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Abstract Nine biotinylated Grubbs–Hoveyda and Grub-

bs-type metathesis catalysts were synthesized and evaluated

in ring closing metathesis reactions of N-tosyl diallylamine

and 5-hydroxy-2-vinylphenyl acrylate. Their catalytic

activity in organic- and aqueous solvents was compared

with the second generation Grubbs–Hoveyda catalyst. The

position of the biotin-moiety on the N-heterocyclic carbene

was found to critically influence the catalytic activity of the

corresponding ruthenium-based catalysts.

Keywords Fluorescence assay � Aqueous catalysis �
Ring closing metathesis � Coumarin � Hoveyda–Grubbs

1 Introduction

In the past 40 years, the olefin metathesis reaction has

emerged and matured as a very efficient and elegant method

for formation of C=C double bonds [1–6]. It is widely used

not only in small-scale laboratory research, but also in large-

scale industrial production [7, 8]. Among the frontiers in

olefin metathesis, one should mention: (i) control of E/

Z selectivity [9–13], (ii) enantioselective ring-closing

metathesis (RCM hereafter) [14–18], (iii) the application of

metathesis for the conversion of biomass into useful pro-

ducts [19–24], and metathesis as a bioorthogonal ligation

tool [25–27]. Despite these great achievements, aqueous-

phase metathesis remains a challenge [28–36].

To address this challenge, we and others have relied on

the creation of artificial metalloenzymes for olefin metath-

esis [37–40]. For this purpose, a catalytically competent

Hoveyda–Grubbs moiety is anchored within a protein scaf-

fold to afford an artificial metathesase. In this context, we

and others have been exploiting the biotin–streptavidin

technology to create artificial metalloenzymes for a variety

of transformations [41–44], including hydrogenation [45],

transfer hydrogenation [46], allylic alkylation [47], benz-

annulation [48], sulfoxidation [49], dihydroxylation [50] as

well as olefin metathesis [37–40]. Traditionally, a chemo-

genetic optimization scheme is used to improve catalytic

performance of artificial metalloenzymes. Genetic diversity

is created by introducing point mutations on the streptavidin

gene. Chemical diversity is achieved upon varying the

position of the biotin anchor and the spacer between the

anchor and the Ru-moiety. Previous experience in artificial

metalloenzymes clearly demonstrates that catalytic activity

is critically dependent on the first coordination sphere

around the active metal and thus requires screening a variety

of different catalyst precursors. With this goal in mind, we

report on the synthesis and evaluation of the catalytic per-

formance of nine biotinylated metathesis catalysts.

2 Results and Discussion

We previously reported on an artificial metathesase relying

on combining either avidin or streptavidin with either Biot-

1 or Biot-m-ABA-1 [37]. In this study, we set out to vary

the position of the enantiopure biotin-moiety and to
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identify the most promising catalyst under various catalytic

conditions. All complexes tested in this study are presented

in Fig. 1. For complexes Biot-1 or Biot-m-ABA-1 and

Biot-4 or Biot-m-ABA-4, the presence of an asymmetric

carbon between the enantiopure biotin anchor and the N-

heterocyclic carbene moiety, leads to diastereomeric mix-

tures. No effort was made to separate these prior to cata-

lytic evaluation.

While one N-mesityl substituent is critical for high

catalytic activity [51], we set out to link the biotin anchor

on the other N-substituent of the N-heterocyclic carbene

moiety. We evaluated both aromatic (e.g. Biot-3, Biot-m-

ABA-3, and Biot-4, Biot-m-ABA-4), as well as aliphatic

substituents (e.g. Biot-2, Biot-m-ABA-2, and Biot-5) at

this position.

With this aim, we set out to prepare the key Boc-pro-

tected imidazolium intermediate Boc-2. Reductive amina-

tion of the alkylated aniline 6 [52] yielded the 1,2-diamine

7. Cyclisation with triethyl orthoformate provided the im-

idazolium salt 8. Ligand exchange with Hoveyda–Grubbs

first generation catalyst Hov I afforded the Boc-protected

ruthenium NHC complex Boc-2. Deprotection with

gaseous hydrogen chloride and coupling with either acti-

vated biotin or activated biotin m-aminobenzoic acid

afforded Biot-2 and Biot-m-ABA-2 respectively

(Scheme 1).

The next biotinylated catalysts included two mesityl

groups with a biotin linked to one of these. For this pur-

pose, we used the procedure reported by Gilbertson et al.

relying on the unsymmetrical diamine 9 [53]. Rosenmund-

von Braun cyanation followed by reduction and Boc-pro-

tection yielded compound 11. This latter was reacted with

triethylorthoformate in the presence of ammonium chloride

to provide the imidazolium salt 12. Reaction of 12 with

chloroform and KOH yielded the chloroform adduct 13

[54]. Ligand exchange with Hov I catalyst provided the

ruthenium NHC complex Boc-3 which, after Boc-depro-

tection, was reacted with activated biotin and biotin m-

aminobenzoic acid to afford Biot-3 and Biot-m-ABA-3

respectively (Scheme 2).

To evaluate the influence of the spacer length between

the biotin-anchor and the NHC, we synthesized another

type of catalysts (Biot-4 and Biot-m-ABA-4) which bear

an additional carbon when compared to Biot-3 and Biot-m-
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Fig. 1 Biotinylated metathesis catalysts used in this study
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ABA-3. The NHC ligand 14 was synthesized according to

a published procedure [53]. Preparation of the chloroform

adduct followed by reaction with Hov I yielded the

ruthenium NHC complex Boc-4. After Boc deprotection

and reaction with activated biotin derivatives, Biot-4 and

Biot-m-ABA-4 were obtained (Scheme 3).

Finally, the Grubbs type catalyst Biot-5 was prepared.

The Boc-protected (3-chloropropyl)-N-methyl amine 16

was reacted with N-mesitylimidazole 17 to produce the

imidazolium salt 18. Reaction of the carbene, generated

in situ from 18 in the presence of KHMDS, with the Grubbs

first generation catalyst gave complex Boc-5. After depro-

tection of the amino group by HCl and reaction with acti-

vated biotin, the desired Biot-5 was obtained (Scheme 4).

The performance of the biotinylated catalysts was

evaluated in the ring closing metathesis of two model
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Scheme 1 Synthesis of the biotinylated complexes Biot-2 and Biot-m-ABA-2
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substrates: the diallyl tosylamide 19 and the coumarin

precursor 24. The second substrate was produced from

aldehyde 21 [55] via a Wittig reaction followed by esteri-

fication with acryloyl chloride and deprotection of the

hydroxy group (Scheme 5).

The activity of the new biotinylated precatalysts was

compared with that of second-generation Grubbs–Hoveyda

complex Hov II. The results for RCM reaction of diallyl

tosylamide 19 are summarized in Table 1 and Fig. 2 and

results for RCM reaction of coumarin precursor 24 are

presented in Table 2 and on Fig. 3. All RCM reactions

were analysed by reversed phase HPLC and revealed no

product isomerization.

As a starting point, we performed the RCM of diallyl

tosylamide 19 with 1 mol% biotinylated catalysts and a

0.1 M substrate concentration at 37 �C in dichloromethane.

The results reveal that most of biotinylated catalysts with

two mesityl moieties bound to imidazoline ring, viz. Biot-

1, Biot-m-ABA-1 and Biot-m-ABA-4 exhibit the same

activity as the parent Hov II catalyst and reached almost

full conversion. Similar results were also observed for

structurally related complexes, namely Biot-3, Biot-m-

ABA-3 and Biot-4 with conversion around 70–80 %.

These results are consistent with previous observations

suggesting that catalysts containing two bulky aromatic

substituents in the NHC ligand have the highest activity

and stability. Accordingly, Biot-2 and Biot-m-ABA-2, are

less active. In stark contrast, Biot-5 is a good RCM cata-

lyst, affording product 20 in 85 % yield.

Upon decreasing the substrate concentration to 0.01 M,

similar trends were observed. The presence of a biotin

moiety led to marked decrease in conversion, especially
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with complexes bearing an alkyl substituent on the NHC

(e.g. Biot-2 and Biot-m-ABA-2 and Biot-5).

Next, the reactions were performed in a water:DMSO,

84:16 mixture (DMSO was required to dissolve both sub-

strate and catalyst as both substrates and catalysts exhibit

very low solubility in pure water). Except for Hov II (75 %

yield), the yields were dramatically lower. The best bio-

tinylated catalyst, Biot-m-ABA-1, reached only ca. 30 %

yield. We speculate that the low yields may be due to the

limited catalyst’s stability in a water. During the reactions,

all reaction mixtures changed colour from green (Hoveyda-

type catalysts) or purple (Grubbs-type catalyst) to brown-

ish. The biotinylated catalysts also decompose slowly in

DCM. However, as the RCM reaction is significantly faster

in DCM, the decomposition does not affect the yields as

much.

As the umbelliferone precursor 24 bears an electron

withdrawing olefinic moiety which decreases its reactivity,

the corresponding RCM reactions were performed with

5 mol% biotinylated catalyst (Table 2) in 0.025 M concen-

tration at 37 �C in dichloromethane. Under these conditions,

the two biotinylated catalysts, Biot-1 and Biot-2 reached near

quantitative conversions. The other biotinylated Hoveyda-

type catalysts gave moderate yields approaching 50 %. The

Grubbs type Grubbs-type catalyst Biot-5, gave only 22 %

yield. When reactions were performed in a water:DMSO

mixture, \5 % conversion was obtained for all catalysts,

including Hov II.

Table 1 Comparison of activity of catalysts in RCM of diallyl to-

sylamide 19

N
Tos N

Tos

[Ru]

19 20

Entry Catalysta Yield (%)b Yield (%)c Yield (%)d

1 Hov II [99 [99 75

2 Biot-1 93 83 13

3 Biot-m-ABA-1 96 76 28

4 Biot-2 43 18 1

5 Biot-m-ABA-2 41 19 1

6 Biot-3 79 70 17

7 Biot-m-ABA-3 76 49 7

8 Biot-4 69 35 12

9 Biot-m-ABA-4 97 84 10

10 Biot-5 85 21 2

Experiments were performed in triplicate (yields ±2 %). See SI for

experimental details
a 1 mol% of [Ru], 37 �C, 24 h
b CH2Cl2, [19] = 0.1 M
c CH2Cl2, [19] = 0.01 M
d H2O/DMSO 84:16, [19] = 0.1 M
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Fig. 2 Comparison of catalysts activity in RCM reaction of diallyl

tosylamide

Table 2 Comparison of activity of catalysts in RCM reaction of

coumarin precursor 24

HO O O

24

HO O O
25

[Ru]

Entry Catalysta Yield (%)b Yield (%)c

1 Hov II [99 4

2 Biot-1 97 1

3 Biot-m-ABA-1 70 3

4 Biot-2 99 1

5 Biot-m-ABA-2 88 1

6 Biot-3 50 4

7 Biot-m-ABA-3 48 1

8 Biot-4 52 1

9 Biot-m-ABA-4 50 1

10 Biot-5 22 1

See SI for experimental details
a 5 mol% of [Ru], 37 �C, 24 h; experiments performed in triplicate
b CH2Cl2, [24] = 0.025 M (yield ± 5 %)
c H2O/DMSO 84:16, [24] = 0.025 M
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Fig. 3 Comparison of catalysts activity in RCM reaction of

5-hydroxy-2-vinylphenyl acrylate 24 in CH2Cl2
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In the RCM reaction of diallyl tosylamide 19, the cat-

alyst Biot-2 displays only 43 turnovers (TONs, using

1 mol% catalyst loading). For the more challenging sub-

strate 24, 20 TONs were obtained (using 5 mol% catalyst

loading). We speculate that this is the result of a delicate

balance between catalyst’s activity and its decomposition:

the best TON is observed for the challenging substrate 24,

but only a modest TON is obtained for the standard dial-

lyltosylamide substrate 19 before the catalyst becomes

inactivated.

N,N-diallyl tosylamine 19 has been used as a benchmark

for aqueous RCM reactions by several research groups. In

most cases, 5 mol% either of classic (e.g. Gr II, Hov II) or

water soluble derivatives were used in water:organic sol-

vent mixtures (i.e. EtOH, DME, MeOH and DMSO).

Among the catalysts tested, for a reaction performed in the

mixture DME:water (2:1), the Gr II gives near quantitative

conversions (up to 100 TONs, using 1 mol% catalyst) [31].

Quantitative conversions were also obtained with Raines’

[60] or Blechert’s [61] catalysts, albeit using 5 mol% cat-

alyst. Reactions in pure water were performed, mainly with

5 mol% catalyst. In these cases however, either classic Gr

I and Gr II were used in the presence of surfactants [62,

65], calix[n]arenes [63] or dendrimers [64].

In comparison, the biotinylated catalysts presented

herein gave lower or comparable results. It is however

difficult to strictly compare these as the reactions are sel-

dom carried under the exact same conditions.

3 Conclusion

In this study, a series of biotinylated ruthenium-based cat-

alysts was synthesized and their activity was evaluated for

two model RCM reactions with either diallyl tosylamide 19

or the umbelliferone precursor 24. While all biotinylated

catalysts performed reasonably well in concentrated

dichloromethane, their performance decreased significantly

in aqueous solution. We speculate that the presence of a

thioether moiety on the biotin anchor may interact with the

ruthenium [65], thus hampering catalytic turnover. This is

particularly pronounced in aqueous solution and may be

traced back to the substitution of a chloride by water fol-

lowed by coordination of the thioether. For the umbellif-

erone precursor 24, modest to good conversions were

observed in dichloromethane. In stark contrast, RCM in

water does not proceed to any significant level. In the

context of artificial metalloenzyme design, this substrate,

which upon RCM yields the fluorescent umbelliferone 25, is

thus an ideal candidate to evaluate the hydrophobicity of the

catalytic site as we anticipate that the second coordination

sphere provided by the protein may lead to significant

improvement in conversion.
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