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Abstract We present an overview of corporate-finance models where firms are subject to
exogenous market frictions. These models, albeit quite simple, yield reasonable predictions
regarding financing, pay-outs and default, as well as asset-pricing implications. The price to
pay for the said simplicity is the need to use non-standard mathematical techniques, namely
singular and impulse stochastic control. We explore the cases where a firm with fixed expected
profitability has access to costly equity issuance as a refinancing possibility, and that where
issuance is infinitely costly. We also present a model of bank leverage.

Keywords Leverage · Liquidity management · Equity issuance · Singular stochastic
control · Stochastic impulse control

Mathematical subject classigications 91G10 · 91G50 · 91G80

1 Introduction

Our objective in this paper is to provide the reader with an overview of the techniques
and results of certain continuous-time, corporate-finance models that study how exogenous
market frictions (such as the lack of access to bank credit and financial markets, or security-
issuance costs) influence corporate decisions regarding financing, pay-outs and default. The
modeling philosophy is the following: Consider a firm whose net earnings may be negative,
which is captured by the assumption that cashflows follow an arithmetic Brownian motion.
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As a consequence, it is possible that the firm runs out of cash and is therefore unable to fund
its day-to-day operations. At such point the firm defaults unless it is refinanced. By contrast,
when cash reserves are high enough the firm’s manager may decide to distribute dividends
to the shareholders. What this target cash policy level should be and how it depends on the
firm’s characteristics is one of our main concerns. We first present in Sect. 2 the results of
Jeanblanc and Shiryaev [12] and Radner and Shepp [20], where the manager only decides
on the dividends, but refinancing is infinitely costly. Next, in Sect. 3 we extend the model to
allow for costly equity issuance. This is a simplified version of the model studied by Décamps
et al. in [6]. Finally, in Sect. 4 we present the results of Rochet and Villeneuve [21], who
adapt the model in [12] to study a Merton-style problem where portfolio choice is not made
by an individual investor, but by a bank. Further readings are suggested in Sect. 5. All proofs
are presented the Appendix.

2 Infinite frictions

We consider a firm, held by a diffuse base of risk-neutral shareholders, that has fixed expected
profitability and that holds no debt.1 The shareholders discount the future at the strictly
positive rate r. The firm generates random net earnings that follow the diffusion process

dY (t) = μdt + σdW (t), Y (0) = y, (1)

where μ, y and σ are positive and
{
W (t), t ≥ 0

}
is a standard Brownian motion defined on

the probability space
(
�, A, P

)
and generating the filtration F = (Ft , t ≥ 0). Given that μ

is greater than zero, the firm is profitable. It may, however, incur in operating losses, since σ

is positive. Without the possibility of refinancing via equity of debt issuance, the firm must
hold a positive amount of cash to finance its operations. The manager must then decide on
when to distribute dividends so as to optimally manage the firm’s cash reserves.

2.1 Cash management and dividend policy

Managerial decisions concerning dividend distribution take place continuously. The only
restriction we impose on dividends is that they should be non-negative.2 For technical reasons,
it is simpler to work with the cumulative dividends, which are then non-decreasing. Formally,
a cumulative dividend process is any non-decreasing, F-adapted and càdlàg process
L = {

L(t), t ≥ 0
}
, i.e. L(t) represents the total, non-discounted dividends paid out over

[0, t]. The set of all admissible dividend policies will be denoted by A .

We assume for the time being that the firm has no access to financial markets (or that new
equity issuance is infinitely costly) or bank credit. If the manager chooses the dividend policy
L ∈ A , the dynamics of the firm’s cash reserves are described by the stochastic differential
equation

d RL(t) = dY (t) − d L(t), RL(0) = x .

In other words, the firm’s cash reserves increase (or decrease) via its net earnings and decrease
whenever dividend distribution takes place. No interest is earned on cash reserves.3 It need
not be the case that y = x: We show below that for large-enough levels of x, there might be

1 Debt financing is sub-optimal in this model, since we consider neither taxes nor moral-hazard problems
2 Negative dividends are equivalent to new equity issuances. They are studied in Sect. 3.
3 This assumption may be relaxed, as done by Décamps et al. in [6].
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an exceptional lump-sum dividend paid out to the shareholders at t = 0. We stress that, for
reasons of limited-liability, reserves may only be increased via retained earnings and not by
infusions of outside capital.

To meet operating costs the firm’s cash reserves must remain non-negative. The firm is
liquidated at zero value4 whenever RL(t) = 0. Notice that dividend distribution carries an
implicit cost, given that it increases the risk of the reserve levels becoming non-positive. The
bankruptcy time τL associated to a dividend-distribution strategy L ∈ A is defined as

τL := inf
{
t > 0

∣
∣RL(t) ≤ 0

}
.

The manager must balance the trade-off between accumulating reserves, which is ineffi-
cient due to discounting, and paying out dividends, which increases the risk of bankruptcy.
As a consequence of the structure of the net cashflows, even if the manager were to choose
L ≡ 0, there would always be a positive probability that the firm would go bankrupt. This
issue is exacerbated when any other L ∈ A is chosen.

Proposition 2.1 If 0 < s < τL then it holds that P
{
τL < t |RL(s)

}
> 0 for all t > s.

2.2 The value function and the first-best

The manager’s objective is to maximize shareholder value.5 The latter is defined as the
expected, discounted stream of dividends paid out during the firm’s lifetime. For a given
choice of L , shareholder value is represented by the quantity

V L(x) := Ex

[∫ τL

0
e−r t d L(t)

]
.

The operator Ex [·] is the expectation conditional on RL(0) = x . An important observation is
that the model is stationary, since the cash reserves have a Markovian structure and there is no
pre-specified time horizon. This implies that, at any date, the current level of cash reserves,
which in the sequel is also denoted by x, plays the role of the sole state variable. We
follow a dynamic-programming approach and analyze the problem through the properties of
the value function

V (x) := sup
L∈A

V L(x), (2)

where L is the control variable. Once V has been found, we use it to derive the optimal
cumulative-dividends process L∗ = {

L∗(t), t ≥ 0
}
.

What kind of properties should one expect V to have? First, if x equals zero the firm is
liquidated and the shareholders receive the liquidation value, which is zero. In other words
V (0) = 0. The risk of bankruptcy implies that the marginal value of cash in the firm is
high when x is small. The said risk diminishes when x grows, and since the only purpose
cash serves in the firm is warding off bankruptcy, it is natural to expect that x �→ V ′(x) is a
decreasing mapping. We prove this in the following

4 The assumption of a zero liquidation value is made to simplify the exposition, and can be easily relaxed.
5 We are assuming here that there are no conflicts of interest between management and owners.
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Proposition 2.2 The mapping x �→ V (x) is positive, increasing and concave.

Let us first examine the first-best case, where there are no financial frictions. In the said
case the firm is never liquidated and its value at time 0 is simply the sum of the initial cash
reserves and the expected present value of the future cashflows:

Vf b(x) := x + μ

r
.

The implementation of the corresponding strategy does not have a unique solution (see,
e.g. Sect. 3.3 for an implementation using equity issuance). This is a consequence of the
celebrated Modigliani–Miller theorem, which for our purposes could be stated as

In the absence of financial frictions, the firm’s market value is independent of its dividend
policy.

We now go back to the case with financial frictions. The risk neutrality of the firm’s
owners yields a non-standard stochastic control problem: The value function satisfies a
Hamilton–Jacobi–Bellman (HJB) variational inequality, where an ordinary differential equa-
tion describes its behavior whenever no distribution of dividends takes place, and a comple-
mentarity condition describes the set where it occurs. This embeds the manager’s problem
into the singular control framework.

Theorem 2.3 If the mapping x �→ V (x) is twice continuously differentiable, then the fol-
lowing HJB variational inequality holds for all x ≥ 0 :

max

{
σ 2

2
V ′′ + μV ′ − r V, 1 − V ′

}
= 0, (3)

together with the boundary condition V (0) = 0.

The left-hand term inside the maximization in Expression (3) is a standard HJB equation,
and it represents the first order conditions arising from the Itô formula. Intuitively, the com-
plementary condition 1 − V ′ ≤ 0 works as follows: We have that V ′(0+) > 1, otherwise
for small levels of x, cash reserves retained in the firm would be worth, from the risk-neutral
shareholders’ perspective, the same or less than they would if distributed as dividends, which
would bring us back to the first-best case. By concavity, the mapping x �→ V ′(x) is decreas-
ing and whenever V ′(x) equals 1, additional funds are worth to shareholders equally in the
firm or paid out. There will be a unique cash-reserves level x∗ such that no distribution of
dividends takes place as long as RL < x∗, and whenever RL ≥ x∗ dividends are distributed.
This level is precisely the smallest x such that the condition V ′(x) = 1 is satisfied. In the
sequel we refer to x∗ as the dividend boundary.

It should be noted that Theorem 2.3 only provides necessary conditions for optimality.
Below we construct a candidate for the value function that satisfies the conditions stated
in the theorem. We then verify that our candidate is indeed the sought-after value function.
To this end, let us assume we tried to guess the dividend boundary x∗. For x in (0, x∗) the
value function must satisfy both V ′(x) > 1 and the linear, second order ordinary differential

equation σ 2

2 V ′′ + μV ′ − r V = 0, whose general solution is

U (x) = b1er1x + b2er2x , where ri :=−μ + (−1)i
√

μ2 + 2σ 2r

σ 2 . (4)

Note that r1 < 0 < r2 and |r1| > |r2|. For each x∗ > 0 we define Vx∗ as the particular solution
to Eq. (4) that satisfies V ′

x∗(x∗) = 1 and Vx∗(0) = 0. It is not complicated to show that

Vx∗(x) = 1

r2er2x∗ − r1er1x∗
(
er2x − er1x).
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Since the factor er2x − er1x is non-negative, finding a candidate Ṽ for the value function
among the family

{
Vx∗

}
x∗≥0 reduces to minimizing the mapping

x∗ �→ r2er2x∗ − r1er1x∗
,

which is positive and convex. Using the first-order conditions for optimality we find

x∗ = 2

r1 − r2
log

(
−r2

r1

)
> 0.

Furthermore, this choice of x∗ implies that V ′′
x∗(x∗) = 0 and Vx∗(x∗) = μ

r . To verify
that V ′ > 1 on (0, x∗) we observe that such condition is equivalent to the mapping x �→
r2er2x − r1er1x being decreasing. This, however, holds whenever

(
r2

r1

)2

e(r2−r1)x < 1 ⇔ x < x∗.

On [x∗,∞) the value function is linear and has derivative equal to 1. Since Ṽ must be
continuous we have

Ṽ (x) = (x − x∗) + μ

r
.

Notice this means that for x > x∗, the project’s value is the sum of an immediate dividend
of size x − x∗ plus the discounted value of a non-defaultable bond paying a continuous
dividend μdt per unit of time. The fact that the second derivative of Ṽ at x∗ exists (and in
this case equals zero) is commonly referred to as a super- contact condition. It appears
repeatedly in the stochastic control literature, where it is deemed a necessary condition for
optimality (see, for example, the works of Dumas [7] and Højgaard and Taksar [9]). Our
candidate for the value function is

Ṽ (x) =
{

Vx∗(x), x ∈ [0, x∗);
(x − x∗) + μ

r , x ∈ [x∗,∞).
(5)

An observation that will prove handy in Sect. 3 is that since V ′(x) > 1 for x < x∗ and
V (x∗) = μ

r then

x∗ <
μ

r
. (6)

2.3 The optimal dividend-distribution strategy

With the target cash level x∗ at hand, we may now describe the structure of the optimal
dividend-distribution strategy {L∗(t)}t≥0. Intuitively speaking, whenever the level of cash
reserves x grows over x∗, the difference x − x∗ must be paid out to the shareholders. On
the interval (0, x∗), however, the firm’s reserves evolve according to an Itô process that
has almost-surely continuous paths. This implies that, for any time t > 0, the optimal
dividend-distribution strategy must reflect the cash-reserves process RL∗

downwards at the
level x = x∗. The said reflection must be of an infinitesimal magnitude, given that for x < x∗
we have V ′(x) > 1, and then shareholders prefer to keep the cash in the firm. The problem
of governing an Itô diffusion so as to keep it constrained to the interval [0,∞) by means
of an instantaneous reflection was first studied by Skorokhod in [24].6 In our case we want
to constrain RL∗

to (−∞, x∗], but we kill the process at time τL∗ . To formalize this, let us

6 Up-to-date treatises on reflection problems can be found in the works of Bass and Hsu [4] and Kruk
et al. [16].
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consider the so-called Skorokhod problem on (−∞, x∗] that consists of finding two adapted
processes

{
(R∗(t)

}
t≥0 and

{
L∗(t))

}
t≥0 that solve

R∗(t) = x +
∫ t

0
μds +

∫ t

0
σdW (s) − L∗(t), 0 < t ≤ τL , (7)

R∗(t) ≤ x∗, 0 < t ≤ τL∗ , (8)
∫ τL

0
1{R∗(t)<x∗}d L∗(t) = 0, (9)

where 1{·} is the zero-one indicator function. Eq. (7) describes the firm’s net earnings as
had been specified. Expression (8) yields the constraining effect of the reflective barrier.
Notice that it is implicitly assumed that x ≤ x∗. The solution to the Problem (7)–(9) can
be found, for instance, in Karatzas and Shreve [14] (Chapter 3, Lemma 6.14). The process
L∗ = {L∗(t)}t≥0 is the local time of R∗ = {R∗(t)}t≥0 at level x∗. The impact of L∗
on the dynamics of R∗ is to reflect the latter so that it remains under x∗. If it were not
the case that x ≤ x∗, we would have to redefine L∗ at t = 0 to be L(0) = x − x∗.
For later dates L∗ would remain unchanged. From Eq. (9) we see that the mass of the
measure d L∗ is carried by the sets {R∗ = x∗}; thus L∗ is inactive whenever R∗ < x∗. This
coincides with our saying that no dividend distribution takes place before the target level x∗ is
reached.

To finalize our characterization of the solution to the manager’s problem we must verify
that Ṽ is indeed the value function, which is done in the following theorem.

Theorem 2.4 Let μ, σ and r be greater than zero and let x∗ be the corresponding target
level. If Ṽ is the candidate value function defined in Eq. (5) and {L∗(t)}t≥0 and is the local
time of {R∗(t)}t≥0 at level x∗, then for all x ≥ 0

Ṽ (x) = V L∗
(x) = V (x).

2.4 Economic implications

Let us further analyze the target level

x∗ = 2

r1 − r2
log

(
−r2

r1

)
> 0

and how it depends on the expectation and the variance of the firm’s net earnings. Substituting
the values for r1 and r2, it is not complicated to show that x∗ is increasing in σ. This is not
surprising, and it may be interpreted as the manager being more conservative when facing
a riskier project. What may come across as unexpected is that x∗ is single peaked in μ.

The target ratio decreases to zero as μ increases, since a highly profitable project requires
less precautionary reserves. When μ is small, however, the target ratio must be adjusted
downwards to increase the probability that the cash reserves will hit it, even if this implies a
higher risk of default.

When it comes to financial frictions, their cost may be proxied by the difference between
the first-best solution Vf b and V . Notice that Vf b(x∗)−V (x∗) = x∗, which allows us to read-
ily assess the gains from risk management. Namely, suppose one could reduce σ to σ − �σ.

In the absence of frictions this has no impact on the value of the firm, since Vf b is independent

123



Math Finan Econ (2014) 8:355–381 361

of σ . In our context, however, reducing σ reduces the cost of financial frictions,7 since

x∗(σ ) > x∗(σ − �σ).

3 Equity issuance

In the model introduced in Sect. 2, the sole instrument the manager had at his disposal to
control the firm’s level of cash reserves was the distribution of dividends. In this section, which
is based on Décamps et al. [6], we enlarge the set of controls and introduce the possibility of
equity issuance. It is well known that this is a costly process. For example, Franks and Sanzhar
report in [8], when studying an UK sample of distressed equity issuers from 1989 to 1998,
that the costs of underwriting new equity are 12.74 % of the market value of existing equity.
In practice, publicly traded companies typically issue new shares by organizing seasoned
equity offerings (SEOs), which are quite costly operations. Costs include the fees paid to the
investment banks managing the issuance, as well as other direct expenses, such as legal and
auditing costs. Ross, Westerfield, and Jordan estimate in [23] the total direct costs of SEOs
by U.S. corporations from 1990 to 2003 to be, on average, 6.72 % of gross proceeds, rising to
12.88 % for issuances of less than $10 million. As a consequence, new issuances of equity are
relatively infrequent and typically involve substantial amounts. For this reasons, we focus on
the case of a fixed cost of equity issuance. Regarding mathematical methodologies, the proofs
of several results in Sect. 2 can be easily adapted for use in the current section. Whenever
such is the case, we avoid providing a full new proof and only mention in the text what the
corresponding modifications should be.

3.1 The structure of the equity-issuance process

We keep the structure of the net earnings introduced in Sect. 2 unchanged, but now assume
that the manager has the choice of issuing new equity. Due to the fact that the firm’s size
is fixed, equity issuance is done, should it occur at all, with the sole purpose of bolstering
the firm’s reserves. There is a fixed cost κ ≥ 0 of issuance. In other words, if the manager
decides to inject x units of cash into the firm, x + κ must be raised. An optimal policy must
determine when is it that issuance takes place (if at all), as well as the issuance level. Observe
that the cost structure readily implies that on any finite interval [t0, t1] only a finite number
of issuances may take place; otherwise, costs would become infinite in finite time, which
would not be feasible. In order to describe in full generality the possible times and levels of
equity issuance we introduce the following definition.

Definition 3.1 Let {λi }∞i=1 be a sequence of strictly increasing F-stopping times. Let {xi }∞i=1
be a sequence of non-negative random variables such that xi ∈ Fλi . Define

J (t) :=
∞∑

i=1

xi1{t≥λi } and Jκ (t):=
∞∑

i=1

(xi + κ)1{t≥λi },

J will be referred to in the sequel as a cumulative issuance strategy. Further, let L be
a cumulative dividend process. For a given initial level of cash reserves x, we say that the
pair π :=(L , J ) is admissible if the following conditions hold:

7 The implications of this observation in terms of risk-management are explored by Rochet and Villeneuve
in [22].
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(1) The process Rπ , whose dynamics are given by

d Rπ (t) = μdt + σdW (t) − d L(t) + d J (t), R(0) = x

is a.s. non-negative.
(2) Shareholder value is non-negative,8 i.e.

V π
κ (x) := E

[∫ ∞

0
e−r t (d L(t) − d Jκ (t))

]
≥ 0.

Observe that any non-trivial cumulative issuance strategy J induces a jump in Rπ of
magnitude xi at date t = λi . Stochastic control problems where the control may generate
jumps in the state variable are referred to as impulse control problems.

We denote by A f the set of all admissible pairs (L , J ). An important observation is that
for large values of κ, relative to the firm’s expected profitability μ/r, it may very well happen
that A f = ∅. In such situation the firm defaults whenever its cash reserves hit zero, and we
revert to the model in Sect. 2. The critical value of κ above which there are no new equity
issuances is characterized in Sect. 3.3. For the time being we look at the case where κ is
small and new equity issuances take place. The following result characterizes the optimal
issuance times. It formalizes the intuition that, given that fresh equity is not used to expand
the firm but simply to ward bankruptcy off, the manager should delay issuance for as long as
possible.

Proposition 3.2 Assume that for some μ, r, σ > 0 the issuance cost κ is such that the
acceptance set A f is non-empty. Let π = (L , J ) ∈ A f and assume that for some λi it holds
that Rπ (λi ) > 0, then there exist π̃ ∈ A f such that V π

κ (x) ≤ V π̃
κ (x) for all x > 0.

We have that for any optimal dividend-issuance strategy, equity issuance occurs, if ever,
exclusively when the firm’s reserves hit zero. This allows us to define the family of stopping
times when fresh equity could be issued: For a given cumulative dividend strategy L and
initial cash reserves level x > 0, let us define the sequence

{
τ L

i

}∞
i=1 of F-stopping times as

follows:

τ L
1 := inf

{
t > 0

∣
∣RL

1 (t) ≤ 0
}
, where RL

1 solves d RL
1 (t) = μdt + σdW (t) − d L(t),

RL
1 (0) = x;

for i > 1 we define τ L
i := inf

{
t > τi−1

∣
∣RL

i (t) ≤ 0
}
, where RL

i solves

d RL
i (t) = μdt + σdW (t) − d L(t), RL

i (τi−1) = x̂ .

The fact that the model is stationary, implies that, whenever an equity issuance takes place,
it involves the same amount x̂ > 0. Let us define the auxiliary process I L :={I L (t)}t≥0 via

I L(t) =
{

0, t ∈ [0, τ1);
i − 1, x ∈ [τi−1, τi ).

(10)

The cumulative issuance process corresponding to an issuance level x̂ and cost κ is then

GL(t) = (x̂ + κ)I L (t).

8 In order to facilitate comparative statics at the level of value functions for different levels of κ, we have
chosen to indicate the latter as a subindex.
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Notice that as a consequence of Proposition 3.2, the set of admissible strategies may be
redefined as

A 0
f :=

{
π = (L , x̂)

∣
∣
∣ L(t) ∈ Ft , L is non-decreasing and càdlàg, x̂ ≥ 0 and V π (x) ≥ 0

}
.

If the manager chooses the strategy π = (L , x̂), then the dynamics of the cash-reserves
process are

d Rπ (t) = μdt + σdW (t) − d L(t) + x̂d J (t), Rπ (0) = x .

The corresponding shareholder value is

V π
κ (x) = E

[∫ ∞

0
e−r t (d L(t) − dG(t))

]
= E

[∫ ∞

0
e−r t (d L(t) − (x̂ + κ)d J (t))

]
.

As before, the manager’s objective is to find the strategy that implements the optimal value
function:

Vκ (x) := sup
π∈A 0

f

V π
κ (x), x ∈ R+. (11)

3.2 The impact of equity-issuance on the value function

Given that the difference between the model with infinite frictions and the current one is
the manager’s option to issue fresh equity, and that this corresponds to a condition on the
value function at x = 0, it should come as no surprise that Vκ is still twice continuously
differentiable and satisfies the HJB Variational Inequality (3). The target cash level at which
dividends are distributed and where the inequality V ′

κ ≥ 1 becomes binding will be denoted
by x∗

κ . The distribution boundary depends, in general, on the fixed-cost level κ. The boundary
condition at x = 0 must be determined endogenously. Namely, we must determine what the
optimal level of new issuance should be, which is done by finding

max
x≥0

{
Vκ (0 + x) − x − κ

}
.

The expression Vκ (0 + x) − x − κ is the value of the firm if it is refinanced by an amount
x when its cash reserves hit zero, net of the refinancing costs. Using the first-order conditions
(keep in mind that Vκ is concave) we find that any maximizing x̂ must satisfy V ′

κ (x̂) = 1. In
other words x̂ = x∗

κ , which yields the following result.

Proposition 3.3 Let μ, r, σ and κ be greater than zero. There exists x∗
κ ≥ 0 such that, if the

value function Vκ is twice continuously differentiable, then the following relations hold:

(i) σ 2

2 V ′′
κ + μV ′

κ − r Vκ = 0 and Vκ ′ < 1 on (0, x∗
κ );

(ii) V ′
κ ≡ 1 on (x∗

κ ,∞);
(iii) Vκ (0) = max

{
Vκ (x∗

κ ) − x∗
κ − κ, 0

}
.

The boundary condition at zero captures the fact that the optimal level of equity issuance
is precisely the cash target,9 unless κ is prohibitively high, in which case the firm defaults
whenever its cash reserves hit zero.

Combining the super-contact condition V ′′
κ (x∗

κ ) = 0 with the smooth-pasting condition
V ′

κ (x∗
κ ) = 1 yields the following candidate value function on (0, x∗

κ ) :

Ṽκ (x) = 1

r1r2

(
r2

2

r2 − r1
er1(x−x∗

κ ) − r2
1

r2 − r1
er2(x−x∗

κ )

)

, (12)

9 This is no longer true if issuing new equity also carries a proportional-cost component as in [6].
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Fig. 1 The value function and distribution boundary for different levels of κ

where r1 and r2 are as in Eq. (4). It is still the case that Ṽκ (x∗
κ ) = μ

r , therefore the target cash
level is found by solving

φ(x):=r2
2 e−r1x − r2

1 e−r2x

r1r2(r2 − r1)
= μ

r
− x − κ. (13)

We observe that the mapping x �→ φ(x) is decreasing, since r1 < 0 < r2 and r1r2(r2 −r1) <

0. For the target cash level x∗ of the infinite-frictions model, it holds that φ(x∗) = 0. This
allows us to compare the target cash levels with and without the possibility of equity issuance,
which we do in the following lemma.

Lemma 3.4 Let μ, r, σ and κ be greater than zero and such that Ṽκ (0) = μ
r − x∗

κ − κ > 0.

Further, let x∗ be the target cash level of the infinite-frictions model with parameters μ, r
and σ , then x∗

κ < x∗.

In other words, whenever κ is such that fresh equity is issued as the firm runs out of cash,
then dividend distribution occurs sooner than in the basic model. The rationale for this is that
dividend distribution is only postponed in order to ward off bankruptcy. Having a second
vehicle to do this, namely the possibility to issue new equity, reduces the marginal value of
cash in the firm, which in turn implies that the manager may lower the level of reserves at
which dividends are paid out. In Fig. 1 we plot Ṽ0.5 and Ṽ1, together with the corresponding
dividend-distribution barriers, for μ = 0.7, σ = 0.5 and r = 0.2. The value function and
distribution boundary of the infinite-frictions case, with the same parameters, is also plotted.

3.3 Between strategic default and the first-best

Whenever the level of cash reserves reaches zero, the firm’s manager will avoid issuing fresh
equity and instead will allow the firm to default if μ

r − x∗
κ − κ ≤ 0. Observe that φ(0)

coincides with Ṽκ (x∗
κ ) = μ

r and limx→∞ φ(x) = limx→∞ φ′(x) = −∞. Put differently,
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Eq. (13) has a unique solution for any positive value of κ. Since the mapping x �→ μ
r − x −κ

hits zero at x = μ
r − κ and φ(x∗) = 0, the system

{
φ(x) = μ

r − x − κ
μ
r − x − κ > 0

(14)

has a solution if and only if μ
r −κ > x∗ and we know from inequality (6) that μ

r > x∗. These
observations, together with arguments analogous to those found in the proof of Theorem 2.4,
yield the following result.

Theorem 3.5 Let μ, r and σ be greater than zero. There exists κ ≥ 0 such that if κ ∈ [0, κ)

then equity is issued at date t if and only if Rπ (t) = 0. In this case the optimal strategy is
π∗ = (

x∗
κ , L∗), where x∗

κ solves System (14) and {L∗(t)}t≥0 is the local time of {Rπ∗
(t)}t≥0

at level x∗
κ . In other words, for all x ≥ 0 it holds that

Ṽκ (x) = V π∗
(x) = Vκ (x).

On the other hand, if κ > κ then μ
r − κ < x∗, equity is never issued, and we revert to the

basic model where V (0) = 0 and x∗
κ = x∗.

In the absence of frictions, i.e. when κ = 0, the first-best is attainable: In this case x∗ = 0
solves System (14); thus, the firm does not keep any cash reserves and the dividend policy
d L(t) becomes irrelevant. Namely, cashflows, whether positive or negative, are absorbed by
shareholders (dividends or new equity issuance).

3.4 Stock-price dynamics

Let the process N = {N (t)}t≥0 represent the number of shares outstanding at date t ≥ 0.

As long as Rπ (0) > 0, we may assume without loss of generality that N (0) = 1. Observe
that N (t) remains constant between any two consecutive issuance times τi < τi+1. In the
sequel, the process S = {S(t)}t≥0 represents the price per share of the firm’s stock, so the
firm’s market capitalization is given at each date t ≥ 0 by N (t)S(t). As a consequence of the
fact that issuance and dividend decisions at any time t > 0 depend exclusively on the level
of cash reserves accumulated by the firm, the market capitalization of the firm satisfies

N (t)S(t) = Vκ (R∗(t)), t > 0. (15)

Since dividends are only distributed when R∗(t) ≥ x∗
κ and new equity is only issued when

R∗(t) = 0, as long as 0 < R∗(t) < x∗
κ we may derive the dynamics of the stock price from

Eq. (15) and the Itô formula. Namely,

d
(
N (t)S(t)

) = N (t)d S(t) = dVκ (R∗(t)) = V ′
κ (R∗(t))d R∗(t) + σ 2

2
V ′′

κ (R∗(t))dt,

which using again Eq. (15) may be rewritten as

d S(t)

S(t)
= [μV ′

κ (R∗(t)) + (σ 2/2)V ′′
κ (R∗(t))]dt + σ V ′

κ (R∗(t))dWt

Vκ (R∗(t))
.

On (0, x∗
κ ) it holds that σ 2

2 V ′′
κ + μV ′

κ − r Vκ = 0, hence

d S(t)

S(t)
= rdt + σ(t, S(t))dW (t), (16)
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where

σ(t, S(t)) := σ
V ′

κ (R∗(t))
N (t)S(t)

= σ
V ′

κ (R∗(t))
Vκ (R∗(t))

.

Given that Vκ is an increasing function, Eq. (15) implies that, between issuance occur-
rences, S(t) and R∗(t) are comonotonic. Hence, s �→ σ(t, s) is a decreasing mapping for all
t ≥ 0. In other words, the stock of a highly-capitalized firm is less volatile than that of a less-
capitalized one. It is important to point out that, since dividend distribution keeps R∗ ≤ x∗

κ ,

the stochastic volatility σ(t, S(t)) is bounded below by σr
μ

. This value coincides with the
(constant) volatility on the firm’s stock when financial frictions disappear. Equation (15) also
allows us to compute the ratio k(λ) of new shares to outstanding shares whenever equity
issuance takes place. Indeed, let us consider the n-th issuance time λn, then

k(λn) = N (λn) − N (λn−)

N (λn)
= V ′

κ (x∗
κ ) − V ′

κ (0)

V ′
κ (x∗

κ )
.

This shows that a constant dilution factor affects individual share prices each time issuance
occurs. Finally, we observe that, since N (t) is an increasing process (there are no share
buybacks) and dividend distribution keeps R∗ ≤ x∗

κ , the stock price in this model is bounded
from above.

4 A model of bank portfolio choice

The model presented in this section shares many mathematical features with the ones pre-
sented previously. The focus, however, switches from liquidity management in a firm with
fixed expected profitability to a portfolio-decision problem à la Merton (see, e.g. Merton’s
paper [17]) from the point of view of a bank. More specifically, we study the optimal decisions
of the manager of a bank whose balance sheet at date t is the following:

I (t) D

M(t) X (t)
D represents the volume of retail deposits that the bank has collected, which are remunerated
at the risk free rate r > 0. M(t) is the level of cash reserves in the bank, which also earn
interest r. We shall see in Observation 4.4 below, that in this model the bank never defaults
on its debt, which justifies the assumption that its debt bears no default spread. X (t) is the
book-value of equity and will play the role of the state variable (instead of the reserves level,
as done in the previous sections). Finally, I (t) represents the investment in a risky asset,
which returns

μdt + σdW (t)

per unit of investment. As soon as X (t) ≤ 0, the bank is liquidated at no cost, and D is repaid
to the depositors. The shareholders walk away empty-handed in the event of bankruptcy.
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Financial frictions are captured by the fact that no additional debt or equity may be issued.
Therefore, the bank’s investment strategies must be self-financing.

4.1 Setting up the stochastic control problem

As in the previous sections, the bank’s manager decides on the cumulative dividend-
distribution process L = {

L(t), t ≥ 0
}
. Here, however, he must also choose the investment

strategy I = {
I (t), t ≥ 0

}
. The bank’s balance sheet may be continuously rebalanced at

no cost, but at every date I (t) ∈ [0, X (t)+ D] must hold. This restriction implies that the set
of all admissible policies, which will be again denoted by A , depends on the current book
value of the bank’s equity. The latter evolves according to the following stochastic differential
equation:

d X (t) = I (t)(μdt + σdW (t))
︸ ︷︷ ︸
cashflows from risky asset

+ r(M(t) − D)dt︸ ︷︷ ︸
interest earned/paid

− d L(t)︸ ︷︷ ︸
dividends distr.

, X (0) = x .

Using the balance- sheet equation X (t) + D = I (t) + M(t) we may rewrite d X (t) as

d X (t) = I (t)
(
μdt + σdW (t)

) + r
(
X (t) − I (t)

)
dt − d L(t), X (0) = x,

and we define τ := inf{t ≥ 0 | X (t) ≤ 0}. The manager’s problem is to maximize shareholder
value:

V (x) = max
(I,L)∈A

Ex

[∫ τ

0
e−ρt d L(t)

]
,

where ρ > μ is the shareholders’ discount rate.

Observation 4.1 If the shareholders discounted the future at a rate smaller than μ, then the
manager’s problem would lack a well defined solution. To see this choose δ ∈ (0, μ−ρ) and
set

L(t) =
∫ t

0
δX (t)dt, I (t) = X (t).

This would result in

d X (t) = X (t)
(
(μ − δ)dt + σdW (t)

) ⇒ τ = ∞
and

V (x) ≥ δx
∫ ∞

0
e(μ−ρ−δ)t dt = ∞.

4.2 The value function and the first-best

An additional assumption on the model’s parameters is that μ must be strictly greater than
r. This implies that, in the absence of retail deposit financing, shareholders would prefer to
consume immediately instead of investing in the risky asset. Being leveraged, however, allows
the shareholders to make a profit. In particular, if we were to disregard the restriction that
t �→ L(t) must be non-decreasing, then we could parallel Sect. 2.2 and obtain the first-best
outcome as follows: Hold no cash reserves; set I (t) ≡ D; offset profits/losses via payments
to/from the shareholders. The resulting value function would be
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VFB(x) = x + μ − r

ρ
D.

Notice that the first-best strategy still consists of immediate consumption of all existing
reserves, but the second term now corresponds to the expected present value of investing D
in the risky technology. The term μ − r stems from the fact that interest accrues in favour of
the depositors at a rate r.

We should again have a concave, twice continuously differentiable value function and a
dividend-distribution barrier x∗

1 that coincides with the point where the marginal value of
equity equals one. In the current set up, though, the structure of the value function on [0, x∗

1 ]
should also take into account the investment strategies for different levels of equity value. In
order to study this, let us define the operator

L(I )V (x):= − ρV (x) + V ′(x)
(

r x + I (μ − r)
)

+ σ 2 I 2

2
V ′′(x),

then we have the following verification result:

Theorem 4.2 Assume there exists a concave, twice continuously differentiable function U
and a constant x∗

1 such that

max
0≤I≤X+D

L(I )U (x) = 0 and U ′(x) > 1 for all x < x∗
1 and

max
0≤I≤X+D

L(I )U (x) < 0 and U ′(x) = 1 for all x ≥ x∗
1

together with the initial condition U (0) = 0. Then U = V .

The proof of Theorem 4.2 is an adaptation of that of Theorem 2.4 (we refer the reader to [21],
p. 235 for details). The presence of the Neumann condition U ′(x∗

1 ) = 1 yields that the optimal
dividend-distribution strategy L∗ coincides with the local time of the process X at level x∗

1 .

In terms of the investment strategy, we have that in general there will be a point 0 < x∗
0 < x∗

1
such that the maximization problem

max
I∈[0,x+D] L(I )V (x)

has an interior solution (and V ′ > 1) for all x ∈ (0, x0). Notice that this implies that if the
value of equity is small enough, then I (t) is strictly smaller than X (t) + D which in turn
means that M(t) is greater than zero. In other words, for low levels of capitalization, the
bank holds a positive level of reserves as a precautionary measure. On (0, x0) we may find
I ∗ using the first order condition

∂

∂ I
L(I )V (x) = 0,

which yields

I ∗(x) = μ − r

σ 2

(
− V ′(x)

V ′′(x)

)
. (17)

Lemma 4.3 The general solution to the differential equation

L(I ∗(x))V (x) = −ρV (x) + r xV ′(x) − 1

2

(
μ − r

σ

)2
(V ′(x))2

V ′′(x)
= 0, V (0) = 0

is
V (x) = K xα, (18)
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where K > 0 and α ∈ (0, 1) is the smallest solution to

r α2 −
(

r + ρ + 1

2

(μ − r

σ

)2
)
α + ρ = 0.

Inserting Function (18) in Expression (17) we obtain

I ∗(x) = x

k
, where k is defined as k:=

( σ 2

μ − r

)
(1 − α).

Observation 4.4 Since d L(t) = 0 whenever X (t) < x∗
1 , if we substitute I ∗(X (t)) into

d X (t) we obtain that on (0, x0) the value of equity evolves according to

d X (t) = X (t)

k

[(
μ + r(k − 1)

)
dt + σdW (t)

]
.

The factor μ + r(k − 1) is strictly positive; thus, in this “distress” region X (t) evolves
like a geometric Brownian motion. This results in P{X (t) ≤ 0} = 0 for all t ≥ 0, hence
P{τ = ∞} = 1. In terms of the value function, this is reflected by the fact that, since α < 1,

V ′(0) = ∞.

Lemma 4.5 On (0, x∗
0 ) the target capital ratio x/I ∗(x) = k is less than one.

From Lemma 4.5 we have that on (0, x∗
0 ) the manager’s optimal strategy is to invest a

multiple of the bank’s equity in the risky technology. Moreover, x∗
0 is computed by solving

x∗
0
k = x0 + D, which yields

x∗
0 = k D

1 − k
.

For all x ∈ (x∗
0 , x∗

1 ) it holds that V ′(x) > 1 and the maximization problem

max
I∈[0,x+D] L(I )V (x)

has the corner solution I ∗(x) = x + D. This is similar to the scenario presented in Sect. 2
in the sense that the portfolio weight on the risky asset is constant and maximal. On (x∗

0 , x∗
1 )

we have to solve

ρV (x) = (
μx + (μ − r)D

)
V ′(x) + σ 2

2
(x + D)2V ′′(x), V ′(x∗

1 ) = 1, V ′′(x∗
1 ) = 0,

and the choice of x∗
1 must be such that the resulting solution pastes in C2-fashion at x∗

0 . First
we require the following auxiliary result:

Lemma 4.6 For all u ∈ R+ there exists a unique Vu ∈ C2 such that

ρVu(x) = (
μx + (μ − r)D

)
V ′

u(x) + σ 2

2
(x + D)2V ′′

u (x), V ′
u(u) = 1, V ′′

u (u) = 0.

From the conditions V ′
u(u) = 1 and V ′′

u (u) = 0 one can obtain that Vu(u) = D(μ−r)
ρ

+ μ
ρ

u.10

This determines the structure of the value function on [x∗
1 ,∞), and we have the following

10 Notice that the value of the bank at the target cash level depends on the value of the latter. This is in contrast
with the cases studied in Sects. 2 and 3, where the firm’s value at the candidates for the dividend-distribution
barrier was always fixed.
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Fig. 2 The value function, the partial investment boundary and the dividend barrier

Theorem 4.7 There exists a unique x∗
1 such that the piecewise-defined function

V (x):=
⎧
⎨

⎩

K xα, x ∈ [0, x∗
0 ];

Vx∗
1
(x), x ∈ (x∗

0 , x∗
1 );

(x − x∗
1 ) + D(μ−r)

ρ
+ μ

ρ
x∗

1 , x ∈ [x∗
1 ,∞),

(19)

is twice continuously differentiable (see Fig. 2).

We have established that the optimal investment policy of the bank was:

I ∗(x) = min
{ x

k
, x + D

}
,

i.e, invest a multiple 1/k of the bank’s equity X (t), up to when this exhausts cash reserves.
k can be interpreted as a minimum capital ratio

equity

investment

as in bank solvency regulations, but here it is chosen by the shareholders.

Proposition 4.8 Ceteris paribus, the target capital ratio k optimally chosen by the bank
satisfies the following properties:

(1) It decreases with the cost of capital (ρ − r).

(2) It increases with the volatility of assets σ.

(3) It is single peaked with respect to the expected excess return on assets (μ − r).

In the region where its investment policy is not constrained, the bank behaves like a Von
Neumann–Morgenstern investor with Constant Relative Risk Aversion 1 − α.

Proposition 4.9 Ceteris paribus, the risk aversion coefficient 1 − α of the bank satisfies the
following properties:
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(1) It decreases with the cost of capital (ρ − r).

(2) It decreases with the volatility of assets σ.

(3) It increases with the expected excess return on assets (μ − r).

5 Further reading

We conclude by looking at some ramifications of the methodologies presented above. These
are mostly recent works that showcase how current this strand of the literature is. We encour-
age the interested reader to not only look at the papers we mention, but also at the references
therein.
Insurance literature. Within the insurance literature, Højgaard and Taksar pioneered in [9]
the use of an instantaneously-controlled Brownian motion to model the net earnings of an
insurance firm. Here the manager controls the firm’s risk exposure via proportional reinsur-
ance, represented by the control variable 1 − α ∈ [0, 1] that multiplies the firm’s returns (if
α = 1, the latter are as in Eq. (1)). The second control variable, the cumulative distribution
of dividends, keeps the firm’s cash reserves below or at the optimal dividend-distribution
barrier x∗. The possibility of continuously fine-tuning the reinsurance level results in an
additional (relative to the model in Sect. 2) boundary point 0 < x∗∗ < x∗. Below x∗∗ there
is partial reinsurance and on (x∗∗, x∗) there is none. In the partial-reinsurance region, the
optimal choice α∗ results in a reserves level that follows a geometric Brownian motion: The
proportion of reinsurance tends to one as the reserves approach zero; thus preventing the
firm from ever going bankrupt.11 In other words, in the world of Højgaard and Taksar a firm
never defaults. This model was extended by Barth and Moreno-Bromberg in [2] to allow for
costly equity issuance. The authors study the interaction between refinancing costs, liquidity
management and risk-controlling strategies. In particular, they show that when issuance costs
are proportional, using the recapitalization option is a dominant strategy. In contrast, in the
fixed-cost scenario the highest cost level at which the firm issues fresh equity is characterized
as a function of the firm’s expected productivity and the volatility on its net returns. Rochet
and Villeneuve analyze in [22] a similar model where only part of the Brownian risk can
be hedged by the firm (this is done by introducing two independent Brownian motions, one
driving the firm’s net returns and a second one representing hedgeable risk). Furthermore,
their model also incorporates a Poisson risk of fixed magnitude that can be insured against.
The inclusion of this jump component results in an interesting departure from the purely
Brownian models: The authors prove existence of a positive threshold x under which the
firm chooses not to insure itself against the Poisson risk, since an immediate arrival would
nonetheless prompt bankruptcy. This partially captures the idea that distressed firms act in a
risk-loving way (they “gamble for resurrection” in the financial-literature jargon), which is
absent in continuous-time models when the cash-reserves processes are continuous.
Liquidity management, investment and output decisions and capital structure. Milne
and Roberston study in [18] extensions to the model we present in Sect. 2. Their aim is to
understand how the threat of liquidation affects aspects of firm behavior, such as output and
investment decisions. They find that only when the target cash level has been reached, the
managerial choices of output and investment coincide with the first-best levels. This follows
the fact that only at the said level of cash reserves is the firm locally unconstrained. Both
output and investment are optimally adjusted downwards as the reserves’ level decreases,
which showcases that the firm, quoting the authors “becomes both locally more risk-averse

11 Notice the similarity with the model presented in Sect. 4.
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and more impatient as the level of cash-in-hand falls”. As a side note, Milne’s and Roberston’s
model with investment decisions has been recently used by Brunnermeier and Sannikov in [5]
and by Isohätälä, Milne and Robertson in [11] in a macroeconomic setting with a financial
sector. In terms of the interaction of liquidity management and capital structure of firms,
Hugonnier and Morellec [10] and Klimenko and Moreno-Bromberg [15] study models where
decisions on these two fronts are made simultaneously. In both papers the firm’s reserves
are exposed to a Poisson risk that models large, sudden losses. In [10] these losses are of
random size and they represent, for example, defaults across the bank’s loan portfolio. In
this model bank shareholders have the possibility to recapitalize the bank when it runs out
of cash. However, if the size of a large loss exceeds some critical threshold, liquidation is
optimal. The authors jointly determine the maximum shortfall that shareholders are willing
to cover and the target level of cash reserves. The focus in [15] is on the short-to-long-term
debt structure of a financial firm, which, together with the coupon on long-term debt rl , is
determined endogenously. Short-term debt is fully collateralized and is, therefore, risk-less.
There is a single downward jump in the firms’ reserves that corresponds to the short-term
debt holders stopping to roll their debt over (as a consequence of a sudden liquidity shock,
for example). In the absence of refinancing possibilities, this may result in the firm going
bankrupt and possibly being unable to honor its obligations towards long-term debt holders.
The latter take this into account when accepting a certain coupon, hence there is a cost
associated to issuing short-term debt that manifests itself through rl . This impact might be
mitigated through the proper use of a cash management policy, creating a link between the
maturity structure of the firm and its liquidity-management policies.
Stochastic interest rates. Akyildirim et al. [1] and Jiang and Pistorius [13] have studied
models where the short-rate is assumed to evolve according to a Markov chain Z :={Z(t)}t≥0.
Jiang and Pistorius also allow for the firm’s average profitability and the volatility on its
earnings to depend on Z , in other words μ = μ(Z(t)) and σ = σ(Z(t)). This represents
regime switching, and Z is interpreted as the state of the economy. The model in [1] does not
contemplate regime switching, but instead costly equity issuance is considered. Interestingly,
when Akyildirim et al. allow for state-dependent issuance costs, they obtain a market-timing
effect: When issuing costs are very high during recessions (so that shareholders refuse to
recapitalize firms when they run out of cash) it becomes optimal to issue new equity in the
good state even if the firm still has cash reserves, due to the fear that a recession might occur,
leading to the forced closure of a profitable company. This is in contrast with the model in
Sect. 3, where issuance occurred exclusively when the firm’s reserves became non-positive. It
should be noted that in the models considered in [1] and [13], a stochastic short-rate reflects on
preferences as a discount rate, but no (stochastic) interest accrues on retained earnings. Taking
an alternative approach, Barth, Moreno-Bromberg and Reichmann study in [3] a variation of
the infinite-frictions model in Sect. 2 where interest accrues on retained earnings. The interest
rate is stochastic (it is modeled by an Itô diffusion), but the discount rate of the investors is
fixed. Their analysis is mostly numerical, employing finite-elements techniques to solve the
partial differential equation with complementary conditions, analogous to Eq. (3), that arises
in their setting.

Appendix: Proofs

Proof of Proposition 2.1 Let L ∈ A , 0 < s < τL and define for l ≥ s the auxiliary process

H(l):=RL(s) + μ(l − s) + σ W (l − s).
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Since L is non-decreasing, we have that for all l ≥ s it holds that M L(l) ≤ H(l). As a
consequence, if we define

τH := inf
{
l > s | H(l) ≤ 0

}

and choose t > s, then P
{
τH < t

} ≤ P
{
τL < t |RL(s)

}
. A simple translation argument

yields

P
{
τH < t

} = P
{
τH̃ < t − s

}
,

where H̃(l):=RL(s) + μl + σ W (l) and τH̃ is defined accordingly. Let T = t − s and notice
that

P
{
τH̃ < t − s

} = P
{
τ̃ < T

}
,

where τ̃ is the first crossing time of the standard Browian motion W and the linear boundary
defined by k(t) = σ−1(RL(s)+μ t). It is well known (see, eg. Pötzelberger and Wang [19],
p. 55) that

P
{
τ̃ < T

} = 1 − �
(σ−1(RL(s) + μ T )√

T

)

+ exp
{ − 2μRL(s)/σ 2}�

(σ−1(μ T − RL(s))√
T

)
> 0,

which concludes the proof. ��
Proof of Proposition 2.2 For any x > 0 the strategy L defined via L(0) = x, and d L(t) ≡ 0
for t > 0 results in V L(x) = x; thus V (x) ≥ x, which yields the required positivity and
monotonicity properties of V . Next, consider the reserves levels x1, x2 > 0 and let L1 and
L2 be two corresponding admissible strategies. Let λ ∈ (0, 1) and define

x̃ :=λx1 + (1 − λ)x2 and L̃:=λL1 + (1 − λ)L2.

Clearly L̃ is admissible and d RL̃ = λd RL1 + (1−λ)d RL2 . Define τ̃ := max{τL1 , τL2}, then,
using the fact that the conditional-expectation operator is linear, we have

V (x̃) ≥ V π̃ (x̃) = λV π1(x1) + (1 − λ)V π2(x2).

By definition, for all ε > 0 the strategy L1 can be chosen such that V L1(x1) ≥ V (x1)−ε/2,

and analogously for V (x2). In other words, the expression

V (x̃) ≥ λV (x1) + (1 − λ)V (x2) − ε

holds for any positive ε; thus the mapping x �→ V (x) is concave. ��
Proof of Theorem 2.3 We first consider the condition on V ′. By definition, for any h, y > 0
there exists a strategy L y such that V L y (y) ≥ V (y) − h2.

Let 0 < h < x and construct a strategy L by setting L L(t) = h + L Lx−h (t), then

V (x) ≥ V L(x) = h + V Lx−h (x − h) ≥ h + V (x − h) − h2,

which is equivalent to

V (x) − V (x − h)

h
≥ 1 − h.
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By the differentiability of V, we may let h go to zero and conclude that V ′(x) ≥ 1. Next,
fix a strategy L ∈ A with corresponding cash-reserves process RL (RL(0) = x) and apply
Itô’s formula to f (t, RL (t)) = e−r t V (RL (t)) :

e−r t V (RL (t)) = V (x) +
∫ t

0
e−rs(μV ′(RL(s)) − r V (RL(s))

)
ds

+ 1

2

∫ t

0
e−rs V ′′(RL (s))d[RL , RL ]c(s)

+
∫ t

0
e−rsa(s)σ V ′(RL(s))dW (s) −

∫ t

0
e−rs V ′(RL(s))d L(s)

+
∑

s∈�

e−rs(V (RL(s+)) − V (RL (s)) − V ′(RL(s))(RL (s+) − RL(s))
)
,

(20)

where� is the set of discontinuities of L .Since L is of bounded variation (being and increasing
process) we have that

d[RL , RL ]c(s) = σ 2ds.

Thus, Eq. (20) becomes

e−r t V (RL (t)) = V (x) +
∫ t

0
e−rsLa(V (RL(s)))ds

+
∫ t

0
e−rsa(s)σ V ′(RL(s))dW (s) −

∫ t

0
e−rs V ′(RL(s))d L(s)

+
∑

s∈�

e−rs(V (RL(s+)) − V (RL (s)) − V ′(RL(s))(RL (s+) − RL(s))
)
,

(21)

where La is the infinitesimal generator of the diffusion part of RL . We now take expectations
on both sides and the Itô integral vanishes. On the other hand, by the dynamic programming
principle we have

E
[
e−r t V (RL(t))

] ≤ V (x) − E

[∫ t

0
e−rs V ′(RL(s))d L(s)

]
.

These two facts yield

0 ≥ E

[∫ t

0
e−rs( − r V (RL (s)) + μa(s)V ′(RL (s)) + 1

2
σ 2a2(s)V ′′(RL(s))

)
ds

]

+ E

[
∑

s∈�

e−rs(V (RL (s+)) − V (RL(s)) − V ′(RL (s))(RL (s+) − RL(s))
)
]

. (22)

For the set �, by the Mean Value Theorem there exists r ∈ (RL (s+), RL(s)) such that

V (RL(s+)) − V (RL (s)) = V ′(r)(RL (s+) − RL(s)).

Therefore

V (RL(s+)) − V (RL(s)) − V ′(RL(s))
(
RL(s+) − RL(s)

)

= (
V ′(r∗) − V ′(RL(s))

)(
RL(s+) − RL(s)

)
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and by concavity of V the right hand side is positive. We have that the second summand of
the right-hand side of Expression (22) is positive. This yields

0 ≥ E

[∫ t

0
e−rs( − r V (RL(s)) + μV ′(RL(s)) + 1

2
σ 2V ′′(RL (s))

)
ds

]
.

Next we multiply both sides of the equation above times 1/t. Since

1

t

∫ t

0
e−rs( − r V (RL(s)) + μV ′(RL(s)) + 1

2
σ 2V ′′(RL (s))

)
ds

≤ max
s∈[0,t] e−rs

∣
∣ − r V (RL(s)) + μV ′(RL (s)) + 1

2
σ 2V ′′(RL(s))

∣
∣,

we may apply Lebesgue’s Dominated Convergence Theorem, and take limit as t → 0 inside
the expectation operator, which results in

0 ≥
{

1

2
σ 2V ′′(x) + μV ′(x) − r V (x)

}
.

To prove that one of the inequalities is always tight, we resort again to the dynamic
programming principle and write for t > 0

V (x) = max
L∈A

E

[∫ t

0
e−rsd L(s) + e−r t V (RL(t))

]
.

Inserting Eq. (21) in the equation above we obtain

0 = max
L∈A

{
E

[ ∫ t

0
e−rsLa(V (RL(s)))ds

]

+ E

[ ∫ t

0
e−rs(1 − V ′(RL(s)))d L(s)

]

+ E

[∑

s∈�

e−rs(�V (RL(s)) − V ′(RL(s))�RL (s)
)]

}
. (23)

If we write L̃ and G̃ for the continuous parts of L and G respectively, then Eq. (23) above
may be rewritten as

0 = max
L∈A

{
E

[ ∫ t

0
e−rsLa(V (RL (s)))ds

]

+ E

[ ∫ t

0
e−rs(1 − V ′(RL (s)))d L̃(s)

]

+ E

[ ∑

s∈�1

e−rs(�V (RL(s)) + �L(s)
)]

}
.

Notice that for all s ∈ (0, t) it holds that, for all s ∈ �,

�V (RL(s)) + �L(s) =
∫ RL (s)

RL (s)−�L(s)
(1 − V ′(x))dx ≤ 0

This implies all summands on the right-hand side of Eq. (23) are non positive, which concludes
the proof. ��
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Proof of Theorem 2.4 Consider an arbitrary strategy L ∈ A , and an initial level of cash
reserves x ≥ 0. Recall that the corresponding cash-reserves process evolves according to the
SDE

d RL(t) = μdt + σdW (t)) − d L(t), RL (0) = x .

Proceeding as in the proof of Theorem 2.3 we use (the generalized) Itô’s formula applied to
f (t, x) = e−r t V (x) and obtain, after simplifications (recall that LV (RL(t)) ≤ 0)

e−r t
E

[
V (RL (t))

]
≤ V (x) − E

[∫ t

0
e−rs V ′(RL(s))d L̃(s)

]

+ E

[
∑

s∈�

e−rs(V (RL(s+)) − V (RL(s))
)
]

, (24)

where L̃(s):=L(s)−�L(s) is the continuous parts of L . Let s ∈ �, then by the Mean Value
Theorem and the fact that 1 ≤ V ′(RL(s)), there exists r ∈ (RL(s+), RL (s)) such that

V (RL(s+)) − V (RL(s)) = V ′(r)
(
RL(s+) − RL(s)

) ≤ L(s+) − L(s) = −�L(s).

Inserting the above expressions into Expression (24) we get

e−r t
E

[
V (RL (t))

]
≤ V (x) − E

[∫ t

0
e−rsd L(s)

]
.

By continuity V (x) is bounded for x ∈ [0, x∗] and it grows linearly as x tends to infinity,
therefore

lim
t→∞ e−r t

E

[
V (RL(t))

]
= 0.

This implies that

V (x) ≥ E

[∫ ∞

0
e−rsd L(s)

]
. (25)

Next consider the strategy L∗. Since L∗ is the local time of R∗ at levels x∗, we may assume
that x ∈ [0, x∗]. Furthermore, L∗ is a continuous process, and on [0, x∗] it holds that
L(V (RL∗

(s))) = 0. Hence, for the strategy L∗ Itô’s formula yields

e−r t V (RL∗
(t)) = V (x) +

∫ t

0
e−rsa∗(s)σ V ′(RL∗

(s))dW (s)

−
∫ t

0
e−rs V ′(RL∗

(s))d L∗(s). (26)

The measure d L∗(s) is supported on {RL∗
(s) = x∗} and V ′(x∗) = 1, therefore, taking

expectations, Eq. (26) may be rewritten as

e−r t
E

[
Vβ(RL∗

(t))
]

= Vβ(x) − E

[∫ t

0
e−rsd L∗(s)

]
.

Letting t → ∞ we have

V (x) = E

[∫ ∞

0
e−rsd L∗(s)

]
, (27)
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which is equivalent to V (x) = V L∗
(x). Form Eq. (25) we have that for any L ∈ A ,

V (x) ≥ V L(x). Since L∗ ∈ A Eq. (27) yields

V (x) = sup
L∈A

V L(x),

which concludes the proof. ��
Proof of Proposition 3.2 Consider an initial level of cash reserves x, an admissible triple
(a, L , J ) and the corresponding value V (x). We may assume without loss of generality that
R(τ1) > 0. Let us define the auxiliary processes

J̃ (t):=
∞∑

i=2

xi1{t≥τi }

and the corresponding R̃(t), together with the stopping time τ := inf{t > 0 | R̃(t) ≤ 0}. By
construction τ > τ1. If we define J (t):= J̃ (t) + x11{t≥τ } we have that the triple (a, L , J )

is admissible and the corresponding value U (x) satisfies U (x) > V (x). This last assertion
follows from the facts that −e−rτ (x1 + κ) < e−rτ1(x1 + κ), and that for any t ≥ τ2 it holds
that R(t) = R̃(t). It is then optimal to postpone the first time of issuance to the first time
the cash-reserves process hits zero, and an inductive argument implies that such is the case
for all re-injection times. Furthermore, the stationarity of our model also implies that there
exists x̂ ≥ 0 such that xi ≡ x̂ for all i ≥ 1. ��
Proof of Lemma 4.3 Let V be a solution to

− ρV (x) + r x V ′(x) − 1

2

(
μ − r

σ

)2
(V ′(x))2

V ′′(x)
= 0, V (0) = 0 (28)

and define

u(x):=x
V ′(x)

V (x)
.

We have that

V ′(x) = u(x) V (x)

x
,

therefore

V ′′(x) = x u′(x) − u(x)

x2 V (x) + u(x) V ′(x)

x
= x u′(x) − u(x) + u2(x)

x2 V (x).

From the above expression we get
(
V ′(x)

)2

V ′′(x)
= u(x)2

xu′(x) − u(x) + u2(x)
V (x) (29)

If we divide Eq. (28) by V(x), we obtain

ρ = ru(x) − ςu2(x)

x u′(x) + u2(x) − u(x)
, (30)

where ς := 1
2

(
μ−r
σ

)2
. This is equivalent to

x u′(x)(r u(x) − ρ) = −r u(x)(u(x) − α)(u(x) − α̃),
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where that 0 < α < 1 < ρ/r < α̃) are the roots of

f (x):=r x2 − (r + ρ + ς)x + ρ.

By separating variables and integrating, we can see that the solutions to Eq. (29) are all such
that

|u(x) − α|r1 |u(x) − α̃|r2 = λ
u(x)

x
, (31)

where r1 := (α̃−1)/(α̃−α), r2 := (1−α)/(α̃−α) and λ is determined by the initial condition
V (0) = 0. The latter implies that

lim
x→0

u(x)

x
= lim

x→0

V ′(x)

V (x)
= ∞.

Equations (29) and (30), together with the concavity of V, imply that u(x) ≤ ρ/r. Notice
that, as a consequence, the left-hand side of Eq. (31) is then bounded (since r1, r2 > 0).
Therefore it must hold that λ = 0, which yields u(x) ≡ α or α̃. The latter is ruled out, since
α̃ > ρ/r, which would violate the concavity of V . Thus u(x) ≡ α is the only possibility and
we have

V (x) = K xα,

where K is a positive constant. ��
Proof of Lemma 4.5 Let us define ς := 1

2

(
μ−r
σ

)2 and recall that α is the smallest root of

f (x) := r x2 − (r + ρ + ς)x + ρ.

Let β be the largest root of f (x) = 0. Proving that k < 1 is equivalent to showing that
α > 1 − μ−r

σ 2 Since f (x) > 0 for x ∈ (−∞, α) ∪ (β,∞), if we showed that β > 1 − μ−r
σ 2

then the desired result would follow from showing that

f
(

1 − μ − r

σ 2

)
> 0.

Indeed, we have that the condition β > 1 − μ−r
σ 2 is equivalent to

√
(r + ρ + ς)2 − 4rρ > r − ρ − ς

(
1 + 4r

μ − r

)
,

which trivially holds, since the right-hand side of the expression above is negative from the
assumption that ρ > r. Next we compute

f
(

1 − μ − r

σ 2

)
= μ − r

2σ 2

(
2ρ − μ − r + 2ς + 2r

σ 2 (μ − r)
)
,

which is greater than zero, given the assumption that ρ > μ > r . ��
Proof of Lemma 4.6 Observe that the boundary-value problem in hand can be rewritten, for
u > 0 as

2ρ

σ 2(x + D)2 Vu(x) = 2
(
μx + (μ − r)D

)

σ 2(x + D)2 V ′
u(x) + V ′′

u (x), V ′
u(u) = 1, V ′′

u (u) = 0.

The mappings

x �→ 2ρ

σ 2(x + D)2 and x �→ 2
(
μx + (μ − r)D

)

σ 2(x + D)2
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are continuous on [0,∞). Furthermore, their derivatives on (0,∞) are bounded, hence they
are Lipschitz. The existence and uniqueness of a solution to the boundary-value problem
follows then directly from the Cauchy-Lipschitz Theorem. ��

Proof of Theorem 4.7 Observe that from Lemma 4.6 we immediately get that, for any x1 >

x∗
0 the linear extension of the function Vx1 : (x∗

0 , x1) → R to [x1,∞) via the mapping
x �→ (x − x1) + Vx1(x1) yields a C2 function on [x∗

0 ,∞). We are left with the task of
showing that the pair (K , x1) may be chosen in such a way that

K (x∗
0 )α = Vx1(x∗

0 ) and αK (x∗
0 )α−1 = V ′

x1
(x∗

0 ).

We obtain immediately that K = Vx1(x∗
0 ) · (x∗

0 )−α, which leaves us with the equation

V ′
x1

(x∗
0 ) = α

Vx1(x∗
0 )

x∗
0

. (32)

To finalize the proof we must show that Eq. (32) admits a unique solution x∗
1 > x∗

0 . To this
end we require the following auxiliary result: For all x ≤ u, the mapping u �→ Vu(x) is
decreasing, and the mapping u �→ V ′

u(x) is increasing. Consider u < v and for x ≤ u Let
us define g(x):=Vu(x) − Vv(x). It follows from the facts that Vv(v) < (v − u) + Vu(u) and
V ′

v ≥ 1 that g(u) > 0 and g′(u) < 0. By concavity of Vv we also have g′′(u) ≥ 0. Next
we wish to show that g′(x) < 0 for all x < u. Assume this were not the case and let y < u
be the largest solution to g′(y) = 0. Then for x ∈ (y, u) we have g′(x) < 0, which implies
g(y) > g(u) > 0 and g′′(y) < 0. However, from the differential equation

ρV (x) = (
μx + (μ − r)D

)
V ′(x) + σ 2

2
(x + D)2V ′′(x)

we obtain that g(y) = σ 2

2 (y + D)2g′′(y) < 0. This is a contradiction, which implies that
that g′(x) < 0 for all x < u; thus u �→ V ′

u(x) is increasing. Since g(u) > 0 we conclude
that g(x) > 0 for all x < u, thus u �→ Vu(x) is decreasing. Furthermore, since V ′

x1
≥ 1, we

have from the Mean Value theorem for x1 > x∗
0

Vx1(x∗
0 ) ≤ Vx1(x1) − (x1 − x∗

0 ) = μx1 + (μ − r)D

ρ
− (x1 − x∗

0 ).

Given the assumption that μ < ρ, we have that limx1→∞ Vx1(x∗
0 ) = −∞. Since u �→ V ′

u(x)

is an increasing mapping, all we have left to prove is that

V ′
x∗

0
(x∗

0 ) < α
Vx∗

0
(x∗

0 )

x∗
0

.

Using the fact that V ′
x∗

0
(x∗

0 ) = 1, this condition may be rewritten as

0 < α

(
μx1 + (μ − r)

D

x∗
0

)
− ρ.

from the expression x∗
0 = k D

1−k and the fact that 1
k = σ 2(1−α)

μ−r we have the above expression
is equivalent, after simplifications, to

0 <
1

1 − α

(
2ας + α(1 − α)r − ρ + αρ

)
.
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Recall, however, that by definition α satisfies r α2 +ρ = (r +ρ +ς)α; thus we are required
to show that

0 <
1

1 − α

(
2ας + α(1 − α)r − ρ + αρ

)
= 1

1 − α

ας

1 − α
,

which trivially holds, since α ∈ (0, 1) and ς > 0. This finalizes the proof. ��

Proof of Propositions 4.8 and 4.9 Recall that k = σ 2

μ−r (1 −α). Since (r +ρ + ς)2 − 4rρ =
(ρ − r + ς)2 + 4rς, we may write

1 − α = r − ρ − t + √
(ρ − r + ς)2 + 4rς

2r
,

where ς is as in the proof of Lemma 4.5. Multiplying both numerator and denominator of
1 − α times −(r − ρ − ς) + √

(ρ − r + ς)2 + 4rς an simplifying we obtain

1 − α = 2ς

ρ − r + ς + √
(ρ − r + ς)2 + 4rς

= 2
ρ−r
ς

+ 1 +
√

(
ρ−r
ς

+ 1)2 + 4 r
ς

. (33)

From Eq. 33 we conclude that 1−α and, therefore k, is decreasing in rho−r and increasing
in ς. Given that the latter is decreasing in σ and increasing in μ−r, Proposition 4.9 is proved.
Using Eq. 33 we have that

k = μ − r

ρ − r + ς + √
(ρ − r + ς)2 + 4rς

.

We immediately observe that k is decreasing in ρ − r. Furthermore, since ς is decreasing
in σ, then k is increasing in the volatility of assets. To show that k is single-peaked in μ − r,
observe that

1

k
= ρ − r

μ − r
+ μ − r

2σ 2 +
√

2r

σ 2 +
(

ρ − r

μ − r
+ μ − r

2σ 2

)2

is an increasing function of

υ(μ − r):= ρ − r

μ − r
+ μ − r

2σ 2 .

Notice that limx→0 υ(x) = limx→∞ υ(x) = ∞ and υ ′(x) = 0 has a unique positive solution
x = σ

√
2
√

ρ − r . In other words, υ is itself an U-shaped function of μ − r, which implies
that k is single peaked in μ − r. This concludes the proof. ��
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