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Abstract We investigate the role of obstacle avoidance
in visually guided reaching and grasping movements. We
report on a human study in which subjects performed pre-
hensile motion with obstacle avoidance where the position
of the obstacle was systematically varied across trials. These
experiments suggest that reaching with obstacle avoidance
is organized in a sequential manner, where the obstacle acts
as an intermediary target. Furthermore, we demonstrate that
the notion of workspace travelled by the hand is embedded
explicitly in a forward planning scheme, which is actively
involved in detecting obstacles on the way when perform-
ing reaching. We find that the gaze proactively coordinates
the pattern of eye–arm motion during obstacle avoidance.
This study provides also a quantitative assessment of the cou-
pling between the eye–arm–hand motion. We show that the
coupling follows regular phase dependencies and is unal-
tered during obstacle avoidance. These observations provide
a basis for the design of a computational model. Our con-
troller extends the coupled dynamical systems framework
and provides fast and synchronous control of the eyes, the
arm and the hand within a single and compact framework,
mimicking similar control system found in humans. We val-
idate our model for visuomotor control of a humanoid robot.
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1 Introduction

Manipulation and grasping skills are complex and rely on the
conjunction of multiple modalities, including vision, tactile
and proprioceptive information (Prablanc et al. 1979; Jean-
nerod 1984; Purdy et al. 1999). Vision provides important
information in the early stages of motion planning (Prablanc
et al. 1979; Abrams et al. 1990; Spijkers and Lochner 1994;
Rossetti et al. 1994). It is also used to perform close-loop
control to drive the hand in space unobstructed visually
(Abrams et al. 1990; Paulignan et al. 1991), while tactile
information becomes crucial in the last stage of prehension
and to compensate when vision cannot be used1 (Jeannerod
1984; Purdy et al. 1999). Vision is particularly useful to
plan motion so as to avoid obstacles without touching them
(Johansson et al. 2001). It also enables to react rapidly in the
face of a sudden perturbation, such as an obstacle entering
the workspace (Aivar et al. 2008). There is a tight coupling
between visual and motor modalities when driving prehensile
motion (Prablanc et al. 1979; Land et al. 1999; Johansson et
al. 2001). While this coupling has been documented at length
in the literature in free space motion (Johansson et al. 2001;
Hayhoe et al. 2003; Bowman et al. 2009), little is known
about how this coupling is exploited to enable fast and reli-
able obstacle avoidance, and in particular when the obstacle
appears after the onset of motion. Such fast and online con-
trol of hand motion in response to visual detection of obstacle

1 Humans can perform prehensile actions without visual feedback, by
relying on tactile and acoustic senses.
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is crucial for humans, but also for robots. Indeed, in spite of
impressive advances in robotics over the last decades, robots
are still far from matching human’s versatility in the control
of their motion, even when performing the most simple reach
and grasp motion.

This paper aims at developing a computational model of
the visuomotor coupling between the eye–arm–hand sys-
tems, that explains how this coupling is modulated by the
presence of an obstacle. We conduct a motion study of reach
and grasp motion in the presence of obstacle. The human
study provides quantifiable information about the eye–arm–
hand coupling to support the design of the model’s para-
meters. To demonstrate the feasibility of using this mech-
anism for robot control, we implement our model to con-
trol visually guided prehensile motion in the iCub humanoid
robot.

We next provide a short review on existing works, focus-
ing on the role of visual information in guiding manipula-
tion, visuomotor coordination mechanisms in humans and
the state of the art in robotic visually aided manipulation,
and we conclude this section with an overview of our contri-
butions.

1.1 The role of visual information in guiding manipulation

Vision provides a plethora of by far the most valuable and
most reliable information about the state of the environment
on which the planning and motor systems depend heavily.
The object’s extrinsic properties (spatial location and ori-
entation) are used to control the reach component, whereas
the object’s intrinsic properties (shape, size, weight, centroid
and mass distribution) are used in programming the grasp
component (Jeannerod 1984). The role of vision in manip-
ulation is best shown in manipulation experiments where
visual feedback is deprived by modulating experimental
conditions.

Several studies have shown that manipulation without any
visual feedback in highly structured, static scenarios can
almost match the performances of the full-vision manipula-
tion (Castiello et al. 1983; Purdy et al. 1999). After a number
of practice trials, manipulation of subjects who did not have
any visual feedback only slightly differed from full-vision
manipulation in terms of the kinematic measures of both the
reach and grasp components. However, if manipulation with-
out visual feedback is performed in an unstructured environ-
ment, without previous kinesthetic assistance from a teacher
or extensive trial-and-error learning, the performances (e.g.,
overall success rate, accuracy of reaching and speed of move-
ment) drastically degrade compared with trials where vision
was not deprived (Purdy et al. 1999).

Vision is used to guide every stage of prehensile move-
ments, from pre-planning, initial reach, high-speed mid-
section of the movement, to the deceleration and grasping

phases. Prablanc et al. (1979) and Rossetti et al. (1994)
showed that seeing the limb before the onset of the move-
ments improves the reaching accuracy. In addition to this,
Pelisson et al. (1986) found that the initial information about
the target affects the final reaching accuracy. Similarly, the
sight at the current position of the limb and the movement
goal in the later stage of the movements improves the end
point accuracy (Prablanc et al. 1979; Pelisson et al. 1986).
In studies of manipulation where no visual feedback on the
moving limb (Gentilucci et al. 1994; Berthier et al. 1996)
and on the target (Jakobson and Goodale 1991) is available,
a dramatic increase in the overall movement time and the grip
aperture was observed. Finally, visual information assists fine
control of the arm and hand in the closing phase of grasp-
ing (Paillard 1982). The gaze is driven to the grasping points
on the target object during a prehensile task, for the purpose
of planning reliable placement of the fingers (Brouwer et al.
2009). These studies suggest that vision is used for online
control of both the reaching and grasping components of a
prehensile movement.

A number of studies have shown that both peripheral
and foveal vision contribute to reaching and grasping. Sivak
and MacKenzie (1990) found that when central vision was
blocked, it affected both the transport and grasp components
(longer movement times, lower peak accelerations and peak
velocities, larger maximum grip apertures and longer time
after the maximum grip aperture). When peripheral vision
was not available, however, they observed that it affected the
transport component only, and the grasp component remains
unaltered. In their follow-up study, González-Alvarez et al.
(2007) found that peripheral and foveal visual cues jointly
contribute to both reaching and grasping.

Further evidence that vision is used for online control of
movements comes from perturbation studies. In the study
by Paulignan et al. (1991), subjects were able to instantly
modulate, by relying on visual feedback, the arm and hand
movements with respect to online perturbations of the posi-
tion and shape of the target object, with only minimal increase
in the response time (∼100 ms) compared with motion in the
absence of perturbations. Aivar et al. (2008) studied adjust-
ments of the hand movements with respect to abrupt online
perturbations of obstacles and/or the target. They found sim-
ilar latencies to those reported by Paulignan et al. (1991) for
the responses to the perturbations of the target position and
slightly longer adaptation latencies for the obstacles.

1.2 Human visuomotor coordination

Human visual and motor systems are not independent, and
they operate in coordination and share control signals adapt-
ing to mutual demands, even when doing simple and well-
practiced routines (Land et al. 1999; Hayhoe et al. 2003).
A body of literature documented how the gaze precedes
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motion. The gaze shows an anticipatory strategy leading a
whole-body movement during navigation (Grasso et al. 1998;
Hicheur and Berthoz 2005; Rothkopf and Ballard 2009). The
gaze precedes the arm and the hand movement in manipu-
lation tasks with a tool in the hand (Johansson et al. 2001).
Similar pattern, the gaze leading the arm, is observed in a task
where subjects contacted multiple target objects arranged in
a sequence (Bowman et al. 2009). Abrams et al. (1990) found
that the gaze leads limb movements in rapid tasks as well.
Furthermore, it is also observed that gaze leads the arm and
the whole-body movements in reach-for-grasp tasks (Land et
al. 1999; Hayhoe et al. 2003; Hesse and Deubel 2011). Phys-
iological studies of prehensile motion report that the arm
transport and the hand preshape components are coordinated
by the motor system in reach-for-grasp maneuvers, even in
the presence of perturbations (Castiello et al. 1993; Haggard
and Wing 1995). Furthermore, there is a strong evidence that
control signals also flow from the hand to the eyes, not only
in the opposite direction (Fisk and Goodale 1985; Neggers
and Bekkering 2000).

In addition to the physiological studies that measure the
visible manifestations of visuomotor coupling, neuroscience
studies in primates show evidence of a strong correlation in
the neural activity displayed in the areas devoted to vision,
motor control, attention and gaze movements. More specif-
ically, joint neural activation, as well as tight structural con-
nectivity, has been observed between the posterior parietal
cortex, which is involved in transforming visual signals into
motor plans, with the frontal planning and motor areas and
the inferior parietal cortex involved in preparation of saccadic
eye movements and attention shifts (Rizzolatti et al. 1997;
Andersen and Cui 2009; Baldauf and Deubel 2010). This
coupling is very important in terms of information process-
ing. If the systems are not properly synchronized, valuable
information is lost. Additionally, an explicit synchroniza-
tion aids a fast, reactive behavior, because control signals
are directly transmitted between different control modules,
without unnecessary delays.

While we have emphasized until now the importance of
active gaze control to drive arm–hand motion, it is notewor-
thy that humans can also grasp an object without fixating it
and even perform more complicated tasks such as obstacle
avoidance by solely relying on peripheral vision (Prablanc
et al. 1979; Abrams et al. 1990; Johansson et al. 2001). In
spite of the fact that humans may reach without looking at
the target, in natural and unrestricted tasks, the gaze seems
to lead the arm–hand movement. This mechanism is likely a
safeguard mechanism to ensure accurate reaching in the face
of obstacles. Indeed, when saccades to the target and obstacle
were prohibited, significantly decreased manipulation accu-
racy was observed (Abrams et al. 1990; Johansson et al.
2001) and manipulation resulted in frequent collisions with
the obstacle (Johansson et al. 2001). These experiments pro-

vide a further evidence that coupling between active vision
and the motor system is an important and fundamental mech-
anism, synchronously orchestrated between different regions
in the central nervous system (CNS).

1.3 Robotic visually aided manipulation and obstacle
avoidance

Identifying and modeling the mechanisms at the basis of
human visuomotor control in the presence of obstacle pro-
vide a promising research direction to improve the design of
similar controllers in robots. In our work, we exploit three
paradigms (and the interplay between them) from the human
visuomotor system can endow robots with a higher degree
of dexterity and autonomy: active vision that is coupled and
synchronized with the motor system constituting a coherent,
but still modular, mechanism, which can rapidly react to per-
turbations in the environment. Some computer vision prob-
lems that are inherently ill-posed when using passive vision
become well-posed when employing an active vision strat-
egy2 (Gibson 1950; Bajcsy 1988; Bajcsy and Campos 1992).
Aloimonos et al. (1988) and Ballard (1991) have shown that
an observer engaged in the active vision strategy gains a num-
ber of advantages over a passive observer, namely in terms
of the cost of visual computation, the stability of algorithms
and the uniqueness of solutions when determining shapes,
determining structure from motion and computing depth. In
active visual systems, visual servo control is computation-
ally easier and more robust to errors in measurements as
well (Ballard 1991). Coupling mechanisms between differ-
ent control modules play an important role for ensuring a
proper coordinated execution of complex tasks, such as visu-
ally guided reaching where the torso, head (including the
eyes), arm and hand are simultaneously engaged. A proper
coordination pattern between modules is especially crucial
when performing prehensile tasks in the face of perturbations
(Shukla and Billard 2011). Finally, a real-world environment
can be rather highly dynamic and unpredictable. An agent
must be able to re-plan and react in a time range of several
milliseconds to changes that can happen unexpectedly. Not
being able to rapidly and synchronously react to perturba-
tions can cause fatal consequences for both the robot and its
environment.

Solutions to robotic visual-based reaching follow either
of two well-established approaches: techniques that learn
visuomotor transformations (Hoffmann et al. 2005; Natale
et al. 2005, 2007; Hulse et al. 2009; Jamone et al. 2012),
which operate in an open-loop manner, or visual servoing

2 Active vision systems employ gaze control mechanisms to actively
position the camera coordinate system in order to manipulate the visual
constraints.
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techniques (Espiau et al. 1992; Mansard et al. 2006; Natale
et al. 2007; Chaumette and Hutchinson 2008; Jamone et al.
2012), which are closed-loop methods. Techniques that learn
the visuomotor maps are very appealing because of their sim-
plicity and practical applications. However, these methods
suffer from several drawbacks. The models of the visuomo-
tor transformations are learned by using exploratory schemes
employed by a robot that are similar to babbling employed
during infant development (Vernon et al. 2010). The num-
ber of exploratory movements that the robot needs to visit
during the exploration is usually of the order of several thou-
sands, or even higher. Such extensive exploration, needed
to learn a model, limits the applicability of these methods
because it is highly inefficient in time and energy spent. The
accuracy of the reaching movement is limited by the accu-
racy of the eye–arm mapping estimate. Moreover, the learned
mapping profile cannot be modulated. Finally, the reaching
path is generated by relying on interpolation between the
starting arm state and the computed goal arm state. On the
other hand, visual servoing approaches control the speed of
the arm, based on measurements of the visual error between
the hand and the target. This approach ensures zero-error
reaching, but it requires having the target object and the hand
simultaneously in the field of view. Visual servoing does not
allow us to produce a family of human-like motion profiles
in reaching tasks. The previous work done on the visuomotor
coordination did not address the synchronization pattern of
the arm transport and grip component. A control policy of
a robotic hand (or a gripper) is usually a pre-programmed
routine that is invoked after the arm reaches the target object,
thus its control mechanism is not embodied in the eye–arm
control, as in humans.

Robots operating in cluttered environments have to be able
to plan their motion avoiding collisions with objects in the
workspace. There is a large number of obstacle avoidance
methods, and providing a broad review is not our intended
goal. We now provide a brief synopsis of the main trend
across these approaches. Recently, the most popular methods
are sampling-based algorithms (Kavraki et al. 1996; Kuffner
and LaValle 2000). Sampling-based algorithms are very pow-
erful, but cannot meet the demands of rapid motion planning
that humans perform almost effortlessly in a fraction of a
second. Additionally, robotic obstacle avoidance methods do
not consider how gaze control is involved in the process of
obtaining information about the state of obstacles and targets,
and they usually assume that environment is somehow known
beforehand. Seara et al. (2003) developed an algorithm to
actively control the gaze of a humanoid robot in order to sup-
port visually guided walking with obstacle avoidance. How-
ever, in robotic obstacle avoidance applications, involving
manipulation information about the environment is obtained
either by using passive stereo systems (Khansari-Zadeh and
Billard 2012), or by relying on some special sensors such

as Microsoft KinectTM and laser rangers3 (Srinivasa et al.
2012). Having a gaze control strategy in obstacle avoidance
is crucial in order to fixate obstacles. Fixations at the obsta-
cles provide accurate visual information about their state, and
these information are used to proactively guide the arm–hand
system. Failure to provide visual information about obstacles
can result in fatal collisions.

1.4 Our contribution

This paper proposes a novel computational model of the
visuomotor control when performing reaching and grasping
motion in the presence of obstacles. To guide our modeling,
we conduct a human study in which 8 volunteers perform
reach and grasp motion to a single target in the presence
of an obstacle. We analyze the kinematics of the eye, arm
and finger motion to provide quantitative measurements on
the phase relationships across these limbs. We extend the
coupled dynamical systems (CDSs) framework, originally
used for arm–hand coordination (Shukla and Billard 2011),
to model the eye–arm–hand coordinated pattern measured in
the human study.

The parameters of our model are estimated based on the
data recorded in the human study. Our approach contributes
to a better understanding of visually guided reach and grasp
motion in humans. Furthermore, it provides a novel approach
to generate close-loop visuomotor servoing in robot control.

We extend our CDS framework for visuomotor coordi-
nation to encapsulate: (a) model of the eye–arm–hand cou-
pling and (b) modulation by an obstacle. In our work, we
exploit a biologically inspired notion of forward models in
motor control (Wolpert et al. 1998, 2001) and use a model
of the dynamics of the reaching motion to predict collisions
with objects in the workspace when reaching for the target
object. We use the observation from the human study that
the obstacle may act as an intermediary target, in order to
develop our obstacle avoidance scheme. The objects, which
are tagged as obstacles after propagating the forward model,
are treated as intermediary targets for the visuomotor system.
This approach results in a simple and computationally light-
weight scheme for obstacle avoidance. As an alternative to
computationally costly sampling-based algorithms (Kavraki
et al. 1996; Kuffner and LaValle 2000), our approach uses
the ability of dynamical systems (DSs) to instantly re-plan
motion with the presence of perturbations. In our obstacle
avoidance scheme, the gaze is an important element of the
coupled visuomotor mechanism that is actively controlled
and tightly bound to manipulation requirements and plans.
We demonstrate the usefulness of this model for robot con-
trol, by implementing it in experiments on real-time obstacle

3 These sensors are not controlled in terms of the active vision para-
digm.
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avoidance in simulation and on the real humanoid robot, iCub
(Metta et al. 2010).

The work presented here was published in a preliminary
form in Lukic et al. (2012). The present paper extends our
previous work in five ways: (a) it provides a more detailed
description of the computational model and system architec-
ture, (b) it provides a more comprehensive literature review,
(c) the human experiment is done with more subjects and
with a more precise motion capture system, (d) we sub-
stantially extend the analysis of the human study, and (e)
it presents more robot experiments, verifying the presented
approach.

The rest of the paper is structured as follows. Section 2
describes the experimental procedure with human subjects
and analysis of the recorded data. Section 3 explains our
approach to eye–arm–hand coordination, planning and obsta-
cle handling. In Sect. 4, we present results of our robotic
experiments. Finally, Sect. 5 is devoted to a general discus-
sion.

2 Human motion study of reaching and grasping with
obstacle avoidance

We start from the hypothesis that the eyes precede arm
motion, so as to guide the planning of the arm transport com-
ponent. There is ample evidence of such saccadic eye motion
toward the target during reaching; see, e.g., (Land et al. 1999;
Johansson et al. 2001; Hayhoe et al. 2003; Hayhoe and Bal-
lard 2005); however, few studies have analyzed visuomo-
tor behavior in trials where the position of the obstacle was
systematically varied. We assume that the obstacle acts as
an intermediary target when performing obstacle avoidance.
This movement-segmented strategy substantially reduces the
complexity of motor control compared with the holistic con-
trol policy (Alberts et al. 2002; Johansson et al. 2009; Hesse
and Deubel 2010). Furthermore, we hypothesize that there
exists a visuomotor forward control scheme in which the
presence of the obstacle is used to modulate the path of the
arm. This modulation depends on the distance of the original
path to the target. We also assume that the obstacle avoid-
ance maneuver consists in passing the obstacle on the side of
the obstacle where the collision would have occurred. This
choice participates in a minimum effort strategy with only a
small modulation of the intended path. We report our analysis
of the visuomotor obstacle avoidance scheme in the follow-
ing sub-sections. Figure 2 shows snapshots taken from the
WearCam video illustrating the mechanism of the gaze lead-
ing arm motion and fixating the obstacle on the path when
reaching the target.

The first part of this section describes the experimental
procedure followed during our human motion study. In the
second part, we analyze the results of this study and state our

findings of visuomotor coordination that constitute a basis
for developing our computational model.

2.1 Subjects

Eight unpaid subjects from the university staff participated
in this experiment (5 males and 3 females; mean age 27.1
years and SD 3 years). Subjects were right-handed and did
not have any neurological or ophthalmological abnormali-
ties. Subjects were unaware of the purpose of the experiment.

2.2 Experimental setup

Subjects sat in a height-adjustable chair facing a rectangular
table with task-relevant objects placed on the surface of the
table (Fig. 1). Subjects sat in front of a table such that the
sagittal plane “cut” the width of the table at approximately
the midline, and the distance from the frontal part of the trunk
to the edge of the table was ∼10 cm. The initial positions of
the right hand, the target object and the obstacle object were
predetermined, and they were laid along a line parallel with
the coronal plane of the body, 18 cm displaced from the edge
of the table on the subject’s side. The distance measured in
the table plane from the initial hand position (hand centroid)
to the obstacle was 25 cm, and from the obstacle to the target,
it was 20 cm (i.e., 45 cm from the starting hand position to
the target). Starting positions were indicated by markers on
the table. The two objects used for manipulation were IKEA
glasses, color tainted to enable automatic color-based seg-
mentation on video recordings. The wine glass (max. diame-
ter 7.5 cm, height 13 cm) was the object to be grasped (target),
and the champagne glass (max. diameter 5 cm, height 21 cm)
was the object to be avoided (obstacle).

2.3 Task

Grasping during all trials was conducted with the right hand.
The left hand remained on the table, to provide support for
the trunk to reduce the movements of the trunk in the coronal
plane. At the start of grasping, the subjects were instructed to
look at the colored patch mounted on the data glove. A sound
signal indicated the start of execution of grasping, instructing
the subject that they were free to unlock gaze from the colored
patch, mounted on the data glove, and start a trial. Once the
grasping motion was completed, the subject was instructed
to go to the starting position.

Each subject performed 8 trials of reaching for grasping
the target (wine glass). In all the trials, the obstacle (cham-
pagne glass) was present. The location of the champagne
glass was changed at each trial. Starting from 6 cm from the
edge of the table on the subject’s side, we progressively dis-
placed the champagne glass at each trial in increments of
4 cm along the midline of the desk (parallel to the sagittal
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Fig. 1 Experimental setup to record eye–arm–hand coordination from
human demonstrations in grasping tasks where the obstacle (dark blue
disk) is progressively displaced in each trial. Obstacle positions (super-
posed as transparent dark blue disks) are numbered from obs1-8, num-
bered with respect to the increasing distance from the subject. obs1 is
the starting position of the obstacle, 6 cm from the edge of the table. We
progressively displaced the champagne glass for each trial in increments
of 4 cm along the midline of the desk. obs4 is the position of the obstacle
which corresponds to the location of the object in the first experiment
(18 cm from the edge), and obs8 is the farthest position of the obsta-
cle (34 cm from the edge). In this trial, the human subject is grasping
the target object (wine glass) avoiding the obstacle (champagne glass)
(color figure online)

plane of the subject’s body in resting position). An alterna-
tive to this approach is to place the obstacle in a randomly
indexed position for every trial. By incrementally displac-

ing the obstacle in each trial, we implicitly force subjects to
change their previous obstacle avoidance strategy, whereas
with random displacements, the hand path which assured suc-
cessful obstacle avoidance in the previous trial (e.g., obstacle
in position 4) could be reused for a new trial (e.g., obstacle
in position 2), without much adaptation.

For all trials, subjects were instructed to perform manipu-
lation in a natural manner, without any additional instructions
that could affect their visuomotor behavior. The subjects had
one trial of practice before recording to ensure that they had
understood the instructions. Subjects were unaware of the
purpose of the experiment. Figure 1 illustrates our setup for
this experiment.

2.4 Apparatus

A head-mounted eye tracker designed in our laboratory, the
WearCam system (Noris et al. 2010), was used for gaze
tracking and for recording the scene as viewed from the
subject’s standpoint. The system uses two CCD cameras
to record a wide field of view (96◦ × 96◦). It uses sup-
port vector regression to estimate the gaze direction from
the appearance of the eyes. The system has an accuracy
of 1.59◦. The video and gaze positions from the WearCam
were recorded in 384×576 MJPEG format at 25 Hz. The
WearCam video from our experiment can be seen in Fig. 2.
The XSensTM inertial motion capture system was used for
recording the trunk motion and arm motion. The sensors were
mounted on the trunk, the upper arm, the forearm and the
hand. The system provided information about three joints of
trunk motion (roll, pitch and jaw), three joints that model
the shoulder (flexion–extension, abduction–adduction and
circumduction), two joints in the elbow (flexion–extension
and pronation–supination) and two wrist angles (abduction–
adduction and flexion–extension). The 5DTTM data glove,
with flexure-sensors technology, was used for recording the
finger joint angles motion. The data from the XSensTM IMU
motion capture sensors and the 5DTTM data glove were
recorded at 25 Hz.

The OptiTrackTM multi-camera system was used for
tracking the 3D positions of the hand and the objects on the
scene. The speed of data recording from the multi-camera
system was 150 Hz, and the accuracy was ∼2 mm.

2.5 Calibration and data processing

The WearCam system was calibrated at the beginning and at
the end of the task for each subject by using the procedure
explained in Noris et al. (2010). The state of the WearCam
was verified after each trial by checking its relative posi-
tion with respect to the head and observing the video that
was streamed. We checked the state of the multi-camera sys-
tem by observing performances of real-time detection of the
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Fig. 2 Snapshots from the WearCam video from the start of the task
(left) until the successful grasp completion (right), in a no-obstacle and
b obstacle scenarios. The cross superposed on the video corresponds to

the estimated gaze position. The color of the cross indicates whether the
gaze is the fixation state (red) or the saccade state (green (color figure
online))

objects in the workspace, and we recalibrated it when the
accuracy was not satisfactory. The data glove and the motion
capture sensors were calibrated after each trial by requesting
the subject to adopt an upright straight posture of the torso
and to perform a sequence of opening and closing fingers. The
state of the data glove and the motion capture sensors was ver-
ified by using an in-house GUI tool that shows body posture
of the subject by using real-time readings from the sensors.

All recorded signals were filtered with a preprogrammed
peak-removal technique that consisted in removing outliers
from sensor misreadings and replacing them with linearly
interpolated values between two closest valid readings. All
signals were re-sampled at 25 Hz. The synchronization and
parsing of signals were performed by using time stamps for
recorded signals and verified by observing recorded videos
on a frame-by-frame basis. The signals were smoothed with
a moving average filter. Piecewise spline fitting was done,
which did additional smoothing as well. Finally, we visually
assessed comparative plots of both raw signals, and synchro-
nized and smoothed signals in order to make sure that filtering
and smoothing did not distort general signal profiles.

We detected gaze fixations as all instances where the gaze
remained steady for at least 80 ms with gaze motion not
exceeding 1◦ of the visual field (Inhoff and Radach 1998;
Jacob and Karn 2003; Dalton et al. 2005). We say that a per-
son is looking at either of the two objects (target or obstacle)
if a gaze fixation is contained within the object blob, or it is
within a 5-pixel radius around the object blob. This 5-pixel

radius accounts for imprecision in the blob segmentation,
and in the estimation of the gaze position. It also accounts
for the fact that the “functional fovea” forms a 3-degree cir-
cular region around the center of the gaze, which means that
the visual system can obtain the high-quality visual infor-
mation fixating very close to the edges of interesting objects
(Rothkopf and Ballard 2009). We empirically obtained this
specific value of a 5-pixel tolerance by computing the average
closest distance between the estimated gaze point detected
in the fixation state (but outside the segmented blob) and the
boundary of the blob. This was done for a number of sub-
parts of the reach-for-grasp task for which it is well-known
that motoric actions impose strong demands for foveal visual
information about the object’s state. One of the sub-parts of
the task, when gaze fixations at the target object are expected
with a high probability, is the moment just before the wine
glass is grasped, as it is reported from previous studies that the
gaze consistently fixates grasping parts before fingers touch
the object (Brouwer et al. 2009).

2.6 Analysis of recordings from human trials

2.6.1 Visuomotor strategy and visuomotor coupling
in obstacle avoidance

Figure 3a reveals the obstacle avoidance strategy that the sub-
jects employed with respect to the position of the obstacle. It
can be seen that the subjects preferred to avoid the obstacle
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Fig. 3 Results from the follow-up experiment with human subjects
where the obstacle was progressively moved along the midline of the
table: a influence of the position of the obstacle on strategy to avoid
the obstacle from anterior/ventral side, b Influence of the obstacle posi-
tion on gaze fixations at the obstacle during manipulation, and c Safety
distances from the hand to the obstacle when avoiding it from anteri-
or/ventral side

from the anterior side if the obstacle was positioned between
the subject’s body and the line that is defined from the start-
ing position of the hand to the target object (obs1–4). If the
obstacle was positioned in the anterior direction from the line
(obs5–8), then the preferred obstacle avoidance strategy was
to veer from the ventral side when reaching to grasp the target
object. It can be seen that subjects are very consistent in their
obstacle avoidance strategy, except for the obstacle position
number 4 (obs4), for which 5 subjects avoided the obstacle
from the anterior side and 3 subjects veered from the ventral
side. Post hoc analysis of the recorded videos from the exper-
iment revealed that 3 subjects who veered for obs4 from the
ventral side kept the posture of torso more upwards than other
subjects during manipulation, hence for them veering from

the ventral side was a choice that required less effort. Results
presented here provide a basis for the computational model
of our obstacle avoidance strategy regarding the choice of
the preferred obstacle avoidance side, as discussed in Sect.
3.3.

An important part of the forward planning scheme is that
an object in the workspace is tagged as an obstacle if it is
estimated that the hand will collide with it. As the object
identified as the obstacle is the intermediary target for the
visuomotor system, it is expected that it will be visually fix-
ated during reaching. Figure 3b shows the proportion of trials
for each obstacle position in which the obstacle object was
visually fixated. It can be seen that the champagne glass was
always fixated when it was positioned on location 1 through 4
(obs1–4 in the figure). For position obs5, the obstacle was fix-
ated in only 80 % of the trials. The amount of fixation rapidly
drops to 20 % for position obs6, and to zero for positions obs7
and obs8. As expected, once the obstacle is sufficiently far, it
is no longer of interest. These results are consistent with Tre-
silian (1998), who argued that objects treated as obstacles by
the motor system are very likely to be visually fixated during
manipulation. Thus, our results indicate that the most likely
explanation of visual ignorance of the champagne glass when
it is placed at obs6–8 is that the visuomotor planning scheme
did not identify it as an obstacle.4

Based on the study by Dean and Brüwer (1994) and the
results of our human experiment where the safety distance
between the hand and obstacle was kept (Lukic et al. 2012),
we hypothesized that the control system would keep the same
safety margin of ∼0.14 ± 0.01 m across all trials where the
champagne glass was considered as an obstructing object
(namely for position 1–6). In the other position, this safety
margin would not be preserved as the obstacle would then be
ignored.

In Fig. 3c, we plotted the minimum distance (the mean and
the standard deviation) between the hand and the champagne
glass for all positions of the champagne glass. It can be seen
that the distance is quite consistent for obs1 to obs6 and starts
increasing for obs7 and obs8. These results also indicate that
an obstacle object positioned such that it does not obstruct
the original prehensile motion is not identified as an obstacle
and it is not treated as the intermediary target.

A two-way ANOVA (factors: subjects and a binary vari-
able that represents whether the obstacle was fixated/not fix-
ated in a trial) on the distance hand-obstacle reveals a sig-
nificant effect of the obstacle fixations factor [F(1, 63) =

4 At the end of all trials, we asked 2 subjects to try to reach for the
target when the champagne glass (obstacle) was present, but without
modification of the path (as in the no-obstacle setup). Unsurprisingly,
the arm/hand collided with the champagne glass always when it was
positioned at obs2, obs3, obs4, in 6 out of 8 trials the hand collided
for obs1 and obs5. The hand never collided when the obstacle was in
positions obs6, obs7 and obs8.
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78.3, p < 0.001], and no effect of the subject factor
[F(7, 63) = 0.47] and no factor interaction [F(7, 63) =
0.35]. These results reflect the fact that the distance between
the hand and the obstacle is significantly different when the
subjects visually fixate the obstacle, compared to the case
without gaze fixations at the obstacle object in a trial. We
interpret these results as a confirmation of the influence of
forward planning on visuomotor coordination. When forward
planning estimates that the object obstructs intended move-
ment, the motor system treats the obstacle as an intermediary
target. The gaze fixates the obstacle, and the hand keeps a con-
sistent safety distance from the object. If the object is placed
in a position where it does not obstruct movements (obs6–
8), it is not “tagged” as the obstacle. The visuomotor system
ignores objects that are irrelevant to manipulation: They are
not visually salient for the gaze (Land 1999; Hayhoe et al.
2003; Rothkopf et al. 2007; Rothkopf and Ballard 2009), and
the hand is controlled without keeping some safety distance
with respect to them.

We show that in the trials, where the location of the obsta-
cle is varied, gaze fixations at the obstacle indicate that the
arm keeps the safety distance from the obstacle. To further
analyze the coupling between the gaze and the arm when per-
forming obstacle avoidance, we investigated the influence of
the gaze on the velocity profile of the arm. Alberts et al.
(2002) and Hesse and Deubel (2010) showed that the veloc-
ity profile reaches usually a local minimum, when the arm
passes the obstacle. In our experiment, the obstacle seems
to influence the motion solely in trials when the gaze stops
at the obstacle. We hence would expect that the motion of
the arm would be slowed down at the obstacle only in these
trials when the gaze fixates the obstacle. In the absence of
the obstacle on the path toward the target, there should be
no need to visually guide the arm to avoid it. Figure 4 com-
pares the mean arm velocities across the trials in which the
gaze fixated the obstacle versus the trials where the gaze did
not fixate the obstacle. The observation of such a minimum
velocity confirms the hypothesis that the obstacle acts as an
intermediary target during movements (Alberts et al. 2002;
Hesse and Deubel 2010). In contrast, and as hypothesized,
the velocity profile in obstacle-free trials follows a regular
bell-shaped profile.

We apply a two-way ANOVA on the velocity profiles
recorded during trials with two factors: (a) an obstacle fixa-
tions factor representing the type of trial, coded as a binary
variable, to distinguish between the conditions in which
the obstacle was fixated versus not fixated; (b) a time bin
index (the total time of each trial is divided into 10 equal
time bins) to determine when, during a trial, an influence
of the presence/absence of the obstacle could be observed.
We observe a strong effect of the obstacle fixations factor
[F(1, 6199) = 109.9, p < 0.001]. This confirms that the
arm velocity profile is indeed significantly reduced when

Fig. 4 Arm velocity profiles, time normalized and averaged over all
subjects for two conditions (gaze fixated the obstacle or not). Stars
represent the time bins for which a post hoc t test shows significant
difference between the fixation conditions (p < 0.05)

passing the obstacle. There is also a significant effect of the
time bin factor [F(9, 6199) = 1849.44, p < 0.001], indicat-
ing that during the progress of the task arm velocity changed.
As expected, the interaction between the factors is significant
[F(9, 6199) = 41.44, p < 0.001] showing that the velocity
profiles in trials where the gaze fixates the obstacle changes
differently as the task progresses from the trials where the
obstacle is not fixated. We run post hoc t tests between the
fixated and not fixated trials to determine time bins for which
the velocity arm profiles differ between the two conditions
(Fig. 4).

The finding that the gaze fixations at the obstacle modu-
late the arm velocity profiles supports the hypothesis that the
gaze–arm coupling exists when humans perform prehension
with obstacle avoidance.

2.6.2 Gaze–arm correlations

To see whether the gaze–arm mechanism follows a quasi-
constant lag, we analyze trial-by-trial correlations between
the gaze and arm positions (computed as the Euclidean dis-
tance) with respect to the obstacle (in the first segment of
the movement) and correlations between the gaze and arm
distances with respect to the target (in the second segment
of the movement) as the task progresses. We plot the his-
togram of the Pearson’s correlation coefficient between the
gaze and the arm distances computed on a trial-by-trial basis
when approaching to the obstacle (Fig. 5a, b) and the target
(Fig. 5c, d). We see the prevalence of very high visuomotor
correlations for both objects. The distribution of trial-by-trial
correlation coefficient between the gaze and arm distances to
the obstacle has a sample mean of 0.917, and the 25, 50 %
(median) and 75 % percentile correspond to 0.876, 0.956
and 0.986, respectively. Similarly, the correlation coefficient
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Fig. 5 Correlation coefficient between the gaze and arm distances with
respect to the obstacle and the target computed on a trial-by-trial basis
when avoiding the obstacle. The motion is segmented into two parts:
from the starting position to the obstacle and from the obstacle to the
target and we compute the correlations for the corresponding parts of the

movements: a histogram of the gaze–arm correlation coefficient when
reaching the obstacle and b corresponding values for different fixated
obstacle positions, c histogram of the gaze–arm correlation coefficient
when reaching the target and corresponding values for different fixated
obstacle positions (d)

between the gaze and arm distances to the target has the sam-
ple mean 0.799, and the 25, 50 % (median) and 75 % per-
centile correspond to 0.721, 0.847 and 0.921, respectively.
A two-way ANOVA for the correlations to the obstacle (fac-
tors: subjects and obstacle position) does not reveal a sta-
tistical significance of the subject factor (p = 0.186) and
no effect of the obstacle position factor (p = 0.77). A two-
way ANOVA for the correlations to the target (factors: sub-
jects and obstacle position) shows no statistical significance
subject (p = 0.164) and no effect of the obstacle position
(p = 0.934) as well.

The correlations between the gaze and arm trajectories
when reaching for the obstacle are quasi-constant across trials
and subjects, and they are almost the same as those observed
for the target. These observations suggest that the eyes and
the arm might be driven to both the obstacle and the target
by the same mechanism of spatial coordination.

2.6.3 Fixation durations at the obstacle

We now present the results of our analysis of gaze fixation
durations at the obstacle. It is well established that the gaze
fixation durations, together with the position of the gaze, pro-
vide a measure of cognitive processing when performing an
ongoing task, being positively correlated with cognitive load
required for processing visual information (Rayner 1998;
Deubel et al. 2000; Jacob and Karn 2003; Hayhoe and Ballard
2005; Tatler et al. 2011). Gaze fixations in visually guided
manipulation allow very specific task-dependent acquisition
of visual information (Triesch et al. 2003). This selectivity
in information processing is reflected in the duration of fixa-
tions (i.e., a variability in fixation duration corresponds to a
variability in visual features being selectively acquired from
the early visual structures and further processed in the higher
cortical structures). Figure 6a shows the histogram of the
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Fig. 6 Distribution of gaze fixation durations at the obstacle: a his-
togram of fixation durations pooled from all subjects across all fixated
obstacle positions, b the mean and the standard deviations of times for
different fixated obstacle positions. In this plot, we show only fixations
times and the standard deviations for positions at which the obstacle is
fixated (obs1–6), and positions obs7, obs8 are omitted from the figure
because subjects never fixated the obstacle when it was placed at these
positions

fixation durations at the obstacle where the data are pooled
from all subjects. The distribution is positively skewed with
the sample mean fixation duration at 146.4 ms, where the 25,
50 % (median) and 75 % percentile correspond to 80, 120
and 160 ms, respectively. The predominance of short fixa-
tions observed in our experiment is a common feature of
a gaze fixation pattern in natural manipulation tasks (Land
1999; Hayhoe et al. 2003; Hayhoe and Ballard 2005), where
the average durations of fixations are shorter compared with
durations observed in picture viewing and reading (Rayner
1998; Henderson and Hollingworth 1999). In spite of the
predominance of brief durations of fixations in prehension
movements, it has been shown that they do support movement
control. Several studies have shown that visual information
necessary for movement control can be computed within a
single fixation (Ballard et al. 1995; Land et al. 1999). This

indicates quite efficient visual processing of some easy-to-
compute visual features required for online arm movement
control. A two-way ANOVA (factors: subjects and an index
variable that represents a position of the obstacle) shows no
significant effect of subject factor (p = 0.321) and no effect
of the obstacle position factor (p = 0.564, see Fig. 6b) indi-
cating that fixations times are consistent both across subjects
and obstacle positions. These results are in agreement with
the prior results of Johansson et al. (2001) who observed the
predominance of brief fixations at the obstacle. An interest-
ing result comes from one of their obstacle avoidance exper-
iments. When active gaze movements were inhibited during
obstacle avoidance, they observed a great variability in the
minimum distance kept between the obstacle and the hand.
We can speculate that the existence of these brief and quite
consistent fixation times reflect the consistency in processing
simple visual features of the obstacle in order to guide the
arm and hand, because the existence of brief fixation periods
does not allow to compute some complex features such as
in reading (Rayner 1998). Considering the predominance of
brief fixation times and an increased variability of estimating
the position of the obstacle, one of these features computed
is most likely the spatial position of the obstacle. The spatial
location of the obstacle can be rapidly computed from retinal
(foveal and parafoveal visual information) and extraretinal
information (the relative position of the eyes and the head)
available at the moment of fixation by the specialized neural
circuitry of the dorsal visual stream (Goodale and Haffenden
1998; Goodale 2011), and it is a necessary feature in order
to safely guide the arm around the obstacle.

In summary, this analysis of the duration of the gaze fix-
ations provides support to the view that the CNS computes
simple features during fixations at the obstacle in order to
aid obstacle avoidance. The spatial location of the obstacle
is likely one of the main features computed during these gaze
fixations on the obstacle.

2.6.4 Gaze and arm exit times from the obstacle

We provide a quantitative assessment of the relation between
the gaze exit time and the arm exit time from the obstacle.5 If
some coordination exists between the gaze and the arm when
performing obstacle avoidance, these two measures should
be correlated. Moreover, the magnitude of the lag between
them (i.e., the difference between the exit times of the gaze
and arm from the zone of the obstacle) should be kept rel-
atively tight compared with the overall time necessary to

5 The gaze exit time from the obstacle is defined as the time from the
beginning of a trial until the onset of a saccade away from the fixated
obstacle. The arm exit time is defined as the time from the beginning
of a trial until the moment when the arm reaches the closest distance to
the obstacle and starts moving toward the target.
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complete the movement. When plotting the onset time of
the gaze versus the arm onset time from the obstacle pooled
from all subjects (except for Subject 16), we can see from
Fig. 7a that these two variables are linearly correlated (Pear-
son’s correlation coefficient r = 0.897, p < 0.001). The
slope of the fit indicates that, on average, the gaze exits the
obstacle zone slightly earlier than the hand. Figure 7b shows
the histogram of the difference between the gaze exit times
and arm exit times, where positive values indicate that the
gaze exits the obstacle first. The distribution has the sample
mean at 220.78 ms, where the 25, 50 % (median) and 75 %
percentile correspond to 120, 200 and 280 ms, respectively.
A two-way ANOVA (factors: subjects and an index variable
that represents a position of the obstacle) shows no signif-
icant effect of subject factor (p = 0.18) and no effect of
the obstacle position factor (p = 0.549), indicating that the
difference between gaze and arm exit times was consistent
both across subjects and obstacle positions (Fig. 7c). The
predominance of positive differences gives evidence that the
gaze leaves the obstacle before the hand leaves it. However,
the median time of this lag corresponds to only 8.3 % of
the median time (2.4 s) needed to complete the whole reach-
ing movement with obstacle avoidance. This means that this
period of apparent asynchrony after the gaze switched toward
the target while the arm is in the obstacle zone takes only a
small fraction of the overall movements. For the remaining
91.7 % of the task, gaze and arm movements are synchro-
nously driven to the same goal (to the obstacle during the
first segment of movement, and toward the target after the
obstacle is passed). Land et al. (1999) observed in their tea-
making experiment that the gaze and arm movements are
highly coupled during execution of each subtask, but when it
comes to a transition toward a new target, the gaze switches
approximately 0.5 s before the movement of the arm to the
previous object is completed. Johansson et al. (2001) found
that the difference between the gaze exit times and arm exit
times was quite tight when executing sequential tasks, but the
gaze starts moving toward the new target slightly before the
hand does (∼100–200 ms), as well. The results were similar

6 The coordination of the gaze and arm exit times from the obsta-
cle for Subject 1 substantially differed from the rest of the subjects.
She has shown significantly different amount of the gaze–arm lag
when exiting the zone of the obstacle (mean 448 ms, SD 210.5 ms)
compared to the rest of the subjects (mean 220.78 ms, SD 135.75 ms)
and this difference achieved statistical significance [one-way ANOVA:
F(1, 39) = 10.93, p = 0.002]. A careful analysis of the video from the
eye tracker revealed her visuomotor strategy. Interestingly, her eye and
arm movements were normal and the gaze guided the arm in all trials.
However, she mostly used the coordination strategy where the gaze first
visits the obstacle and the moment when gaze switches toward the target
she started to move the arm, i.e., start of her arm movement was sig-
nificantly postponed. In all the other measures she did not significantly
differ from the rest of the subjects.

for a number of different movement sub-targets, including
the obstacle.7

From our results and from the two aforementioned stud-
ies, it is evident that the gaze and the arm exit times when
completing one movement segment and switching to a new
target are tight compared with the average duration of move-
ments. Nevertheless, it remains to be discussed why this lag
is not exactly zero meaning that the gaze and the arm switch
to the next target at exactly the same time. We here provide
two alternative explanations.

First, this lag may be due solely to the well-known delays
in processing the visuomotor control loop. Such delays are of
the order of 100–250 ms (Wolpert et al. 1998, 2001), which
amounts to the time delays in our experiments. Although
the dorsal visual stream is capable of performing fast visuo-
motor transformations, it is possible that switching toward
the new target is easier for the gaze than for the arm, due
to both the grater physiological complexity of the arm con-
trol system and increased delays resulting from longer neural
pathways. However, one could state an alternative explana-
tion that relates to the fundamental control strategy in the
CNS. Because the arm avoids the obstacle at some safety dis-
tance, and the experimental task is designed such that obsta-
cle position is kept constant during the trials, the “buffered”
position of the obstacle from the last fixation at the obsta-
cle is a very good reference point for the arm. Land and
Furneaux (1997) have shown that information buffering of
spatial coordinates acts as an adjutory mechanism when tran-
sitions between visuomotor sequential tasks occur. The arm
is at the moment when the gaze leaves the obstacle displaced
at some distance from to the obstacle and hence neither much
adjustment is needed nor very precise visual information is
needed to avoid the obstacle. This could be an efficient strat-
egy in terms of the attentional resources considering that
there is neither much surprise in the task nor the extreme
precision is required. This suggests that the CNS employs
“loose” transition between the subtasks, saving valuable, lim-
ited attentional resources, whenever prior information about
the task suggests that not much change in the workspace is

7 It is important to note that Johansson et al. (2001) focused most of
their analysis on gaze and arm timing with respect to entering or exiting
the so-called landmark zones. They defined the landmark zone as an
area with the radius 3◦ of visual angle (2 cm) in the work plane in all
directions from the corresponding objects in the workspace, including
the obstacle. They found that the gaze and arm have almost identical exit
times from the obstacle landmark zone. Considering that an approximate
overall vertical arm displacement in their experiment was 12 cm, these
landmark zones established a coarse representation of the workspace.
However, from the plots where precise spatio-temporal measures were
presented (Fig. 6A in their paper), it can be seen that the difference
between the median gaze and arm exit times at the exact location of the
obstacle differs approximately 200 ms in favor of gaze exiting first the
obstacle. Similar measures of the gaze–arm exit lag hold for the other
intermediary targets (e.g., support surface, target switch and bar tool).

123



Biol Cybern (2014) 108:223–248 235

Fig. 7 Gaze exit times versus arm exit times from the obstacle: a scatter
plot of gaze exit times versus arm exit times from the obstacle pooled
from Subjects 2–8 across all fixated obstacle positions, b histogram
of gaze–arm exit time differences from Subjects 2–8 across all fixated
obstacle positions, where positive values mean that the gaze exits the
obstacle zone before the arm, c the mean and the standard deviations of
gaze–arm exit time differences for different fixated obstacle positions.
In this plot, we show only fixations times and the standard deviations
for positions at which the obstacle is fixated (obs1–6), positions obs7–8
are omitted from the figure because subjects never fixated the obstacle
when it was placed at these positions

expected and not much accuracy is needed. In the task where
sequential movements had very high precision constraints by
means of the requirements of precisely touching a target, the
gaze exit times were almost always tightly synchronized with
the arm exit times (Bowman et al. 2009). The experiment of
Bowman et al. (2009) shows that the “tight” switching strat-
egy holds as well.

This analysis shows that the gaze exit times and arm exit
times from the obstacle are highly correlated, suggesting
strong visuomotor synchronization with respect to the obsta-
cle. The time difference between the gaze and the arm times
when switching from the obstacle is nonzero positive, but it
remains small compared with the overall task duration.

2.6.5 Summary

In summary, the mechanism of the eyes leading the arm is
observed in all trials. This study corroborates other findings
in the literature on a strong coupling between arm and eye
motion, where the eyes lead the arm in a systematic and coor-
dinated pattern. Additionally, it supports the hypothesis that
the obstacle may act as an intermediary target. We should
emphasize that this study is particularly instrumental in pro-
viding us with quantitative data onto which to ground the
parameters of the model, as we describe next.

3 Computational approach and system architecture

In the first part of this section, we introduce the principle
of robot control by using time-invariant DSs and the prob-
abilistic approach for estimating the parameters of the sys-
tem. Furthermore, we extend this formulation for modeling
and control of coupled dynamics. Finally, we show how the
basic model of eye–arm–hand coordination in the obstacle-
free grasping can be extended to handle the obstacle in the
workspace.

3.1 A single DS and GMM/GMR

The motion of our system is represented through the state
variable ξ ∈ R

d , symbolizing retinal coordinates represent-
ing the gaze state, Cartesian coordinates for the arm state and
finger joint angles for the hand state. N recorded demonstra-
tions of the task yield the data set

{
ξn

t , ξ̇n
t

}
, ∀t ∈ [0, Tn];

n ∈ [1, N ], of the robot’s states and state derivatives at par-
ticular time steps t , where Tn is the number of samples in the
nth demonstration. We posit that the recorded data samples
are instances of motion governed by a first-order autonomous
differential equation:

ξ̇ = f (ξ)+ ε (1)
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where f : Rd → R
d is a continuous and continuously dif-

ferentiable function, with a single equilibrium point ξ̇∗ =
f (ξ∗) = 0. ε is a zero-mean Gaussian noise. The noise term
encapsulates both sensor inaccuracies and errors inherited
from human demonstrations. Time invariance provides inher-
ent robustness to temporal perturbations. In order to achieve
robustness to displacement in the position of the target, the
robot’s state variable ξ is represented in the target’s reference
frame.

We use the Gaussian mixture model (GMM) to encode
dynamics in a probabilistic framework. The GMM defines
a joint probability distribution function P(ξn

t , ξ̇n
t ) over the

set of data from demonstrated trajectories as a mixture of K
Gaussian distributions (with πk , μk and Σk being the prior
probability, the mean value and the covariance matrix of the
kth Gaussian, respectively):

P (
ξn

t , ξ̇n
t

) =
K∑

k=1

πkN (ξn
t , ξ̇n

t ;μk,Σk), (2)

where each Gaussian probability distribution is defined as:

N (ξn
t , ξ̇n

t ;μk,Σk)

= 1
√

(2π)2d | Σk |
e−

1
2

(
(
[
ξn

t ,ξ̇n
t
]−μk

)T
(Σk )−1

([
ξn

t ,ξ̇n
t
]−μk

)
,

(3)

where the mean and the covariance matrix are defined as:

μk =
(

μk
ξ

μk
ξ̇

)

and Σk =
(

Σk
ξξ Σk

ξ ξ̇

Σk
ξ̇ ξ

Σk
ξ̇ ξ̇

)

. (4)

We use the stable estimator of dynamical systems (SEDS)
(Khansari-Zadeh and Billard 2011) to compute the GMM
parameters. The SEDS ensures global stability of the noise-
free estimate of the underlying dynamics, denoted as f̂ .

Taking the posterior mean estimate of P(ξ̇n
t | ξn

t ) yields

an estimate of ˙̂ξ = f̂ (ξ), a function that approximates the
model dynamics through a mixture of K Gaussian functions:

˙̂
ξ =

K∑

k=1

hk (ξ)
(

Akξ + bk
)

, (5)

where hk (ξ), Ak and bk are defined as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hk (ξ) = πkN (ξ ;μk ,Σk )∑K
i=1 π i N (ξ ;μi ,Σ i )

Ak = Σk
ξ̇ ξ

(Σk
ξξ )
−1

bk = μk
ξ̇
− Akμk

ξ .

(6)

A toy example with a 2-dimensional DS, which illustrates
the principles of encoding the demonstrated motion and robot
control by using a time-invariant DS, is presented in Fig. 8.

Fig. 8 Learning and reproducing a motion with a single time-invariant
DS. Given a set of demonstrations (red points), we build an estimate of
an underlying dynamics. The asymptotic stability of the DS guarantees
that the target (black star) will be reached. The DS, for a given robot
state, computes a velocity vector that moves the robot state toward the
target; hence, it can be illustrated with streamlines (blue lines) in the
state space that steer the robot state toward the target (color figure online)

3.2 Coupled dynamical systems

Our recent work (Shukla and Billard 2011) shows the ben-
efits of explicitly learning a coupling between the arm DS
and the finger DS over modeling motions of the physical sys-
tems with a single extended DS. The problem associated with
learning one high-dimensional dynamical model that guides
the motion of two physical systems is that an explicit follow-
ing of correlations shown in demonstrations between the two
coupled dynamics is not guaranteed. This could be a problem
if the robot is perturbed far from the region of demonstrated
motion, as the behavior of the dynamical systems may not
be correctly synchronized. The loss of coordination between
the reach and grasp components might lead to failure of the
overall prehensile task even when the individual dynamical
systems converge to their attractors. An approach adopted in
Shukla and Billard (2011) is to learn separately two dynam-
ics and then learn a coupling between them. This approach
ensures that the two DS will converge to their attractors, fol-
lowing a learned pattern of coordination between them. The
approach, where the arm and hand DS are learned separately
and then coupled explicitly, ensures that the behavior of the
two systems is correctly synchronized, even when the motion
is abruptly perturbed far from the motion recorded in human
demonstrations. For more details about general properties of
CDS, see Shukla and Billard (2011).

3.2.1 Extended CDS architecture and learning

We extend the original CDS architecture with in total five
building “blocks”: three dynamical systems and two cou-
pling blocks between them. They are organized in the fol-
lowing order: eye dynamics → eye–arm coupling → arm
dynamics→ arm–hand coupling→ hand dynamics, where
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Fig. 9 CDS-based robotic eye–arm–hand coordination. Left (green)
part of the figure shows how the CDS model is learned. Reproduction
of motion on the robot is shown on the right side of the figure (red
part). CDS consists of five building “blocks”: three dynamical systems
(the eyes, the arm and the hand) and two coupling models: eye–arm
coupling and arm–hand coupling (color figure online)

the arrow direction indicates the direction of control signals.
The gaze DS is the master to the arm DS, and the arm DS is
the master to the hand DS. There is a coupling block between
each master and its slave. The major assumption is that the
modulation signals between them flow only in the direction
from the master to the corresponding slave, i.e., the dynamics
of the slave is modulated with control signals coming from
its master, not vice versa. The master system evolves inde-
pendently of its slave. Figure 9 illustrates the architecture of
CDS, and the principles of learning and of the reproduction
of coordinated motion.

The state of the eyes is denoted with ξe ∈ R
2, the state

of the arm is ξa ∈ R
3, and the state of the hand is ξh ∈ R

9.
The eye state ξe is represented as the distance between the
position of the gaze and the position of a visual target in
retinal coordinates (i.e., retinal error). The arm state ξa is
represented as the distance in Cartesian coordinates between
the palm center and the final palm position with respect to the
target object. The hand state ξh is expressed as the difference
between the current hand configuration and the goal hand
configuration, i.e., hand configuration adopted when the tar-
get object is in the grasp. In other words, the attractors of the
eye, arm and hand DS are placed at the target projection in
the retinal plane, its Cartesian position in the workspace and
at the corresponding hand configuration when the target is
grasped, which is formally expressed as: ξ∗e = 0, ξ∗a = 0 and
ξ∗h = 0, respectively.

Our CDS model of eye–arm–hand coordination is built in
the following manner. We first learn separately joint probabil-
ity distributions that encode the eye dynamics P(ξ̇e, ξe | θe),

the arm dynamics P(ξ̇a, ξa | θa) and the hand dynamics
P(ξ̇h, ξh | θh). Then we learn the joint distribution for eye–
arm coupling P(Ψe(ξe), ξa | θea) and arm–hand coupling
P(Ψa(ξa), ξh | θah), where θe, θa , θh , θea and θah denote the
GMM parameters, and Ψe(ξe) and Ψh(ξh) denote the cou-
pling functions. GMMs that encode the dynamics of the eyes,
the arm dynamics and the hand dynamics are learned using
the SEDS algorithm, for more details see Khansari-Zadeh
and Billard (2011). GMMs that model eye–arm and arm–
hand coupling are learned with the expectation-maximization
(EM) algorithm (Bishop 2007).

Two open parameters, α and β, allow for an additional
fine-tuning of the characteristics of the slave response (a
and h subscripts denote whether they modulate arm or hand
motion, respectively). The speed is modulated with the scalar
α, and the amplitude of motion is tuned by changing the
value of the scalar β. Some robots can move faster than
humans, hence by using larger values for αa and αh , one
can exploit the robot’s fast reaction times. One can tailor the
amplitudes of reactions to perturbations, suitable for a robot
platform and a given task, by modulating the values of βa

and βh .
Figure 10 illustrates the CDS model learned from demon-

strations.

3.2.2 CDS reproduction

The DS that drives the eyes evolves independently in time
and leads the whole system. The eye state velocity ξ̇e is gen-
erated by conditioning the eye dynamics model on the current
eye state. The learned GMMs are conditioned by computing
the Gaussian mixture regression (GMR) function (Eq. 5), for
more about GMR see Sung (2004). The eye state variable
is incremented by adding the computed velocity multiplied
by the time step Δt to its current value ξe. The desired arm
state value ξ̃a is inferred from the eye–arm coupling model
by conditioning on the eye–arm coupling function Ψe(ξe).
The arm velocity ξ̇a is computed by conditioning the arm
dynamics model on the difference between the current and
desired value ξa − ξ̃a . The arm state variable is incremented
by adding the computed velocity multiplied by Δt to its cur-
rent value ξa . The desired hand state value ξ̃h is obtained
by conditioning the arm–hand coupling model on the arm–
hand coupling Ψa(ξa). The hand velocity ξ̇h is inferred by
conditioning the hand dynamics model on ξh − ξ̃h . Finally,
the hand state variable is incremented by adding the com-
puted velocity multiplied by Δt to its current value ξh . The
eyes, arm and hand reach commanded states, and the loop is
repeated until the target object is grasped.

Algorithm 1 shows how the robotic eye–arm–hand coor-
dination is performed with CDS.
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Fig. 10 Learned CDS eye–arm–hand coordination model: a eye
dynamics, b eye–arm coupling, c arm dynamics, d arm–hand coupling
and e hand dynamics. For simplicity of graphical representation, we
plotted the CDS model for one gaze position, one arm position and one
hand position. The eye state is presented with horizontal gaze coordi-
nate, denoted as ξ1

e .The arm state is presented with Cartesian coordinate

that corresponds to the direction of the major hand displacement in the
task, denoted as ξ2

a . The hand state is represented with thumb proximal
joint, denoted as ξ3

h . Superposed to the datapoints, we see the regres-
sion signal (plain line) and the different Gaussian distributions (elliptic
envelopes) of the corresponding Gaussian Mixture Models

Algorithm 1 CDS eye–arm–hand coordination

do
General :
− query frames from cameras
− read the current hand position from forward kinematics
− read the hand joints from encoders
− recognize and segment the target object
− estimate the position of the target in both retinal

and Cartesian coordinates
− compute ξe, ξa and ξh
Gaze :
if gaze is not at target then

ξ̇e ← E
[P (

ξ̇e | ξe
)]

ξe ← ξe + ξ̇eΔt
− look at new gaze point

end if
Eye − arm coupling :

ξ̃a ← E [P (ξa | Ψe (ξe))]
Arm :
if the arm is not at target then

Δξa ← ξa − ξ̃a

ξ̇a ← E
[P (

ξ̇a | βaΔξa
)]

ξa ← ξa + αa ξ̇aΔt
− solve inverse kinematics
− move the arm and the torso to new joint conf.

end if
Arm −−hand coupling :

ξ̃h ← E [P (ξh | Ψa (ξa))]
Hand :
if the hand is not at target then

Δξh ← ξh − ξ̃h

ξ̇h ← E
[P (

ξ̇h | βhΔξh
)]

ξh ← ξh + αh ξ̇hΔt
− move the hand to new joint conf.

end if
until object grasped

3.3 Eye–arm–hand coordination for obstacle avoidance

The extension of the CDS eye–arm–hand controller for obsta-
cle avoidance is grounded on our hypothesis that the obstacle

acts as the intermediary target for the visuomotor system in
reaching and grasping tasks, see Sect. 2.

In order to define which objects in the workspace are
obstacles for the realization of the intended reach and grasp
tasks, we use a planning scheme to estimate the consequences
of future actions. More specifically, the motion of the arm
toward the target is estimated by integrating the dynamics
of the extended CDS until each DS reaches its attractor. We
integrated only the eye–arm part of the whole CDS, ignor-
ing the hand’s DS, as our collision checking scheme is rel-
atively simple. The arm end-effector is modeled as a point
that moves along the estimated trajectory. Obstacle objects
in the workspace are modeled as cylinders. The dimensions
of a modeling cylinder should enclose the actual dimensions
of the object, but should also account and compensate for the
fact that the hand was modeled as a point. This is achieved
by expanding the modeling cylinder for some predetermined
fixed distance (we used 5 cm for both radius and height) from
the dimensions where it fits exactly around the object. By
taking this approach, we are able to reliably detect colli-
sions with the fingers in our forward planning scheme, even
though the hand is modeled as a point. The argument for
using this simplistic collision checking scheme is our attempt
to minimize additional computational load in the control
loop.

An object is tagged as an obstacle when the trajectory
of the end-effector intersects with a cylinder modeling the
object (certain collision), or when the cylinder lies within the
area where it is very likely that it will collide with the forearm
(very likely collision). For the motions, we consider here and
by observing the iCub’s body, we define this area as the slice
of the workspace enclosed by the estimated trajectory of the
end-effector and the coronal plane of the body.

As suggested earlier on, we consider the eye–arm–hand
coordination as a composition of two segments: a motion
from the starting position toward the obstacle and from the
obstacle toward the target object. Individual segments of
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coordinated motion (from the starting point to the obstacle,
and from the obstacle to the target) are performed in a manner
presented in Algorithm 1. In the first part of the task, the arm
DS moves under the influence of the attractor placed at the
via-point. The hand DS is driven by the attractor placed at the
hand configuration when the palm reaches the closest point
(along the trajectory computed ahead of time) to the obsta-
cle. Coupling the hand motion, with respect to the obstacle, is
advantageous because it provides a preshape of the hand such
that collisions between the fingers and the obstacle are eluded
during obstacle avoidance manipulation, even in scenarios
where the obstacle is suddenly perturbed during the ongoing
task (see Fig. 12). Our approach for adapting the reaching
hand motion to avoid obstacles is motivated by several stud-
ies that have reported significant effects of the obstacle on all
aspects of grasp kinematics (e.g., grip duration, grip aperture,
time to peak aperture and distance to peak aperture) (Saling
et al. 1998; Tresilian 1998; Mon-Williams et al. 2001). Tre-
silian (1998) interprets these effects as subtle adjustments
of the transport and grip components which support obsta-
cle avoidance. In their obstacle avoidance experiment, Saling
et al. (1998) observed a systematic high correlation of arm
transport parameters (transport time, time to peak velocity,
time to peak acceleration, etc.) with almost all grip kinematic
parameters (grip closure time, time to peak aperture, time to
peak opening velocity, grip opening velocity, etc.). This result
is a very strong indication that the arm and the hand remain
coupled even when obstacles cause considerable alterna-
tions of prehensile motion, compared with the no-obstacle
condition.

The goal hand configuration for passing the obstacle at the
closest distance is obtained by observing the average hand
configurations of our subjects in obstacle avoidance trials.
We adapted, with slight modifications, the computed average
hand configuration to match the kinematics of the iCub’s
hand. We did a similar procedure to obtain the goal hand
configurations with respect to the target object.

The position of the via-point is determined with respect to
the obstacle, such that its displacement vector from the obsta-
cle position is oriented in either an anterior or ventral direc-
tion, for the length that corresponds to some safety distance
dsa f ety between the centroid of the palm and the obstacle.
We choose the direction of a displacement of the via-point
(anterior or ventral) to correspond to a side of the obstacle
where a collision is estimated to occur. In the second part of
the task, after the obstacle is passed, CDS is driven toward
the object to be grasped. As mentioned before, hand adapta-
tion, with respect to the obstacle, serves to support collision
avoidance; whereas hand adaptation, with respect to the tar-
get, assures coordinated and stable grasping of the target as
the arm reaches it. Predefining the safety distance at which
the hand passes the obstacle is based on the study of Dean and

Brüwer (1994) who found that participants kept a minimum
distance between the pointer and obstacles when perform-
ing planar pointing arm movements. In our human study,
a measured mean value of this safety distance is 0.142 m
with a small value of standard deviation 0.01 m, which can
be considered as a consistent observation of the mechanism
employed by the motor control system to keep the limb at
the safety distance from obstacle, as presented in Dean and
Brüwer (1994).

The arm end-effector passing through the via-point at
dsa f ety from the obstacle and hand adaptation, with respect
to the obstacle, ensures that the hand will not collide with
the obstacle. However, the end-effector obstacle avoidance
mechanism, we just described, considers solely collisions
with the end-effector and hence ignores collision with the
rest of the arm. We benefit from controlling the arm in Carte-
sian coordinates and from having an efficient inverse kine-
matics (IK) solver (Pattacini et al. 2010) that is able to han-
dle two tasks: to find suitable joint configuration (primary
task) and to keep solutions as close as possible to a desired
arm rest posture (secondary task). By having the IK solver
that can solve for reaching the Cartesian position by trying
to keep joints close to a given rest posture, we can modu-
late the robot’s motion in the operational space by provid-
ing joint rest postures suitable for obstacle avoidance. Our
approach to the problem of finding suitable joint postures is
to learn these joint postures from human demonstrations, as
human demonstrations in obstacle avoidance tasks encode
inherently favorable joint configurations.

Here we learn correlations between the joints that pro-
vide major contributions in obstacle avoidance manipulation
and arm position in the operational space. The joints chosen
to define the rest position are torso pitch and yaw, and the
shoulder joints corresponding to adduction–abduction and
flexion–extension. Hence, we proceed with learning the joint
probability distribution P(q, x), where q ∈ R

4 denotes the
joint rest posture and x ∈ R

3 denotes the Cartesian position
of the arm.

An adaptation of the arm posture for obstacle avoidance
is done in the following manner. When reaching for a visuo-
motor target (the obstacle object or the grasping object), the
CDS system infers the state velocities, as explained earlier.
By integrating the arm velocity, we obtain a new arm state.
By taking the posterior mean estimate of P(q | x), we infer
a favorable rest posture. Finally, the IK solver optimizes for
joint angles that correspond to the desired Cartesian posi-
tion, while trying to keep the four joints as close as possible
to the suggested values from the model. Figure 11 illustrates
our obstacle avoidance scheme. While this does not ensure
that the robot’s arm will never collide with the obstacle, in
practice, we found that this resulted in a successful obstacle
avoidance motion.
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Fig. 11 A scheme that illustrates forward planning and obstacle avoid-
ance. After forward integrating the CDS model, an obstacle object (dark
blue disk) is identified as an obstructing object if the estimated arm
motion (dashed orange line) intersects with a cylinder (dark blue cir-
cle) that models the obstacle (certain collision), or when the cylinder
lies within the area where it is very likely that it will collide with the
forearm (very likely collision). If the obstacle object is identified to
obstruct the intended motion, then the motion of the visuomotor sys-
tem is segmented: from the start to the obstacle and from the obstacle
to the target. When reaching to avoid the obstacle, the arm DS moves

under the influence of the attractor placed at the via-point with respect
to the obstacle (dark blue star). The direction of a displacement of the
via-point (anterior or ventral) is chosen to correspond to a side of the
obstacle where a collision is estimated to occur: anterior side (a) or
ventral side (b). If forward planning scheme does not detect collision
with the obstacle object (c), the visuomotor system is driven to the target
object, i.e., the obstacle is ignored. The light red star represents the goal
arm position with respect to the target object (light red disk). Figures
show execution of eye–arm–hand coordination from the start of the task
(left) until the successful grasp completion (right) (color figure online)

3.4 Robot vision system

The requirements for real-time adaptation to perturbations
in dynamic environments impose the demand for real-time
update of information obtained from the sensory system. In
order to compute the position of objects in every cycle of
the control loop, the total time devoted to visual computa-
tion in our system has to be reduced to the order of ∼10 ms
for both cameras in the binocular setup of the iCub robot.
This is a very hard constraint to achieve in a robotic sys-

tem, even by using modern computing hardware with multi-
core processing units. In order to achieve the aforementioned
requirement, we designed the visual system to use minimal
computational resources.

We use an image processing scheme similar to the one
proposed in Metta et al. (2004). We convert 320×240 images
streamed from the cameras to 150×150 log-polar images. By
transforming the images to the log-polar domain, we reduce
the amount of visual information to be processed, affect-
ing neither the field of view nor the image resolution at the
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Fig. 12 Experiments of visually guided reaching and grasping in the
iCub’s simulator, with the presence of the obstacle and with perturba-
tions. The obstacle is an intermediary target for the visuomotor system,
hence obstacle avoidance is divided in two sub-tasks: from the start
position to the obstacle (via-point) and from the obstacle to the grasp-
ing object. Figures show execution of eye–arm–hand coordination from
the start of the task (left) until the successful grasp completion (right).
Figures in the upper row (a) present a scenario when the target object
(red champagne glass) is perturbed during motion (perturbation occurs
in the third frame from left). Visuomotor coordination when the obstacle

is perturbed during manipulation is shown in the bottom row (perturba-
tion in the second frame). The orange line shows the trajectory of the
hand if there is no perturbation. The purple line is the actual trajectory
of the hand from the start of unperturbed motion, including the path of
the hand after perturbation, until successful grasping. In both scenar-
ios (target perturbed and obstacle perturbed), the visuomotor system
instantly adapts to the perturbation and drives the motion of the eyes
and the arm and the hand to a new position of the object (color figure
online)

fixation point. Besides the computational benefits, log-polar
mapping is biologically plausible because it approximates the
cone distribution in the retina and the mapping from the cone
cells to the primary visual cortex of primates (Javier Traver
and Bernardino 2010). The image processing is done in the
RGB color space, by using a pixel-by-pixel color segmenta-
tion algorithm. The same procedure is applied for detection of
the target and the obstacle, thus for simplicity of explanation,
we will here use the term “object.” After the images are seg-
mented, we apply binary morphological operations to remove
outliers, and we group segmented regions in blobs. The cen-
troid of the biggest blob in each image is back-projected
from the log-polar domain to the original image coordinates.
The distance between the principal point of one camera (we
chose the right camera) and the center of the object blob in
the visual field represents the eye state ξe, which is the input
to the gaze DS. The position estimation of the objects in
the workspace is done by triangulating the centroids of the
blobs for the left and right camera. The other camera is con-
trolled in a coordinated manner such that both cameras have
a fixation point at the estimated head–object distance in the
Cartesian coordinates. The distance between the hand and
the estimated position of the object represents the arm state

ξa that is the input to the arm DS. Algorithm 1 illustrates the
flow of visuomotor information processing in our model.

The decreasing visual acuity from the fovea to the periph-
ery implies that we get a more precise estimate of the object
position at the point of fixation, and the less accurate estima-
tion in the periphery of the visual field. Because we control
the gaze and embed the gaze state to the motor control mecha-
nism, we can inherently and efficiently deal with imprecision
in the position estimation associated with non-uniform visual
acuity in log-polar images. The CDS drives the gaze, arm and
hand toward the object using the pose information (in retinal
and Cartesian coordinates) obtained from the vision system.
As the gaze moves toward the object in every cycle of the
control loop, we update the system with a more precise re-
estimate of the object position. Before the hand comes close
to the object, the gaze fixates the object, and we get the pre-
cise information about the object position, which is crucial
for successful grasping and obstacle avoidance. Our time-
independent CDS automatically adapts to the re-estimate of
the object positions obtained from such non-uniform resolu-
tion processing scheme.

For the experiments with the real iCub robot, we use
the Viola–Jones detector (Viola and Jones 2001) in addi-
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tion to the basic color-based segmentation. We use the addi-
tional detector in order to eliminate false-positives detections
that are a common consequence of color-based segmenta-
tion in an unstructured workspace. In other words, we use
this detector to verify our color-based detection. The Viola–
Jones detector operates on the images streamed from the cam-
era, not in the log-polar domain. When both detectors agree,
we update information about positions of the objects in the
workspace, when the detectors do not agree we rely on the
previous agreed position. Because the Viola–Jones detector
is more computationally demanding, we run it once in every
4 cycles of the control loop.

4 Results

4.1 Model learning

We learn the CDS model by using the data gathered during
the human trials, described in Sect. 2. The parameters of the
SEDS algorithm (i.e., maximum number of iterations and
optimization criterion) and the number of Gaussian mixtures
are determined by using a grid-search with 10-fold cross-
validation on the RMSE between the recorded motion and
retrieved trajectories from the model. The list of parameter
combinations is sorted in ascending order with respect to a
value of the RMSE. For each combination of parameters, we
visually assess regression plots retrieved from the model.
This method is necessary because the small value of the
RMSE between the trajectories retrieved from the model and
the demonstrated trajectories does not necessarily imply that
the inferred paths always have natural-looking and smooth
profiles. In other words, the measure of the RMSE provided
an initial pool of good candidates, whereas we made the final
choice based on the smoothness and the “natural” profile of
retrieved paths. The plots for the model we chose are repre-
sented in Fig. 10.

We use Ψe(ξe) =‖ . ‖, Ψa(ξa) =‖ . ‖ and the values
of parameters αa, αh, βa and βh are set to 1. For the choice
of the eye–arm coupling function, we tested performances
of four different coupling functions: (1.) Ψe(ξe) = ξ2

e (ver-
tical gaze coordinate), (2.) Ψe(ξe) = ξ1

e (horizontal gaze
coordinate), (3.) Ψe(ξe) = ξe (both gaze coordinates) and
(4.) Ψe(ξe) =‖ . ‖. We used the average absolute point-
to-point differences from all demonstrated trajectories and
retrieved trajectories from the models as a measure of how
well these coupling functions perform. The best results are
obtained by the norm coupling function. Our motivation for
using ‖ . ‖ function for arm–hand coupling is based on our
previous work in hand–arm coupling, see Shukla and Bil-
lard (2011). Our choice of these particular coupling func-
tions can be considered biologically plausible. The choice of
‖ . ‖ for arm–hand coupling is supported by the physiolog-

ical studies (Haggard and Wing 1991, 1995) that reported
strong coupling of the hand preshape with respect to the
distance from the target object in reach-for-grasping tasks.
The choice of ‖ . ‖ for eye–arm coupling function is sup-
ported by the fact that retinal distance in foveated vision
directly affects the quality of visual information that is used
by the motor system for planning and performing manip-
ulation, as visual acuity decreases with distance from the
fovea (Land et al. 1999; Land 1999; Liversedge and Findlay
2000; Hayhoe and Ballard 2005). All α and β parameters are
set to 1 in order to ensure an unaltered reproduction profile
of visuomotor coordination learned from recorded human
demonstrations.

4.2 Model validation for robot control

We conduct a set of experiments with the iCub robot to
evaluate the performances of our approach for the visuo-
motor coordination. Due to hardware constraints of the real
robot, we perform perturbation experiments and experiment
with obstacle avoidance in the iCub simulator. Unperturbed
obstacle-free reaching and grasping experiments are con-
ducted with the real robot.

In our experiments, we validate the ability of the CDS
controller on the iCub robot to reproduce the same task of
visually guided obstacle-free reaching and grasping similar
to the one that humans performed in our trials, together with
the advocated robustness of the model to perturbations and
the ability to handle the obstacles in the workspace.

We present here the most demanding experiment we per-
form to validate our approach. In each run, the object to be
grasped is placed at a randomly computed position within a
15 cm cube in the workspace. Figure 12 shows an obstacle
scenario where we test coordinated manipulation with sud-
den perturbations of the target object and the obstacle, respec-
tively. To introduce perturbations on-the-fly during reaching
for the target, we implement a pre-programmed routine in the
simulator to abruptly change position of the object (target or
obstacle) when the hand approaches it at some predefined dis-
tance, which varies from trial to trial from 0.09 m to 0.15 m.
The robot’s end-effector avoids the obstacle when reaching
for grasping in two task segments: (1) start position→ via-
point at dsa f ety from obstacle and (2) via-point at dsa f ety

from obstacle→ grasping object. This safety distance in the
human trials is dsa f ety = 0.142 ± 0.01 m. We rescale the
safety distance from human trials by 2, because the dimen-
sions of the iCub are similar to those of a 3.5-year-old child;
hence, it has a smaller workspace than our adult subjects.
Once the obstacle is reached, the target for the visuomotor
system is changed, and the eye–arm–hand motion is directed
to the object to be grasped. The IK solver adapts the arm rest
posture to be as close as possible to the output inferred from
the model learned from human demonstrations. Figure 13
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Fig. 13 A comparison of human visuomotor coordination and visuo-
motor behavior of the real robot. The visuomotor coordination profile
the robot produces (b) is highly similar to the pattern of coordination

that was observed in the human trials (a). The figures from left to right
show snapshots of the execution of eye–arm–hand coordination from
the start of the task (left) until the successful grasp completion (right)

shows how the human subjects ignore the obstacle when it
does not obstruct the intended motion, and the same pattern
produced by our visuomotor robotic controller.

Because the eye state is the distance between the position
of gaze and the position of a visual target in retinal coordi-
nates, and the arm state is represented with respect to the posi-
tion of the object in the Cartesian space, both variables are
instantly updated when the perturbation occurs. The DS of the
eyes adapts independently to the perturbation. The behavior
of the DS of the arm is modulated via the eye–arm coupling
function, and the hand DS is modulated via the arm–hand
coupling. Such modulation ensures that the learned profile
of eye–arm–hand coordination will be preserved and that the
hand will re-open as the object is perturbed away from it, see
Fig. 12. Besides the anthropomorphic profile of visuomotor
coordination (Fig. 14), the gaze–arm lag allows for enough
time to foveate at the object, to re-estimate object’s pose and
to compute suitable grasp configuration for the hand before
it approaches too close to the object.

In setups where the arrangement of the obstacle and tar-
get differs to a moderate extent compared the setup used
in the human demonstrations, the robot successfully grasps
the target object, in both obstacle avoidance and no-obstacle
tasks, as shown in the experiments presented in the paper
and in the accompanying online video. Scene setups that are
significantly different often imply a substantially different
approach of the hand to the target object than the one seen
in the demonstrations. In our case, this occasionally results
either in collision of the fingers with the object prior to grasp-
ing or incomplete closure of the fingers on the target object.

This is not due to our gaze–arm–hand controller, but rather
is due to the fact that we rely on a predefined set of the final
hand configurations obtained from human trials. With mod-
erate changes to how the hand approaches an object with
complex geometry, like the champagne glass in our exper-
iment, the set of stable hand configurations sometimes can
change significantly. In order to increase the rate of grasp-
ing in scenarios that substantially differ from the setup in
the demonstrations, we would need to use one of the robotic
grasp synthesis algorithms to generate the final hand config-
uration (Sahbani et al. 2012).

The experiments presented here, with several additional
experiments on the real robot and in the simulator, are avail-
able online at http://lasa.epfl.ch/videos/downloads/Lukic
BiologicalCybernetics2012.mp4.

5 Discussion

Our approach to the problem of controlling robotic eye–arm–
hand coordination takes inspiration in the pattern of visuo-
motor coordination displayed by humans. The CDS control
framework drives the gaze, the arm and the hand in a syn-
chronous manner. This approach harvests the major bene-
fits of encoding motion with time-invariant DS: robustness
to spatio-temporal perturbations and instant re-planning of
motion when perturbations occur. The CDS global stability
guarantees that the eye, the arm and the hand will reach the
target in retinal, operational and grasp space, respectively,
even when spatial and temporal perturbations are present.
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Fig. 14 The visuomotor system ignores an obstacle object when it is
not relevant for manipulation, i.e., the obstacle object that does not
affect intended motion is not visually salient for the gaze. Analysis of
the WearCam recordings from the human trials (a) reveals that sub-
jects do not fixate the obstacle object (blue champagne glass) in the
workspace when it does not obstruct intended reaching and grasping

movement. Our CDS eye–arm–hand model shows the same behavior
(b), ignoring the obstacle object (green cylinder), when the forward
planning scheme estimates that the object does not obstruct prehensile
movement. Snapshots show task from the start (left) until completion
of the successful grasp (right) (color figure online)

5.1 Discussion on controller architecture

Our approach uses human demonstrations, which provide a
model to guide the dynamics of motion as in open-loop visuo-
motor transformation techniques (Hoffmann et al. 2005;
Natale et al. 2005, 2007; Hulse et al. 2009). A stable model
of the high-dimensional visuomotor coordination can be
learned by using only several human demonstrations, mak-
ing it a very efficient, fast and intuitive way to estimate para-
meters of a robot visuomotor controller. The generalization
abilities of the CDS framework ensure coordinated behav-
ior of the visuomotor controller, even when the motion is
abruptly perturbed outside the region of the provided human
demonstrations. Similar to visual servoing (Espiau et al.
1992; Mansard et al. 2006; Natale et al. 2007; Chaumette
and Hutchinson 2008), it performs a closed-loop control, and
hence, it ensures that the target can be reached under pertur-
bations. Our approach inherently combines learned visuomo-
tor transformations and visual servoing characteristics, thus
it eliminates the need to rely on an external ad hoc mech-
anism for switching between the two modes (Natale et al.
2007). Coupling profiles for eye–arm and arm–hand systems
can be modulated, thus allowing us to adjust the behavior
of each slave system with respect to control signals flowing
from the corresponding master system. Our eye–arm–hand
controller drives the hand motion in synchronization with the

gaze and arm motion. This provides a means to build a com-
pact model of the visuomotor coordination, in a biologically
inspired manner, without pre-programming the hand control
policy. The major building blocks that constitute the archi-
tecture of our controller are the gaze DS, the arm DS and the
hand DS. These blocks are coordinated by using the gaze–
arm and the arm–hand coupling functions. Each coupling
function transfers the information about the state of a master
controller to signals that modulate the behavior of a slave
controller. The gaze controller is the master controller of the
arm, and the arm controller is the master of the hand. This
control architecture is supported with the existing evidence
of gaze leading arm motion (Abrams et al. 1990; Johansson
et al. 2001; Hayhoe et al. 2003) and the existing reports on
coupling between the transport and the grip component in
the studies of prehensile motion (Haggard and Wing 1991,
1995).

5.2 Discussion on obstacle avoidance

We hypothesized that the visuomotor system treats the obsta-
cle as an intermediary target. Evidence of a systematic pattern
that the gaze precedes and leads the motion of the arm through
the different landmarks, defining the stages of a sequential
task, supports this hypothesis (Johansson et al. 2001).
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We extended our original framework CDS (Shukla and
Billard 2011) for visuomotor coordination on obstacle avoid-
ance such that the task is executed in two segments: from the
start to the obstacle and from the obstacle to the target.

We took inspiration in the forward planning mechanisms
(Wolpert et al. 1998, 2001) in the design of our approach
for estimating the consequences of planned arm movements,
specifically to detect objects that obstruct the intended reach-
for-grasp actions and to identify them as obstacles.

In our obstacle avoidance mechanism, the gaze is as a con-
stituting element of the overall visuomotor mechanism, and
it is actively controlled and intermingled with manipulation
requirements and plans.

During obstacle avoidance, the primary modulation of the
arm is controlled in the operational space, which, together
with controlled hand preshape, ensures that the end-effector
avoids the obstacle. The rest postures suitable for obstacle
avoidance are provided to the IK solver. We learn these rest
postures from the data gathered when the subjects avoid the
obstacle in prehensile motion.

It is important to mention that our obstacle avoidance
scheme does not have the full strengths of methods such
as rapidly exploring random trees (RRTs) (Kuffner and
LaValle 2000) for reaching in very complex workspaces, but
it endows the visuomotor system with instant reactions to
perturbations, thus providing means for the rapid handling
of a relatively simple obstacle in the workspace.

5.3 Future work

In our controller, the flow of control signals is monodirec-
tional and it is oriented in the direction eyes→ arm→ hand.
However, some studies report that the control signals also
flow from the hand to the eyes (Fisk and Goodale 1985;
Neggers and Bekkering 2000), and from the hand to the arm
(Timmann et al. 1996). Hence, it could be worth addressing
the potential benefits of modeling and using bidirectional
visuomotor control schemes in robotics. Having the control
signals flow in the opposite direction, hand→ arm→ eyes,
is useful, for instance, to trigger a reactive motion of the
gaze and the arm when facing an unexpected displacement
of the hand, such as when the hand inadvertently touches an
obstacle.

We present a model of coupling between the gaze move-
ments and the arm–hand motion. Although overt movements
of the eyes leading the arm represent a dominant visuo-
motor pattern in natural tasks, several physiological studies
have shown that humans can perform pointing and grasp-
ing tasks toward extrafoveal targets with the eye move-
ments suppressed (Prablanc et al. 1979; Abrams et al. 1990).
The physiological studies and corresponding robotic models
(Schenck et al. 2011) have reported significantly decreased
success in grasping extrafoveal targets compared with grasp-

ing foveated targets. In the study of Johansson et al. (2001)
where eye movements were prevented during manipulation
with obstacles, the overall performances degraded, which
was observed in frequent collisions with the obstacle. The
reduced performances associated with grasping extrafoveal
targets are not desirable for robotic applications, where the
maximal efficiency of tasks is one of the primary goals. How-
ever, we believe that modeling of grasping of extrafoveal tar-
gets is an important issue to address in order to have more
biologically plausible computational models. The main chal-
lenge in using the programming-by-demonstration frame-
work for modeling coupling between covert attentional spot-
light shifts and the arm movements is the methods of measur-
ing allocation of covert visual attention during manipulation
tasks. Measuring covert attentional shifts can be achieved
either by analyzing modulation of microsaccades for map-
ping them to shifts of covert attention (Engbert et al. 2003)
or by relying on a variant of a secondary discrimination task,
which is a more common technique (Baldauf and Deubel
2010). These methods can indicate the position of the covert
attention spotlight in the visual field with a rather coarse res-
olution, which at this moment represents a major obstacle for
achieving this goal. Current work in our group is investigating
the possibility to embed covert attention in the mechanism
of visuomotor coordination.

In our robotic implementation, we select the centroid of
the object (obstacle and target) as the fixation point for the
gaze. However, this simplified scheme of selecting the fixa-
tion points at the object might be upgraded in order to improve
both biological plausibility and the computational benefits of
using active vision. From physiological studies, it is known
that the gaze fixations are driven to regions of the target con-
tact points in grasping, whereas in viewing tasks, the gaze is
directed to the object’s centroid (Brouwer et al. 2009). An
explanation for this result is that fixations during grasping are
focused on the object’s contact parts because the eyes provide
visual feedback for motor control of the fingers in grasping
scenarios. These contact parts are mostly close to the bound-
ary of an object. The gaze is more likely to fall on the edges of
obstacles, in both manipulation tasks (Johansson et al. 2001)
and in navigation (Rothkopf and Ballard 2009), which can
be explained by taking visual information for path planning
for obstacle avoidance. We observed the same effects in our
human trials. However, at this point, there are not yet com-
putational models that tackle problems of selecting optimal
fixation points at the target object and obstacles. We believe
that it would be tremendously useful to tackle this scientific
problem. Recent work on active segmentation might offer the
computational ground for tackling these problems (Mishra et
al. 2009a,b).

Furthermore, in this work, we assumed a constant value
for the safety margin dsa f ety between the arm’s via-point
and the obstacle. In our robot experiments, we used rescaled

123



246 Biol Cybern (2014) 108:223–248

value of the safety distance measured from human trials in
experiment 1. The results of experiment 2, when the obstacle
is moved along the midline of the desk, indicated that this
safety distance was kept quasi-constant across subjects, and
for all trials where the hand would have touched the obstacle
if moving with the regular pattern of motion. However, there
is no reason to think that this safety margin is a constant, pre-
set factor. Some studies showed that this safety margin was
modulated by the speed of movement (e.g., faster prehen-
sile movements are associated with a greater safety distance)
(Tresilian 1998; Mon-Williams et al. 2001) and “a variety of
psychological factors related to the cost that a person attaches
to a collision” (Tresilian 1998). It would be of great impor-
tance, both for motor control science and robotic obstacle
avoidance applications, to model this safety distance, rather
than to consider it as a preset factor (Bendahan and Gorce
2006). One approach to model this safety margin is to esti-
mate it from the data recorded from human demonstrations
by varying task conditions across trials (e.g., shape and size
of an obstacle, relative positions of objects in the workspace,
required speed of manipulation, task and objectives) by using
machine learning techniques.

Robotic engineers have studied avoidance of multiple
obstacles for a long time (Khatib 1986; Lumelsky and Skewis
1990; Simmons 1996; Kavraki et al. 1996; Kuffner and
LaValle 2000), but it is rather surprising that only a small
number of studies in motor control, physiology and visual
science studied human manipulation in tasks where sev-
eral obstacles occupy the workspace. In their study, Mon-
Williams et al. (2001) reported on the greater effect of two
obstacles on the movement time, maximum grip aperture and
peak speed compared with the one-obstacle case. Rothkopf
and Ballard (2009), who studied human navigation in an
immersed graphic environment, reported that subjects fixate
the edges of obstacles for the purpose of planning a walking
path for obstacle avoidance. Aivar et al. (2008) provided evi-
dence that fast arm responses to the displacement of obstacles
are triggered by a reaction to retinal motion of moving obsta-
cles. Many important questions still remain unanswered. Do
humans assess multiple obstacles in a sequential manner,
assigning priorities to obstacles according to an estimated
risk of collision, or simultaneously? How are the eyes, the
arm and the hand coordinated when handling multiple obsta-
cles in reaching and grasping tasks? How does the human
visuomotor and planning systems react when one or several
obstacles are perturbed in the workspace during prehensile
tasks? Studying visuomotor coordination in natural prehen-
sile tasks with several non-target objects in the workspace
could provide more insights into these questions.

5.4 Conclusion

Our human study contributes a quantitative assessment of the
eye–arm coordination when performing obstacle avoidance,
an issue which has received little attention to date. Precisely,
it demonstrates that obstacle avoidance is included in forward
planning and modulates the coordinated pattern of eye–arm
motion in a distinctive way. The results of the study: (a) quan-
tify the phase relationship between these gaze and the arm
systems, so as to inform robotic models; and (b) provide
insights how the presence of an obstacle modulates this pat-
tern of correlations. We show that the notion of workspace
travelled by the hand is embedded explicitly in a forward
planning scheme that allows subjects to determine when and
when not to pay attention to the obstacle. Importantly, to
complement these observations, we provide a computational
model of both the eye–arm–hand coupling and the modula-
tion of the obstacle in this forward planning scheme.
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