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Abstract We consider a viscoelastic–viscoplastic continuum damage model for polycrystalline ice. The focus
lies on the thermodynamics particularities of such a constitutive model and restrictions on the constitutive theory
which are implied by the entropy principle. We use Müller’s formulation of the entropy principle, together
with Liu’s method of exploiting it with the aid of Lagrange multipliers.

Keywords Damage mechanics · Delayed elastic response · Nonlinear viscous heat conducting fluid ·
Polycrystalline ice

1 Introduction

Continuum damage mechanics has been introduced into the mechanics of polycrystalline ice, e.g., by [2,4,9,
11,13,15–17]. Efforts on the consistency of the proposed constitutive relations with the second law of ther-
modynamics are by [6,7,12]. The latter work demonstrates that in anisotropic damage formulations, rank-4
damage tensors are required to reach consistent formulations of damage with the second law of thermody-
namics. All the above models treat the damage variable as internal variable, for which an evolution equation
is postulated. Its production term is expressed as a constitutive relation of the material class of the theory in
question.

This is not the approach dealt with in part I of this paper [5]. Instead of writing a suitable damage evolution
law, i.e., treating damage as one or several degrees of freedom, we treat it as a function of the delayed-elastic
deformation (i.e., the component of deformation which is recoverable but not instantaneous). The likely earliest
proposal of this approach in ice mechanics was given in [14]. Part I of this paper [5] formulates a nonlinear
theory of such a model in three dimensional space; in this second part, we examine its consistency with the
second law of thermodynamics, a still missing important part of the model.

The first goal is thus to demonstrate its coherence with the entropy principle. But, at the same time, some
general aspects and problems of continuum systems with a rank-4 internal tensor variable will be discussed.
The tensorial nature of such a quantity makes some of the considerations technically delicate, and there is still
a number of mathematical difficulties related to this task which have not been solved in an adequate way yet.
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Therefore, it is also the subject of this article to point out these problems, propose possible solutions and to
encourage further research of the remaining problems.

The key part of these considerations will be the exploitation of the entropy principle of Müller and Liu
[8,10]. This formulation of the entropy principle does not make any assumptions for the constitutive behavior
of the entropy flux; it does not even assume the a priori existence of an absolute temperature. This makes it
particularly suitable for the consideration of a theory containing unusual degrees of freedom, which might have
unexpected effects on the constitutive behavior. Finally, Liu’s Lagrange multiplier method is of compelling
technical elegance and beauty. Historically, the first definition of the absolute temperature was due to Kelvin,
who defined it in terms of the Carnot efficiency. A mathematically more convenient (and therefore nowadays
widely used) approach has been found by [1], who defined the absolute temperature as the (up to rescaling
unique) integrating denominator for the inexact differential of heat, which depends only on the empirical
temperature. The Müller-Liu theory adds the viewpoint that the same quantity serves as the inverse of the
Lagrange multiplier of the energy equation, which pulls a theory of free variables onto the shell of energy
conservation.

Usually, the exploitation of the entropy principle is done using the least possible constitutive assumptions;
if possible, people try to consider a theory restricted only by the principle of frame indifference. In this work,
this general path will only partly be followed. At first, the entropy inequality will be considered in as general
as possible form, as well as the consequences of thermodynamic equilibrium. But then, instead of considering
the most general constitutive behavior, the constitutive framework defined in part I of this paper will be used
explicitly. This allows to show the existence of a suitable free energy, which achieves that the constitutive
theory is in agreement with the entropy principle.

2 Free variables and kinematics

The set of free fields to be considered in the following is

F = {
v, θ,A,ZZZ

}
, (1)

which stand for velocity, (empirical) temperature1, Almansi tensor of delayed-elastic deformation, and rank-4
damage effect tensor. The choice of the Almansi tensor as an objective measure of delayed-elastic deformation
has been explained in [5]. Neither pressure nor mass density will be treated as free fields, as a non-volume-
preserving delayed elasticity will be considered. The mass density is merely a function of A, which in the
small strain approximation reads

ρ = ρ̂ (1 − trA)+ O
(
A2) , (2)

where ρ̂ is the mass density in the reference configuration. Of course, this approach is not as elegant as an
approach with a free mass density, but it saves a considerable amount of work, without loosing any relevant
information.

The constitutive quantities (stress, internal energy density, heat flux, entropy density, entropy flux, time
evolution of A, time evolution of ZZZ) may depend on the set

S = {
D, θ,A, g = ∇θ,ZZZ}

, (3)

where D is the strain rate tensor.
The kinematic description of a viscoelastic–viscoplastic model for a fluid is a non-trivial problem, as the

coupling of the two types of deformations is not very obvious. We have considered this problem in part I and
proposed that the coupling should reasonably be done in terms of strain rate tensors (instead of coupling the
strains themselves). Furthermore, we have shown in part I that the relation

D = �
A + Dv (4)

holds, where
�
A is the lower Oldroyd derivative of A, and Dv the viscoplastic deformation rate. This relation

can be used in order to couple viscoelastic and viscoplastic deformations.

1 A priori θ does not need to be an absolute temperature; any empirical temperature measure (i.e., an intrinsic variable which
can be determined experimentally and which satisfies the “zeroth” theorem of thermodynamics) may be used. Of course, in
practice it would be very inconvenient to use anything but the absolute temperature. However, we want to stress that the existence
of an absolute temperature is not a necessary assumption, but a result of the theory presented here.
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In the following, we will take the kinematic coupling into account by constraining the constitutive relations
in a suitable way: The constitutive relation for the time evolution function fA for the delayed-elastic Almansi
tensor A and the viscoplastic strain rate tensor Dv will be assumed to obey the constraint

fA[S] = D − Dv[S]. (5)

This approach has the advantage that it only concerns the constitutive relations, instead of adding a further
constraint for the free fields, which would have to be accounted for via an additional Lagrange multiplier.

The evolution of the fields F is governed by the balance equations

V := ρ
d

dt
v − ∇ · σ − ρf = 0, (6)

E := ρ
d

dt
ε + ∇ · q − σ · D − ρr = 0, (7)

A := �
A − fA = 0, (8)

Z :=
�
ZZZ − fZZZ = 0. (9)

where the time derivatives are to be understood as convective derivatives, and f, r are external source terms
(force density and energy supply).

Physically, these equations represent in turn the balances of momentum and energy (6, 7), the evolution
equations of the Almansi tensor and the damage effect tensor (8, 9), respectively. The quantities {v, σ , ε,q}
are the velocity vector, the symmetric Cauchy stress tensor, the internal energy and the heat flux vector, while
f and r are momentum and energy supply terms, and fA, fZZZ are rank-2 and rank-4 productions of A and ZZZ,
respectively.

The quantity
�
ZZZ is the lower Oldroyd derivative of ZZZ, an objective time derivative defined as

�
Zi jkl = Żi jkl + LimZmjkl + L jmZimkl + LkmZi jml + LlmZi jkm, (10)

where Li j are the components of the velocity gradient. fZZZ is a suitable evolution function, which makes sure
that ZZZ evolves coupled to A as long as possible (i.e., as long as the coupling to A makes ZZZ increase). For a
situation with decreasing A, ZZZ will be either held constant, or slowly decreased according to a suitable healing
law. This healing law has to be in accordance with the entropy principle; details will be discussed in a later
section.

The cases for independent ZZZ and ZZZ coupled to A will a priori not be distinguished; the case distinc-
tion arises more or less automatically when evaluating explicitly the entropy production for the constitutive
framework.

We mention, finally, that boundary conditions exercise no effect on the analysis of the consistency of
the constitutive relations with the second law of thermodynamics, except, of course if balance laws for sur-
face quantities (involving, e.g., flux terms such as surface tensions) are accounted for. This is not the case
here.

3 Exploitation of the entropy principle

In Müller’s formulation of the entropy principle, one requires that the constitutive quantities (i.e., fields that
depend on S) entropy2 η, entropy flux Φ and an external entropy source s are such that any solution of the
governing Eqs. (6)–(8) satisfies the inequality

ρ
d

dt
η + ∇ · � − ρs ≥ 0. (11)

In Ref. [8] it is shown that this requirement is equivalent to the existence of Lagrange multipliers ΛV, ΛE, ΛA

and ΛZ such that for any set of fields F [not necessarily solutions of Eqs. (6)–(9)] the inequality

2 Actually specific entropy; but as with all extensive quantities (e.g., internal energy, entropy, enthalpy, ...) it will be implicitly
assumed to be normalized with respect to mass.
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π := ρ
d

dt
η + ∇ · Φ − ρs − ΛV · V −ΛEE − ΛA · A − ΛZ · Z ≥ 0 (12)

holds3. The quantity π is the local production rate of specific entropy.
In the following, the source terms will be omitted; material properties are assumed not to depend on external

sources, and therefore, they cancel out,

−s + ΛV · f +ΛEr = 0. (13)

Following the Liu principle, inequality (12) has to be written as quasi-linear in the derivatives of F which are
not in S (i.e., the constitutive quantities may not depend on them),

A(S) · X + β(S) ≥ 0, (14)

where the vector X of all derivatives of F which appear linearly in (12) and are not in S reads

X = {
Wi j , ∂t Di j ,∇i D jk, ∂tvi ,∇i∇ jθ, ∂tθ, ∂t∇iθ, ∂t Ai j ,∇i Akl , ∂t Zi jkl ,∇mZi jkl

}
, (15)

in which Wi j = Li j −Di j is the antisymmetric part of the velocity gradient, the so-called spin tensor. Necessary
and sufficient conditions for inequality (14) to be satisfied for any X are

A(S) ≡ 0, β(S) ≥ 0. (16)

These are called Liu Identities and residual entropy inequality, respectively.
By writing inequality (14) down explicitly, we obtain

0 ≤ π = ρ

(
∂η

∂Di j
Ḋi j + ∂η

θ
θ̇ + ∂η

∂Ai j
Ȧi j + ∂η

∂gi
ġi

)

+ ∂Φi

∂Dkl
∇i Dkl + ∂Φi

∂θ
∇iθ + ∂Φi

∂Akl
∇i Akl + ∂Φi

∂g j
∇i g j

−ΛEρ

(
∂ε

∂Di j
Ḋi j + ∂ε

∂θ
θ̇ + ∂ε

∂Ai j
Ȧi j + ∂ε

∂gi
ġi

)

−ΛE

(
∂qi

∂Dkl
∇i Dkl + ∂qi

∂θ
∇iθ + ∂qi

∂Akl
∇i Akl + ∂qi

∂g j
∇i g jσkl Di j

)

−ΛV
i

(
ρv̇i − ∇ jσ j i

) −ΛA
i j

(
Ȧi j + 2Aik Dkj + 2Aik Wkj − f A

i j

)

+ΛZ
i jkl

(
Żi jkl + 4Zi jkm Wml + 4Zi jkm Dml − f Z

i jkl

)
. (17)

For the sake of a more convenient notation, we will assume the Lagrange multipliers ΛA and ΛZ to have the
same symmetry as the corresponding free fields. Even though this assumption is plausible from the fact that
there are only as many independent evolution equations as independent tensor elements, later a rigorous proof
of this fact will be given (which is not affected by its use already now).

From inequality (17) the Liu identities can be identified; they read

ΛV = 0, (18)

0 =
(
ΛA

ik Ak j +Λ
Z
iklmZklmj

)
Wi j , (19)

∂Φi

∂Dkl
= ΛE ∂qi

∂Dkl
, (20)

∂Φi

∂g j
= ΛE ∂qi

∂g j
, (21)

∂Φi

∂Akl
= ΛE ∂qi

∂Akl
, (22)

3 Balance of mass does not need to enter (12) with a Lagrange multiplier, since the density in Bt is given by A, see Eq. (2).



A viscoelastic damage model for polycrystalline ice 899

∂Φi

∂Z jklm
= ΛE ∂qi

∂Z jklm
, (23)

∂η

∂θ
= ΛE∂ε

∂θ
, (24)

∂η

∂gi
= ΛE ∂ε

∂gi
, (25)

∂η

∂Di j
= ΛE ∂ε

∂Di j
, (26)

ΛA
i j = −ΛEρ

∂ε

∂Ai j
+ ρ

∂η

∂Ai j
, (27)

Λ
Z
i jkl = −ΛEρ

∂ε

∂Zi jkl
+ ρ

∂η

∂Zi jkl
. (28)

An explicit representation of the residual entropy inequality π = β(S) ≥ 0 will be given once these identities
have been explored. Nevertheless, it shall be emphasized already now that, as ∇iθ = gi ∈ S, the contribution

(
∂Φi

∂θ
−ΛE∂qi

∂θ

)
gi (29)

to π does not necessarily vanish (Φi and qi may depend on gi , so this is not a linear form). If, however, one
takes into account Eqs. (20)–(23), the differential of the objective vector k := Φ −ΛEq can be written as

dk = dΦ −ΛEdq − qdΛE

=
(
∂Φ

∂θ
−ΛE∂q

∂θ

)
dθ − qdΛE. (30)

Thus, k can be written purely as a function of the two objective scalars θ andΛE; as it is impossible to construct
a nonzero objective vector from only objective scalars, k must vanish. Therefore, the identity

Φ = ΛEq (31)

holds, i.e., entropy flux and heat flux are collinear. This relation has further consequences. Equations (20)–(26)
can now be written as

0 = ∂Φi

∂Fl
−ΛE ∂qi

∂Fl
= ∂ki

∂Fl
+ qi

∂ΛE

∂Fl
= qi

∂ΛE

∂Fl
, (32)

where Fl is any of the fields Di j , gi , Ai j ,Zi jkl . As qi may in general be different from 0, we can conclude that
the scalar fieldΛE can only depend on S\{Di j , gi , Ai j ,Zi jkl} = {θ}. Thus,ΛE is a function of the temperature
alone. This function ΛE is exactly the “coldness function” as used by [10]. Following [10] or [3], it can be
argued that

T (θ) := 1

ΛE(θ)
(33)

is a strictly monotonous function of θ . By postulating, furthermore, the existence of thin material walls where
θ and the normal component of q are continuous, it can be shown that T (θ) is a universal function of θ (i.e.,
the function is the same in any material). Thus, it is justified to identify T (θ) with the absolute temperature, in
coherence with the widely used definition of the absolute temperature as the (up to rescaling unique) integrating
denominator for the inexact differential of heat which depends only on the empirical temperature [1]. In the
following, for the sake of simplicity, T (θ) ≡ θ will be assumed; i.e., the absolute temperature is used as a
substitute of empirical temperature.

From the last result, we can infer consequences for the constitutive behavior of ε and η. Cross-differentiating
relations (24)–(26) and eliminating of the second derivatives results in

∂ΛE

∂gi

∂ε

∂θ
= ∂ΛE

∂θ

∂ε

∂gi
, (34)

∂ΛE

∂Di j

∂ε

∂θ
= ∂ΛE

∂θ

∂ε

∂Di j
. (35)
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As ΛE is a function of only θ , the left-hand sides of Eqs. (34) and (36) vanish. On the right-hand sides, the

derivative ∂ΛE

∂θ
is nonzero though. This implies

∂ε

∂Di j
= 0,

∂ε

∂gi
= 0, (36)

and the same for η. Thus, η and ε are purely functions of Ai j , θ and Zi jkl . The same holds for the so-called
free energy

ψ = ε − θη = ψ(Ai j , θ,Zi jkl). (37)

Equation (19) is the contribution of W to the Liu identities. It turns out that this is automatically satisfied
for reasons of symmetry, if the Lagrange multipliers ΛA

i j and ΛZ
i jkl have the same symmetry as A and ZZZ,

respectively. We are now in a position to show that this is the case. From Eqs. (27) and (28) one can conclude
that

ΛA
i j = −ρ

θ

∂ψ

∂Ai j
, Λ

Z
i jkl = −ρ

θ

∂ψ

∂Zi jkl
. (38)

It is easy to show that such a derivative always has the same symmetry as the quantity with respect to which
it is differentiated.

Finally, the residual entropy inequality π = β(S) ≥ 0 takes the form

0 ≤ π = −qi gi

θ2 + 1

θ

(
σi j + 2ρ

∂ψ

∂Aik
Ak j + 4ρ

∂ψ

∂Zimkl
Z jmkl

)
Di j

−ρ
θ

(
∂ψ

∂Ai j
f A
i j + ∂ψ

∂Zi jkl
f Z
i jkl

)
. (39)

By using the self-consistency Eq. (5), this result can be written as

0 ≤ π = −qi gi

θ2 + 1

θ
σi j Di j + ρ

θ

∂ψ

∂Ai j

(
2Aik Dkj − Di j + Dv

i j

)

+ρ
θ

∂ψ

∂Zi jkl

(
4Zi jkm Dml − f Z

i jkl

)
. (40)

This concludes the general evaluation of the entropy production rate. Finally, using the results Eqs. (24) to
(28) it is possible to explicitly write down the Gibbs relation. This reads

dη = 1

θ

∂ε

∂θ
+

(
1

θ

∂ε

∂Ai j
+ 1

ρ
ΛA

i j

)
dAi j +

(
1

θ

∂ε

∂Zi jkl
+ 1

ρ
Λ

Z
i jkl

)
dZi jkl , (41)

from which, on using Eqs. (37), (38), the statement

η = −∂ψ
∂θ

(42)

ensues.

4 Consequences for the constitutive theory

In part I of this article, we have proposed a constitutive framework for a viscoelastic–viscoplastic damage
theory. The key point of this is the relation for the viscoplastic deformation rate,

Dv = 1

2ν
YYYσ D, (43)
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where ν is a viscosity and YYY is a rank-4 tensor function of ZZZD whose structure does not matter here (but which
has been proposed in the part I). Moreover, for the Cauchy stress tensor σ the relations

trσ = ηtr

Ztr

(
trD + K

ηtr
trA

)
, (44)

σ D = WWW ·
(

DD + G

ηD
AD

)
, (45)

have been proposed in the first part, where K , G are bulk- and shear moduli, respectively, and ηtr,D are the
bulk- and shear viscosities for the viscoelastic part. The rank-4 tensor WWW is given by

WWW =
(

1

2ηD
ZZZD + 1

2ν
YYY

)−1

. (46)

The resulting evolution equation for the delayed-elastic Almansi tensor is (for details see part I)

fA = D − Dv = 1

2ηD

[
ZZZDσ D − 2GAD

]
+ 1

3ηtr

[
Ztr tr σ − K trA

]
13×3. (47)

The result (40) for the residual entropy production rate density will now be used to directly demonstrate the
thermodynamic correctness of this constitutive framework (in combination with a simple Fourier-type relation
for the heat flow q). The difficult part of this consists in stating suitable constitutive relations for the entropy, η,
and the internal energy, ε. This is complicated by the fact that the two are not independent; they must obey the
integrability conditions resulting from cross-differentiating the Gibbs relation, Eq. (41). In order to avoid this
difficulty, it is more convenient to propose a Helmholtz free energy ψ , from which the entropy can be derived
via Eq. (42). As mentioned above, it would be technically extremely difficult to proceed with an approach
as general as possible. One therefore has to find a smart way of successively inferring consequences for the
constitutive theory, which finally leads to a constitutive relation for ψ yielding correct thermodynamics for
the proposed constitutive framework.

4.1 Thermodynamic equilibrium

As a first step, the entropy production rate π close to thermodynamic equilibrium will be considered, in order
to compare it with the constitutive relations.

For the sake of simplicity, only the special situation where the dynamical function fZZZ does not play a role
will be considered. This is the case in a situation where the material has been strained up to a certain point, (i.e.,
a nonzero value for ZZZ has been reached), and has then been allowed to relax to thermodynamic equilibrium,
i.e., ZZZ is present as a parameter, but not as a dynamical field (fZZZ ≡ 0). Furthermore, the representation of ZZZ
proposed by [6] will be used; ZZZ is thus assumed to be a doubly symmetric rank-4 tensor which does not mix
deviatoric and hydrostatic stresses. Such a ZZZ can be written as

ZZZ = Ztr 1tr + ZZZD, (48)

where 1tr
i jkl = δi jδkl , and the deviatoric part annihilates the isotropic (i.e., non-deviatoric) part of any rank-2

tensor,
ZZZD · 13×3 = 13×3 · ZZZD = 0. (49)

Thermodynamic equilibrium is usually defined as a state with D = 0, g = 0. It is immediately clear from
relation (5) that this requirement is too weak in the constitutive framework considered here. An additional Dv =
0 is necessary. As, however, Dv �∈ S, this is not a suitable statement to define thermodynamic equilibrium. Thus,
it will be replaced by AD = 0; the deviatoric part of the Almansi tensor shall thus vanish in thermodynamic
equilibrium. This is a direct consequence of the fluid-like constitutive framework: Any elastic deformation
causes stresses and thus viscoplastic deformation rates. The constitutive variables are consequently re-grouped
in equilibrium and non-equilibrium sets,

S = Se ∪ Sn = {
trA, θ,ZZZ

} ∪
{

D, g,AD
}
. (50)
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The entropy production rate should vanish at Sn = 0 and be positive everywhere else; thus, it has a local
minimum at equilibrium. Considering (40), it is easy to see that the condition π |e = 0 is automatically
satisfied, provided that D|e = 0 and g|e = 0, which is the case in the proposed constitutive theory. A necessary
condition for a local minimum of π at equilibrium is

∂π

∂g
|e = 0, (51)

∂π

∂D
|e = 0, (52)

∂π

∂AD
|e = 0. (53)

In the constitutive theory under consideration, the heat flow q is the only constitutive quantity depending on
g. Thus, Eq. (51) only concerns q. Evaluating Eq. (52) yields

σi j |e = −ρ ∂ψ
∂Akl

|e
(

2δk j Ali |e − δkiδ jl + ∂Dv
kl

∂Di j
|e

)
− 4ρ

∂ψ

∂Zklmi
|eZklmj . (54)

Using the fact that AD|e = 0, this can be written as

σi j |e = −ρ ∂ψ
∂Ai j

|e
(

2

3
trA − 1

)
− ρ

∂ψ

∂Akl
|e ∂Dv

kl

∂Di j
|e − 4ρ

∂ψ

∂Zklmi
|eZklmj . (55)

Equation (55) defines the most general shape which the equilibrium stress may possess from the viewpoint of
thermodynamics. This has to be compared now with the explicit representation of the equilibrium stress from
the constitutive theory. This comparison will allow to suitably design a constitutive relation for the Helmholtz
free energy ψ .

Considering the constitutive equations for the Cauchy stresses (Eqs. (44), (45)) at thermodynamic equilib-
rium shows that the equilibrium stress is hydrostatic. It reads simply

σi j |e = K

Ztr
trAδi j . (56)

Thus, the deviatoric part of Eq. (55) must vanish, and the hydrostatic part must equal Eq. (56). In order to
identify the deviatoric part of Eq. (55), it is useful to decompose the derivatives of ψ with respect to A as

∂ψ

∂Ai j
= ∂ψ

∂trA
δi j + ∂ψ

∂AD
i j

, (57)

where the derivative ofψ with respect to AD is in turn a deviator. A similar decomposition holds for the ZZZ-part,
if taking into account that ZZZ does not mix deviatoric and hydrostatic stresses (see Eq. (48)):

∂ψ

∂Zklmi
Zklmj = 1

3
Ztr

∂ψ

∂Ztr
δi j + ∂ψ

∂ZD
klmi

ZD
klmj . (58)

Inserting these representations into Eq. (55) yields

σi j |e = −ρ
(
∂ψ

∂trA
|eδi j + ∂ψ

∂AD
i j

|e
) (

2

3
trA − 1

)

−ρ ∂ψ
∂AD

kl

|e ∂Dv
kl

∂Di j
|e − 4

3
ρ
∂ψ

∂Ztr
|eZtrδi j − 4ρ

∂ψ

∂ZD
klmi

|eZD
klmj

!= −peδi j . (59)

The quantity pe is called the thermodynamic pressure. Making use of the fact that Dv is deviatoric (see
Eq. (43)), the condition that the deviatoric part of Eq. (59) shall vanish is satisfied ifψ is stationary at AD = 0,
i.e.,

∂ψ

∂AD
|e = 0,

∂ψ

∂ZZZD
|e = 0. (60)
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This is the case, e.g., for a ψ of the kind

ψ = ψe(trA,Ztr , θ)+ G

ρ
AD ·

(
ZZZD

)−1 · AD, (61)

where G is the shear modulus.4 This kind of ψ assures thus that the equilibrium stress is hydrostatic.
Moreover, comparison of the hydrostatic components of Eqs. (56) and (59) also yields a condition for ψe,

the equilibrium part of ψ , which has to satisfy

−pe = −ρ ∂ψ
∂trA

|e
(

2

3
trA − 1

)
− 4

3
ρ
∂ψ

∂Ztr
|eZtr

!= K

Ztr
trA, (62)

suggesting ψ not to depend on Ztr . As ρ behaves according to Eq. (2), this condition can be satisfied – at least
to first order in tr A – by a ψe of the type

ψe = − K

2ρZtr
(tr A)2 + o (tr A)2 + ψe(θ). (63)

In order to avoid the not very handy calculus, the necessary conditions for the Hessian of π are not explored
any further. Instead, the result (61) will be used directly to demonstrate the positivity of π .

4.2 Non-equilibrium part

The Helmholtz free energyψ proposed above will now be used explicitly in order to consider its effects on the
non-equilibrium part of π . At first, σ can be separated into equilibrium- and non-equilibrium parts by writing

σ = [−pe(θ, trA,Ztr )− pn(S)
]

13×3 + σ D, (64)

where the thermostatic pressure pe is given by relation (62), whereas the constitutive relation for the non-
equilibrium pressure pn is (according to Eq. (44))

pn = − ηtr

3Ztr
tr D. (65)

Together with the Helmholtz free energy from Eqs. (61) and (63), this has to be inserted into the residual
entropy production rate π . By construction, the contributions of ∂ψ

∂trA and ∂ψ
∂Ztr

mostly cancel out with σ |e · D.
The remaining entropy production reads

θπ = −qi gi

θ
− pn trD + σ D

i j Di j + ρ
∂ψ

∂AD
i j

(
2Aik Dkl − Di j + Dv

i j

)

+ρ ∂ψ
∂trA

2AD
i j Di j + 4ρ

∂ψ

∂ZD
i jkl

ZD
i jkm Dml . (66)

By re-writing

σ D
i j Di j = σ D

i j

(
Di j − Dv

i j

)
+ σ D

i j Dv
i j , (67)

this becomes

θπ = −qi gi

θ
− pn trD + σ D

i j Dv
i j +

(

σ D
i j − ρ

∂ψ

∂AD
i j

)
(

Di j − Dv
i j

)

+ρ ∂ψ
∂AD

i j

2Aik Dkl + ρ
∂ψ

∂trA
2AD

i j Di j + 4ρ
∂ψ

∂ZD
i jkl

ZD
i jkm Dml . (68)

4 The reason why the tensor G
(
ZZZD

)−1
has to arise here will become clear below.
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Into this expression, the constitutive equations have to be inserted. In order to do so, it is useful to re-write the
deviatoric component of the constitutive equation for fA = D − Dv , Eq. (47), as

ZZZDσ D = 2ηD (
D − Dv

)D + 2GAD. (69)

By combining this with the result of Eq. (61),

ρ
∂ψ

∂AD
= 2G

(
ZZZD

)−1
AD, (70)

one obtains the identity

σ D − ρ
∂ψ

∂AD
= 2ηD

(
ZZZD

)−1 (
D − Dv

)D
. (71)

Inserting Eq. (71) and Eq. (43) (inverted) for σ D into the entropy production rate π , finally, yields

θπ = −qi gi

θ
+ ηtr

3Ztr
(trD)2 + 2νDv

i j Y
−1
i jkl Dv

kl

+2ηD
(

Di j − Dv
i j

)D (
ZD

)−1

i jkl

(
Dkl − Dv

kl

)D

+ρ ∂ψ
∂AD

i j

2Aik Dkl + ρ
∂ψ

∂trA
2AD

i j Di j + 4ρ
∂ψ

∂ZD
i jkl

ZD
i jkm Dml . (72)

The last line of Eq. (72) contains only contributions of at least second order in A: Using Eqs. (61) and (63) it
can easily be shown that

ρ
∂ψ

∂AD
i j

= O
(
A2) , (73)

ρ
∂ψ

∂ZD
i jkl

= O
(
A3) , (74)

ρ
∂ψ

∂trA
AD = O

(
A2) . (75)

These contributions are small and can be neglected.
Thus, sufficient conditions for π ≥ 0 are

– q · g ≥ 0,
– ZZZD and YYY are positive definite,
– ν, ηD,Ztr , η

tr are all positive.

These can all easily be satisfied within the constitutive framework which we have presented in part I of this
work. One can thus conclude that there exists a suitable free energyψ which allows it to be thermodynamically
consistent. Note that so far a healing function has not yet been considered; this would have to be constructed
in a careful way, in order not to annihilate any entropy.

5 Conclusion

The constitutive theory outlined in part I of this paper has now been subject to a rigorous investigation of its
coherence with the entropy principle. The Müller-Liu entropy principle has been applied, which has proven
useful in this case. Finally, it could be shown that the presented constitutive theory can be completed with a
constitutive relation for a Helmholtz free energy density ψ such that it satisfies the entropy principle.

Apart from the thermodynamic consistency of the constitutive framework, several remarkable results have
emerged during the evaluation. First, it turned out that the entropy flux takes the usual Clausius-Duhem shape

Φ = q
T (θ)

, (76)
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where q is the heat flux and T (θ) the absolute temperature. This may seem not very surprising. Nevertheless,
it is known that there are sets of constitutive variables where this is not the case (e.g., if θ̇ is taken as an
independent constitutive variable). Therefore, it is important not to use (76) as a priori assumption (as it is
done by entropy principles based on the Clausius-Duhem inequality). In this work, Eq. (76) is a result, not an
assumption.

Furthermore, it has been pointed out that the conditions for thermodynamic equilibrium have to be com-
pleted with the condition AD|e = 0; i.e., the deviatoric part of the elastic deformation in thermodynamic
equilibrium should vanish. This is a consequence of the fluid-like behavior of the constitutive theory; unlike
an elastic solid, the material considered here cannot maintain an elastic shear deformation without starting to
flow, not even at low stresses.

As a step ahead, it would be desirable to exploit the entropy principle with fewer constitutive assumptions.
Ideally, thermodynamics of the most general viscoelastic–viscoplastic fluid with a rank-4 damage effect variable
should be considered. However, this would become technically extremely difficult, as isotropic representations
involving rank-4 tensors would have to be used. These do not only have the tendency to be lengthy; more
importantly, they are not even completely known yet. For rank-4 tensors, not even an irreducible representation
of the isotropic invariants has been given so far [18]. Without these representations, a general consideration
of the thermodynamics of rank-4 tensors is impossible. This problem should urgently be solved. This may be
one of the most urgent open tasks in theoretical glaciology involving damage.

The theory presented in this article has a wide range of possible applications. The evolution of damage in
a viscoelastic–viscoplastic fluid-like material is of great interest for ice sheet modelers, as the deterioration
and failure of ice plays an important role for the ablation (and eventual disintegration) of the Antarctic and
Greenland ice sheets. However, also the rheological consequences of damage accumulation should be taken into
account. As a possible application of our theory, we suggest to implement at first a scalar bulk deformation with
a scalar damage variable as a function of it into a numerical ice flow model. Following the small deformation
approximation, the kinetic effect of the bulk deformation may be neglected. Later on, it would be desirable to
also consider tensorial damage variables. However, this application involves further difficulties. In particular,
processes which involve an approach of critical failure are delicate to treat. In this context, questions concerning
the validity of a damage mechanics approach for critical processes have to be discussed, and a reasonable
criterion when the model is stopped has to be defined. This is a challenging task for further research.
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