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Abstract Hepatic ischemia/reperfusion (I/R) injury is a

common clinical challenge. Despite accumulating evidence

regarding its mechanisms and potential therapeutic

approaches, hepatic I/R is still a leading cause of organ

dysfunction, morbidity, and resource utilization, especially

in those patients with underlying parenchymal abnormali-

ties. In the oncological setting, there are growing concerns

regarding the deleterious impact of I/R injury on the risk of

post-surgical tumor recurrence. This review aims at giving

the last updates regarding the role of hepatic I/R and liver

parenchymal quality injury in the setting of oncological

liver surgery, using a ‘‘bench-to-bedside’’ approach. Rele-

vant medical literature was identified by searching PubMed

and hand scanning of the reference lists of articles con-

sidered for inclusion. Numerous preclinical models have

depicted the impact of I/R injury and hepatic parenchymal

quality (steatosis, age) on increased cancer growth in the

injured liver. Putative pathophysiological mechanisms

linking I/R injury and liver cancer recurrence include an

increased implantation of circulating cancer cells in the

ischemic liver and the upregulation of proliferation and

angiogenic factors following the ischemic insult. Although

limited, there is growing clinical evidence that I/R injury

and liver quality are associated with the risk of post-sur-

gical cancer recurrence. In conclusion, on top of its harmful

early impact on organ function, I/R injury is linked to

increased tumor growth. Therapeutic strategies tackling I/R

injury could not only improve post-surgical organ function,

but also allow a reduction in the risk of cancer recurrence.
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Hepatocellular carcinoma � Hepatectomy � Liver

transplantation

Introduction

Ischemia–reperfusion (I/R) injury is a process whereby

parenchymal damage caused by blood flow deprivation is

accentuated upon organ reperfusion. I/R injury is a com-

mon clinical challenge, as it arises in various clinical sce-

narios such as cerebrovascular disease [1], circulatory

shock [2], cardiovascular [3] and liver surgery [4], and

transplantation medicine [5, 6]. I/R injury, through the

liberation of radical oxygen species and the activation of

inflammatory pathways, induces cellular injury and mi-

crocirculatory damage, which translate to organ dysfunc-

tion, morbidity, and increased health care costs [7, 8]. In
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the liver, I/R injury is at the source of poor outcomes after

surgical procedures such as hepatectomy and liver trans-

plantation [7].

Lowering intraoperative blood loss during hepatectomy

is a crucial factor determining the success of liver resec-

tion, as surgical bleeding and transfusion are associated

with poor outcomes in both the short- and long term [9–

11]. Thus, liver surgeons have the option to apply vascular

inflow control procedures and sometimes total vascular

exclusion to reduce intraoperative bleeding. The major

drawback of such strategies is that they can induce I/R

injury to the residual liver parenchyma [4, 12]. In liver

transplantation, tissue damage at reperfusion is mostly

correlated with warm and cold ischemia times and leads in

turn to poor graft function [13] and biliary complications

[14, 15].

In addition to the direct I/R-mediated harmful effect on

the liver parenchyma, underlying organ physiology and the

presence of pre-established tissue lesions (e.g., steatosis)

interact with I/R injury [16]. Hepatic steatosis increases

susceptibility of the liver to I/R injury through microcir-

culatory dysfunction caused by sinusoid compression by

lipid droplets [17–19] and reduced cellular energy stock

and cell membrane disruption via I/R-mediated lipid per-

oxidation [20]. Moreover, aged livers also appear to be less

tolerant to I/R injury [21]. This is particularly relevant to

the transplantation setting, where the use of marginal

donors, such as (macro-) steatotic graft or livers from older

donors, has been shown to be associated with poorer out-

comes after liver transplantation [22, 23].

Besides jeopardizing patients’ outcome in the early post-

operative period, there are growing concerns surrounding

the role of hepatic I/R injury and surgical trauma in the

oncological setting. Surgical manipulation of the liver

induces the release of cancer cells in the blood stream,

which could in turn engraft into the remnant liver or into the

newly transplanted liver graft and constitute the source of

tumor recurrence [24, 25]. I/R injury induces the expression

of cytokines, growth factors, and adhesion molecules that

have been repeatedly reported to foster tumor growth [26–

28]. The aim of this review was to give the last updates

regarding the role of hepatic I/R injury with regard to

oncological outcomes, focusing on experimental models

used to assess this issue, clinical evidence, and potential

therapeutic strategies aimed at reducing the risk of I/R-

mediated post-surgical tumor recurrence. Both the settings

of liver resection and transplantation will be explored.

Methods

The design of the current manuscript consists of a narrative

(non-systematic) review. Of note, systematic reviews of

experimental studies are feasible [29] and may help answer

a specific research question. Despite such a design would

have been a possibility, the multiple settings and research

questions (liver resection: pedicle vs. no pedicle clamping,

hemi-vascular occlusion, therapeutic strategies; liver

transplantation: donation after cardiac death, small-for-

size) that were aimed to be addressed here fostered us to

undertake a narrative review. A literature search was per-

formed in Medline, using the following keywords: ische-

mia–reperfusion, steatosis, small-for-size, liver cancer,

hepatocellular carcinoma, colorectal metastases, colon

adenocarcinoma, and tumor growth. Only studies written

English and published in peer-reviewed journals were

considered for inclusion. Studies were categorized

according to their research design (experimental, clinical

retrospective, and clinical prospective). Study eligibility

for inclusion was based on their ability to provide com-

posite insight into the link between liver parenchyma and

cancer behavior and to guide the reader to relevant primary

and secondary sources for further reading.

Discussion

Preclinical Evidence

Hepatic Ischemia–Reperfusion Injury Enhances Hepatic

Tumor Growth

There are reports dating back to the 1960s where ischemic

tissue was observed to offer a favorable environment for

the implantation and growth of blood-borne metastases [30,

31]. In the liver, to evaluate the link between hepatic I/R

injury and cancer behavior, research groups have used

several hepatic I/R injury models complemented with the

inoculation of different tumor cell lineages (Table 1). In a

rat colon adenocarcinoma metastasis model, Kurata et al.

[32] showed that, compared to sham-operated animals,

30-min partial (median and left lobes) ischemia to the liver

induced a 14-fold increase in the number of metastatic

nodules (p \ 0.01). Using a mouse colon adenocarcinoma

model, Gorden et al. reported similar findings, with an

increase in both the number of nodules and tumor volume

in animals undergoing a 30-min course of 70 % ischemia

(via clamping of the median and left lobes) [33]. In another

experiment using a hepatocellular carcinoma (HCC) cell

line, Man et al. [34] observed markedly higher tumor

growth and invasiveness in those animals subjected to a

60-min period of ischemia followed by 60 min of reper-

fusion as compared to sham-operated animals. Several

other preclinical reports [35–38] explored the impact of

hepatic I/R injury on tumor growth and metastatic poten-

tial, as illustrated in Table 1.
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Table 1 Ischemia–reperfusion injury fosters liver metastases, experimental models

Doi [40] Rat 30 versus 60 min 70 % ischemia Colon

adenocarcinoma

(RCN-H4)

: E-selectin in liver tissue of ischemic groups

compared to control

Doi [35] Rat 60 min 70 % ischemia Colon

adenocarcinoma

(RCN-H4)

Administration of neutrophil elastase inhibitor

(ONO-5046) after I/R reduced the number of

hepatic metastases

Yoshida

[37]

Rat Continuous: 60 min 70 % ischemia

Intermittent: 15 min periods of 70 %

ischemia (49), with 15 min of

reperfusion between ischemia

Colon

adenocarcinoma

(RCN-H4)

; E-selectin in liver tissue of the intermittent

ischemia group compared to continuous ischemia

Van der

Bilt [62]

Mouse Continuous: 45 min 40 % ischemia

Intermittent: 15 min periods o 40 %

ischemia (93), with 5 min of reperfusion

between ischemia

Ischemic pre-conditioning: 10 min 40 %

ischemia, followed by 15 min of

reperfusion, before 45-min 40 %

ischemia

Colon

adenocarcinoma

(C26)

Accelerated tumor growth localized around necrotic

tissue areas. Ischemic lobes show lowered levels

of glutathione compared to non-ischemic lobes

Kurata [32] Rat 30 min 70 % ischemia followed by

resection of non-ischemic lobes

Colon

adenocarcinoma

(RCN-H4)

Antithrombin inhibited the increase in the number

of metastatic nodules in animals subjected to I/R

injury, by blunting the TNF-a-induced expression

of E-selectin, through an increase in endothelial

PGI2 production

Man [34] Rat 60 min 60 % ischemia

60 min 60 % ischemia plus major

hepatectomy

Hepatoma (MCA-

RH7777)

: Proliferation (PCNA staining) of tumor cells and

VEGF in the ischemic group, : invasiveness

genetic profile (expression of ROCK and Cdc-42)

in animals receiving both I/R and hepatectomy

Van der

Bilt [82]

Mouse 45 min 40 % ischemia Colon

adenocarcinoma

(C26)

I/R injury-mediated tumor growth occurs

preferentially in areas of tissue hypoxia, and

elevated HIF-1a expression

HIF-1a was detected in nuclei of tumor cells at the

tumor-necrosis margin in the ischemic group

Attenuation of microcirculatory damage, hypoxia

and hepatocellular damage by atrasentan/L-

arginine allows a reduced tumor outgrowth

Nicoud

[33]

Mouse 30 min 70 % ischemia Colon

adenocarcinoma

(MC38)

: MMP9 mRNA and protein expression in liver

tissue of ischemic group

Doxycycline inhibits I/R-induced MMP9, and

decreases hepatic metastases

Genetic deletion of MMP9 prevents hepatic

metastases

Van der

Bilt [39]

Mouse Ischemia time: 20 min versus 30 min

versus 45 min 40 % ischemia

Steatosis: 6-week high-fat diet versus

normal diet

Age: Adult mice (12–13 months) versus

10–12 weeks

Gender: male versus female

Colon

adenocarcinoma

(C26)

Steatosis and male gender lead to heightened I/R-

mediated tumor outgrowth

Tamagawa

[36]

Rat 60 min 70 % ischemia Colon

adenocarcinoma

(RCN-H4)

: Plasma and liver tissue VEGF in the ischemic

group compared to control

Yoshimoto

[38]

Nude

mouse

20-min total ischemia Human pancreatic

cancer (Capan-

1)

: E-selectin in liver tissue of the ischemic group

compared to control

I/R ischemia/reperfusion, VEGF vascular endothelial growth factor, MMP-9 matrix metalloproteinase-9, HIF-1a hypoxia-inducible factor 1a,

PCNA proliferating cell nuclear antigen, PGI2 prostaglandin I2, ROCK Rho-associated protein kinase, Cdc-42 cell division control protein 42

homolog
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Looking at the impact of duration of ischemia on I/R

injury-mediated metastasis development, van der Bilt et al.

reported significant differences in terms of hepatic metas-

tases growth according to the duration of warm ischemia.

Mice subjected to 20 min of ischemia had a similar tumor

burden compared to non-ischemic liver tissue (sham-

operated animals or non-clamped liver lobes). In contrast,

after 30 and 45 min of ischemia, mice had a significantly

increased tumor burden compared to non-ischemic controls

[39]. In the same way, Doi et al. observed that rats

undergoing 60-min segmental (70 %) hepatic ischemia

developed significantly more nodules than rats subjected to

30-min pedicle clamping. Contrasting with the findings by

the Utrecht group that observed a five- to sixfold acceler-

ated tumor outgrowth in the ischemic liver as compared to

non-occluded lobes, Doi et al. reported that I/R injury leads

to increased tumor growth in all liver lobes (even the non-

clamped lobes), suggesting a dissemination of the effect of

I/R injury to liver tissue not directly enduring parenchymal

damage [40]. Although apparently self-contradictory, these

differences could be linked to several divergences in the

models used. First, the experiments were undertaken in two

different animal models (rat [40] vs. mouse [39]) remind-

ing that pathophysiological pathways may differ according

to the species under investigation. Second, the sequence of

procedures applied in these two studies were not strictly

comparable: while Doi et al. [40] inoculated cancer cells in

the spleen after 60 min of reperfusion, van der Bilt et al.

[39] allowed pre-inoculated cells to circulate for 5 days

before the induction of I/R injury. Based on these obser-

vations, one could speculate that variability in terms of

cancer cell concentration in the portal system (markedly

more increased after an intrasplenic bolus administered

following 60 min of reperfusion [40] than after a 5-day-

long homogeneous dilution in the blood stream [39]), could

affect their implantation in the liver. Altogether, regardless

of heterogeneity in the experimental models used, there is

accumulating experimental evidence uniformly reporting

I/R injury to be associated with increased hepatic meta-

static potential and increased tumor growth (Table 1).

The Impact of Liver Resection and Small-for-Size Livers

on Tumor Behavior

The association between partial liver resection and

increased metastases growth was originally described in

the semantic experiments by Fisher and colleagues in the

1950s, where rats undergoing partial hepatectomy (70 %)

were threefold more likely to develop liver metastases after

intraportal cancer cell injection as compared to controls

[41]. Since then, numerous research groups have confirmed

that hepatic resection induced by itself increased tumor

recurrence [42–47]. The two pivotal components of post-

resection tumor recurrence (the engraftment of circulating

cancer cell and the increased tumor growth of microme-

tastases) were thoroughly reviewed by de Jong et al. [48].

More recently, insufficient post-hepatectomy remnant liver

parenchyma, referred to as small-for-size syndrome, has

been evaluated as a determinant of tumor recurrence [34].

On top of being a potential cause of post-operative liver

failure and a common clinical challenge in liver surgery

[49, 50], small-for-size syndrome causes acute phase

mechanical injury, which induces lesions similar to those

observed in hepatic I/R injury [51, 52]. Therefore, small-

for-size liver models have been used to assess the rela-

tionship between parenchymal injury and circulating tumor

cell engraftment. Man and co-workers evaluated the inva-

siveness and cell migration pathways of intraportally

injected HCC cells in rats undergoing major hepatectomy

(left and caudate lobes, 50–60 % of total liver volume)

with or without 60-min ischemia and 60-min reperfusion to

the right and median lobes (40–50 % of total liver volume)

[34]. This experiment showed not only that small-for-size

injury increases tumor growth by itself, but also that I/R

injury of the liver remnant leads to increased tumor

aggressiveness and metastatic potential (both intra- and

extra-hepatic) [34]. Going one step further, rat tumor tissue

harvested from original livers was re-implanted in the

livers of nude mice undergoing different surgical stress

conditions (major hepatectomy alone, I/R injury alone, I/R

injury and major hepatectomy, and sham). This unique

experimental design allowed demonstrating that the surgi-

cal stress resulting from hepatic I/R injury and/or major

hepatectomy not only makes the hepatic microenvironment

favorable for tumor cell growth, migration, and invasion

through stimulation of acute phase inflammatory response

and disturbance of microcirculatory barrier function, but it

also makes the tumor cells more aggressive by directly

activating cell migration and invasion pathways [34].

In addition to its impact on the remnant liver after

hepatectomy, small-for-size syndrome is a frequent sce-

nario affecting graft function in the transplantation setting.

Small-for-size injury has been pointed out as a potential

mediator of post-liver transplantation tumor recurrence.

Thus, to export the evidence gathered from the liver

resection setting, Man et al. [53] analyzed, in a rat liver

transplantation model, the effect of small-for-size injury

(achieved by removal of the left and caudate liver lobes) on

post-liver transplantation tumor growth. Animals receiving

small-for-size livers experienced early endothelial injury,

and sinusoidal damage, followed by parenchymal necrosis

and sinusoidal microthrombi, characterizing the role of

small-for-graft size injury. Hepatic replacement area by

circulating HCC cells was significantly increased in the

small-for-size group compared to the whole liver group. To

assess the stimulation of I/R injury on tumor invasiveness,
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Man et al. [53] used again an orthotopic xenogeneic tumor

model, harvesting tumor tissue grown in rat liver grafts and

implanting it in the liver of nude mice. Six weeks post-

implantation, tumors arising from the small-for-size graft

group reached higher tumor volumes and developed more

distant metastases. These findings show that on top of

damaging graft function, acute phase I/R injury promotes

late phase tumor growth and invasiveness.

Although the use of marginal liver grafts, including

from donation after cardiac death (DCD), has been shown

to be a reasonable option in the face of organ shortage,

marginal grafts are more susceptible to I/R injury [54]. The

current authors have shown that I/R lesions associated with

rat liver transplantation from DCD donors lead to increased

post-transplant HCC recurrence and growth [55]. More-

over, looking at potential therapeutic strategies, it could be

demonstrated that the use of normothermic reperfusion

modalities allows a reduction in I/R lesions, and in turn of

post-transplant HCC recurrence and growth, restoring HCC

tumor volume to the level of non-ischemic, control animals

[55].

Clinical Implications

Liver Resection

The impact of vascular inflow control procedures on the

risk of cancer recurrence after liver surgery has been

evaluated in a limited number of clinical studies. Nijkamp

et al. have shown that severe ischemia, defined as a con-

tinuous portal triad clamping for more than 20-min or more

than three cycles of 15-min intermittent clamping, was

associated with increased cancer relapse rates after liver

resection for colorectal metastases [adjusted hazard ratio

(HR) = 1.37 (95 % CI 1.02–1.85), p = 0.038] [56]. In

contrast, Giuliante et al. [57] observed no difference in

terms of hepatic recurrence rate according to the use, type,

and duration of hepatic pedicle clamping [57]. In another

recent retrospective series including 386 patients under-

going hepatectomy for HCC with (n = 224) or without

(n = 162) pedicle clamping, Xia et al. [58] reported no

difference between study groups in terms of 1-, 3-, and

5-year disease-free or overall survival. The overall recur-

rence rate was 67 % (66.1 and 67.3 % for patients with or

without pedicle clamping, p = 0.828), with a median time

to recurrence of 26 months. Intra- versus extra-hepatic

recurrence was also comparable between study groups

[58]. A long-term analysis of a randomized clinical trial

assessed the role of Pringle maneuver on post-resection

colorectal liver metastases recurrence and did not detect

differences between those undergoing vascular inflow

control or not [overall survival at 1, 3, and 5 years, portal

clamping group: 100, 86.1, and 49.4 % vs. no clamping

group: 92.6, 65.8, and 48.2 % (p = 0.704)] [59]. Disease-

free survival was also similar between the two groups: 1-,

3- and 5-year survival rates were 85.7, 51.4, and 34.3 % in

the HPC group versus 84, 51.5, and 37.9 %, respectively

(p = 0.943). Although these data arise from a prospective

randomized study, between-group follow-up differences

[median follow-up was 67.1 ± 20 months in the Pringle

maneuver group versus 77.5 ± 16.6 months in the control

group (p = 0.07)] and the small sample size represent

shortcomings to this secondary analysis [59]. A recent

meta-analysis did not detect any pooled difference in terms

of intra-hepatic recurrence, disease-free survival, or overall

survival between patients undergoing liver resection for

colorectal metastases with or without pedicle clamping

[60]. A prospective randomized study evaluating the effect

of the Pringle maneuver on the risk of post-hepatectomy

recurrence is currently ongoing [61]. This trial should shed

the light on an unresolved issue and will help determining

whether findings of experimental studies translate to the

clinical setting.

In contrast to preclinical models that showed intermit-

tent portal clamping as an efficacious means of reducing

I/R injury-mediated tumor growth in the rodent [37, 62],

the evidence supporting the benefit of intermittent pedicle

clamping on tumor behavior remains very limited in the

clinical setting. In a large retrospective analysis of 563

patients undergoing liver resection for colorectal metasta-

ses, Wong et al. [63] did not find any significant difference

in terms of disease-free survival between those receiving

intermittent pedicle clamping or not. Of note, there was a

large variability in the duration of vascular occlusion

(2–104 min, median 22 min), which could have led to a

dilution effect between study groups, limiting the gener-

alizability of these findings [63].

In a retrospective analysis comparing selective and total

portal vein occlusion in 86 patients undergoing curative

hepatectomy for HCC found, Makino et al. [64] reported a

significantly longer recurrence-free survival for patients

subjected to selective portal vein occlusion (1,520 vs.

561 days, p = 0.017) in univariate analysis. After adjust-

ing for vascular invasion and number of HCC nodules, the

difference was of borderline significance [HR = 1.82

(95 % CI 0.996–3.32), p = 0.052] [64].

Because 75 % of liver blood flow that carries only

20–30 % of oxygen runs into the portal vein, it could be

argued that maintaining arterial blood flow while clamping

the portal vein only may reduce intraoperative blood loss

while minimizing I/R injury. Based on these observations,

Yang and co-workers performed a nested case–control

study evaluating the impact of portal vein occlusion with

maintenance of arterial flow (vs. complete portal triad

occlusion) on the risk of post-hepatectomy HCC recurrence

[65]. In this cohort of 169 patients, compared to those in
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whom arterial blood flow was left untouched (n = 51),

patients undergoing combined arterial and portal blood

flow occlusion (n = 118) experienced a significantly lower

disease-free survival both in univariate analysis

(p = 0.0013), and after allowing for confounding factors

such as tumor size and grade, blood levels of alpha-feto-

protein and presence of microvascular invasion

[HR = 0.68 (95 % CI 0.54–0.86), p = 0.0015)]. In addi-

tion, arterial blood flow maintenance was accompanied by

lessened hepatocellular injury and liver function at post-

operative day one, three, and seven [65]. Of note, tumor

localization was not adjusted for, although it may affect

blood loss and the risk of post-resection recurrence. In

other words, it could be argued that surgeons tend to apply

vascular control procedures in face of more difficult cases,

which, besides being at increased risk of surgical bleeding,

probably also carry an increased risk of cancer recurrence.

Although more robust data are needed, altogether, these

findings suggest that surgical innovation may allow a

blunting in pedicle clamping-induced I/R lesions and help

achieving better oncological outcomes.

Liver Transplantation

I/R lesions, including organ injury caused by small-for-size

livers, have been repeatedly observed to be associated with

poor oncological outcomes in liver transplantation, and a

recent meta-analysis identified 16 studies comparing liv-

ing-donor liver transplantation (LDLT, a surrogate for

lower graft size) with deceased-donor liver transplantation

(DDLT) [66]. Statistical pooling of disease-free survival

revealed an aggregate HR of 1.59 (95 % CI 1.02–2.49;

p = 0.041), showing that LDLT was significantly associ-

ated with higher post-transplant HCC recurrence rates. In

contrast, pooled overall survival was not different between

LDLT and DDLT [HR = 0.97 (95 % CI 0.73–1.27;

p = 0.808)] [66]. Noteworthy is that there is a lack of

evidence as to whether common markers of I/R injury (e.g.,

cold and warm ischemia time, presence of graft steatosis,

donor age) are correlated with the risk of post-transplant

tumor recurrence. Recently, Mathur et al. [67] have shown

that increasing BMI was associated with a significantly

higher and earlier HCC recurrence rate. Looking at the

extreme scenario of marginal grafts such as DCD, Jay et al.

[68] and Croome et al. [69] pointed out that the use of DCD

donors was associated with a synergistically increased

death rate after transplantation in HCC-bearing patients as

opposed to patients without HCC. However, HCC patients

undergoing liver transplantation may die of other reasons

than tumor recurrence. In addition, these studies did not

determine actual HCC recurrence, providing only indirect

evidence of an association between donor characteristics

and poor oncological. Hence, the interpretation of donation

after cardiac death as a risk factor for post-transplant HCC

recurrence deserves further validation in the clinical

setting.

No clinical liver transplantation studies evaluating the

effectiveness of strategies blunting I/R injury as a means of

achieving improved oncological outcomes could be

identified.

Mechanisms

Underlying Parenchymal Abnormalities

The hepatic tissue does not systematically react to the

ischemic insult in the same way. Owing to the diverse

clinical situations underlying liver cirrhosis and HCC

(hepatitis B, C, alcohol, steatohepatitis) and to the complex

therapeutic strategies (chemotherapy, radiofrequency

ablation, transarterial chemoembolization) potentially

applied to patients before liver surgery, parenchymal

abnormalities appear to be involved in the post-surgical

course of patients undergoing either hepatectomy or liver

transplantation [22, 70, 71]. Fatty livers show alterations in

mitochondrial metabolism as well as increased production

of insulin-like growth factor 1, which promotes cell growth

and proliferation, and inhibits apoptosis [17, 72–74]. These

pathological changes could in turn stimulate carcinogene-

sis, making steatosis a favorable microenvironment for

tumor growth. In this mind, the Utrecht group demon-

strated that aging (12–13 months) and steatosis, as induced

by feeding mice with a high-fat diet, intensified the I/R-

induced outgrowth of colorectal adenocarcinoma microm-

etastases as compared to lean animals exposed to I/R injury

[39]. Another group went on investigating the relationship

between steatosis and hepatic tumor growth and observed

spontaneous hepatic dysplastic tumor occurrence as early

as 9 months after the introduction of a high-fat diet [75].

The number and size of tumor nodules increased over time,

and at 20 months after high-fat diet introduction, all ani-

mals developed tumor nodules. In contrast, no tumor was

detected (neither after gross or histological assessment) in

mice maintained on regular diet at the same time points.

The same group confirmed the role of a steatotic micro-

environment at favouring hepatic metastases implantation

upon observation of a significantly greater hepatic tumor

load in those animals allocated to high-fat diet as compared

to control, 21 days after tumor cell injection in the portal

system [75]. From a clinical standpoint, Hamady et al.

reported the results of a large cohort (n = 2,715) of

patients undergoing hepatectomy for colorectal liver

metastases, comparing livers with or without steatosis

(defined as a diffuse accumulation of fat droplets affecting

more than 5 % of hepatocytes) with regard to hepatic

disease-free survival [76]. After adjusting for relevant
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confounders, the Cox proportional model showed a sig-

nificantly higher recurrence rate at 1, 3, and 5 years post-

surgery in the steatosis versus non-steatosis group (79.6,

59.2, and 52.9 % vs. 85.3, 67.1, and 61.9 %, respectively,

p \ 0.001). These results were confirmed in a matched

propensity score analysis. Although providing novel

insights into the debate of the oncological impact of fatty

liver disease, this recent study lacks a formal histological

assessment of the precise nature of fatty infiltration, which

can diverge considerably (e.g., macro- vs. microvesicular

steatosis) and differently affect post-surgical outcomes

[22].

Microcirculatory Lesions, Tissue Hypoxia,

and Angiogenesis

Microcirculatory dysfunction has been repeatedly reported

to constitute a source of hypoxia and tissue disruption in

the setting of I/R injury (Fig. 1) [77, 78]. Sustained

hypoxia to the liver promotes hypoxia-inducible factor

(HIF-)1a, which acts as a cell survival factor, and is a

promoter of tumor cell proliferation, angiogenesis, and cell

migration [79–81]. Van der Bilt et al. [39, 62, 82] dem-

onstrated on several occasions that, after I/R injury,

accelerated tumor growth predominantly surrounded

necrotic parenchyma and that I/R-mediated tumor growth

was linked to increased parenchymal HIF-1a expression

[82]. Moreover, prevention of ischemia-induced microcir-

culation disturbance with L-arginine (an enhancer of

endothelial NO synthesis) reduced the outgrowth of mi-

crometastases by minimizing tissue hypoxia and avoiding

HIF-1a stabilization [82]. Nijkamp et al. [56, 83] have

shown that I/R-mediated tumor outgrowth was also por-

tended by Fas–Fas ligand interactions, which appear to be

pivotal in the process of necrotic tissue formation.

Several reports have shown that the ischemic liver

upregulates vascular endothelial growth factor (VEGF)

expression, a well-known angiogenic factor. In the context

of liver surgery for cancer, surgical stress and I/R injury

appear to stimulate VEGF expression, which could foster

Fig. 1 Explored mechanisms suggesting a role between liver ische-

mia/reperfusion injury and cancer cell migration (bottom) and growth

(top). VEGF vascular endothelial growth factor, HIF hypoxia-

inducible factor, IL interleukin, MMP matrix metalloproteinase,

ICAM intercellular adhesion molecule, CXCL [chemokine (C-X-C

motif) ligand]
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tumor growth through two main mechanisms. First, there is

overwhelming evidence that VEGF assumes a pivotal role

in tumor angiogenesis, and in the liver, I/R-mediated

VEGF upregulation leads to improved tumor vasculariza-

tion. Second, VEGF receptor is overexpressed on several

types of cancer cells, including colorectal cancer [36, 84,

85] and hepatocellular carcinoma cells [86], suggesting an

autocrine effect of VEGF on tumor cells expressing VEGF

receptors. Similarly, novel functions of VEGF have been

reported in various oncological settings, including the

promotion of cancer cell survival [87–89] and migration

[90].

Cell Adhesion, Migration, and Extracellular Matrix

Remodeling

Leukocyte adhesion molecules, which are expressed upon

the activation of inflammatory pathways, have been

repeatedly correlated with progression of several types of

carcinoma [91–93]. In a rat adenocarcinoma metastasis

model, Kurata et al. [32] showed the expression of

E-selectin to be significantly increased after I/R injury,

peaking at 120 min after reperfusion. E-selectin expression

correlated with ischemia duration and its expression in

ischemic tissue was accompanied by a higher number of

metastatic nodules. Intriguingly, the administration of

antithrombin reversed this IR/mediated increased tumor

burden by inhibiting TNF-a secretion and by blunting the

expression of E-selectin. Furthermore, antithrombin-KO

mice developed significantly less metastatic nodules com-

pared to wild-type animals. Altogether, these observations

highlight the relevance of microvasculature ultrastructure

in the process of tumor cell trafficking and migration.

Although its clinical effectiveness has been questioned

when administered to critically ill patients [94], anti-

thrombin therapy may represent a potential option, and

further investigation is needed.

Chemokines are critical mediators involved in the pro-

cess of I/R injury [95–97]. On top of their chemotactic

activity on inflammatory cells, chemokines and their

receptors are involved in cancer cell invasive potential [98–

100]. Man and colleagues demonstrated that CXCL10

(interferon c-induced protein 10) was overexpressed in

small-for-size livers and that upon CXCL10 stimulation,

hepatocellular carcinoma cells displayed pro-migration

morphological changes such as stress fiber and lamellipodia

formation [53]. In addition to these phenotypical changes,

CXCL10 directly impacted on cell motility as assessed in an

in vitro wound healing assay [53] and appeared as pivotal

with regard to endothelial progenitor cell migration [101].

There is a body of evidence supporting the role of

extracellular matrix remodeling in promoting tumor inva-

siveness and metastasis [102]. In particular, matrix

metalloproteinases (MMPs) have been shown to be crucial

mediators of the invasive potential of several cancers,

including colon adenocarcinoma [103] and HCC [104].

Previous research indicates that extracellular matrix

remodeling arising in the setting of I/R injury is mediated

by an increase in MMP-9 expression [105]. Nicoud et al.

demonstrated in a series of elegant experiments that MMP-

9 upregulation after I/R injury promoted the outgrowth of

colorectal carcinoma micrometastases and that doxycy-

cline-mediated MMP inhibition, as well as MMP-9 genetic

silencing, reversed the I/R-related accelerated tumor

growth. Of note, these observations lack confirmatory

evidence from human studies, as Xia et al. [58] did not

report differences in terms of liver tissue mRNA and blood

levels of MMP-2, MMP-9, and E-selectin between patients

undergoing pedicle clamping or not.

Conclusion and Perspective

Although data accumulated from preclinical models uni-

formly point out liver quality as a determinant of cancer

cell implantation and growth, the evidence gathered from

the clinical setting is still limited and ongoing research in

the form of prospective randomized trials should shed light

on this so far unresolved issue. In the meantime, it appears

as reasonable to implement therapeutic approaches to

minimize I/R injury, especially in patients with more

advanced tumor, given their potentially higher pool of

circulating cancer cells. Several therapeutic interventions

such as ischemic pre-conditioning [106], intravenous cor-

ticosteroids [4], prostaglandin E [107], and volatile anes-

thetics [108] have been shown to improve ischemia–

reperfusion, and their specific impact on oncological out-

comes should be assessed. In this regard, we have shown

that graft reperfusion prior to retrieval reduces the HCC

growth in a rat liver transplantation model [55]. Moreover,

neoadjuvant and downstaging strategies appear justified,

provided they do not harmfully delay the access to defin-

itive therapy. Long-term oncological outcomes should be

assessed when comparing various vascular inflow control

procedures and conclusions of RCTs examining early

morbidity, and post-operative hepatocellular damage [109]

may not apply to delayed cancer recurrence. Although

there is better understanding of the interaction between I/R

injury and tumor recurrence, biological mechanisms

underlying these observations remain largely unresolved.

Thus, future research should investigate the cell signaling

pathways involved in cell survival of the injured liver in the

presence of cancer.
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