
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Fig. 5: Left: gluing the yellow part increases f(C). Right: sliding the edge pq in one or
the other direction increases g(C)

polygon C (indeed, the set of convex polygons whose all vertices lie on the
boundary of T , including the degenerate ones as well, can be considered
as compact, and the function g is certainly continuous and well-defined on
this set). From now on, we suppose that C is a polygon for which g(C) is
maximum.

We claim that it cannot happen that two non-consecutive sides of C lie
on two different sides of T . Suppose the contrary, e.g., let p0, p, q0, q be
distinct vertices of C such that p0, p ∈ ab and q0, q ∈ bc. Moreover, suppose
that p ∈ p0b and q ∈ q0b. Denote |pb| = m, |qb| = n and |pq| = 	. We can
assume without loss of generality that the distance of a from the line pq is
not larger than the distance of c from the line pq. For all x ∈ [0,m), let
C(x) be the union of C and the trapezoid prsq, where r ∈ pb, s ∈ qb, rs ‖ pq
and |pr| = x (see Fig. 5, right). Similarly, for all x ∈

(
m− |ab|, 0

]
let C(x)

be the (set-theoretic) difference of C and the trapezoid prsq, where r ∈ pa,
s ∈ qc, rs ‖ pq and |pr| = −x. According to our assumption, the function
ϕ(x) = g(Cx) should attain its local maximum for x = 0. We will show that
this cannot be the case. Denote per (C) = P , area (C) = A and let h be the
distance from b to the line pq. It is easy to see that

ϕ(x) = P + x+

(
	− 	

m
x

)
+

n

m
x− 	−

(
A+

(
	− 	

2m
x

)
h

m
x

)
· τ

= P −Aτ +
m− 	+ n− 	hτ

m
· x+

	hτ

2m2
· x2,

where

τ =
per (T )− 2d

area (T )
.

Since ϕ(x) is a quadratic function in x with a positive coefficient of the sec-
ond degree term, it has no local maxima, which contradicts our assumption.
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Fig. 6: Left: Case 1; Right: Case 2 when x = a

Now one can easily check that C has to be of one of the forms covered
by the following two cases.

Case 1: C is a triangle with two vertices on one side of T (and the
third vertex on another side). Without loss of generality, let C = xyz, where
x, y ∈ ab and z ∈ ac, so that x is between a and y (Fig. 6, left). Denote
by C ′ the triangle ayz. Recall that we have proven the theorem for the case
of a corner triangle. Now we can apply that fact two times. Let d′ be the
diameter of C ′. Since C is a corner triangle for C ′ we have

per (C)− 2d′

area (C)
� per (C ′)− 2d′

area (C ′)
.

Similarly, C ′ is a corner triangle for T and we have

per (C ′)− 2d

area (C ′)
� per (T )− 2d

area (T )
.

Adding the two inequalities we get

per (C)− 2d

area (C)
� per (T )− 2d

area (T )
− 2(d− d′)

(
1

area (C)
− 1

area (C ′)

)

� per (T )− 2d

area (T )
,

where we used that area (C ′) � area (C) and d � d′.
Case 2: C is a quadrilateral with two vertices on one side of T and

one vertex on each of the other two sides. Without loss of generality, sup-
pose that C = xyzt, where x, y ∈ ab, z ∈ bc, t ∈ ca and x ∈ ay (we allow the
possibility that x = y or x = a).

First we address the easier case when x = a, that is, X = ayzt (Fig. 6,
right). Since

∠baz + ∠caz < ∠bza+ ∠cza,
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we have that either ∠baz < ∠bza or ∠caz > ∠cza. Without loss of generality
suppose that ∠baz < ∠bza. Let y′ be the point on segment bz such that
yy′ ‖ az. Denoting C ′ = ay′zt and applying Corollary 4.1 to the trapezoid
azy′y, we have that g(C ′) > g(C) (since area (C) = area (C ′) and per (C ′)
> per (C)), which contradicts the choice of C.

Fig. 7: Left: Case 2 when x = y. Right: Case 2, general situation

Next we consider the case when x = y, that is, C degenerates into a
triangle (Fig. 7, left). Without loss of generality, suppose that xz is the
longest side of the triangle C = xzt. Clearly, ∠bxt+ ∠xtz > π, since other-
wise we could move the point x in the direction parallel to zt, so that the
area of xzt remains the same, while the perimeter strictly increases. Thus,
we can pick a point x′ ∈ bz such that xx′ ‖ zt. By Corollary 4.1 we have
∠xtz � ∠bzt (otherwise, we would have g(x′zt) > g(C)). The line through t
parallel to xz intersects either the segment ax or the segment cz. Without
loss of generality, we assume it intersects cz at a point t′. We have

∠czx = ∠czt+ ∠tzx = π − ∠bzt+ ∠tzx

� π − ∠xtz + ∠tzx = ∠txz + 2∠tzx > ∠txz,

which by Corollary 4.1, applied to the trapezoid xzt′t, gives g(xzt′) > g(C).
Contradiction.

In the rest of the proof we assume that x �= a and x �= y (see Fig. 7,
right). Note that the inequality

∠aty + ∠cty + ∠bzx+ ∠czx > ∠ayt+ ∠zyt+ ∠txz + ∠bxz

holds since the left hand side is equal to 2π and the right hand side is the
sum of two angles of the quadrilateral xyzt. Thus, one of the following four
cases has to happen: either ∠aty > ∠ayt, or ∠cty > ∠zyt, or ∠bzx > ∠bxz,
or ∠czx > ∠txz.
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Suppose ∠aty > ∠ayt. Let x′ be the point the segment at such that
xx′ ‖ ty. Denote C ′ = x′yzt. By Corollary 4.1, it follows that g(C ′) > g(C),
which is a contradiction.

Similarly, we get a contradiction assuming that ∠bzx > ∠bxz. Therefore,
we must have ∠bzx � ∠bxz.

Assume now that ∠cty > ∠zyt. If the line through z parallel to ty in-
tersects the segment ct, we have a contradiction by Corollary 4.1 as before.
Hence we suppose that this line intersects the segment by. If ∠zty < ∠byt,
we again have a contradiction by Corollary 4.1, so we can assume that ∠zty
� ∠byt. Now we have two cases, depending on whether the line through
t parallel to xz intersects the segment ax or the segment cz. First, let us
consider the case when it intersects the segment ax. Then we have that
∠tzx � ∠axz. It follows that

π > ∠zty + ∠tzx � ∠byt+ ∠axz = 2π − ∠bxz − ∠ayt > π,

which is a contradiction. It remains to consider the case when the line
through t parallel to xz intersects the segment cz. Similarly as before, we
must have ∠txz � ∠czx. This implies

∠bxt = ∠bxz + ∠txz � ∠bzx+ ∠czx = π,

with a clear contradiction.
Analogously, the assumption ∠czx > ∠txz also leads to a contradiction.
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