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Abstract. Keating and Snaith modeled the Riemann zeta-function �.s/ by characteristic
polynomials of random N �N unitary matrices, and used this to conjecture the asymp-
totic main term for the 2k-th moment of �.1=2C i t/ when k > �1=2. However, an arith-
metical factor, widely believed to be part of the leading term coefficient, had to be in-
serted in an ad hoc manner. Gonek, Hughes and Keating later developed a hybrid formula
for �.s/ that combines a truncation of its Euler product with a product over its zeros. Us-
ing it, they recovered the moment conjecture of Keating and Snaith in a way that naturally
includes the arithmetical factor. Here we use the hybrid formula to recover a conjecture
of Hughes, Keating and O’Connell concerning the discrete moments of the derivative of
the Riemann zeta-function averaged over the zeros of �.s/, incorporating the arithmetical
factor in a natural way.
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1 Introduction

Let �.s/ denote the Riemann zeta-function. In this paper, we study the discrete
moments of �0.s/ of the form

Jk.T / D
1

N.T /

X
0<�T

j�0.�/j2k;

where the summation is over the non-trivial zeros � D ˇ C i of �.s/, and N.T /
is the usual zero counting function

N.T / D
X

0<�T

1 D
TL

2�
�
T

2�
CO.L /:
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1800 H. M. Bui, S. M. Gonek and M. B. Milinovich

Here and throughout the paper, we let L D log T
2�

, and all sums involving the
zeros of �.s/ are counted with multiplicity.

The function Jk.T / is defined for all k � 0, and, on the additional assumption
that all the zeros are simple, for all k 2 R. Trivially, J0.T / D 1, but it is still
an open problem to rigorously determine the behavior of Jk.T / for any other
value of k. Gonek [9] proved that if the Riemann Hypothesis (RH) is true, then
J1.T / �

1
12

L 3 as T !1. Conrey and Snaith [7] conjectured the full asymptotic
formula for J1.T / using the L-Functions Ratios Conjecture, and Milinovich [18]
proved that their formula is correct assuming RH.

For k in general, Gonek [10] and Hejhal [14] independently conjectured that

Jk.T / �k L k.kC2/ (1.1)

for fixed k 2 R, as T !1. This conjecture is widely believed for non-negative
values of k, but there is evidence that it is false for k � �3=2. The case k D 1
of (1.1) holds on RH, of course, by the remarks above, and Ng [22] established
the case k D 2 assuming RH. The conjectured lower bound is known to hold
for k D �1 under the additional condition that all the zeros of �.s/ are simple
[10, 20], and for all k 2 N assuming the generalized Riemann Hypothesis for
Dirichlet L-functions [21]. Moreover, Milinovich [19] also proved that the upper
bound

Jk.T /�k;" L k.kC2/C"

holds for all fixed k 2 N and any " > 0 on RH.
The conjecture of Gonek–Hejhal has been refined further using random matrix

theory. Let U be an N �N unitary matrix with eigenangles �n (n D 1; 2; : : : ; N ),
and denote its characteristic polynomial by

Z.�/ D det
�
I � Ue�i�

�
D

NY
nD1

�
1 � ei.�n��/

�
:

The random matrix theory model for Jk.T / isZ
U.N/

1

N

NX
nD1

jZ0.�n/j
2kd�N ; (1.2)

where the integral is over all N �N unitary matrices with respect to Haar mea-
sure. Hughes, Keating and O’Connell [15] showed that this expression is equal to

G2.k C 2/

G.2k C 3/

G.N /G.N C 2k C 2/

NG2.N C k C 1/
�
G2.k C 2/

G.2k C 3/
N k.kC2/ (1.3)
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A hybrid Euler–Hadamard product and moments of �0.�/ 1801

for any fixed k with <.k/ > �3=2, as N !1. Here G.k/ is the Barnes G-func-
tion. Equating the mean densities of the zeros of �.s/ and the eigenangles of U ,
that is, setting N � L , they were led to the following conjecture.

Conjecture 1.1 (Hughes, Keating and O’Connell). For any fixed k with <.k/ >
�
3
2

, we have

Jk.T / � ak
G2.k C 2/

G.2k C 3/
L k.kC2/

as T !1, where

ak D
Y

p prime

�
1 �

1

p

�k2 1X
mD0

�
�.mC k/

mŠ�.k/

�2
p�m: (1.4)

We note that this agrees with the result J1.T / � 1
12

L 3 proved by Gonek [9]
on RH, and also recovers a conjecture of Gonek [10, 12] in the case k D �1. The
work of Hughes, Keating and O’Connell is closely related to the work of Keating
and Snaith [17], in which they used the characteristic polynomials of large ran-
dom unitary matrices to model the value distribution of the Riemann zeta-function
and study the moments of �.1=2C i t/. Evaluating the moments of jZ.�/j over
U.N/ with respect to Haar measure and setting N � L , they made the following
conjecture.

Conjecture 1.2 (Keating and Snaith). For any fixed k with <.k/ > �1
2

, we have

1

T

Z T

0

ˇ̌
�.1
2
C i t/

ˇ̌2k
� ak

G2.k C 1/

G.2k C 1/
L k2

as T !1, where ak is defined as in (1.4).

In both Conjecture 1.1 and Conjecture 1.2, the arithmetical factor ak was in-
serted in an ad hoc manner based upon separate number theoretic considerations.
This is a typical drawback of random matrix models of the Riemann zeta-function
and other L-functions: they contain no arithmetical information. Moreover, there
is no explanation as to why the arithmetical factor ak is the same in both conjec-
tures; indeed continuous averages of Dirichlet polynomials and averages of Dirich-
let polynomials over the zeros of �.s/ behave differently.

Gonek, Hughes and Keating [13] developed a new model for �.s/ that incorpo-
rates the arithmetical information in a natural way. Their “hybrid” model is based
on an approximation of the Riemann zeta-function at a height t on the critical
line by a partial Euler product, PX .1=2C i t/, multiplied by what is essentially a
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1802 H. M. Bui, S. M. Gonek and M. B. Milinovich

partial Hadamard product, ZX .1=2C i t/, over the non-trivial zeros of �.s/ close
to 1=2C i t (see the definitions of PX .s/ and ZX .s/ in the next section). That is,
�.s/ is represented as a product over a finite number of primes and zeros. The
moments of PX .s/ can be calculated rigorously and give rise to the arithmetical
factor ak , whereas the moments of the truncated Hadamard product are conjec-
tured using random matrix theory. Under the assumption that the moments of �.s/
split as the product of the moments of PX .s/ and ZX .s/, which can be proved
in certain cases, they again arrived at Conjecture 1.2. An interesting feature of
their approach is that the arithmetic and random matrix theory aspects are treated
on an equal footing. Subsequently, the hybrid Euler–Hadamard product has been
extended to various families of L-functions [3, 4, 8].

In this paper, we adapt Gonek, Hughes and Keating’s model to the problem of
estimating Jk.T /. As before, our calculations suggest that the discrete moments of
the derivative of the Riemann zeta-function are asymptotic to the discrete moments
of PX .s/ times the discrete moments of the derivative of ZX .s/. Moreover, the
model explains why the same arithmetical factor ak appears in both Conjecture 1.1
and Conjecture 1.2, above.

2 Hybrid Euler–Hadamard product and the main results

We begin this section by stating the hybrid Euler–Hadamard product formula of
Gonek, Hughes and Keating ([13, Theorem 1]).

Theorem 2.1. Let X � 2 and f be a non-negative C1-function of mass 1 sup-
ported on Œ0; 1�. Define

U.z/ D

Z 1

0

f .u/E1

�
z.uCX � 1/

X

�
du;

where

E1.z/ D

Z 1
z

e�u

u
du

is the exponential integral. Then for <.s/ D � � 0 we have

�.s/ D PX .s/ZX .s/

 
1COf;B

 
XBC2�

.jsj C 1/ logX
�B
!
COf .X

�� logX/

!
(2.1)

for any B > 0, where

PX .s/ D exp
� X
n�X

ƒ.n/

ns logn

�
;
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A hybrid Euler–Hadamard product and moments of �0.�/ 1803

ƒ.n/ is the von Mangoldt function, and

ZX .s/ D exp
�
�

X
�

U
�
.s � �/ logX

��
:

As was mentioned in [13], PX .s/ is roughly
Q
p�X .1 � p

�s/�1, and U.z/ is
roughly E1.z/, which is asymptotic to �0 � log z for jzj small, where 0 is Eu-
ler’s constant. Thus, Theorem 2.1 says that �.s/ looks roughly like

Y
p�X

�
1 �

1

ps

��1 Y
�

js��j�1= logX

�
.s � �/e0 logX

�
;

which is a hybrid formula in that it combines a partial Euler product and (essen-
tially) a partial Hadamard product.

We note that from the series expansion of E1.z/, we can interpret exp.�U.z//
to be asymptotic to Cz for some constant C as jzj ! 0. Hence both �.s/ and
ZX .s/ vanish at the zeros of the Riemann zeta-function. Using Cauchy’s integral
formula in a familiar way, we can differentiate both sides of (2.1) and maintain an
asymptotic formula. In this way, assuming RH, we obtain that

�0.�/ D PX .�/Z
0
X .�/

�
1COf;B

�
XBC2

.j�j logX/B

�
COf .X

�1=2 logX/
�

(2.2)

for every non-trivial zero � of �.s/ (since the term P 0X .�/ZX .�/ vanishes).
In Section 4, we evaluate the moments of PX .�/ rigorously and establish the

following theorem.

Theorem 2.2. Assume RH. Let " > 0 and X , T !1 with X D O..logT /2�"/.
Then for any k 2 R we have

1

N.T /

X
0<�T

ˇ̌
PX .�/

ˇ̌2k
D ak.e

0 logX/k
2�
1COk

�
.logX/�1

��
:

Heuristically, we have

ZX .s/ �
Y
�

�
.s � �/e0 logX

�
:

Hence
Z0X .�/ � .e

0 logX/WX . Q�/; (2.3)
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1804 H. M. Bui, S. M. Gonek and M. B. Milinovich

where Q� D �e0 logX , and

WX . Q�/ D
Y
Q�0¤Q�

�
Q� � Q�0

�
:

As in the random matrix model (1.2) for �0.�/ of Hughes, Keating and O’Connell,
we model the 2k-th moment of WX . Q�/ byZ

U.N/

1

N

NX
nD1

jZ0.�n/j
2kd�N :

Here, however, the average gap between consecutive Q� is 2�e0 logX=L . There-
fore, equating the mean density of Q� and the density of the eigenangles corresponds
to the identificationN � L =e0 logX . Combining (1.3) and (2.3) leads to the fol-
lowing conjecture.

Conjecture 2.3. Let " > 0 and X , T !1 with X D O..logT /2�"/. Then for
any k > �3=2 we have

1

N.T /

X
0<�T

jZ0X .�/j
2k
�
G2.k C 2/

G.2k C 3/
.e0 logX/2k

�
L

e0 logX

�k.kC2/
:

In Section 5 we shall prove the case k D 1 of Conjecture 2.3, assuming RH.
Since, by (2.2),

�0.�/PX .�/
�1
D Z0X .�/

�
1C o.1/

�
;

when =.�/ D  is large and X D O..log /2�"/, this amounts to proving the fol-
lowing result.

Theorem 2.4. Assume RH. Let " > 0 and X , T !1 with X D O..logT /2�"/.
Then we have

1

N.T /

X
0<�T

ˇ̌
�0.�/PX .�/

�1
ˇ̌2
�

1

12

L 3

e0 logX
:

In Section 6 we shall use the L-Functions Ratios Conjecture to heuristically
derive the asymptotic formula

1

N.T /

X
0<�T

ˇ̌
�0.�/PX .�/

�1
ˇ̌4
�

1

8640

L 8

.e0 logX/4
;

and thus, since 1=8640 D G2.4/=G.7/, provide additional evidence for Conjec-
ture 2.3 in the case k D 2.
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A hybrid Euler–Hadamard product and moments of �0.�/ 1805

Our proof of Theorem 2.4 involves replacingPX .�/�1 by a short Dirichlet poly-
nomial and then using the method of Conrey, Ghosh and Gonek [6] to estimate the
resulting mean-value. However, unlike the proof in [6], we do not need to as-
sume the generalized Lindelöf hypothesis (GLH) for Dirichlet L-functions. We
circumvent the assumption of GLH by incorporating the ideas of Bui and Heath-
Brown [2], who have recently proved the results in [6] assuming only RH.

Our results for the cases k D 1 and k D 2 suggest that at least when X is not
too large relative to T , the 2k-th discrete moment of �0.�/ is asymptotic to the
product of the discrete moments of PX .�/ and Z0X .�/. We believe that this is true
in general, and we make the following conjecture.

Conjecture 2.5. Let " > 0 and X , T !1 with X D O..logT /2�"/. Then for
any k > �3=2 we have

1

N.T /

X
0<�T

j�0.�/j2k �

�
1

N.T /

X
0<�T

jPX .�/j
2k

�

�

�
1

N.T /

X
0<�T

jZ0X .�/j
2k

�
:

By combining Theorem 2.2, Conjecture 2.3, and Conjecture 2.5, we recover
the conjecture of Hughes, Keating and O’Connell for real values of k satisfying
k > �3=2, and incorporate the arithmetical factor ak in a natural way.

3 Lemmas

In order to prove Theorem 2.2, we require the following version of the Landau–
Gonek explicit formula [11].

Lemma 3.1. Let x; T > 1. Then we haveX
0<�T

x� D �
T

2�
ƒ.x/CO

�
x log.2xT / log log.3x/

�
CO

�
log xmin

²
T;

x

hxi

³�
CO

�
log.2T /min

²
T;

1

log x

³�
;

where hxi denotes the distance from x to the nearest prime power other than x
itself, and ƒ.x/ is the generalized von Mangoldt function; that is, ƒ.x/ D logp
if x D pk for a prime p and natural number k, and ƒ.x/ D 0 otherwise.

The next two lemmas are in [6] (see Lemma 2 and Lemma 3 loc. cit.).
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1806 H. M. Bui, S. M. Gonek and M. B. Milinovich

Lemma 3.2. Suppose that

A.s/ D

1X
mD1

a.m/m�s;

where a.m/�" m
", and

B.s/ D
X
n�y

b.n/n�s;

where b.n/�" n
". Then we have

1

2�i

Z cCiT

cCi

�.1 � s/A.s/B.1 � s/ds

D

X
n�y

b.n/

n

X
m�nT=2�

a.m/e

�
�
m

n

�
CO".yT

1=2C"/;

where c D 1CL �1.

Lemma 3.3. Suppose that ˛ D ˛1 � ˛2. Then we have

˛.lm/ D
X
lDl1l2
mDm1m2
.m2;l1/D1

˛1.l1m1/˛2.l2m2/:

4 Proof of Theorem 2.2

Since Theorem 2.2 holds when k D 0, we assume throughout this section that
k is a nonzero real number. We begin by approximating PX .s/k by a truncated
Dirichlet series. Write

PX .s/
k
D

1X
nD1

˛k.n/

ns
: (4.1)

From the definition of PX .s/, we see that ˛k.n/ is multiplicative and real valued.
Also, if we let

S.X/ D ¹n 2 N W p j n) p � Xº;

the set of X -smooth numbers, then ˛k.n/ D 0 if n … S.X/. In [13] it is shown
that j˛k.n/j � djkj.n/, and that ˛k.n/ D dk.n/ if n 2 S.

p
X/ or if n is a prime

p � X , where the arithmetic function dk.n/ is defined in terms of the Dirichlet
series

�.s/k D

1X
nD1

dk.n/

ns
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A hybrid Euler–Hadamard product and moments of �0.�/ 1807

for <.s/ > 1 and any real number k. In [13] it is also shown (see page 518 loc.
cit.) that

PX .s/
k
D

X
n2S.X/

n�T #

˛k.n/

ns
COk;".T

�"#=2/ (4.2)

for any "; # > 0, where # will be chosen later. Using elementary inequalities, we
see that ˇ̌̌̌� X

0<�T

jPX .�/j
2k

�1=2
�

� X
0<�T

ˇ̌̌̌ X
n2S.X/

n�T #

˛k.n/

n�

ˇ̌̌̌2�1=2 ˇ̌̌̌

�k;"

� X
0<�T

T �"#
�1=2

�k;" T
1=2�"#=3:

(4.3)

Thus, in order to establish Theorem 2.2, it suffices to estimate the second moment
of the truncated Dirichlet series.

Assuming RH, 1 � � D � for any non-trivial zero � of �.s/. Therefore

X
0<�T

ˇ̌̌̌ X
n2S.X/

n�T #

˛k.n/

n�

ˇ̌̌̌2
D

X
mn2S.X/

m;n�T #

˛k.m/˛k.n/

n

X
0<�T

�
m

n

���

DM CE1 CE2;

say, where M , E1, and E2 are the sums representing the contributions from
the terms m D n, m < n, and m > n, respectively. Since 1 � � D �, we see that
E2 D E1. Thus, it suffices to estimate E1 and M . From Lemma 3.1, we deduce
that

E1 D �
T

2�

X
mn2S.X/

m<n�T #

˛k.m/˛k.n/

n
ƒ

�
n

m

�

CO

�
L log L

X
m<n�T #

djkj.m/djkj.n/

m

�

CO

�
L

X
m<n�T #

djkj.m/djkj.n/

mhn=mi

�

CO

�
L

X
m<n�T #

djkj.m/djkj.n/

n logn=m

�
:
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1808 H. M. Bui, S. M. Gonek and M. B. Milinovich

We denote these four terms by E11, E12, E13, and E14, respectively. Now

E11 � T
X

mn2S.X/

djkj.m/djkj.n/

n
ƒ

�
n

m

�

� T
X
p�X

X
r�1

logp
pr

X
m2S.X/

djkj.m/djkj.mp
r/

m

� T
X
p�X

X
r�1

djkj.p
r/ logp
pr

X
m2S.X/

djkj.m/
2

m
:

Since the innermost sum over m is�
Q
p�X .1 � 1=p/

�k2 �k .logX/k
2

, it fol-
lows that

E11 �k T .logX/k
2
X
p�X

logp
p
�k T .logX/k

2C1:

Trivially we have that
E12 �k;" T

#C"

for any " > 0. To estimate E13, we write n D umC v where jv=mj � 1=2. We
observe that hn=mi D jv=mj if u is a prime power and v ¤ 0, otherwise we have
hn=mi � 1=2. Hence

E13�k;" T
"

� X
um�T #

X
1�v�m=2

djkj.m/

v
C

X
m;n�T #

djkj.m/djkj.n/

m

�
�k;" T

#C":

For E14, we note that log n
m
� log n

n�1
� 1=n. Therefore

E14 �" T
"

X
m;n�T #

djkj.m/djkj.n/�k;" T
2#C":

Combining the above estimates, we have shown that

E1 CE2 �k;" T .logX/k
2C1
C T 2#C": (4.4)

For the evaluation of M , we appeal to Lemma 3.2 of [13] and its proof, and get

M D N.T /
X

n2S.X/

n�T #

˛k.n/
2

n

D N.T /ak.e
0 logX/k

2�
1COk

�
.logX/�1

��
:

(4.5)

Theorem 2.2 now follows from (4.3), (4.4), and (4.5) by choosing any # < 1=2.
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A hybrid Euler–Hadamard product and moments of �0.�/ 1809

Remark. The above proof illustrates why the arithmetical factor ak is the same in
both Conjecture 1.1 and Conjecture 1.2, and this arises from a combination of two
different phenomena. First of all, while �0.s/ is approximated by

P 0X .s/ZX .s/C PX .s/Z
0
X .s/;

as we noted above �0.�/ is approximated byPX .�/Z0X .�/. Consequently, the arith-
metical factor ak arises solely from moments of the truncated Euler productPX .s/,
and not from the moments of its derivative P 0X .s/. Moreover, as is the case with
continuous moments of PX .s/, there is no off-diagonal contribution to the main
term of these moments. For a “typical” Dirichlet polynomial we expect an addi-
tional main term contribution from the sum corresponding to E11 in the above
proof. However, in the present case, the arithmetic nature of the coefficients ˛k.n/
(i.e. supported on X -smooth numbers with X D O..logT /2�"/) implies that the
term E11 contributes an amount which is an error term.

5 Proof of Theorem 2.4

5.1 Initial setup

Using the expression in (4.2) with k D �1, we haveX
0<�T

ˇ̌
�0.�/PX .�/

�1
ˇ̌2

D

X
mn2S.X/

m;n�T #

˛�1.m/˛�1.n/
p
mn

I.m; n/CO"
�
T 1�"#=3

�
;

(5.1)

where

I.m; n/ D
X

0<�T

ˇ̌
�0.�/

ˇ̌2�m
n

��i
:

Throughout the proof of Theorem 2.4, we shall repeatedly use the estimate

j˛�1.n/j � d.n/;

where d.n/ is the divisor function.
We differentiate both sides of the functional equation

�.s/ D �.s/�.1 � s/

to obtain

�0.s/ D ��.s/

�
�0.1 � s/ �

�0

�
.s/�.1 � s/

�
: (5.2)
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1810 H. M. Bui, S. M. Gonek and M. B. Milinovich

It follows that �0.1��/ D ��.1��/�0.�/. Thus, assuming RH and using Cauchy’s
theorem, we get

I.m; n/ D �
X

0<�T

�.1 � �/�0.�/2
�
m

n

��i

D �
1

2�i

Z
C
�.1 � s/

�0

�
.s/�0.s/2

�
m

n

��sC1=2
ds;

where C is the positively oriented rectangle with vertices at 1 � c C i , c C i ,
c C iT and 1 � c C iT . Here c D 1CL �1 and T is chosen so that the distance
from T to the nearest ordinate of a zero is� L �1.

By standard estimates, for s on C we have

�0.s/

�.s/
� L 2; �0.s/� T .1��/=2L and �.1 � s/� T ��1=2:

Hence, the contribution from the horizontal segments of C is

�" .mC n/.mn/
�1=2T 1=2C":

We denote the contributions from the right-hand and left-hand edges of C by
IR.m; n/ and IL.m; n/, respectively. Thus,

IR.m; n/ D �
1

2�i

Z cCiT

cCi

�.1 � s/
�0

�
.s/�0.s/2

�
m

n

��sC1=2
ds; (5.3)

and IL.m; n/ is the same except that the integral is from 1 � c C iT to 1 � c C i .
Logarithmically differentiating the functional equation, we have

�0

�
.1 � s/ D

�0

�
.1 � s/ �

�0

�
.s/: (5.4)

Using (5.2) twice and substituting 1 � s for s, we see that

IL.m; n/ D �
1

2�i

Z c�iT

c�i

�.1 � s/

�
�0

�
.1 � s/ �

�0

�
.s/

�
�

�
�0.s/ �

�0

�
.1 � s/�.s/

�2�m
n

�s�1=2
ds

D IR.n;m/C I 0.m; n/C I 00.m; n/;

where

I 0.m; n/ D
1

2�i

Z cCiT

cCi

�0

�
.1 � s/3�.s/�.1 � s/

�
m

n

�s�1=2
ds
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A hybrid Euler–Hadamard product and moments of �0.�/ 1811

and

I 00.m; n/ D
�3

2�i

Z cCiT

cCi

�0

�
.1 � s/�0.s/�0.1 � s/

�
m

n

�s�1=2
ds:

Thus,

I.m; n/ D IR.m; n/C IR.n;m/C I 0.m; n/C I 00.m; n/

CO"
�
.mC n/.mn/�1=2T 1=2C"

�
:

We shall write the sum on the right-hand side of (5.1) asX
mn2S.X/

m;n�T #

˛�1.m/˛�1.n/
p
mn

I.m; n/ D J1 C J2 C J3 C J4 C J5 (5.5)

corresponding to this decomposition of I.m; n/.

5.2 The evaluation of J3, J4 and J5

The term J5 is easy to handle since

J5 �" T
1=2C"

X
m;n�T #

d.m/d.n/.mC n/

mn
�" T

1=2C#C": (5.6)

To estimate J3 and J4, we move the line of integration in both I 0.m; n/ and
I 00.m; n/ to the 1

2
-line. As in (5.6), this produces an error of size O".T 1=2C#C"/.

Therefore

J3 D
1

2�

Z T

1

�0

�

�
1
2
C i t

�3ˇ̌
�.1
2
C i t/

ˇ̌2 ˇ̌̌̌ X
n2S.X/

n�T #

˛�1.n/

n1=2Cit

ˇ̌̌̌2
dt CO".T

1=2C#C"/

(5.7)

and

J4 D �
3

2�

Z T

1

�0

�

�
1
2
C i t

�ˇ̌
�0.1

2
C i t/

ˇ̌2 ˇ̌̌̌ X
n2S.X/

n�T #

˛�1.n/

n1=2Cit

ˇ̌̌̌2
dt CO".T

1=2C#C"/:

(5.8)

Let

J 03 D

Z T

1

ˇ̌
�.1
2
C i t/

ˇ̌2 ˇ̌̌̌ X
n2S.X/

n�T #

˛�1.n/

n1=2Cit

ˇ̌̌̌2
dt (5.9)
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1812 H. M. Bui, S. M. Gonek and M. B. Milinovich

and

J 04 D

Z T

1

ˇ̌
�0.1

2
C i t/

ˇ̌2 ˇ̌̌̌ X
n2S.X/

n�T #

˛�1.n/

n1=2Cit

ˇ̌̌̌2
dt: (5.10)

If # < 1
2

, then the integral in (5.9) is of the form evaluated in [1], while the integral
in (5.10) is almost of this form, but not quite. However, with obvious changes to
the argument in [1] that we will not carry out here, one may show thatZ T

1

�.1
2
C i t C ˛/�.1

2
� i t C ˇ/

ˇ̌̌̌ X
n�N

a.n/

n1=2Cit

ˇ̌̌̌2
dt

D

X
m;n�N

a.m/a.n/.m; n/1C˛Cˇ

mn

Z T

1

�
m�ˇn�˛�.1C ˛ C ˇ/

C

�
t .m; n/2

2�

��˛�ˇ
m˛nˇ �.1 � ˛ � ˇ/

�
dt

COB.TL �B/CO".N
2T "/; (5.11)

uniformly for ˛; ˇ � L �1 and for any B > 0. We use (5.11) to estimate both J 03
and J 04. Applying it first to (5.9), we find that

J 03 D T
X

mn2S.X/

m;n�T #

˛�1.m/˛�1.n/.m; n/

mn

�
log

T .m; n/2

2�mn
C 20 � 1

�

COB.TL �B/CO".T
2#C"/

D TL
X

mn2S.X/

m;n�T #

˛�1.m/˛�1.n/.m; n/

mn

CO

�
T

X
lmn2S.X/

d.lm/d.ln/ logmn
lmn

�
COB.TL �B/CO".T

2#C"/: (5.12)

The double sum in the main term of (5.12) has been evaluated by Gonek, Hughes
and Keating (see [13, equations (34)–(38)]). The analysis in [13] implies that

TL
X

mn2S.X/

m;n�T #

˛�1.m/˛�1.n/.m; n/

mn
D

TL

e0 logX

�
1CO

�
.logX/�1

��
:
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A hybrid Euler–Hadamard product and moments of �0.�/ 1813

The sum in the first big-O term of (5.12) isX
lmn2S.X/

d.lm/d.ln/ logmn
lmn

�

X
l2S.X/

d.l/2

l

� X
n2S.X/

d.n/ logn
n

�2
:

Writing

f .�/ D
X

n2S.X/

d.n/

n�
D

Y
p�X

�
1 �

1

p�

��2
;

we see thatX
n2S.X/

d.n/ logn
n

D �f 0.1/ D 2f .1/
X
p�X

logp
p � 1

� .logX/3: (5.13)

Hence the first big-O term in (5.12) is� .logX/10. Thus, we have shown that

J 03 D
TL

e0 logX

�
1CO

�
.logX/�1

��
CO".T

2#C"/: (5.14)

Similarly, applying (5.11) to (5.10), we obtain

J 04 D
TL 3

3

X
mn2S.X/

m;n�T #

˛�1.m/˛�1.n/.m; n/

mn

CO

�
TL 2

X
lmn2S.X/

d.lm/d.ln/ logmn
lmn

�
COB.TL �B/CO".T

2#C"/

D
TL 3

3e0 logX

�
1CO

�
.logX/�1

��
CO".T

2#C"/: (5.15)

To obtain the estimates for (5.7) and (5.8) from (5.14) and (5.15), we use the
well-known approximation

�0

�
.1
2
C i t/ D � log

t

2�
CO.t�1/ (for t � 1) (5.16)

and integration by parts. In this way we deduce that

J3 D �
TL

2�

L 3

e0 logX

�
1CO

�
.logX/�1

��
CO".T

2#C"/ (5.17)

and

J4 D
TL

2�

L 3

e0 logX

�
1CO

�
.logX/�1

��
CO".T

2#C"/: (5.18)
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1814 H. M. Bui, S. M. Gonek and M. B. Milinovich

5.3 The evaluation of J1 and J2

Note that

J1 C J2 D �2<

²
1

2�i

Z cCiT

cCi

�.1 � s/

�
�0

�
.s/�0.s/2

X
m2S.X/

m�T #

˛�1.m/

ms

�

�

� X
n2S.X/

n�T #

˛�1.n/

n1�s

�
ds

³
:

By Lemma 3.2, we find that

J1 C J2 D �2<

² X
n2S.X/

n�T #

˛�1.n/

n

X
m�nT=2�

a.m/e.�m=n/

³
CO".T

1=2C#C"/;

where the arithmetic function a.m/ is defined by

�0

�
.s/�0.s/2

X
m2S.X/

m�T #

˛�1.m/

ms
D

1X
mD1

a.m/

ms
(5.19)

for <.s/ > 1. By the work of Conrey, Ghosh and Gonek (see [6, Sections 5 and 6,
and (8.2)]) and of Bui and Heath-Brown [2], we have

J1 C J2 DMR CER CO".T
1=2C#C"/;

where

MR D �2
X

ln2S.X/

ln�T #

˛�1.ln/

ln

�.n/

'.n/

X
m�nT=2�
.m;n/D1

a.lm/ (5.20)

and

ER �c;B;" T exp
�
�c
p

logT
�
C TL �B C T 5=6C#=3C" (5.21)

for some absolute constant c > 0, and for any B > 0.
Write�

�
�0

�
.s/

�j
D

1X
mD1

ƒj .m/

ms
and �

�0

�
.s/�0.s/2 D

1X
mD1

g.m/

ms
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A hybrid Euler–Hadamard product and moments of �0.�/ 1815

for <.s/ > 1. From (5.19) and Lemma 3.3, we see that

a.lm/ D �
X
lDl1l2
mDm1m2
.m2;l1/D1

g.l1m1/˛�1.l2m2/;

and thusX
m�nT=2�
.m;n/D1

a.lm/ D �
X
lDl1l2

X
l2m22S.X/

l2m2�T
#

.m2;l1n/D1

˛�1.l2m2/
X

m1�nT=2�m2
.m1;n/D1

g.l1m1/:

The innermost sum on the right-hand side has been evaluated by Conrey, Ghosh
and Gonek. By [6, Lemma A], the sum over m1 is

D
nT

2�m2

'.n/2

n2

3X
jD0

 
3

j

!
ǰ .l1/ı.l1/

.lognT=2�m2/jC1

.j C 1/Š
CO

�
nTL 3d.l1/

m2

�

D
TL 4

48�

'.n/2ı.l1/

m2n
CO

�
TL 3'.n/d.l1/.log l1n/

m2

�
; (5.22)

where ı.l/ D
Q
pjl.2 � 1=p/ and ǰ .l/ D

P
d jl ƒ3�j .d/=ı.d/. We insert this

estimate into (5.20). The contribution of the big-O term in the last line of (5.22)
to (5.20) is

� TL 3
X

l1l2mn2S.X/

d.l1l2n/d.l2m/d.l1/ log.l1n/
l1l2mn

� TL 3

� X
n2S.X/

d.n/2 logn
n

�4
:

By the same method we used to obtain the estimate in (5.13), the sum over n on
the right-hand side is� .logX/5. Thus, the contribution from the big-O term is
O.TL 3.logX/20/. We therefore have that

MR D
TL 4

24�

X
l1l2n2S.X/

l1l2n�T
#

X
m2S.X/

l2m�T
#

.m;l1n/D1

˛�1.l2m/˛�1.l1l2n/�.n/'.n/ı.l1/

l1l2mn2

CO
�
TL 3.logX/20

�
:
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1816 H. M. Bui, S. M. Gonek and M. B. Milinovich

Next we show that we may extend the sums to all products l1l2mn 2 S.X/with
.m; l1n/ D 1 with an acceptable error term. This follows from “Rankin’s trick”,
for we have X

l1l2mn2S.X/

l1l2mn>T
#

d.l2m/d.l1l2n/d.l1/

l1l2mn

�

X
l1l2mn2S.X/

d.l2m/d.l1l2n/d.l1/

l1l2mn

�
l1l2mn

T #

�1=4

� T �#=4
� X
n2S.X/

d.n/2

n3=4

�4

� T �#=4
Y
p�X

�
1 �

1

p3=4

��16
� T �#=4e100X

1=4= logX
� T �#=5

since X D O..logT /2�"/. Hence, writing n for l1n and l for l2, we have

MR D
TL 4

24�

X
lmn2S.X/
.m;n/D1

˛�1.lm/˛�1.ln/g.n/

lmn
CO

�
TL 3.logX/20

�
; (5.23)

where

g.n/ D
X
d jn

�.d/'.d/ı.n=d/

d
:

Let
P D

Y
p�X

p:

Since ˛�1.n/ D 0 if n is not a cube-free integer, we can restrict the summation
over l to summation over l D u1u22, where u1 j P and u2 j .P=u1/. The summa-
tion overm and n can also be restricted to .m; u2/ D .n; u2/ D 1, since otherwise
˛�1.lm/˛�1.ln/ D 0. Thus, apart from the big-O term in (5.23), we see that

MR D
TL 4

24�

X
u1 jP

1

u1

X
u2 j .P=u1/

˛�1.u
2
2/
2

u22

�

X
m2S.X/
.m;u2/D1

X
n2S.X/
.n;u2m/D1

˛�1.u1m/˛�1.u1n/g.n/

mn
:
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A hybrid Euler–Hadamard product and moments of �0.�/ 1817

Arguing similarly, we see that if r D .u1; m/ and m D rm1, then we can assume
that .r;m1/ D 1 so that .u1; m1/ D 1. Consequently, the summation over m can
be replaced by X

r ju1

X
m12S.X/

.m1;u1u2/D1

:

Similarly, for s D .u1; n/ and n D sn1, we can sum over .u1; n1/ D 1. The condi-
tion .m; n/ D 1 is equivalent to .m1; n1/ D .m1; s/ D .r; n1/ D .r; s/ D 1. Now,
.r; s/ D 1 if and only if s j .u1=r/. Also, .m1; s/ D 1 and .n1; r/ D 1 are implied
by .m1n1; u1/ D 1. Thus,

MR D
TL 4

24�

X
u1 jP

1

u1

X
u2 j .P=u1/

˛�1.u
2
2/
2

u22

X
r ju1

X
m12S.X/

.m1;u1u2/D1

�

X
s j .u1=r/

X
n12S.X/

.n1;u1u2m1/D1

˛�1.u1rm1/˛�1.u1sn1/g.sn1/

rsm1n1

D
TL 4

24�

X
u1 jP

˛�1.u1/
2

u1

X
u2 j .P=u1/

˛�1.u
2
2/
2

u22

X
r ju1

˛�1.r
2/

˛�1.r/r

�

X
s j .u1=r/

˛�1.s
2/g.s/

˛�1.s/s

X
m12S.X/

.m1;u1u2/D1

˛�1.m1/

m1

�

X
n12S.X/

.n1;u1u2m1/D1

˛�1.n1/g.n1/

n1
:

Since m1 and n1 make no contribution unless they are cube-free, this last expres-
sion is equal to

TL 4

24�

X
u1 jP

˛�1.u1/
2

u1

X
u2 j .P=u1/

˛�1.u
2
2/
2

u22

X
r ju1

˛�1.r
2/

˛�1.r/r

�

X
s j .u1=r/

˛�1.s
2/g.s/

˛�1.s/s

X
m1 j .P=u1u2/2

˛�1.m1/

m1

�

X
n1 j .P=u1u2m1/2

˛�1.n1/g.n1/

n1
: (5.24)
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1818 H. M. Bui, S. M. Gonek and M. B. Milinovich

Next we define the following multiplicative functions:

T1.n/ D
X
d jn

˛�1.d/g.d/

d
; T2.n/ D

X
d jn

˛�1.d/

dT1.d2/
;

T3.n/ D
X
d jn

˛�1.d
2/g.d/

˛�1.d/d
; T4.n/ D

X
d jn

˛�1.d
2/

˛�1.d/dT3.d/
;

T5.n/ D
X
d jn

˛�1.d
2/2

d2T1.d2/T2.d2/
; T6.n/ D

X
d jn

˛�1.d/
2T3.d/T4.d/

dT1.d2/T2.d2/T5.d/
:

The sum over n1 in (5.24) equals

T1
�
.P=u1u2m1/

2
�
D

T1.P
2/

T1.u
2
1/T1.u

2
2/T1.m

2
1/
;

and therefore the double summation over m1 and n1 in (5.24) is equal to

T1.P
2/

T1.u
2
1/T1.u

2
2/
T2
�
.P=u1u2/

2
�
D

T1.P
2/T2.P

2/

T1.u
2
1/T2.u

2
1/T1.u

2
2/T2.u

2
2/
:

Similarly, the summation over r and s in (5.24) is T3.u1/T4.u1/. It follows that

MR D
TL 4

24�
T1.P

2/T2.P
2/

�

X
u1 jP

˛�1.u1/
2T3.u1/T4.u1/

u1T1.u
2
1/T2.u

2
1/

X
u2 j .P=u1/

˛�1.u
2
2/
2

u22T1.u
2
1/T2.u

2
1/

D
TL 4

24�
T1.P

2/T2.P
2/T5.P /T6.P /

D
TL 4

24�

Y
p�X

�
T1.p

2/T2.p
2/T5.p/C

˛�1.p/
2T3.p/T4.p/

p

�
:

To simplify this expression, first note that

g.p/ D 1 and g.p2/ D
2

p
�
1

p2
:

Moreover, ˛�1.p/ D �1 for all p � X , so

˛�1.p/
2T3.p/T4.p/

p
D
T3.p/

p
�
˛�1.p

2/

p2
D
1

p
�
2˛�1.p

2/

p2
;
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and

T1.p
2/T2.p

2/T5.p/ D T1.p
2/T2.p

2/C
˛�1.p

2/2

p2

D T1.p
2/ �

1

p
C
˛�1.p

2/

p2
C
˛�1.p

2/2

p2

D 1 �
2

p
C
˛�1.p

2/
�
1C g.p2/C ˛�1.p

2/
�

p2
:

Since we also have that ˛�1.p2/ D 0 if p �
p
X , we see that

T1.p
2/T2.p

2/T5.p/C
˛�1.p/

2T3.p/T4.p/

p

D

´
1 � 1=p; if p �

p
X ,

1 � 1=p CO.1=p2/; if
p
X < p � X .

Combining these results, we now have, apart from the big-O term in (5.23), that

MR D
TL 4

24�

Y
p�
p
X

�
1 �

1

p

� Y
p
X<p�X

�
1 �

1

p
CO.1=p2/

�

D
TL

2�

L 3

12e0 logX

�
1CO

�
.logX/�1

��
:

Combining this expression with (5.1), (5.5), (5.6), (5.17), (5.18), (5.21) and (5.23),
we obtain

1

N.T /

X
0<�T

ˇ̌
�0.�/PX .�/

�1
ˇ̌2

D
L 3

12e0 logX

�
1CO

�
.logX/�1

��
COc

�
exp

�
� c

p
logT

��
COB.L

�B/

CO"
�
T �1=2C#C" C T �1C2#C" C T �1=6C#=3C"

�
:

Theorem 2.4 now follows by choosing any # < 1=2.

6 The twisted moment conjectures

In this section, we use a modification of the recipe in [5, 7] to formulate a conjec-
ture for the discrete moments of Z0X .�/. We start by considering the twisted 2k-th
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1820 H. M. Bui, S. M. Gonek and M. B. Milinovich

moment of the derivative of the Riemann zeta-function, that is

I2k.m; n/ D
X

0<�T

j�0.�/j2k
�
m

n

��i
:

We assume RH and, for simplicity, we assume that .m; n/ D 1. Using Cauchy’s
theorem, we may write this sum as a contour integral; namely

I2k.m; n/ D
1

2�i

Z
C

�0.s/

�.s/
�0.s/k�0.1 � s/k

�
m

n

��sC1=2
ds;

with the contour C running from 1 � c C i to c C i , c C iT and 1 � c C iT ,
where as before c D 1CL �1. Using standard estimates for the integrand, we
can show that the contribution from the horizontal segments of the contour is neg-
ligible. Therefore, it suffices to estimate the right-hand and left-hand portions of
the contour, I2k;R.m; n/ and I2k;L.m; n/, say. We first examine the integral from
c C i to c C iT , which is

I2k;R.m; n/

D
1

2�

Z T

1

�0.c C i t/

�.c C i t/
�0.c C i t/k�0.1 � c � i t/k

�
m

n

��c�itC1=2
dt

D
d

d˛1
: : :

d

d˛kC1

d

dˇ1
: : :

d

dˇk

1

2�

Z T

1

�.c C i t C ˛kC1/

�.c C i t/

�

kY
jD1

�
�.c C i t C j̨ /�.1 � c � i t C ǰ /

��m
n

��c�itC1=2
dt

ˇ̌̌̌
ˇ
˛DˇD0

:

Following the recipe outlined in [5,7], we replace each of the zeta-functions in the
numerator by

�.s/ �
X

n�
p
t=2�

1

ns
C �.s/

X
n�
p
t=2�

1

n1�s
;

and we replace the zeta-function in the denominator by

1

�.s/
D

1X
nD1

�.n/

ns
:

Multiplying out the various sums, we obtain 22kC1 terms in the integrand. We note
that Stirling’s formula for the Gamma function implies that

�.s C ˛/�.1 � s C ˇ/ D

�
t

2�

��˛�ˇ�
1CO

�
1

jt j C 1

��
(6.1)
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A hybrid Euler–Hadamard product and moments of �0.�/ 1821

as t !1: We only keep the terms with the same number of � factors coming
from �.s/ and from �.1 � s/. Consider the term coming from the product of the
first term of each approximate functional equation, namelyX
a1;:::;akC2
b1;:::;bk

�.akC2/

a
˛1
1 : : : a

˛kC1
kC1

b
1Cˇ1
1 : : : b

1Cˇk
k

�
a1 : : : akC2

b1 : : : bk

��c�it�m
n

��c�itC1=2
:

Averaging over t , only the diagonal terms a1 : : : akC2m D b1 : : : bkn are retained
and we obtain Z T

1

X
amDbn

A˛.a/Bˇ .b/
p
ab

dt; (6.2)

where

A˛.a/ D
X

a1:::akC2Da

�.akC2/

a
˛1
1 : : : a

˛kC1
kC1

;

and
Bˇ .b/ D

X
b1:::bkDb

1

b
ˇ1
1 : : : b

ˇk
k

:

Since .m; n/ D 1, the only solutions of am D bn are a D un and b D um. Thus,
since A˛.a/ and Bˇ .b/ are multiplicative functions, the integral in (6.2) equals

1
p
mn

Z T

1

1X
uD1

A˛.un/Bˇ .um/

u
dt

D
1
p
mn

Z T

1

1X
uD1

A˛.u/Bˇ .u/

u

Y
pmp km
pnp kn

 P1
jD0A˛.p

jCnp /Bˇ .p
j /=pjP1

jD0A˛.p
j /Bˇ .p

j /=pj

�

P1
jD0A˛.p

j /Bˇ .p
jCmp /=pjP1

jD0A˛.p
j /Bˇ .p

j /=pj

!
dt:

We denote the integrand on the right-hand side of the above equation byT˛;ˇ .m; n/
and we denote the product over primes in this integrand by C˛;ˇ .m; n/. Now the
sum over u in T˛;ˇ .m; n/ is

1X
uD1

A˛.u/Bˇ .u/

u

D

Y
p

� X
PkC2
jD1

ajD
Pk
jD1 bj

�.pakC2/

p
PkC1
jD1

.1=2C j̨ /ajCakC2=2C
Pk
jD1.1=2C ǰ /bj

�
:
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1822 H. M. Bui, S. M. Gonek and M. B. Milinovich

Taking out the divergent terms from the above formula in the form of zeta-func-
tions, the integrand T˛;ˇ .m; n/ equalsQ

1�i�kC1
1�j�k

�.1C ˛i C ǰ /Q
1�j�k �.1C ǰ /

�

Y
p

 Y
1�i�kC1
1�j�k

�
1 �

1

p1C˛iC ǰ

� Y
1�j�k

�
1 �

1

p1C ǰ

��1

�

X
PkC2
jD1

ajD
Pk
jD1 bj

�.pakC2/

p
PkC1
jD1

.1=2C j̨ /ajCakC2=2C
Pk
jD1.1=2C ǰ /bj

!

� C˛;ˇ .m; n/:

We handle the other terms which arise from multiplying out the approximate func-
tional equations in a similar manner, but we also take into account the asymptotic
formula (6.1). Adding the resulting terms, we obtain that I2k;R.m; n/ equals

d

d˛1
: : :

d

d˛kC1

d

dˇ1
: : :

d

dˇk

1

2�
p
mn

�

Z T

1

X
0�j�k

X
P�¹˛1;:::;˛kC1º
Q�¹ˇ1;:::;ˇkº
jP jDjQjDj

T˛P ;ˇQ
.m; n/

�
t

2�

��P�Q
dt

ˇ̌̌̌
˛DˇD0

COk;".T
1=2C"/;

where if
P D ¹˛u1 ; : : : ; ˛uj º

and
Q D ¹ˇv1 ; : : : ; ˇvj º

with u1 < � � � < uj and v1 < � � � < vj , then .˛P ; ˇQ/ is the .2k C 1/-tuple ob-
tained from

.˛1; : : : ; ˛kC1; ˇ1; : : : ; ˇk/

by replacing ˛ur with �ˇvr and replacing ˇvr with �˛ur for all 1 � r � j . Here
.t=2�/�P�Q stands for

.t=2�/�
P
x2P x�

P
y2Q y :
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A hybrid Euler–Hadamard product and moments of �0.�/ 1823

There is a concise way to write these
�
2kC1
k

�
terms as a contour integral (see [5]),

namely I2k;R.m; n/ equals

d

d˛1
: : :

d

d˛kC1

d

dˇ1
: : :

d

dˇk

1

2�
p
mn

�

Z T

1

�
t

2�

��Pj j̨�
P
j ǰ

2 1

.k C 1/ŠkŠ.2�i/2kC1

�

I
: : :

I �
t

2�

�P
j sj�

P
j zj

2 Ts;�z.m; n/�.s1; : : : ; skC1; z1; : : : ; zk/
2Q

i;j .si � j̨ /
Q
i;j .si C ǰ /

�
1Q

i;j .zi � j̨ /
Q
i;j .zi C ǰ /

ds1 : : : dskC1dz1 : : : dzkdt

ˇ̌̌̌
˛DˇD0

COk;".T
1=2C"/;

where �. � / is the Vandermonde function and the paths of integration are small
circles around the poles j̨ and � ǰ . We observe that

d

d˛

e�a˛Qn
jD1.zj � ˛/

ˇ̌̌̌
˛D0

D
1Qn

jD1 zj

 
nX

jD1

1

zj
� a

!
(6.3)

and
d

dˇ

e�aˇQn
jD1.zj C ˇ/

ˇ̌̌̌
ˇD0

D
1Qn

jD1 zj

 
�

nX
jD1

1

zj
� a

!
: (6.4)

Thus I2k;R.m; n/ equals

1

2�
p
mn.k C 1/ŠkŠ.2�i/2kC1

Z T

1

I
: : :

I �
t

2�

�P
j sj�

P
j zj

2

�
Ts;�z.m; n/�.s1; : : : ; skC1; z1; : : : ; zk/

2

.
QkC1
jD1 sj

Qk
jD1 zj /

2kC1

�

 
�

L

2
C

kC1X
jD1

1

sj
C

kX
jD1

1

zj

!kC1

�

 
�

L

2
�

kC1X
jD1

1

sj
�

kX
jD1

1

zj

!k
ds1 : : : dskC1dz1 : : : dzkdt

COk;".T
1=2C"/:
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The contribution from the left-hand side of the contour of integration is

I2k;L.m; n/ D �
1

2�

Z T

1

�0.1 � c C i t/

�.1 � c C i t/
�0.1 � c C i t/k

� �0.c � i t/k
�
m

n

�c�it�1=2
dt:

By the functional equation for �0.s/=�.s/ in (5.4), we have

�0.1 � c C i t/

�.1 � c C i t/
D
�0.1 � c C i t/

�.1 � c C i t/
�
�0.c � i t/

�.c � i t/
:

Thus,

I2k;L.m; n/ D �
1

2�i

Z 1�cCiT

1�cCi

�0.s/

�.s/
�0.s/k�0.1� s/k

�
m

n

��sC1=2
ds

C
1

2�

Z T

1

�0.c � i t/

�.c � i t/
�0.c � i t/k�0.1� cC i t/k

�
m

n

�c�it�1=2
dt:

We note that the second term on the right-hand side is equal to I2k;R.n;m/. To
handle the first term, we may first shift the line of integration to the 1

2
-line with

a negligible error. Then, using the approximation for �0.s/=�.s/ in (5.16), we find
that this term is roughly equal to

L

2�

Z T

1

�0.1
2
C i t/k�0.1

2
� i t/k

�
m

n

��it
dt

D
d

d˛1
: : :

d

d˛k

d

dˇ1
: : :

d

dˇk

L

2�

�

Z T

1

kY
jD1

�
�.1
2
C i t C j̨ /�.

1
2
� i t C ǰ /

��m
n

��it
dt

ˇ̌̌̌
˛DˇD0

:

Hughes and Young [16] have conjectured that this integral equals

1
p
mn

Z T

1

 X
0�j�k

X
P�¹˛1;:::;˛kº
Q�¹ˇ1;:::;ˇkº
jP jDjQjDj

S˛P ;ˇQ
.m; n/

�
t

2�

��P�Q!
dt

COk;".T
1=2C"/;
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A hybrid Euler–Hadamard product and moments of �0.�/ 1825

where

S˛P ;ˇQ
.m; n/ D

Y
1�i;j�k

�.1C ˛i C ǰ /
Y
p

 Y
1�i;j�k

�
1 �

1

p1C˛iC ǰ

�

�

X
Pk
jD1 ajD

Pk
jD1 bj

1

p
Pk
jD1.1=2C j̨ /ajC.1=2C ǰ /bj

!

�D˛;ˇ .m; n/;

with

D˛;ˇ .m; n/ D
Y

pmp km
pnp kn

 P1
jD0B˛.p

jCmp /Bˇ .p
j /=pjP1

jD0B˛.p
j /Bˇ .p

j /=pj

�

P1
jD0B˛.pj /Bˇ .p

jCnp /=pjP1
jD0B˛.p

j /Bˇ .p
j /=pj

!
:

This expression can be treated as before, that is, by expressing it as a contour
integral, and using (6.3) and (6.4). In this way, we obtain the following conjecture.

Conjecture 6.1. Suppose m; n 2 N with .m; n/ D 1, and mn�" T
1=2�". Then

we have

I2k.m; n/ D
1

2�
p
mn.k C 1/ŠkŠ.2�i/2kC1

Z T

1

I
: : :

I �
t

2�

�P
j sj�

P
j zj

2

�

�
Ts;�z.m; n/C Ts;�z.n;m/

�
�.s1; : : : ; skC1; z1; : : : ; zk/

2

.
QkC1
jD1 sj

Qk
jD1 zj /

2kC1

�

 
�

L

2
C

kC1X
jD1

1

sj
C

kX
jD1

1

zj

!kC1

�

 
�

L

2
�

kC1X
jD1

1

sj
�

kX
jD1

1

zj

!k
ds1 : : : dskC1dz1 : : : dzkdt

C
L

2�
p
mn.kŠ/2.2�i/2k

Z T

1

I
: : :

I �
t

2�

�P
j sj�

P
j zj

2

�
Ss;�z.m; n/�.s1; : : : ; sk; z1; : : : ; zk/

2

.
Qk
jD1 sj zj /

2k
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�

 
�

L

2
C

kX
jD1

�
1

sj
C
1

zj

�!k

�

 
�

L

2
�

kX
jD1

�
1

sj
C
1

zj

�!k
ds1 : : : dskdz1 : : : dzkdt

COk;".T
1=2C"/:

We now use Conjecture 6.1 to give another heuristic argument for Conjec-
tures 2.3 and 2.5. Since high moments have much more complicated arithmetic
contributions, we shall only treat the case k D 2. Conjecture 6.1 asserts that
I4.m; n/ is asymptotic to TP .L /=

p
mn, where P .x/ is a polynomial of degree 9

with coefficients depending on m and n. We wish to extract the leading term from
this expression. To do this we compute the residues at s1 D s2 D s3 D z1 D z2 D 0
of the contour integrals. In this way, we find that

I4.m; n/ D
TL

2�

L 8

8640�.2/

ı.m/ı.n/
p
mn

CO
�
.mn/�1=2d.m/d.n/TL 8

�
; (6.5)

where

ı.n/ D
Y

pnp kn

�
1C np

1 � 1=p

1C 1=p

�
:

Using the expression in (4.2) with k D �2, we haveX
0<�T

ˇ̌
�0.�/PX .�/

�1
ˇ̌4

D

X
mn2S.X/

m;n�T #

˛�2.m/˛�2.n/
p
mn

X
0<�T

j�0.�/j4
�
m

n

��i
CO".T

1�"#=3/: (6.6)

It follows from (6.5) that the sum over m and n here equals

TL

2�

L 8

8640�.2/

X
mn2S.X/

m;n�T #

˛�2.m/˛�2.n/ı
�
m=.m; n/

�
ı
�
n=.m; n/

�
.m; n/

mn

CO

�
TL 8

X
mn2S.X/

d.m/2d.n/2.m; n/

mn

�
: (6.7)
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The big-O term is

� TL 8
X

l2S.X/

d.l/4

l

� X
m2S.X/

d.m/2

m

�2
� TL 8.logX/24;

while the sum overm and n in the main term has been evaluated by Gonek, Hughes
and Keating (see [13, pp. 534, 538]) and is � �2

6
.e0 logX/�4. Thus, combining

this with (6.6), (6.7), and choosing # sufficiently small, we obtain

1

N.T /

X
0<�T

ˇ̌
�0.�/PX .�/

�1
ˇ̌4
�

1

8640

L 8

.e0 logX/4
:

This heuristic argument provides further evidence for Conjecture 2.3 and Conjec-
ture 2.5 in the case k D 2.
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