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Abstract We consider a family of one-dimensional diffusions, in dynamical Wiener
mediums, which are random perturbations of the Ornstein—Uhlenbeck diffusion
process. We prove quenched and annealed convergences in distribution and under
weigh-ted total variation norms. We find two kind of stationary probability measures,
which are either the standard normal distribution or a quasi-invariant measure, depend-
ing on the environment, and which is naturally connected to a random dynamical sys-
tem. We apply these results to the study of a model of time-inhomogeneous Brox’s
diffusions, which generalizes the diffusion studied by Brox (Ann Probab 14(4):1206—
1218, 1986) and those investigated by Gradinaru and Offret (Ann Inst Henri Poincaré
Probab Stat, 2011). We point out two distinct diffusive behaviours and we give the
speed of convergences in the quenched situations.

Keywords Time-dependent random environment - Time-inhomogeneous Brox’s
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1 Introduction

Random walks (RWs) in random environments (REs) and their continuous-time coun-
terparts, the diffusions in random environment, pave the way for the study of a
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2 Y. Offret

multitude of interesting cases, which have been tackled since the 70’s in a large section
of the literature.

Concerning the genesis of the theory, we allude to [27,46], as regards the discrete-
time situation, and to [9,26,44], as regards the continuous-time one. For more recent
refinements and generalizations, we refer to [10,12-14,23,24,34,42,45,49] and for a
general review of the topic, we refer to [50].

Here we investigate one-dimensional diffusions evolving in dynamical Wiener
media, which have some common features with those studied in [9,21]. We give,
under weighted total variation norms, quenched and annealed diffusive scaling limits,
which may depend on the environment, and thus, which are not always normal distri-
butions. We also give the speeds of convergence under the quenched distributions. In
addition, we bring out a phase transition phenomenon, which is the analogue in RE,
to a particular situation considered in [21].

RWs in dynamical REs have been widely and intensively considered in the past few
years under several assumptions. Initially, space—time i.i.d. REs have been introduced
and studied in [6,7,39]. Further difficulties arise when the fluctuations of the REs are
i.i.d. in space and Markovian in time, case addressed in [5,16], and major one arise
when we consider space—time mixing REs, case recently studied in [4,8,15]. However,
continuous-time diffusions in time-varying random environment have been sparsely
investigate. Nevertheless, we can mention [29,30,32,40] concerning the homogeniza-
tion of diffusions in time-dependent random flows.

1.1 The Wiener space

Introduce the space

O = {9 € CR: ) :0(0) = 0and lim x—ze(x)zo} (1.1)

endowed by the standard o -field % generated by the Borel cylinder sets. It is classical
that there exists a unique probability measure % on (©®, %) such that the processes
{f(£x) : 6 € ®,x > 0} are two independent standard Brownian motions. The
probability distribution % is called the Wiener measure. We denote by {S) : A > 0}
the scaling transformations on ® defined by

(1.2)

Note that ® is naturally endowed with a structure of separable Banach space, such
that 4 coincides with the Borel o-field % .

1.2 Schumacher and Brox’s results
Brox makes sense in [9] to solution of the informal diffusion equation

1
dX; =dB; — EG'(X,) dr, (1.3)
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Diffusions in time-dependent random environment 3

where & € © and B is a standard one-dimensional Brownian motion independent
of the Brownian environment (®, %, #'). Denoting by Py and ﬁ respectively the
quenched and annealed distributions (the expectation of Py under ") of such solution,
Schumacher and Brox show, independently in [43,44] and [9], that there exists a family
of measurable functions {b;, : & > 0} on (®, %) such that the following convergence
holds in probability

X; X; _blogt(e) P
— — b1 (S 0) =
(log )2 1 ( (log)? ) (log1)2 f—00

0. (1.4)

The Wiener measure being invariant under the scaling transformations, if we denote
by b; the distribution of b under %, the following annealed convergence holds in
distribution

RN (1.5)
(log t)2 t—>00

The key to prove these results is to take full advantage of the representation of X in
terms of a one-dimensional Brownian motion changed in scale and time, and of the
invariance of the Brownian motions B and 6 under the scaling transformations Sj.
The authors prove that the diffusion is localized in the valleys of the potential 6, which
are themselves characterized by b .

1.3 Phase transition in a 2-stable deterministic environment

Set W(x) := |x|!'/? and consider, for any B € R, the particular time-inhomogeneous
singular stochastic differential equation (SDE) studied in [21] and which is given by

1 W(¥))
dY; =dB; — =
t t 2 [/B

dr. (1.6)

The authors show in [21] the existence of a pathwise unique strong solution and prove
diffusive and subdiffusive scaling limits in distribution, depending on the position of
B with respect to 1/4. More precisely, they prove that

Yt ) JV(O, 1), When,B > 1/4, (1 7)
_ x2 .
Vi k;le_[7+w(x)] dx, wheng = 1/4,
and
V' @ =1,V gy wh 4 8
ﬂ_ﬁm“e x, whenpg < 1/4, (1.8)
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4 Y. Offret

k. and k, being two normalization positive constants. In fact, to obtain the conver-
gences in (1.7), they study the diffusion equation

1 —rt /
dz; = dB, — 5 [Z +e7" W(Z))] dr. (1.9)

This process is naturally related to Eq. (1.6) by setting  := g — 1 /4, via a well chosen
scaling transformation taking full advantage of the scaling property of the Brownian
motion B and of the deterministic scaling property of the potential W. For more details,
we refer to [21]. We can expect to obtain similar results by replacing W in Eq. (1.6)
by a typical Brownian path 6 € @, a 2-stable random process, and this is one of the
main objects of this article.

1.4 Overview of the article

The paper is organized as follows: in Sect. 2, we introduce a diffusion equation (2.2)
in a dynamical Wiener potential, which generalizes Eq. (1.9). Then we state our main
results and we give the general strategy of the proofs. In Sect. 3, we apply these results to
amodel of time-inhomogeneous Brox’s diffusions. This is a generalization of Egs. (1.6)
and (1.3) and we obtain similar asymptotic behaviours as in (1.7). Thereafter, in Sect. 4,
we introduce some linear perturbations of Eq. (2.2). We show some properties, related
to these ones, which are used in Sects. 5 and 6 to prove existence, uniqueness and
nonexplosion for the diffusion process (2.2) (Theorem 2.1) and also to prove that this
process is a strongly Feller diffusion satisfying the lower local Aronson estimate and
a kind of cocycle property (Theorem 2.2). In Sect. 7, we prove some technical results
in order to obtain the quenched and annealed convergences (Theorems 2.3 and 2.4) in
the two last Sections.

2 Model and statement of results
2.1 Diffusions in a fluctuating Ornstein—Uhlenbeck potential

In the present paper, we study Brownian motions dynamics, in time-dependent Wiener
media, given by the underlying dynamical random environment

{T,e(x) = S,20(x) =e 7 0(?x): 0 €O, t,x € R} . Q2.1

The family {7} : t € R} is a one-parameter group of transformations leaving invariant
# and such that, under this probability measure, {7;0(x) : t € R} is a stationary
Ornstein—Uhlenbeck process having .47(0, x) as stationary distribution. Moreover,
the dynamical system (@, B, #', (T;),eRr) is ergodic (see Proposition 7.5).
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Diffusions in time-dependent random environment 5

We consider, for any r € R, the diffusion process Z, solution of the informal SDE
driven by a standard Brownian motion B, independent of (®, &, %),

1
dZ; =dB; — EBxVa(t, Zydt, Zy=z€eR, t>s5>0,0¢€0, 2.2)

with

2
Vo(t, x) i= % T e TO0). 2.3)

Note that when 6 is equal to W, defined in (1.6), 736 in (2.3) is simply equal to € and
Eq. (2.2) is nothing but Eq. (1.9). The diffusion process Z can be seen as a Brownian
motion immersed in the random time-varying potential {Vy (7, -) : t € R}, as well as an
Ornstein—Uhlenbeck diffusion process, whose potential is perturbed by the dynamical
Wiener medium {e~"" T;0 : t € R}. Moreover, one can see Z as a distorted Brownian
motion, whose drift is a Gaussian field {I" (¢, x) : ¢, x € R} having mean function m j
and covariance function C (here a Dirac measure) given by

1 —[r(t+s)+IIZ—SI:|

mp(t,x) = —% and Cr(t,x;s,2) = 4_16 s('?x — &*/%7).

We need to give a correct sense to solution of Eq. (2.2). Formally, we can see Z as
the diffusion process, whose conditional infinitesimal generator, given 6 € O, is

9 T1 yond 9 9
Lo:=Lo;+ — = | 200 — (V000 — —. 24
0= Rort g [26 ox (e ax )|t 24

The domain and the so-called generalized domain of Ly are defined by

D(Lg) := {F eCl:e oy, Fe Cl} and

D(Ly) = {F eWh® . o ~Vig F e w"oo} 2.5)

loc loc

where C! and Wllo’coo denote the space of real continuous functions F (¢, x) on [s, 00) X
R such that the partial derivatives d; F and dy F' (in the sense of distributions) exist and
are respectively continuous functions and locally bounded functions.

This kind of diffusion operators, with distributional drift, have been already study in
[20,41] in the case where the coefficients of the SDE do not depend on time. Rigorously
speaking, a weak solution to Eq. (2.2) is a solution to the martingale problem related
to (Lg, D(Lg)).

Definition 2.1 A continuous stochastic process {Z; : t > s} defined on a given filtered
probability space is said to be a weak solution to Eq. (2.2) if Z; = z and if there exists
an increasing sequence of stopping times {7, : n > 0} such that, for all » > 0 and
F e D(Ly),
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6 Y. Offret

AT,
Ft A, Zine,) — / LoF(u, Zydu, 125, 2.6)
N
is a local martingale, with
T :=supinf{t > s :|Z;| > n} =sup1,. 2.7
n>0 n>0

A weak solution is global when the explosion time satisfies 7, = 0o a.s. and we said
that the weak solution is unique if all the weak solutions have the same distribution.

We are now able to state our first result.

Theorem 2.1 Foranyr e R, 6 € ®, s > 0 and z € R, there exists a unique global
weak solution Z to Eq._ (2.2). Moreover, there exists a standard Brownian motion B
such that, for all F € D(Ly),

t t

F(t,7Z,) = F(s,z)—i—/LgF(u,Zu)du—i—/axF(u,Zu)dBu, t>s. (2.8)

N N

Since the one-dimensional Eq. (2.2) is not time-homogeneous, there are not simple
conditions which characterize the nonexplosion as in [9,20,41]. Therefore, the main
difficulty is to construct Lyapunov functions. To this end, we consider some linear
perturbations of Eq. (2.2), given in (4.1), for which we are able, when the potential
(4.2) is sufficiently confining, to construct suitable Lyapunov functions (see Proposi-
tion 4.2). Then we prove (see Theorem 5.1) nonexplosion, existence and uniqueness
(in a more general setting) by using the Girsanov transformation and by considering
the SDE (4.6). This equation is connected to Eq. (4.1), when the associated potential
is attractive, via the pseudo-scale function Sy defined in (4.4) (see Proposition 4.1).
This method is a generalization in the time-inhomogeneous setting of that employed
in [9,20,41] and which uses the effective scale function.

2.2 Strong Feller property, cocycle property and lower local Aronson estimate

In the following, we denote by P ; (9) the distribution of the weak solution to Eq. (2.2),
called the quenched distribution, which existence is stated in Theorem 2.1. We intro-
duce the canonical process {X; : t > 0} on the space of continuous functions
from [0, 00) to R, endowed with its standard Borel o-field .%, and we denote by
Py (s, z; t, dx) and Ps ;(0), the probability transition kernel and the associated Markov
kernel defined, for all measurable nonnegative function F on R by

P51 (0)F (2) := B, .(0) [F(X))] = / F(x)Py(s, z; 1, dx). (2.9)
R
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Diffusions in time-dependent random environment 7

Theorem 2.2 For anyr € R and all 6 € O, the family {P ,(0) : s > 0, z € R} is
strongly Feller continuous. Moreover, the associated time-inhomogeneous semigroups
{Ps:(0):t =5 >0, 0 € O} satisfy

Py s11(0) = Pos(e” " T50) and Pys44(0) = Po,s(0) Pos(e”" T56). (2.10)

Besides, Py(s, z;t,dx) admits a density po(s, z;t,x), which is measurable with
respect to (0,s,t,z,x) on @ x {t > s > 0} x R2, and which satisfies the lower
local Aronson estimate: for all @ € @, T > 0 and compact set C C R, there exists
M > 0 such that, forall 0 <s <t <Tandz,x € C,

_ 1 lz —x|?
pg(s,z,t,x)zmexp(—M PR ) (211)

The idea is to study the more general equivalent SDE (4.6) and to prove, by using
standard technics, the analogous theorem for this diffusion (see Theorem 6.1).

Besides, the transition density being measurable with respect to 6, we can define
the annealed distribution ﬁs, . and the associated Markov kernel IgY ; as

B, imEy [P, / P,.(6) #/(d8) and By, = Ey[Py,]:= / P, (6) 7 (d6).
e @]

We point out that X is not a Markov process under fPSS,Z. Moreover, in the light of
(2.10), we can assume without loss of generality that s = 0 in (2.2) and we set

P.(6) :=Po.(0), Po(z;t,dx) = Py(0,z;1,dx), pe(z;t,x) = pe(0,2;1,x),
P;(0) := Pp:(0), and P::= Py;.

Furthermore, we can see that the case r = 0 is of particular interest since the relation
(2.10) can be written in this situation

Pss4+1(0) = P (Tx0) and Py (0) = Ps(6) P (T0). (2.12)
Roughly speaking, the Eq. (2.2) is time-homogeneous in distribution since from the
scaling property # is (T;)-invariant. Relation (2.12) is called the cocycle property

and it induces (see [1] for a definition) a random dynamical system (RDS) over
(©,%, %, (T;)) on the set .# of signed measures on R, by setting, for all v € .Z,

vP(0)(dx) :=/Pg(z; t,dx)v(dz) = /pg(z; t,x)v(dz) | dx.
R R

Note that the subset of probability measures .#| C .# is invariant under this RDS.
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3 Y. Offret

2.3 Quasi-invariant and stationary probability measures
To state our next important results, we need to introduce some additional notations.
We said that u is a random probability measure on R, over (®@, B, #), if ug € 4

for # -almost all 6, and if & —— ug(A) is measurable for all Borel set A. For such
random probability measure ., we introduce the probability measure & defined by

A= Eyplu] = / 1o W (d6).
]

Let ¢ € R and U,, V, be the functions on R defined by

2
Uy (x) = exp (a%) and V,(x) = exp(x|*). (2.13)

The F-total variation norm, F € {Uy, V,}, of a signed measures v, is defined by
il :=sup{lv(f)|:|f| < F, f bounded and measurable}.

Note that if v € .#) then ||v||f = v(F). In addition, we set
Mp:={ved:|vlF<oo} and M\ =M N M.

Theorem 2.3 Assume that r = 0. There exists a random probability measure (L on R
over (©, B, W), unique up to a W -null set, such that, for all t > 0,

noPr(0) = puro W -as. (2.14)
Moreover, for all a € (0, 1), the quasi-invariant measure satisfies
wo € My, W-as. and L€ .M y,. (2.15)

Furthermore, there exists A > 0 such that, for allv € .#\ y, and v € M y,,

< —A W -as. (2.16)

o log(|vPi®) — ure )
lim sup -

t—00 t

and
lim |[DP; — ]y, = O. (2.17)
—>00
Linear RDSs have been studied in an extensive body of the literature. The dynamics
(in particular the Lyapunov exponents) in the case where the discrete-time linear RDS

acts on a finite dimensional space (the case of infinite products of random matrices)
have been well understood for a long time, for instance in [22,37], whereas the situation
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Diffusions in time-dependent random environment 9

where the general linear RDS acts on a separable Banach space has been newly studied
in [33].

Our goal in Theorem 2.3 is to obtain a quasi-invariant probability measure for the
random Markov kernels P;(0) and to give convergence results in the separable Banach
spaces .4y, (exponential convergence) and .#y,. We need a kind of random Perron-
Frobenius theorem, which has been, for example, obtained in [2] for infinite products
of nonnegative matrices, and more recently in [28] for infinite products of stationary
Markov kernels over a compact set.

However, the Markov operators that we consider act on the infinite dimensional
space . and are defined over the noncompact set R. To overcome this problem, we
need to see that U, and V,, are Foster—Lyapunov functions (see Propositions 7.2 and
7.3). More precisely, we show that Lyapunov exponents can be chosen independently
of the environment 6, while keeping a control on the expectation of the U,-norm
and the V,-norm. The classical method to construct Foster—Lyapunov functions for
Markov kernels is to construct Lyapunov functions for the infinitesimal generators
(see Lemma 7.1 and 7.2). Nonetheless, we stress that neither U, nor V,, belong to
the generalized domain D (L) and we need to approximate uniformly these functions
by functions of this domain, while keeping a control on the expectation under the
Wiener measure. This is possible by using the Holder continuity of Brownian paths
(see Proposition 7.1).

Then, we use the explicit bound on convergence of time-inhomogeneous Markov
chains (see Proposition 7.4), obtained from [17], via coupling constructions, Foster—
Lyapunov conditions and the cocycle property, together with the ergodicity of the
underlying dynamical system (®, Z, #, (T;):cr). We point out that the Aronson
estimate (2.11) is necessary to the coupling constructions.

Furthermore, let us denote by {U, : t > 0} the canonical process on the space &
of continuous functions from [0, co) to @, endowed with its standard Borel o -field
¢, and introduce the Markov kernels ITy ; on (E x Q,¥ ® %), and the probability
measure i on (@ x R, Z® #(R)), defined by the product and disintegration formula

Iy ; = 81,640 ® P.(0) and w(dw, dx) := # (dw)pue(dx).

Then we can see that {(U;, X;) : t > 0} is a time-homogeneous Markov process under
Iy ; such that @ is an invariant initial distribution. This process is called the skew-
product Markov process (see [11,36] for the discrete-time situation). By applying
standard results on general time-homogeneous Markov processes (see for instance
[35]) we deduce that for all F € LY(® x R, ), z € Rand # almostall 6 € O,

t

1
tlim ?/F(UT,X,)dt = / F(w,x)w(dw, dx), [Ig-a.s.
— 00

0 O xR

Note that Eq. (2.15) provides some information on the tails of g and [&.

Theorem 2.4 Assume that r > 0. For any z € R and for # -almost all 6 € O, the
following convergence holds under the quenched distribution P, (6),
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10 Y. Offret

lim X, 2 v, 1). (2.18)
11— 00

Here the space—-time mixing environment is, contrary to Theorem 2.3, asymptoti-
cally negligible and the diffusion behaves, in long time, as the underlying Ornstein—
Uhlenbeck process. Since the cocycle property (2.12) is no longer satisfied, we loss
the structure of linear RDS. To prove this result, we use once-again Proposition 7.4
but we also need to apply [21, Lemma 4.5] to the more general equivalent SDE (4.6).

Following the terminology used in [21], it is not difficult to see that this equation is
asymptotically time-homogeneous and S, I"-ergodic, with S the scale function of the
Ornstein—Uhlenbeck diffusion process having I" ~ .47(0, 1) as stationary distribution
and S, I" the pushforward distribution of I" by S. As they mention in [21], the main
difficulty to apply this lemma is usually to show the boundedness in probability. To
this end, we need to use again the Foster—Lyapunov functions U, and V,,.

3 Application to time-inhomogeneous Brox’s diffusions
3.1 Associated models

We turn now to our main application, the study of the socalled time-inhomogeneous
Brox’s diffusion. We consider, for any 8 € R, the informal SDE driven by a standard
Brownian motion B, independent of the Brownian environment (®, %, %),

16'(Yy)
dYt=dBt—5t—ﬁdt, Yu=yeR, t>u>0,0c¢€0. 3.1
A weak solution to Eq. (3.1) is, in the same manner as in Definition 2.1, the diffusion
whose conditional generator, given 6 € @, is

1 g 0 B g 0 0 .
= [Lopwnt D (o0 O] L2 i
f [26 ox \° ax )| T M

D(L) = {F(t,x) eCl: eIy it x) € cl}.

As for Eq. (2.2), where we can assume without loss of generality that s = 0, we can
assume that u = 1 in Eq. (3.1). Moreover, as in (1.9), we assume that 8 = r + 1/4
and we define, for all continuous functions w on [1, co) and all measurable function
Gon|[l,00) x R, ®.(0)(1) := w(e')/e!/?* and £G(t, x) := G(e', '/%x).

It is a simple calculation to see that & : D(.%)) —> D(Ly) is a bijection and
that Ly = & o % o &~ L. In the same way as in [21, Proposition 2.1 and Section
2.2.1] we deduce that {Y; : ¢+ > 1} is a weak solution to Eq. (3.1) if and only if
{Z; := & (Yy) : t > 0} is a weak solution to Eq. (2.2). Then a direct application of
Theorem 2.1 gives that for all 6 € @, there exists a unique irreducible strongly Feller
diffusion process solution to Eq. (3.1).

Let Q,(6) be its quenched distribution and denote by {R;(6) : t > 1}, the tiII}S!-
inhomogeneous semigroup associated to {X;/ Jt it > 1} under Qy(9), and by Q,
and {R; : t > 1}, there annealed counterparts.
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Diffusions in time-dependent random environment 11

3.2 Associated asymptotic behaviours

The following two corollaries are the analogous of Theorems 2.3 and 2.4. We recall
that Sy, is defined in (1.2).

Corollary 3.1 Assume that B = 1/4. For all « € (0, 1) there exists .. > 0 such that,
forallv e My, and V) € M\ yv,,

_ log(IlvRi(®) — s ellu,)
lim sup

< -\ W-as. (3.2)
t—00 logt

and
lim |[DR, — fi]ly, = 0. (3.3)
11— o0

Corollary 3.2 Assume that B > 1/4. For any y € R and for # -almost all 6 € O,
the following convergence holds under the quenched distribution Q, (),

lim &; Dy, 1. (3.4)

—00

The scaling limits (3.2), (3.3) and (3.4) are to be compared with the two conver-
gences presented in (1.7) (the deterministic situation studied in [21]) and convergences
(1.4) and (1.5) (the random time-homogeneous situation considered in [9]). These
results have some commons features with those presented in [21] and [9] and also
with those presented in [7,29,30,32,39,40,42,49] concerning the quenched central
limit theorem (3.4). There is still a phase transition phenomenon for 8 = 1/4 and we
obtain distinct quenched and annealed scaling limits for the critical point. Moreover,
we are more accurate concerning the speed of convergence, which is polynomial here,
and exponential in Theorem 2.3.

Nevertheless, the case B < 1/4 seems to be out of range of the present technics.
In fact, we expect a stronger localization phenomenon and a subdiffusive behaviour
of order #*# 1og?(¢) when B > 0 and an almost sure convergence when g < 0 (which
can seen as a generalization and mixture of results presented in (1.4), (1.5) and (1.8)).
Note that in the case where 8 < 0, Eq. (3.1) is (via a simple change of time) a damped
SDE in random environment.

Furthermore, some methods elaborated in this paper can be used to study a similar
interesting situation where we replace the Brownian environment 6 in (3.1) by an
another self-similar process. These situations are object of some works in progress.
The case of a multiplicative noise or similar equations in higher dimension seems to
be more difficult.
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12 Y. Offret

4 Preliminaries of Theorems 2.1 and 2.2
4.1 Linear perturbations of equation (2.2)

We consider, for any a € R, the informal SDE
1
dZ, =dB; — Eang(t, Zdt, Zi=z€R,t>s5>0,0€e0, “.1)

with the more general potential than (2.2) given by

a—1

x2. 4.2)

2
Q(t. x) = a% e ITO(x) = Vit x) +

Here once again r € R and B denotes a standard Brownian motion independent of
the Wiener space (@, &, #). This equation coincides with Eq. (2.2) for a = 1. The
conditional infinitesimal generator Ay and its associated domains are given as in (2.4)
and (2.5), replacing Vg by Qg. Moreover, it is not difficult to check that

a—1 0
xX—. 4.3)

Ao =L =g

We get that the domains of Ay and Lg are equals, in particular, the domains of Ay do
not depend on a. A weak solution to Eq. (4.1) is, in the same way as in Definition 2.1,
a solution to the martingale problem related to (Ag, D(Ap)). In the sequel, we set

Ag; = A 9
0,t -— A4 8t‘

4.2 Equivalent SDE and martingale problem

We assume that ¢ > 0 and we introduce an auxiliary SDE on R, which is naturally
connected to Eq. (4.1). Let S and H be the functions on @ x R? defined by

X e'2x i
So(t, x) = /eQ‘)(t’y)dy =e!/? / exp (ae - ef(r+l/4)t9(z))dz
0 0
and Sp(t, Hyp(t, x)) = x. “4.4)

Note that Hy is well defined since a > 0 and in this case, the socalled pseudo-scale
function x —> S (¢, x) is an increasing bijection of R. Moreover, by using the second
representation of S, obtained by the change of time 7 := ¢’ /2 y, we can see that Sp (¢, x)
and Hp(t, x) are continuously differentiable with respect to (7, x) € R? and we can
set

og(t,x) := (0xSp)(t, Ho(t,x)) and dy(t,x):= (0;S9)(t, Hy(t, x)).
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Diffusions in time-dependent random environment 13

In addition, remark that, for all (0, s, 7, x) € © x R3,

So(s +1t,x) = S(efrszg)(t, x), Hp(s+t,x)= H(e—rsng)(l, x),
op(s +1t,x) = O'(e—r:ng)(t,x) and dgp(s +1t,x) = d(e’”TSQ)(l‘s X).
4.5)

We can consider, for any 6 € ®, the SDE on R with continuous coefficients and
driven by a standard Brownian motion B, independent of (®, &, %),

dZ, = o09(t, Z;)dB, +dp(t, Z)dt, Zs=Z%€R, t>s5>0. (4.6)

Let C!-2 be the space of continuous functions F' (¢, x) on [s, 0c0) x Rsuchthat 9, F, 9, F
and 82 F exist and are continuous functions and introduce

0
ot

3 [ 2(t,x) 92

Agi=Ag + — = 7 a2

o1 +do(t,x)— :|

Note that Sp and Hyp induce two bijections from the space of measurable functions on
[s, c0) x R into itself, inverse to each other, by setting

SoF(t,x):=F(, Se(t,x)) and JHpF(t,x) = F(t, Hy(t, x)).
By restriction, we get that . and 7% induce bijections

Sy :CY2 — D(Ag), H# : D(Ag) — CL2,
Sy WE2® S D(Ag) and 4 : D(Ag) — W12,

loc loc

where Wllof °° denote the Sobolev space of continuous functions F (¢, x) on [s, 0o) x R
such that the partial derivatives 9, F, d, F, 9;(dy F) and 8)%XF exis~t and are locally
bounded functions. Moreover, the infinitesimal generators Ag and Ay are equivalent.

More precisely, they satisfy
oV oAgo. Sy = Ag. 4.7

Proposition 4.1 For any r € R, 0 € ©,s > 0and z,Z € R such that 7 :=
So (s, 2), {Z; : t = s} is a weak solution to Eq. (4.1) if and only if {Z; := Sp(t, Z;) :
t > s} is a weak solution, up to the exploszon time t., to SDE (4.6). Furthermore,

there exists a unique weak solution (Z B) and, forall G € Wlloc2 Cands <t < 1,

1 1

G, Z,) =G(s,z)+/A'9G(u,Zu)du+/axG(u,Zu)ag(u,Zu)dBu. 4.8)

s S
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14 Y. Offret

Proof Assume that 7 is a weak solution to (4.6). By using the Ito formula, Z solves
the martingale problem related to (Ag C'2). Therefore, Z, = 7 and there exists an
increasing sequence of stopping time {t, : n > 0} such that, for all n > 0 and
G eC'2,

IAT,
Gt At Zoney) — / 3G Zydu, 13,
is a local martingale, with

= supinf {r > s : |Z,| > n} =supt,.

n>0 n>0

We deduce from relation (4.7) that {Z, := Hy(t, Z,) 1t > s} is a weak solution to
(4.1)since Z; = z, foralln > 0 and F € D(Lg), G := JGF € C2, and

tAT, INT,
F@ A1y, ZtAr,l) - / AgF(u, Zy)du = G(t A 1y, ZtAr,l) - / ’AVOG(uy Zu)du
s s

A similar reasoning allow us to show that if Z is a weak solution to (4.1) then {Z =
So(t, Z;) 1 t > s} is a weak solution to (4.6). Moreover, Eq. (4.6) has continuous
coefficients oy and dy and is strictly elliptic (op > 0) and we deduce, by using
classical arguments of localization (see, for instance, [48, pp. 250-251]), that there
exists a unique weak solution (Z, B). Furthermore, by using the Ito—Krylov formula
(see, for instance, [31, Chapter 10] or [18, p. 134]), we obtain (4.8). O

4.3 Chain rules and nonexplosion

To construct Lyapunov functions for the infinitesimal generator Lg, or more generally
for Ay assoc1ated to (4.1), we need to give the associated chain rules. For all 6 € ©®
and ¢ € WlOC (the space of real continuous functions such that the partial derivatives

in the sense of distributions exist and are locally bounded functions) define

X

F(t,x) = /exp [e" T,0()]e(t, y) dy € D(Ag). (4.9)
0

By standard computations, we get the following chain rules
1 —rt
Ay, ,F (t,x) == exp[ T,G(x)] (3x<p(t, x) —axe(t, x)), (4.10)
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Diffusions in time-dependent random environment 15

and

1 1
W FJ(t,x) = 7 &P [e7"" T,0(x0)] x o, x) — EFO‘”(L x)
X

+ [ exple T (Arer. ) - Sanp. ) dy

0
X

1
—(r + Z)/exp [e7" T,0(0)] (e Ti6(»)e(t, y)dy. (4.11)
0

Proposition 4.2 Assume thata > 1. Foranyr e R, 0 € @, s > 0and z € R, any
weak solution Z to (4.1) is global and, for all T > s and0 < B8 < (a — 1)/2,

E[exp (,3 sup Z?)] < 00. (4.12)

s<t<T

Proof Let0 < o < a — 1 and U, be the function defined in (2.13) and set

X

Upa(t,x) =1+ / exp e T,0(» UL (y) dy € D(Ap).
0

We shall prove that Uy is a Lyapunov function, in the sense that, for all 7 > s, there
exists A > O such that, forall0 <t < T and x € R,

ApUpa(t.x) < MUpa(t.x) and  lim inf Upa(t.x)=oco.  (413)

|x]—>o000<t=<

First note that the second relation in (4.13) is clear since limy|— o 6 (x) /x2 = 0.
Moreover, by using (4.11) and (4.10), we can see that

1 2 —rt
Ap U o(t,x) = —Ea(a —a) (1 — )x exp [e T,@(x)] Uy (x)

(4.14)

(a —a)x?

and

1 2 —rt 1
0,Us,a(t, x) = Jax exp [¢7"" T,6(x)|Uq(x) — 5 Woalt,x) = 1)
X

241
- [exple mom] (5 )i ay
0

X

1
—(r + Z)/exp [e™" o) ](e™" T1O(N)UL(y)dy. (4.15)
0
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16 Y. Offret

In addition, since 0 < @ < a — 1, we can write for x sufficiently large,

1 1 1
- Ea(a — ) (1 — m) + Ea < 0. (4.16)

Then we get from (4.16) and (4.14) that there exist L; > 0 and a compact set C such
that, forall0 <t < T and x € R,

1
AgUgu(t, x) + EOMZ exp [e”" T,0(x)| Uy (x) < L1 Le(x) < Ly Upa(t, x).
4.17)
Besides, we can see that there exists L, > 0 such that, forall0 <t < T and y € R,

2 2
ay”+1 ( 1)_” ay
+{r+- T,0(y) > — — L. 4.18
5 ) o) 2 = — Lo (.18)

We deduce from (4.18), (4.17) and (4.15) that (4.13) is satisfied with A := L 4+ L.
By using a classical argument (see, for instance, [48, Theorem 10.2.1]) we get that the
explosion time is infinite a.s. Furthermore, the right-hand side of (4.13) implies that
{e™MUyo(t, Z;) : s <t < T} is a positive supermartingale. By using the maximal
inequality (obtain from the optional stopping theorem) we get that, for all R > 0,

R IP( sup e MUy o(t, Zy) > R) < e ™Upul(s, 2). (4.19)

s<t<T

Besides, we can check that, for all 8 < «/2, there exists ¢ > 0 such that, for all
s<t<Tandx eR, cUpq(t,x) > exp(,sz). Then by using (4.19), we obtain

IP( sup Z7 > R) < ce*T™Up 4 (s, 2) exp(—BR).

s<t<T

Since B and « are arbitrary parameters satisfying 8 < «/2 < (a — 1)/2, we deduce
from the last inequality that (4.12) holds for any 8 < (a — 1)/2. O

5 Proof of Theorem 2.1

Theorem 2.1 will be a direct consequence of Theorem 5.1 below.

Theorem 5.1 For any a,r € R, 0 € ®, s > 0and z € R, there exists a unique
global weak solution to E_q (4.1). Moreover, there exists a standard Brownian motion
B such that, for all F € D(Ayp),

t 1

F(t, Z)) =F(s,z>+/A9F(u,zu>du+/axF(u,zu>dBu, f=s (50

N s

@ Springer



Diffusions in time-dependent random environment 17

Proof First of all, when a > 1, the proof is a direct consequence of Propositions (4.2)
and (4.1). More generally than relation (4.3), we note that, for any aj, a» € R,

(1) @ a1—a 3
AV =AY -
o 9 2 dx

where A®) denotes the infinitesimal generator associated to a;, i € {1,2}. By using
this relation, it is not difficult to see that the Girsanov transformation induces, by
localization, a linear bijection between the weak solutions associated to parameters
aj and ay. Since for all ap > 1 there exists a unique weak solution, we obtain that,
for all a1 < 1 there exists a unique weak solution. Therefore, to complete the proof, it
suffices to show that there exists a global weak solution. Remark that since uniqueness
holds for the martingale problems, any weak solution is a Markov process.

Leta; <1 < ap be and consider for a, a global weak solution (Z, W) on a given
filtered probability space (2, .%, P;). We setk := (ap — a;1)/2 and, for all t > s,

t 1 t
1
D, :=exp /kZuqu — E/kzzgdu and B, := W, — W, —/kZudu.
N s N
By using the moment inequality (4.12) and the Novikov criterion, we can see that
{D; : s <t <s+ T}isamartingale forany 0 < T < (a» — 1)/k2. The Girsanov

theorem applies and {B; : s <t < s 4 T} is a standard Brownian motion under the
probability measure Py, defined by the Radon—-Nykodym derivatives

dPy.z, = D;dPyz, s<t=<s+T.

Moreover, for all F € B(A(gz)) = B(Aél)) ands <t <s+T,

t 1
F(t.Z) = F(s.2) + / A F(u, Z,) du + / 0 F (u, Z,) AW,

N N
13 1

= F(s.2) +/A§“F(u, Zu)du—i—/axF(u,Zu)dBu.

N N

Then {(Z;, B;) : s <t < s+ T} is a weak solution, which does not explode, on
the filtered probability space (2, .%, IP1). Since the life time 7T is independent on
the initial state (s, z), we deduce by using the Markov property that the unique weak
solution associated to a; is global. This completes the proof. O

6 Proof of Theorem 2.2

We first show that it suffices to prove the analogous theorem for the more general
equivalent SDE (4.6) (see Theorem 6.1). Thereafter, we prove this theorem.
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18 Y. Offret

Let IT’S, z(0) be the distribution of the global weak solution to the SDE (4.6), which
existence is stated in Proposition (6.1), and denote by Py (s, z; ¢, dx) and Py ,(6) the
associated transition kernels and Markov kernels.

Theorem 6.1 For anyr € R and all 6 € O, the family {IEY,E(Q) :5>0,z7€eR}is
strongly Feller continuous. Moreover, the associated time-inhomogeneous semigroups
(P (0):t>5>0, 0 € O} satisfy

Pyt (6) = Py (e ™ Ts0) and Posi1(0) = Pos(@)Pos(e*T0).  (6.1)

Besides, ﬁg(s, Z;t,dx) admits a density py(s,Z;t,x), which is measurable with
respect to (0,s,t,Z,x) on ©® x {t > s > 0} x R2, and which satisfies the lower
local Aronson estimate: for all @ € @, T > 0 and compact set C C R, there exists
M > 0 such that, forall0 <s <t <Tand z,x € C,

1 = 2
Do(s,Z;t,x) > \/ﬁ exp (—Mlzt _2' ) (6.2)

Denote by PP, .(0) the distribution of the unique global weak solution to the
Eq. (4.1), which is given in Theorem 5.1, and by Py (s, z; ¢, dx) ~and Py ;(6) the associ-
ated transition kernels and Markov kernels. Assume first that { P :(6) : s > 0, Z € R}
is strongly Feller continuous. One get by using Proposition 4.1 that, for all bounded
measurable function F on [0, 00) xR, r > s > 0and z € R,

Es - (OF (@, X1)] = Es, 55,2 (O)[F (2, Hg (1, X))].

Since Sy is continuous on R2, we deduce thati]PS,z(G) 1 s > 0, z € R}isalso strongly
Feller continuous. Secondly, assume that {P,;(0) : t > s > 0} satisfies relations
(6.1). We get from (4.5) and Proposition 4.1 that, for all nonnegative function F on
R, s,t >0andz € R,
Py s41(0)F(2) = Py g1 (O)[F (Hp (s + 1, %)1(Sa (s, 2))
= Po.(e " TO)F (H-rs 1,6y (t, ) 1(S(e-rs7,0)(0, 2)) = Por(e” " T,0) F(2).

By using the Markov property, we obtain relations (2.10). Finally, assume that the
transition kernels Py (s, Z; t, dx) admits a measurable density py (s, Z; ¢, x) which sat-
isfies the lower local Aronson estimate (6.2). Once again, Proposition 4.1 applies and
gives that Py(s, z; t, dx) admits a density p such that

Po(s, 231, x) = pals, So(s, 2); 1, Sp(t, x))eQ0),

Since Sy is a locally Lipschitz function, we deduce that py (s, z; t, dx) is also measur-
able and satisfies the lower local Aronson estimate. In particular, Theorem 6.1 implies
Theorem 2.2. This ends the proof, excepted for Theorem 6.1.
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Proof of Theorem 6.1 Since Eq. (4.6) is strictly elliptic (op > 0) and has continuous
coefficients, it is classical (see for instance [48, Corollary 10.1.4]) that its unique weak
solution is a strongly Feller continuous diffusion, which admits transition densities
Po(s, Z; t, x) measurable with respect to (s,7,Z,x) € {t > s > 0} x R2 for each
6 € ®.Moreover, we can see that relations (6.1) are direct consequences of the Markov
property and of (4.5). We need to prove the measurability of 5 on @ x {t > s > 0} xR?
and the lower local Aronson estimate (6.2). Set, for all § > 0,

Py (s, 21 1,dx) := Py 2 (0)(X; € dx, 15(5) > 1) = PLLOY (X, € dx, 75 > 1)
with
5(s) :=inf{r > 5 : | X;,| =6} AT.

Here I?’E(S; () denotes the distribution of the truncated diffusion process whose coeffi-
cients are given on [s, 00) X R by

d(t,x) :=dg(t AT, (x AS)V =8) and o (1,x) =05t AT, (x A8)V =5).

Then the fundamental solution ﬁé‘s) of the associated partial differential equation (PDE)
satisfies the local Aronson estimates. Indeed, even if the associated partial differential
operator is not of divergence form, we can see that it is equivalent to a uniformly
elliptic divergence type operator, with bounded coefficients, employing the change of
scale defined on [s, o0) x R by

X
1 d® t,
kés)(t,x) ::/w)—exp 2/%& dy.
) (0,7 (1, ))? 9 (0" (1, 2))?

Therefore, the results in [3] or [38] apply, and the fundamental solution (jé‘s) of the
associated PDE satisfies the global Aronson estimates. Besides, since

P (s 20,20 = G (s kY (5, 2), 1.k (1, 2)) 3k (2, x)

and ké‘s) is locally Lipschitz, we get that ﬁéa) satisfies the local Aronson estimates.

Then, following exactly the same lines as the proof of [47, Theorem II.1.3] in the
time-homogeneous situation, we can prove that the kernel ﬁgﬁ admits a density ps. g
such that, for all 0 < n < 1, there exists M > 0 such that, forall 0 < s <t <
T, |Z] <78, x| < ndand |t —s| < (n8)?,

5.0(5. 5. 1,x) = —— (M'X_Z'Z)
§S,3,1,X) =2 —=¢€X — .
pa.6 N R f—s

Since p > ps, we deduce that p satisfies (6.2) by taking § sufficiently large.

@ Springer



20 Y. Offret

It remains to prove the measurability of p. We shall apply [48, Theorem 11.1.4].
Since (0, s, x) —> oy(s, x) and (0, s, x) —> dp(s, x) are continuous on @ x RZ,
we can see that, for all convergent sequence 9, —> 6 in ® and all T, R > 0,

sup log, — og| + |dp, — dg| —— O.
[0,T]1x[—R,R] =00

We can check that the assumptions of [48, Theorem 11.1.4] are satisfied and we
conclude that, for all convergent sequence (s,, Z,) —> (s, Z) in [0, c0) x R and all
bounded continuous function G on the canonical space €2,

E,, z, 001Gl — _©)(G]

We deduce that (0, s, Z) —> ES,E(Q)[G] is continuous on & x [0, 00) X R. In par-
ticular, the family of probability measures {IP; z(9) : s > 0, Z € R, 6 € @} is tight
zind we can see that, for all bounded measurable function F on R, (0,s,2,1) —>
E; :(6)[F(X;)] is measurable on & x {t > s > 0} x R. To this end, assume fur-
thermore that F is L-Lipschitz. We can write, for all compact set K of the canonical
space €2,

By 2O F (X0)] = Eq 5 00)LF (Xip)]| < LB,z (0)(Q\K)
+L By 2Ok X; = X1+ B 2 O)LF (X)) = By 2 (60)[F (X3)]]-

By letting (s, Z, 6, 1) —> (50, Z0, 6, f0) and by using the tightness of the family of
probability measure {P;:(0) : s > 0, Z € R, 6 € ®}, we get the continuity and we
deduce our claim, since any measurable bounded function is the bounded pointwise
limit of a sequence of Lipschitzian functions.

Therefore, we can define the measure v on the product measurable space @ x R*
by setting, for all B € & and I, I, I3, I4 € B(R),

4
v(BxHIk):: / Py(s. 2.1, I1) ;=520 #/(d6) ds dZ dt.

k=1 BxI xhx 1

By standard results on disintegration of measures, the Radon—Nykodym derivative of
v with respect to #(d0) ds dZ d¢ dx, which is nothing but py (s, Z, ¢, x), is measurable.

7 Preliminaries of Theorems 2.3 and 2.4
7.1 Uniform affine approximations of the environment

In the following, set for all y € (0, 1/2) and 6 € O,

o+ + 16~
H,(6) = sup 10T Mlyn + 16" 1ly,n

, 0,:={0< H, <o}, (7.1)
n>0 L(n) v v
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== ikl

hn
Xn0 0 Xnk ot Xngmy,
Xnb1,0 0 Xnblk " Xt Ly
n n+1 n+2

Fig. 1 Affine approximation of a typical Brownian path 6

with, foralln > 0O and x € R,

O(+y) — 0(+
10E = sup  PEN ZOED 4 L) = /T Tog( + D).

n<x<y<n+l ly — x[¥

(7.2)

In addition, denote foralle > Oby A, () (see Fig. 1) the piecewise linear approxima-
tion of 6, associated to the subdivision Sy ¢ := {x,x : n € Z, 0 < k < m,}, defined
by m, = h;l = [LI/V(n)s_l]—}—l eN, xyx :=n+khyand x_, ; := —x, k. Then
introduce the random affine approximation W, . defined, for all & € ®,, by

. & 1/y
Wy.e(0) = Ay .0)(0), with n,..(0) := (H (9)) : (13)
14

and set

(W), (0)(x)]
Ay (0)(x) :=0(x) — W, (0)(x) and D, .(0) := sup

xeR L'y (x) (74)

Proposition 7.1 Forally € (0, 1/2), the subset ®, C O is (T;)-invariant and of full
measure. Furthermore, there exists « > 0 such that

Ey [exp («H,)] :=/exp (@HZ(6)) 7 (d9) < oc. (7.5)
®

Besides, foralle > 0 and 0 € ©,,

sup | A, £ (0)(x)| <& and D, () <e(l+ (e "H,0)'). (7.6)
xeR

Proof Clearly H, : ©® — [0, oc] is a seminorm and to get inequality (7.5) it suffices
to apply the Fernique theorem presented in [19, Theorem 1.3.2, p. 11]. To this end, we
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2 Y. Offret

need to check that % (H,, < oo) > 0. By using the Hélder continuity of the Brownian
motion on compact sets, the seminorm defined on & by N (0) := |6 |l 1 + 107 [I,1
is finite % -a.s. Moreover, by using the Fernique theorem and the Markov inequality,
we deduce that there exists ¢, 8 > 0 such that, for r sufficiently large,

F(r):=#(N > r}) < Eylexp(BND)]e P < ce P

Besides, the random variables (6 > [|0F[l.n + 10~ lly,n), n > 0, beingi.i.d. by using
again the Markov property, we get that

. . ad . ac C
Jlim #/({H, < h) Zhlg‘;og“ ~ F(hL()) = hlinéog(l — ) =1

Fernique’s theorem applies and we deduce (7.5). The fact that &,, is (T;)-invariant is
obtained by noting that, forall 6 € ® and r € R,

H,(T,0) < 27 ~1/20/2) (e’/z + 1) sup

n>0

[L ((n+De'’? +1)

L(n) }HV @

Furthermore, let ¢ > 0, n > O and x,y € Rbe suchthatn < x,y < n + 1 and
|y — x| < hy, where h, denotes the step of the subdivision S, . defined in Fig. 1. We
can see that

6% () — 65 (x)] < L(n)Hy,(0) h}, < H,(0)&”
and, when |y — x| = h,,, we get

0% () — 6% ()]

A S LWH @)y - A7 < Hy@) e ('L () + 1),

Therefore, we obtain that

16(x) — Ay (0)(x)| < H,(0)e” and IM’E(ﬂ<H(9) 11 +e)
jlel]g X V.8 x)| < Hy,(0)e" an jlel]lg Ly = y(@)e ).

Replacing in the two last inequalities € by 71, .(6), defined in (7.3), we deduce the
proposition. o

7.2 Random Foster-Lyapunov drift conditions
7.2.1 For the infinitesimal generators

Let ¢ be a twice continuously differentiable function from [1, o) into itself such that,
o) =1on[l,2], ¢(v) =von[3,00)and ¢(v) < von[l, co).Inthe sequel, we set
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FYft,x) =1 +/exp [e7"" T, A,..(0)(»)| U, (y)dy € D(Lg) (7.7)
0
and

X

Gy (t,x) =1+ / exp e T,4y,:(0) ()] G, (y) dy € D(Ly),
0
with Gg(x) 1= @(Vy(x)). (7.8)

Here we use G4 = ¢(Vy) in (7.8) instead of V,, because V,, do not belong to W}O’go
(there is a singularity in 0) contrary to U, in (7.7).

Lemma 7.1 Forallr e R, @ € (0,1), y € (0,1/2), T > 0and A > 0, there exists
€ > 0 such that, for all 0 < ¢ < €, there exist a random variable B : ® — [1, 00)
and p, k,c > 0 such that, forall® € ®,, 0 <t < T and x € R,

LoF)*(t.x) < —AF)*(t,x) + By, with By < kexp(c HL(©)).  (7.9)

Proof The proof will be a consequence of the following two steps.

Step 1 Forall0 < 8 < land R > 1, there exists €1 > 0 such that, forall0 < ¢ < &
and 0 < £ < 1, there exist amap Ry : ® —> [R, o0) and ¢1 > 0 such that, for all
0e®,, 0<t=<Tand|x| > Ri(0),

1 — 1
Lo Fl (t.x) < —5%#}1{’8(;, x), with Ry (0) < c1(H" 7 (0) v 1).
(7.10)
First of all, by using chain rule (4.10), with a = 1, we obtain that
1
LoaF)*(t.x) = 3 (—a(l —a)x? —ax e (T, W, 4(0)) (x) + a)
xexp e T;A,,(0)(x)] Ua (x), (7.11)
which can be written
1 1 e (T W, £(0)) (x)
Lo F(t,x) = —=a(l—a)|1— v
005" (1, %) 2a( ®) |: (1 —a)x? (1 —a)x
x x?exp e T; A, (0)(x)] Uy (x). (7.12)

Moreover, we can see that

(T Wy £(0)) ()] < @, (1) Dy (@)L (x),  with @, (1) := (1 +1/2)"/% /4.
(7.13)
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Recall that Dy, . is defined in (7.4). In order to simplify our calculations, introduce

gi=1ve TUIT

and Y(e) := explge]. (7.14)
Note that

(W (&) Up(x) < F)*(t, x) < W(e)Uy(x). (7.15)

Besides, we can choose ¢ > 0 and D > R such that

(1 1 1\/e_rT) w( )—2>5 (716
T U—oD?  (d—ap)FED =0 -16)

Then we deduce the left-hand side of (7.10) by using (7.16), (7.15), (7.13), (7.12) and
by setting, for any 0 < ¢ < ¢,

R LYYy
Ri1(0) = [@V(T)Dy’s(e)cy,g \% 1] -t Dﬁ, with ¢, ¢ := sup | |§x)
[x|=1 X

<0

(7.17)

Furthermore, the right-hand side of (7.10) is obtained by using the right-hand side of
(7.6) and by choosing ¢ sufficiently large.

Step 2 Forall0 < § < land R > 1, there exists ¢2 > 0 such that, forall) < ¢ < &,
there exists a constant Ry > R such that, for all® € ©,, 0 <t < T and |x| > Ry,

0 F) (1) < (1= 8) Sx*F " (1.). (7.18)
By using chain rule (4.11), we get that

o _ 1
WE) (1, x) = Exz exp e T1 Ay ¢ (0)(X)|Ua(x) — 3 (F)f(t.x)—1)
X

241
= / % ; exp [ T, A+ (0)()]UL(y) dy

0
1 X
~(r+3) [ € a0 e[ AL O]UL0) .
0
(7.19)
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We can write, by integration by parts in the third term of the right-hand side of (7.19),

WEF) (1, x) = %;ﬂ exp e T;A,,6(0)(x)|Ua(x) — (F)“(t,x) — 1)

1
—Easzey‘g(t, x) + / F) o, y)aydy
0
X

1
—(r + 4_1) / (7" T;A,:0)(y) exp e T Ay (0)(N]UL(y) dy.
0
(7.20)

Besides, by using (7.15) and the left-hand side of (7.6), we can see that

X

/(e_” T; Ay (0)(y)) exp [e " Ti Ay £ (0)() U, () dy| < qeW?(e) F) " (1, x)
0

and

X

[ Efwvayay| < v eR ..
0

We deduce from the two previous inequalities, (7.20) and (7.15) that

0 F) (1) < ([#20) = 1527 + [1 +xge]9?@) F) (). (21)

with k := |r|41/4. Inequality (7.18) is then a simple consequence of (7.21) by taking
& > 0and R, > R such that, for all x > R»,

[#2(e2) - 1]%x2 + 1+ gres]w(e2) < (1 - 3)%;&

Proof of Lemma 7.1 We deduce Lemma 7.1 from (7.18) and (7.10). Indeed, we can
choose 0 < § < 1 and R > 1 such that

1 —

NGl N AV Y (7.22)
2 2

Then we get the left-hand side of (7.9) by using (7.22) and by setting € := &1 A &2 and

By := sup LoF) " (t,x). (7.23)
[x|<R1(O)VRy, 0<t<T
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Moreover, by using inequalities (7.21), (7.15), (7.13) and (7.11), we can see that there
exists C > 0 such that

LoF)*(t,x) < C(1+ Dy ¢ (0)|x|L"7 (x) + x?) Uy (x). (7.24)

We obtain the right-hand side of (7.9) by taking p := 2/(y (1 — £)), k, c sufficiently
large and by using (7.24), (7.23) and the right-hand sides of (7.10) and (7.6). O

Lemma 7.2 Forallr e R, € (0,1), y € («/2,1/2), T >0, e > 0and ) > 0,
there exist a random variable B : ©® — [1,00), k,c¢ > 0 and 0 < p < 2 such that,
forall0 € ®,,0<t <Tandx € R,

LoGy®(t,x) < —AGy (t,x) + By, with By < kexp(c H!'(0)). (7.25)

Proof This proof uses similar ideas as the proof of Lemma 7.1 and we only give the
main lines. Once again, the proof will be a consequence of the following two steps.

Stepl Forall0 <6 <1, R>1and0 < £ < 1, there exist Ry : ® —> [R, 00)
and ¢1 > 0 such that, forall € ©,,, 0 <t < T and |x| > R1(9),

1
Lo Gl (t,x) < —(1 — 8)%|X|O‘Gg’8(t,x), with R1(0) < c1(H)"™" () v 1).
(7.26)

By using chain rule (4.10), with a = 1, we can see that, for all x € {V,, > 3},

e (T W, £ (6)) (x) o 1 - a)

v.e __ ¢ _
Ly,G), (t,x)——2(1+ . = —

x|x|* exp[e™"" T; Ay ¢ (0)(x)] Go(x).

Moreover, we can choose D > 1 such that {V, <3} C [-D, D] and

1_1\/e*’T_ o v 25 (s
( - Dz—a)( )72 = (1-9).

Then by setting R; as in (7.17) we can deduce (7.26).

Step 2 Forall § > 0 and R > 1, there exists a constant Ry > R such that, for all
0€®,, 0<t=<Tand|x| > Ry,

Gy (1,x) < 8%|xI“GZ’8(t, x). (7.27)
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By using chain rule (4.11) we can see that, for all x € {V, > 3},

V€ _E a —rt _ V€ _
HGy(t,x) = 2|x| exp e T} Ay o (0)(0) ] Ve (x) — (G (1, x) — 1)

X
1

) / exp e T1A,.. ()] y Go(y)dy

0

X

1
~(r+3) [l a0 e[ 1:4,:0)00]G, 00 dy.
0

Then we can obtain (7.27) by using similar methods as in the proof of (7.18).

Proof of Lemma 7.2 We deduce Lemma 7.2 from (7.27) and (7.26) in the same manner
as we get Lemma 7.1 from (7.18) and (7.10). The main variation is that we need to
choose 0 < ¢ < 11in (7.26) such that p := o /(y (1 — ¥)) < 2. O

7.2.2 For the Markov kernels

Proposition 7.2 Forallr € R, @ € (0,1), y € (0,1/2) and n,t, T > O, there
exists a random variable B : ® — [1,00) and k,c, p > 0 such that, for all
k>0,0€0,, 0<s<t<Tandx eR,

P 1 ()Ua(x) = (N + & + Ls<i<s40)Ua (%) + BoLcqu, <ic—18y) (7.28)
with
By < kexp(c H}ﬁ’(B)). (7.29)

Proof Let L > ¢4 and 0 < € < 1 be as in Lemma 7.1 and 0 < ¢ < € be such that
e 7240 < pand %9 < 5+ 1, where ¢ is defined in (7.14). One can see by using
Ito’s formula (2.8) that there exists a Brownian motion W such that, under Pj i,

t
ME]E(t, X)) = e F) (s, x) + / M (LoF) " + AF) ") (u, X,) du

N
t

+ / MO Y (u, X, )dW,. (7.30)

N

Besides, we get from Lemma 7.1 that there exist a random variable B : ® —>
[1,00), k,c, p > Osuch that, forall6 € ®,, 0 <s <t < T andx € R,

LoF)(t,x) < —AF)"(t,x) + By, with By < kexp(c HL ().
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Then one can see by taking the expectation in (7.30) and by using (7.15) that, for all
0e€®,, 0<s<t=<Tandx eR,

Py (0)Uq (x) < e M=91245, (x) + 27 e By < (7 + Ly<r<s0)Un(x) + By.

and we deduce that inequalities (7.28) and (7.29) hold for any « > 0. O
Proposition 7.3 Forallr €e R, « € (0,1), y € («/2,1/2) and n,t, T > 0, there
exist a random variable B : ® — [1,00), k,c > 0and 0 < p < 2 such that, for
allk >0,0e€0,,0<s <t <Tandx € R,
Py 1(0)Va(x) = (n + &k + Ls<i<s40) Vo (%) + BoLyeqy, <18y} (7.31)
with
By < kexp(c H}{’(G)). (7.32)
Proof The proof follows the same lines as the proof of Proposition 7.2 and we only
give the main ideas. Once again, by using Ito’s formula and Lemma 7.2, we can prove
that there exist a random variable B : ® — [0, 00), k,c > 0and 0 < p < 2 such
that, forall0 € ®,, 0 <s <t < T andx € R,
Ps 1(0)Go(x) < (n+ Ly<<54:)Ga(x) + By, with By < kexp(c H}(9)).

Moreover, since G, < V, and G4 (x) = Vy(x), for x € {V > 3}, we obtain that

Es 1+ (0) [Va (XD Ly, (x)=31] < (01 + Ty<i<s11)Ga(x) + By and
Psi(0)Va(x) = 0+ Ly<i<grr) = 1+ Ly<i<oio) Vo (x) + (Bg + 3).

This is enough to complete the proof. O

7.3 Coupling method

7.3.1 Coupling construction

We say that C is arandom (1, €)-coupling set associated to the random Markov kernel
P and the random probability measure v over (®, &, #)onR, ife : @ — (0, 1/2]

is a measurable map, Cy is a compact set of R for % -almost all § € ® and

inf Py(z; %) > egvg(x) W -as.
z2€Cy

Given a random (1, €)-coupling set C associated to the random probability measure
v, we construct a random Markov kernel P* on R x R as follows. Let R and P be two
random Markov kernels on R x R satisfying, for all x, y € Cy and A, B € Z(R),
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Py(x; A)— A — Py(y; A)— A
9 (x5 A)—eg vo( )7 Ro(x,y: Rx A) = 9(y; A)—eg vg(A)

Ry (x, y; AXR) =
1—¢p 1—e¢p

and
Po(x,y; Ax B) = (1 —eg)Rg(x,y; A X B) + egvg(A N B). (7.33)

Note that we can assume that P is a random coupling Markov kernel over P, in the
sense that, forall6 € @, x,y € Rand A € Z(R),

Po(x,y; AxR) = Pg(x; A) and Po(x,y;R x A) = Py(y; A). (7.34)
Then we define,

Ro(x,y; %), if(x,y) € Cy x Cp,

. 7.35
Por. vi %), if (x.y) & Cg x Co. (7:35)

Py(x, y;#) = i

7.3.2 The Douc—Moulines—Rosenthal bound

In order to simplify our claims, we set

Py := P1(0), Po(z;dx):= Py(0,z;1,dx), pe(z,x) = pe(0,2;1,x)

_ U U
TO =710 and Ugx, y) = 22 T Ua)

2
Moreover, we denote for any function F : ® — (0,00), n € Nand j € {0, --- , n},
J
+ . —Irng png
Fi60) = ... U F(e " T"@) and
J
— . —r(n—ny) r—ng _ ot —n
Fj’n(g) - 1571|I<I~1?‘§nj5n!:|1: F(e T 0) - Fj’n(T 9)

(7.36)

Proposition 7.4 Forallr e R, o € (0, 1), y € (0, 1/2) and p € (0, 00), there exist
a random variable B : ® — [1, 00), with log(B) € Ll(@, B, W), and a random
(1, &)-coupling set C over (&, B, W) on R such that, for all 6 € ©,,,

— — P B,
PiUqy < pUq + Bolcyne, and — sup  ReUg(x,y) < -2 z

(7.37)
(x,5)€Csx Co 1-
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Moreover, foralln € N, j e {l,--- ,n+ 1} and vy, vy € M,

[vi Py (8) — v2 POy, < 20" [(1 — e)fn(O)ﬂ i<n + B;f_l,n((?)] villugv2llu,
n—1
+2(1— &)t 01 <, Z ok B(e7 k=D prn—k=lgy (7.38)
k=0

Proof Let n and « be two positive constants such that p = n + 2« and use the
Proposition 7.2 to obtain B : ® — [1, c0) and k, ¢, p > O such that, forall 6 € @,

PyUy < (0 +1)Us + Bylc,, with By < kexp(cHJ(9)) and Cy = (Ua < &' By).

The same arguments as in the proof of [17, Proposition 11, p. 1660] apply. Indeed, we
can write, for any random Markov kernel P satisfying (7.34),

R — B -
PoUog = (n+1)Uq + 7(1chc9 + Lcyxcg) + Bolcyxcy-
Since By < 2«xUy on Cg5 x Cg and Cy x Cg, we obtain from the last inequality that

PoUq < pUq + Bolig,yxc,- (7.39)

Then we deduce that (7.37) is satisfied by setting By := ((px~! By + Eg)p’]) v By
and by using (7.39), (7.35) and (7.33). Besides, log(B) € LY(©,2,7) by using (7.5)
and thus similarly for log(B). Moreover, for all 0 € ®,,, Cy is a compact set and we
get from the lower local Aronson estimate (2.11) that C is a random (1, &)-coupling
set associated to the random distribution v defined, for all 6 € ®,, and A € Z(R) by

! inf z,x)dx
& = /inf po(z,x)dx | A= >0 and vy(A) := fA. zeCy Po(2, X) .
e 2 fR inf;ec, po(z, x)dx

R

Furthermore, we can write by using (2.10) that

Py(0) = P(B)--- P(e """ = 1g)
and therefore, a direct application of [17, Theorem 8, p. 1656] gives (7.38). O
7.4 Ergodicity and exponential stability of the RDS

7.4.1 Ergodicity

Proposition 7.5 The dynamical system (©, B, W , (T;);cRr) is ergodic.
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Proof Introduce three measurable maps U* : © — @ and S; : ® — O defined
by

UT®) = (s —> e /*0(£e*’?)) and S,(0) := (s —> O(s + 1)).

It is classical that the distribution of U* under the Wiener measure %, denoted by I,
is the distribution of the stationary Ornstein—Uhlenbeck process having the standard
normal distribution as stationary distribution. This one is an ergodic process and, as a
consequence, the dynamical system (@, A, I', (5;),er) is ergodic (see, for instance,
[25, Theorem 20.10]). Besides, it is clear that the following diagram is commutative:

+
(®,B,W) d (®,8,T)
| [ ally
(©,B,W) e (©,B,T)

Let A € £ be such that T,_I(A) = A, with ¢ # 0. By using the ergodicity of the
dynamical system (®@, %, I', (S;);cr), it follows that

STHUEA) = U171 (A) = UE(A) and T(UEA) =0 or =1.
Moreover, we can see that
US(A) = UH ' WUFA) and U WUTA)NU)TU(A) = A,
We conclude that 7 (A) = 0 or = 1 and the proof is finished.
7.4.2 Exponential stability

Lemma 7.3 Assume that r = 0. Let F be such that (log(F) v 0) € LY(©, B, #)
and F* as in (7.36).

1. If W (F < 1) = 1 then, forall L > 1, there exists A > 0 such that

lim sup " F[iZ ]m(e) =0 ¥ -as. (7.40)

n—oo

2. If W (F > 1) > O then, for all n > 0, there exists L > 0 such that

limsup e Ff,, (0) =0 # -as. (7.41)

n—00 (7]

Proof We prove the lemma only for F since the proof for F~ is obtained replacing
@by T™'0 and T by T~!. We set, forall ¢ > O and k > 1,

logl 7 @)1 := 10g F(T* ') a1 and F© = F{©.
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Assume that #' (F < 1) = 1. We can see that there exist 0 < ¢ < 1 and £ > 0 such
that

Ey(lrsc] < L7' and By [log(F)] < —L.

By applying the ergodic theorem to the ergodic dynamical system (®, B, #', T) we
obtain that, for % -almost all & € © and all integer n sufficiently large,

n n

n N —
> Lraioigyee < [Z] and £ ©) <[] FO®0) <e .
=1 Pl

Then we deduce the first point by taking 0 < A < £. Assume that # (F > 1) > 0.
Note that if F is bounded % -a.s. the second point of the lemma is obvious. Moreover,
when F is unbounded with positive probability, it is not difficult to see that there exist
0<x <n,c>1and L > 1 such that

Eylog(F)] <k and BEy[lgs.]> L7L

Once again, the ergodic theorem allow us to obtain the second point since, for # -
almost all & € ® and all integer n sufficiently large,

n n
n
E :U.F(kalg)ZC > [z] and F[—‘%],n(e) < H Fk(c)(e) < eKn.
k=1 k=1

Proposition 7.6 Assume that r = 0. For all a € (0, 1) there exists .. > 0 such that,

for all families {vtjE .t > 0} of random distribution on R over (©, B, W) satisfying

1 +
lim ogdlvllu.)

—00

=0 W-as., (7.42)

the following discrete-time convergences hold:

. log(Ilv;" (0) Py (8) — v, () Piey(0) llu,)
1m sup

t—00 t

< —A W -as. (7.43)

and

lim sup ‘28U @) Pa(T116) — v 6) Py T"10) I, )

t—00 t

< —A W-as. (7.44)

Proof We prove only (7.44) since the proof of (7.43) follows the same lines and
employs the same arguments. Let 0 < p < 1 be and, following Proposition 7.4, write
that, for all 6 € ©,,t>0and j €{0,...,[t]+1},
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v Py (7 710) — v PLy(T710) 1y,

< 2p" (1 = )7 11O <11 + BT (@O 11l vy o,
[11-1
+2(1 = &) (O 1<y D p*BT™*'0). (7.45)
k=0

Since log B € L! (O, A, W), the ergodic theorem allows us to see that, for all n > 0,

log[B(T *+19 !
lim logl BT 7701 _ 0 and limsup e™ " Z OKB(T*19) =0 # -as.

Besides, one can see by using Lemma 7.3 that there exist L > 1 and £ > 0 such that

lim e ™ B, ) =0 and lim e (1 —e&);,, (0) =0.
n—o0 [z],n n—o00 [z]’"
Therefore, we deduce from (7.45) the exponential convergence (7.44). O

8 Proof of Theorem 2.3

Theorem 2.3 will be a consequence of Propositions 8.1 and 8.2. In the sequel, we
introduce, for any operator P acting on .#f, F € {Uy, V,}, the subordinated norm

IPllF == sup{lluPllF: € Ap, nlr =<1}

8.1 Exponential weak ergodicity and quasi-invariant measure

Proposition 8.1 Assume that r = 0. For all a € (0, 1) there exists . > 0 such that,
forallvi, vy € M y,,

: log ([lvi P+(0) — va P, (O)llu, )
lim sup

t—00 t

< -\ W-as. (8.1)

Furthermore, there exists a unique (up to a # -null set) random probability measure
wover (0, B, %) on R such that, for all @ € (0, 1) there exists . > 0 such that, for
allv e /vy,

b log (||v P (T—6) — ollu,)

lim su < -\ ¥ -a.s. 8.2)
t—00 t
Moreover, forall t > 0,
we € My, and peP(0) =pure W -as. (8.3)
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Proof By using relation (2.12) we can write P;(0) = P[,](G)P{t}(T[’]B) and we get
V1 () = v2 P @)y, < I1vi Py (@) — v2 Py @) llu, | Py (TH0) 1, (8.4)

Moreover, by using Propositions 7.2 and 7.1 and the ergodic theorem, we obtain

m 10g(SUPo§u51 ”Pu(Tne)”Ua)

n—00 n

=0 W -as. (8.5)

Besides, a direct application of Proposition 7.6 gives that there exists A > 0, indepen-
dent of v and v;, such that

. log (/v Px(0) — v2 Pa(®) 1)
lim sup

n—oo n

< -1 W-as. (8.6)

We deduce inequality (8.1) from (8.6), (8.5) and (8.4). Furthermore, one can see by
using again Propositions 7.6, 7.2 and 7.1 and similar arguments that

o
Z WP, 1 (T7"710) — v P (T7"0) ||y, < 00 W -as.
n=0

We obtain that, for # -almost all 6 € @, {vP,(T"0) : n > 0} is a Cauchy sequence
in the separable Banach space .#,. We get that there exist A > 0 and a random
probability measure (g € .4y, such that, forall v € .Z) y,,

. log(|[lvPu(T7"0) — mollu,)
im sup

n— 00 n

< -\ W-as. 8.7)

We deduce (8.2) from (8.7) in the same way as we obtain (8.1) from (8.6). Finally,
(8.3) is a consequence of (8.2) and the cocycle property since

Ua

My, . My, . My,
1o P (0) "= lim vP(T_0)Pr(0) "= lim vPryg(T_yynTy0) = pure # -as.
§—> 00 §—> 00

8.2 Annealed convergences

Proposition 8.2 Foralla € (0, 1) and b € Ay,
ey, and lim 9P — fillv, =O. (8.8)
—00
Proof Let 0 < p < 1 be and apply Proposition 7.3 to see that, forall 0 < u < 1,

P,O)Vy <(o+1)Vy+ By and PyVy < pVyu+ By W -as. (8.9)
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We get from the latter inequality and (8.3) that 7 (Vy) < pue(Vy) + Bg # -a.s. and,
by taking the expectation of the last inequality, we obtain the left-hand side of (8.8).
Besides, since the Wiener measure is (7;)-invariant, we can see that
197, — fillv, = 1By DP(T'0) = iz, ]llv,
< Ey D P(T10) — prpollv, 1. (8.10)

Moreover, the relation (8.3) and the cocycle property (2.12) allow us to write
PU(T~10) = Ppy(T710) Piyy(6) and g Py (0) = pary
Then similar arguments as for the proofs of (8.2) and (8.1) hold and we get that

lim [DP(T~10) — g0l
—00
< lim [[9Py(T710) — pollv, [Py @)llv, =0 #-as. 8.11)

Furthermore, by using (8.9) and the cocycle property, it is not difficult to see that

o0
P (T70)ly, < (o + 1) (pnvnvc, +> pkB(T"m) + By
k=0
and [lpgllv, < (0 + Dllpgll + Bo.

Noting that the two previous bounds belong to L' (©, %, #') (see Proposition 7.3) and
are independent of 1 > 0, the dominate convergence theorem applies and we deduce
from (8.11) and (8.10) the right-hand side of (8.8). O

9 Proof of Theorem 2.4

Recall that under P, (0) (see Proposition 4.1) {Sg (¢, X;) : t > 0} is a solution of the
SDE (4.6), with a = 1. Moreover, since r > 0, we can see by using (4.5) that

X
2

lim Sp(7, x) = S(x) := /e% dy, lim Hy(t,x) = S~ (x),
11— 00 11— 00
0
lim og(f,x) =S oS '(x) and lim dp(z,x) =0,
11— 00 —>00

uniformly on compact sets. Following [21, Lemma4.5] and denoting by I” the standard
normal distribution, {Se (¢, X;) : ¢+ > 0} is asymptotically time-homogeneous and
Sy I"-ergodic. According to the cited Lemma, if in addition {Sg(¢, X;) : t+ > 0} is
bounded in probability, it converges in distribution towards S, I":

t>0

(VS >0, 3R > 0, supP.(0)(Ss(t, X,)| = R) < g) — lim S5(t, X)) Ds.r.
—00
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We shall prove that {X; : r > 0} is bounded in probability, which shall imply the
boundedness in probability of {Sy (¢, X;) : t > 0}. By using Proposition 7.2, we can
find0 < p <1, L >0, B:® — [l,00) and k, ¢, p > 0 such that, for all
O<u<l,

Pu(0)Uq < LUy + By, PyUy < pUq + By and By < k exp [cH;’(e)] W-as.

Then relations (2.10) and the ergodic theorem allow us to write that, for all t > 0,

sup [| Py (2, z, dx)|lu,

t>0
-1
< sup L(,o[’]Uo,(z) +k Z P~ exp [ce"”mH)ﬂ’(T’"B)]) + By
120 m=0
<

k
< L(,an(z) + 7 exp |: sup (ce_”""H)f’(T’"O))iD + By <00 W -as.
—p

m=>0

Thereafter, the Markov inequality implies that

su P, t, ,dx
supP.(0)(|X;| = R) < pr=0 1 Po(t, z, dx)|lu,

W-a.s.
t>0 Ua(R)

Therefore, we get that {X; : + > 0} is bounded in probability and since

lim inf Sp(z, x) = o0,
|x]—00 >0

we obtain also the boundedness in probability of {Sp (¢, X;) : > 0}. We deduce that
[21, Lemma 4.5] applies and this completes the proof. O
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