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Abstract We analyze the problem of approximating a multivariate function by dis-
crete least-squares projection on a polynomial space starting from random, noise-free
observations. An area of possible application of such technique is uncertainty quan-
tification for computational models. We prove an optimal convergence estimate, up to
a logarithmic factor, in the univariate case, when the observation points are sampled
in a bounded domain from a probability density function bounded away from zero and
bounded from above, provided the number of samples scales quadratically with the
dimension of the polynomial space. Optimality is meant in the sense that the weighted
L2 norm of the error committed by the random discrete projection is bounded with
high probability from above by the best L∞ error achievable in the given polynomial
space, up to logarithmic factors. Several numerical tests are presented in both the
univariate and multivariate cases, confirming our theoretical estimates. The numerical
tests also clarify how the convergence rate depends on the number of sampling points,
on the polynomial degree, and on the smoothness of the target function.
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1 Introduction

Given a smooth multivariate function φ = φ(Y 1, . . . ,Y d) depending on d random
variables Y 1, . . . ,Y d , we consider in this work the classical problem of approximating
φ in a multivariate polynomial space, starting from noise-free observations ofφ on ran-
dom evaluations of Y 1, . . . ,Y d . The motivation for such work comes from the field of
uncertainty quantification (UQ) in computational models [29,35], where uncertainty
is often present in many input parameters entering the mathematical model used to
describe some problem in, for example, engineering, physics, or biology. The uncer-
tainty can be characterized in probabilistic terms by considering the input parameters
as random variables. The goal of the analysis is typically to compute the statistics
of the solution to the mathematical model or some output quantities of interest. The
methodology proposed in this work could also be used, more generally, as a tool to
approximate response functions in engineering applications for the purpose of design
optimization or system control.

It is assumed here that, for each value of the input parameters, the solution or output
quantity can be accessed without errors. This is of course an idealization as determin-
istic approximation-type errors will typically be present whenever the model involves
differential or integral operators. Also, round-off errors will be present. However, these
sources of error are quite different in nature from measurement errors appearing in an
experimental setting, which are usually modeled as random and statistically indepen-
dent. In the context of UQ in computational models, it is therefore reasonable to assume
that the approximation errors can be kept under control by some careful a posteriori
error estimation and mesh refinement (see, e.g., [1,5] and references therein).

A technique that has received considerable attention in the last few years is the so-
called generalized polynomial chaos (gPC) expansion; see, e.g., [23,36]. It consists in
expanding the solution in polynomials of the input random variables. The use of global
polynomial spaces is sound in many situations, where the input/output (parameters-
to-solution) map is smooth. This is the case, for instance, in elliptic partial differential
equations with random diffusion coefficient [2,6,14,15].

Once a truncated gPC expansion has been computed by some means, it can be
used later for inexpensive computations of solution statistics or as a reduced model
of the input/output map for global sensitivity analysis [16,34] or optimization under
uncertainty [21].

As a tool to build such a gPC approximation, we consider in this work an L2 pro-
jection, starting from a random sample of the input parameters. Such an idea has
already been proposed in the framework of UQ and been given several names: point
collocation [18,26,32], nonintrusive gPC [20,29], and regression [9,10,30,31]. As a
practical recipe, the size of the sample drawn from the input distribution is typically
taken to be two to three times the dimension of the polynomial space.

The proposed approach falls within the classical topic of polynomial regression
estimation, i.e., minimization of the empirical L2 risk within the given polynomial
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space. We insist, however, that, unlike in the traditional statistical approach, here we
consider noise-free data evaluated in random points.

A relevant question is whether such a minimizer is optimal in the sense that it
achieves an approximation of the (unknown) function that is equivalent to the best
approximation in the polynomial space.

Many works can be found in the literature on regression estimations in the noisy
case. We recall here the book [25], which provides a general framework for analysis of
regression estimators with random design, as well as [7,8], which show the optimality
of noisy regression when using piecewise constant or linear functions. The aforemen-
tioned works give estimates on the expected L2 error under the assumption that the
function is bounded in L∞ by some a priori fixed constant. Other works in the field of
distribution-free regression with noise have derived convergence rates for the L2 risk
that are optimal up to logarithmic factors, e.g., [4,27,28].

The L2 error in expectation is bounded by two terms: the (purely deterministic)
best approximation error of the (unknown) function in the approximating space, and
the statistical error due to the random sampling and the noise in the observations. The
latter scales as 1/

√
m if m is the number of samples. In the aforementioned works,

the statistical error does not vanish in a noise-free setting.
Hence, the main question that we address in this work is this: in the noise-free

polynomial approximation based on random samples, does the randomness of the
evaluation points introduce a statistical error O(1/√m), or is it reasonable to expect
better convergence rates with respect to m?

We study the problem theoretically for a univariate function φ(Y ), where Y is a
bounded random variable with the probability density function bounded away from
zero and bounded from above. Denoting by n the dimension of the polynomial space,
we prove that the L2 projection on a polynomial space with random evaluations leads
to quasi-optimal convergence rates (up to multiplicative logarithmic factors), provided
that the sample size scales as m ∝ n2. Here, optimality is meant in the sense that the
L2 error behaves like the best approximation error measured in the “sup” norm of
the target function in the chosen polynomial space, up to logarithmic factors. It is
reasonable to compare the L2 error with the L∞ best approximation error since the
random discrete L2 projection is based on pointwise evaluations. In [13] a bound in
terms of the best approximation in L2 norm is obtained by taking expectations; the
proof proposed therein uses different techniques than ours. In contrast, the bound in
the present work is in terms of the L∞ norm and holds with high probability.

We also show, in the general multivariate setting, the relation between the opti-
mality of the projection based on random points and the condition number of the
corresponding design matrix, when using an orthonormal polynomial basis.

We present several numerical tests, both on univariate and multivariate functions,
that clearly show that a choice m ∝ n2 leads to a stable regression problem and an
optimal approximation, whereas m ∝ n leads to an ill-conditioned problem when n
is large and, eventually, to a divergent approximation. Moreover, our numerical tests
show some significant differences between the one-dimensional and the multidimen-
sional cases.

Our result is based on showing an equivalence between the L2 continuous norm
and a discrete counterpart, with high probability. This has similarities with compressed
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sensing [11,19] and, in particular, the so-called restricted isometry property. In that
context the relation between the number of measurements and the sparsity of the signal
to recover has been widely investigated, and results are available showing that in many
cases a linear relation, up to logarithmic factors, suffices for a good recovery. On the
other hand, several examples in the present paper show that this is not the case in the
present setting, and a quadratic proportionality m ∝ n2 is needed to achieve a stable
and accurate approximation.

The outline of the paper is as follows: Sect. 2 introduces the approximation problem
as an L2 projection on a space of polynomials in d underlying variables; some common
choices of polynomial spaces are described in Sect. 2.1. The optimality of the random
L2 projection, in terms of a best approximation constant, is shown in Sect. 2.2; the
asymptotic behavior of this best approximation constant, as the number of random
evaluation points goes to infinity, is analyzed in Sect. 2.3. Next, Sect. 3 restricts
the study to polynomial spaces in one variable; in this case, a bound on the best
approximation constant is derived and used to prove Theorem 3, which provides a rule
to select the number of random points as a function of the maximal polynomial degree,
which makes the discrete random L2 projection nearly optimal (up to a logarithmic
factor) with any prescribed confidence level. Section 4 gives the algebraic formulation
of the random projection problem, in view of its numerical discretization. In particular,
Sect. 4.1 provides an analysis of how the condition number of the design matrix
depends on the sample size and dimension of the polynomial space of the random L2

projector. Finally, Sect. 5 complements the analysis in Sects. 2–4 with numerical tests,
both in the one-dimensional case and in higher dimensions.

2 Discrete L2 Projection with Random Points

Let Y = [Y 1, . . . ,Y d ] be a random vector taking values in a bounded set � ⊂
R

d . We assume that � has a tensor structure � = �1 × · · · × �d , with �i being
closed intervals in R, and that the random vector Y has a joint probability density
ρ : � → R

+. We consider the random variable φ(Y ), where φ : � → R is assumed
to be a smooth function (at least continuous). The goal of the analysis is to compute
statistical moments of φ(Y ). This will be achieved by first constructing a reduced
model (approximate response function), i.e., we approximate the function φ(Y ) by a
suitable multivariate polynomial φ�(Y ). We then compute the statistical moments of
φ(Y ) using the approximate function φ�(Y ). We denote by

E[φ] =
∫

�

φ(y)ρ(y)dy

the expected value of the random variable φ(Y ) and by
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Pr(A) =
∫

A

ρ(y)dy

the probability of the event A ∈ B(�), where B(�) is the Borel σ -algebra with respect
to the measure ρ(y)dy. Throughout the paper we also make the following assumption.

Assumption 1 (Quasi-uniform distribution) There exist constants 0 < ρmin ≤
ρmax < +∞ such that ρmin ≤ ρ(y) ≤ ρmax for all y ∈ �.

We introduce the space L2
ρ of square-integrable functions f : � → R, endowed with

the norm

‖ f ‖L2
ρ

:=
⎛
⎝

∫

�

f 2(y)ρ(y)dy

⎞
⎠

1/2

.

Observe that under Assumption 1, the norm ‖ · ‖L2
ρ

is equivalent to the standard L2

norm (with Lebesgue measure) since

√
ρmin ≤

‖ f ‖L2
ρ

‖ f ‖L2
≤ √

ρmax, ∀ f ∈ L2
ρ.

Let ν = (ν1, . . . , νd) be a multi-index and � ⊂ N
d
0 a multi-index set featuring the

following property.

Property 1 (Downward closedness of�) Consider two multi-indices ν,μ ∈ N
d
0 such

that μq ≤ νq for all q = 1, . . . , d. The multi-index set� is downward closed (or it is
a lower set) if the following holds:

ν ∈ � �⇒ μ ∈ �.

We denote by P� = P�(�) the multivariate polynomial space associated with the
index set �

P�(�) := span

⎧⎨
⎩

d∏
q=1

(
Y q)νq : ν ∈ �

⎫⎬
⎭ (1)

and by n = dim(P�) its dimension. For convenience, the set � can be arranged in
lexicographical order:

Property 2 (Lexicographical order) Given any ν,μ ∈ �,

ν
L
< μ ⇐⇒ ∃ q̃ > 0 : (νq̃ < μq̃) ∧ (νq = μq ∀ q < q̃).

According to this order, we can let ν j denote the j th multi-index of�. Sometimes
we refer to the elements of� by the generic multi-index ν rather than listing them by
the lexicographical index.
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Since the monomial basis in (1) is very ill-conditioned, in practice we use an
orthonormal polynomial basis. A typical choice is to take orthogonal polynomials
with respect to the measure ρ(y)dy. We introduce an orthonormal basis {ψ j }n

j=1 of
P� with respect to the weighted inner product

( f1, f2)L2
ρ

:=
∫

�

f1(y) f2(y)ρ(y) dy,

i.e., (ψi , ψ j )L2
ρ

= δi j . Assumption 2 ensures that the orthonormal basis is complete

in L2
ρ when � = N

d
0 , applying Theorems 3.3 and 3.5 of [22].

In the case where the density factorizes as ρ(Y ) = ∏d
q=1 ρq(Y q), the basis can

be constructed by tensorizing univariate orthogonal polynomials with respect to each
weight ρq separately. Given q, let {ϕq

j } j be the orthogonal polynomials with respect to
ρq . Picking the j th (according to Property 2) multi-index ν j ∈ �, the corresponding
j th multivariate basis function is given by

ψ j (Y ) :=
d∏

q=1

ϕ
q
ν

q
j
(Y q). (2)

Thus, using the basis function provided by (2), definition (1) of P� becomes

P� = span{ψ j , j = 1, . . . , n}, (3)

and it holds that n = dim(P�) = #�, where #� denotes the cardinality of the set �.
Observe that in general (1) and (3) are equivalent only if the index set � satisfies the
monotonicity Property 1.

In the sequel we will denote by Y = {Y1, . . . , Ym} a random sample composed
of m independent random vectors Y1, . . . ,Ym identically distributed according to the
density ρ. The symbol Y as a superscript or subscript will denote that a quantity
depends on the random sample {Y1, . . . ,Ym} and, therefore, is random itself.

We now introduce the random discrete inner product

( f1, f2)Y := 1

m

m∑
i=1

f1(Yi ) f2(Yi ) (4)

and the corresponding norm ‖ f ‖Y := ( f, f )1/2Y . Observe that they are actually an
inner product and a norm in P�, respectively, if for all v ∈ P� it holds that

v(Yi ) = 0, for i = 1, . . . ,m ⇔ v ≡ 0,

which, by Assumption 1, happens almost surely (a.s.) provided that m ≥ n.
To construct the polynomial approximation �Y

�φ of the function φ, we take a
realization y1, . . . , ym of the random sample Y, calculate the noise-free evaluations
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of the function φ in the sampled points, and finally compute a discrete least-squares
approximation of the values φ(yi ) in the polynomial space P�, i.e.,

�Y
�φ := argmin

v∈P�

m∑
i=1

(
φ(Yi )− v(Yi )

)2 = argmin
v∈P�

‖φ − v‖Y. (5)

The discrete least-squares problem can be written equivalently as

find �Y
�φ ∈ P� s.t. (�Y

�φ − φ, v)Y = 0, ∀ v ∈ P�.

2.1 Common Multivariate Polynomial Spaces

Some of the most common choices of polynomial spaces are the tensor product, total
degree, and hyperbolic cross, which are defined by the index sets below. We index the
set � by the subscript w denoting the maximum polynomial degree used:

Tensor Product(TP) : �w =
{
ν ∈ N

d
0 : max

q=1,...,d
νq ≤ w

}
,

Total Degree(TD) : �w =
⎧⎨
⎩ν ∈ N

d
0 :

d∑
q=1

νq ≤ w

⎫⎬
⎭ ,

Hyperbolic Cross(HC) : �w =
⎧⎨
⎩ν ∈ N

d
0 :

d∏
q=1

(νq + 1) ≤ w + 1

⎫⎬
⎭ .

These spaces are isotropic, and the maximum polynomial degree w is the same in
all spatial dimensions. Anisotropic versions could be considered as well [3]. The
dimensions of the TP and TD spaces are
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Fig. 1 Dimension of HC space, d = 2, 5, 10, 15, 20, 50, 100
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#T P(w, d) = (w + 1)d , (6)

#T D(w, d) =
(

d + w

d

)
. (7)

The dimension of the HC space is harder to quantify, so we report its exact dimension
#HC(w, d) in Fig. 1, computed for some values of w and d. An upper bound (see [30,
Appendix A.2] for the proof) is given by

#HC(w, d) ≤
⌊
(w + 1) · (1 + log(w + 1))d−1

⌋
. (8)

This bound is accurate when d = 2 but becomes conservative as d increases.

2.2 L2
ρ Optimality of Random Discrete L2 Projection

Let us first introduce the following random variables S and Q, which depend on m,�,
and the random sample Y:

S(m,�) := sup
v∈P�\{v≡0}

‖v‖2
L2
ρ

‖v‖2
Y

, Q(m,�) := sup
v∈P�\{v≡0}

‖v‖2
Y

‖v‖2
L2
ρ

. (9)

The following result holds.

Proposition 1 With S(m,�) defined as in (9) and m ≥ n, it holds that

‖φ −�Y
�φ‖L2

ρ
≤

(
1 + √

S(m,�)
)

inf
v∈P�

‖φ − v‖L∞ . (10)

Proof For any v ∈ P� : v �= �Y
�φ it holds that

‖φ −�Y
�φ‖L2

ρ
≤ ‖φ − v‖L2

ρ
+ ‖v −�Y

�φ‖L2
ρ

= ‖φ − v‖L2
ρ

+
⎛
⎝‖v −�Y

�φ‖2
L2
ρ

‖v −�Y
�φ‖2

Y

⎞
⎠

1
2

‖v −�Y
�φ‖Y

≤ ‖φ − v‖L2
ρ

+
⎛
⎝ sup
v∈P�\{v≡0}

‖v‖2
L2
ρ

‖v‖2
Y

⎞
⎠

1
2

‖v −�Y
�φ‖Y

= ‖φ − v‖L2
ρ

+ √
S(m,�)

(
‖φ − v‖2

Y − ‖φ −�Y
�φ‖2

Y

) 1
2

≤
(

1 + √
S(m,�)

)
‖φ − v‖L∞ .
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In the fourth step we substituted definition (9) of the random variable S and used the
Pythagorean theorem. The previous result is also true for v = �Y

�φ:

‖φ −�Y
�φ‖L2

ρ
≤ ‖φ −�Y

�φ‖L∞ ≤
(

1 + √
S(m,�)

)
‖φ −�Y

�φ‖L∞

since S is nonnegative. The thesis follows from the arbitrariness of v. ��
Clearly, the convergence property of the random discrete projection is strictly related

to the properties of the quantity S(m,�), which acts like a stability constant. In Sect. 3
we will characterize this quantity in the particular case of a one-dimensional problem
(d = 1). The extension to multivariate functions is an ongoing work.

2.3 Asymptotic Limit for S(m,�)

In this section we show that when m → +∞, while � is kept fixed, the limit of
S(m,�) is a.s. 1. For the purpose of this analysis we also introduce the deterministic
constants

k∞(�) := sup
v∈P�\{v≡0}

‖v‖2
L∞

‖v‖2
L2
ρ

< +∞, k4(�) := sup
v∈P�\{v≡0}

‖v‖2
L4
ρ

‖v‖2
L2
ρ

<+∞. (11)

Remark 1 Given any�, the constants k∞ and k4 are always finite in any dimension d
since the space P� is finite dimensional and the domain � is bounded. For example,
in one dimension, any v ∈ Pw = span{(Y ) j , j = 0, . . . ,w} can be expanded in a
Legendre series. Introducing a suitable change of variable such that v : � → R is
mapped on v̂ : [−1, 1] → R we obtain

‖v‖L∞(�) = ‖̂v‖L∞(−1,1) ≤ w + 1√
2

‖̂v‖L2(−1,1)

≤ w + 1√
2

√
2

|�| ‖v‖L2(�) ≤ w + 1√|�|ρmin
‖v‖L2

ρ
,

so k∞ ≤ (w + 1)2(|�|ρmin)
−1. One can tensorize the one-dimensional case to show

that k∞ is bounded with respect to the maximum polynomial degree w also in higher
dimensions. In the particular case of the uniform density ρ = U([−1, 1]d), the values
of k∞ and k4 are reported in Lemma 1.

For any outcome {yi }∞i=1 of the random variables {Yi }∞i=1 we define the sequence
{Qm}m of functionals whose elements are defined as

Qm(·) := ‖ · ‖2
Y

‖ · ‖2
L2
ρ

: P� \ {v ≡ 0} → R
+ (12)

and the polynomial set P̂� := {v ∈ P� : ‖v‖L2
ρ

= 1} ⊂ L2
ρ .

123



428 Found Comput Math (2014) 14:419–456

Proposition 2 For any m and� the function Qm in (12) is globally Lipschitz continu-
ous over P̂�, and the Lipschitz constant has a deterministic bound that is independent
of m.

Proof Consider the constant k∞ defined in (11). Clearly ‖v‖L∞ ≤ √
k∞ for all v ∈

P̂�, so the functions {Qm}m are uniformly bounded. Taking arbitrary v1 and v2 in P̂�,

∣∣∣Qm(v1)− Qm(v2)

∣∣∣ ≤ 1

m

m∑
i=1

∣∣∣v1(Yi )
2 − v2(Yi )

2
∣∣∣

= 1

m

m∑
i=1

∣∣∣
(
v1(Yi )+ v2(Yi )

) (
v1(Yi )− v2(Yi )

)∣∣∣

≤ 1

m

(
‖v1‖L∞ + ‖v2‖L∞

) m∑
i=1

∣∣∣v1(Yi )− v2(Yi )

∣∣∣
≤ 2

√
k∞ ‖v1 − v2‖L∞ ≤ 2 k∞ ‖v1 − v2‖L2

ρ
. (13)

��
From Proposition 2 it follows immediately that the sequence {Qm}m is uniformly

equicontinuous. Moreover, from the strong law of large numbers, since E
[
v2

] =
‖v‖2

L2
ρ

= 1 for all v ∈ P̂�, it follows that

‖v‖2
Y = 1

m

m∑
i=1

v(Yi )
2 −→

m→+∞ E

[
v2

]
= ‖v‖2

L2
ρ
, ∀ v ∈ P̂�

a.s.; hence the sequence {Qm} is also converging to 1 pointwise. We then have the
following result.

Proposition 3 It holds that

Qm(v) −→
m→+∞ 1, uniformly in P̂�, a.s. (14)

Proof For any outcome, the sequence {Qm}∞m=1 is (uniformly) equicontinuous on P̂�.
The sequence also converges a.s. on P̂�; therefore, it a.s. converges uniformly in P̂�

(e.g., [33, Theorem 7.25]). ��
Theorem 1 Let S(m,�) and Q(m,�) be the random variables defined in (9). Then,
for any downward closed set � and d ≥ 1, it holds that

lim
m→+∞ S(m,�) = lim

m→+∞ Q(m,�) = 1, a.s.

Proof Since Qm(v) = Qm

(
v/‖v‖L2

ρ

)
for any v ∈ P� \ {v ≡ 0}, we have

Qm(v) −→
m→+∞ 1, a.s. uniformly in P� \ {v ≡ 0},
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from which we also deduce that

(
Qm(v)

)−1 −→
m→+∞ 1, a.s. uniformly in P� \ {v ≡ 0}.

This implies by uniform equicontinuity

lim
m→+∞ Q(m,�)= lim

m→+∞ sup
v∈P�\{v≡0}

Qm(v) = sup
v∈P�\{v≡0}

lim
m→+∞ Qm(v)=1, a.s.,

and the same holds for S(m,�). ��
Theorem 2 Consider the random variables Q and S defined in (9). In any dimension
and given any downward closed set �, for all ε > 0 there exists an a.s. finite random
variable Mε such that

1 − η(m)(L + ε) ≤ Q(m,�) ≤ 1 + η(m)(L + ε), ∀ m > Mε a.s., (15)
1

1 + η(m)(L + ε)
≤ S(m,�) ≤ 1

1 − η(m)(L + ε)
, ∀ m > Mε, a.s., (16)

with

η(m) =
√

log log m

m

and

L = √
2
(
(k4(�))

2 − 1
) 1

2
.

Proof Let Qm be defined as in (12) and Sm(v) = Q−1
m (v) given any v ∈ P� \{v ≡ 0}.

It holds that

Var ( Qm(v)) = 1

m2‖v‖4
L2
ρ

Var

(
m∑

i=1

(v(Yi ))
2

)
= 1

m

‖v‖4
L4
ρ

− ‖v‖4
L2
ρ

‖v‖4
L2
ρ

≤ 1

m

(
(k4(�))

2 − 1
)
, ∀ v ∈ P� \ {v ≡ 0}, (17)

where k4(�) denotes the constant of the inverse inequality between L4
ρ and L2

ρ intro-
duced in (11). The value of k4(�) is reported in Lemma 1 for some polynomial spaces
and uniform measure in [−1, 1]d . Denote by P0 the subspace of P�, which contains
only the constant functions. When v ∈ P0 \{v ≡ 0}, it holds that Qm(v) = Sm(v) = 1
for any m. Moreover, notice that the supremums over P� \ {v ≡ 0} of the random
variables Qm and Sm are by definition the random variables Q and S:

Q(m,�) = sup
v∈P�\{v≡0}

Qm(v) and S(m,�) = sup
v∈P�\{v≡0}

Sm(v).
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Given anyv ∈ P�\P0, the summands, (v(Yi ))
2

‖v‖4
L2
ρ

−1, of the sequence {m(Qm(v)−1)}m

are independent and identically distributed (i.i.d.) with zero mean and a finite variance
that can be bounded as in (17). Therefore, using the law of the iterated logarithm (see,
e.g., [24]), it holds that

lim sup
m→+∞

Qm(v)− 1√
2Var(Qm(v)) log log m

= 1, a.s.,

and, using (17),

−L ≤ lim inf
m→+∞

Qm(v)− 1

η(m)
≤ lim sup

m→+∞
Qm(v)− 1

η(m)
≤ L .

Consequently, given any v ∈ P� \ P0, for all ε > 0 there exists Mε(v) such that it
holds

1 − η(m)(L + ε) ≤ Qm(v) ≤ 1 + η(m)(L + ε), ∀ m > Mε(v) a.s. (18)
1

1 + η(m)(L + ε)
≤ Sm(v) ≤ 1

1 − η(m)(L + ε)
, ∀ m > Mε(v) a.s. (19)

Relations (18) and (19) trivially hold also for any v ∈ P0 \ {v ≡ 0}. From Proposition
2, Sm(v) and Qm(v) are uniformly equicontinuous on P̂�; therefore, there exists an
Mε (independent of v) for which (18) and (19) hold for all m > Mε and for any
v ∈ P� \ {v ≡ 0} a.s. Finally, since

Q(m,�) = sup
v∈P�\{v≡0}

Qm(v) = sup
v∈P̂�

Qm(v) and

S(m,�) = sup
v∈P�\{v≡0}

Sm(v) = sup
v∈P̂�

Sm(v),

this implies the thesis. ��
Lemma 1 In the case of the uniform density ρ = U([−1, 1]d), the constants k∞(�)
and k4(�) of the inverse inequalities between L∞–L2

ρ and L4
ρ–L2

ρ introduced in (11)
satisfy

k∞(w) ≤ (w + 1)2, k4(w) ≤ w + 1 (20)

in the one-dimensional case d = 1 and

k∞(�) ≤
{
(#�)2, with the TP and TD spaces,

2d(w + 1)#�, with the HC space,

k4(�) ≤
{

#�, with the TP and TD spaces,(
2d(w + 1)#�

) 1
2 , with the HC space,

(21)

in the multidimensional case.
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See [30, Appendix B] for the proof of this lemma.

3 Error Analysis in One Dimension

We restrict the analysis to the case where d = 1, with � a closed interval in R, and
consider the polynomial space P� = span{y j , j = 0, . . . ,w}. For convenience, we
rename the polynomial space Pw and the random discrete projector �Y

w. The main
result of this section is Theorem 3. Its proof is postponed until the end of the section
because we will need several lemmas and intermediate results.

Theorem 3 For any α ∈ (0, 1), when the density ρ satisfies Assumption 1 and under
the condition

2mρmin

3 log((m + 1)/α)
≥ 8

√
3 w2

|�| (22)

it holds that

Pr

(
‖φ −�Y

wφ‖L2
ρ

≤
(

1+
√

3ρmax

ρmin
log

m + 1

α

)
inf
v∈Pw

‖φ − v‖L∞

)
≥ 1 − α. (23)

The previous theorem states that, with a confidence level of 1 − α, the discrete
projection with random points is (nearly) optimal up to a logarithmic factor in m,
provided m is large enough with respect to the polynomial degree w, and satisfies
condition (22). Theorem 3 holds for any density that satisfies Assumption 1. In [30,
Chapter 3] it is shown that this assumption is strictly required, i.e., the thesis of the
theorem does not hold when the density is not bounded away from zero. In such cases,
a number of points larger than that prescribed by condition (22) is required to achieve
an optimal convergence. Moreover, in [30, Chapter 3] it is proven that the same holds
for the analysis proposed in [15] by estimating the growth of the Jacobi polynomials
that are associated with the beta density family.

We now proceed to derive some probabilistic results on the distribution of order
statistics for the random sample points Yi .

3.1 Useful Results on Order Statistics of Random Sample Y

To study the order statistics of the random points Yi , it is more convenient to trans-
form them into uniform random variables in [0, 1]. Let F(y) = ∫ y

−∞ ρ(z)dz be the
cumulative distribution of the random variable Y . Then, U = F−1(Y ) is a uni-
form random variable in [0, 1], and we introduce the sample Ui = F−1(Yi ) for

all i = 1, . . . ,m, so that U1, . . . ,Um
iid∼ U(0, 1). We know that the order statistics

U(1) < U(2) < . . . < U(m) are

U(i) ∼ beta(i,m + 1 − i), i = 1, . . . ,m,

where we recall that a beta(i,m + 1 − i) random variable has distribution
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ρ(y) = m!
(i − 1)!(m − i)! yi−1(1 − y)m−i , y ∈ [0, 1].

Let us define�0 = U(1), �i = U(i+1)−U(i) for i = 1, . . . ,m−1 and�m = 1−U(m).
It can be shown that �i ∼ beta(1,m) for all i = 0, . . . ,m; see [17, p. 14], where a
more general result on the distribution of U(i2) − U(i1) is proven, namely

U(i2) − U(i1) ∼ beta(i2 − i1,m − i2 + i1 + 1), 1 ≤ i1 < i2 ≤ m.

In particular, the distribution is independent of the values i1 and i2 and depends only
on their difference i2 − i1. The following result gives a bound on the probability
distribution of maxi=0,...,m �i .

Lemma 2 For any α ∈ (0, 1) and m ∈ N

Pr

(
max

i=0,...,m
�i >

log((m + 1)/α)

m

)
≤ α.

Proof Trivially, if 0 < α ≤ m + 1

exp(m)
, then

log
(
(m + 1)/α

)
m

≥ 1 and

Pr

(
max

i=0,...,m
�i > 1

)
= 0 < α.

Consider now
m + 1

exp(m)
< α < 1. Rewriting the random event

{
max

i=0,...,m
�i > δ

}
=

m⋃
i=0

{
�i > δ

}
,

we have, for 0 < δ < 1,

Pr

(
max

i=0,...,m
�i > δ

)
= Pr

(
m⋃

i=0

{�i > δ}
)

≤
m∑

i=0

Pr (�i > δ)

= (m + 1)(1 − δ)m . (24)

The last step in (24) exploits �i ∼ beta(1,m), so that Pr
(
�i > δ

)
= (1 − δ)m for

each i = 0, . . . ,m. Therefore,

Pr

(
max

k=0,...,m
�k >

log((m + 1)/α)

m

)

≤ (m + 1)

(
1 − log((m + 1)/α)

m

)m
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= (m + 1)

((
1 − log((m + 1)/α)

m

) m
log((m+1)/α)

)log((m+1)/α)

≤ (m + 1) e− log((m+1)/α) = α.

��
Let now � = [�min, �max], Y0 = �min, and Ym+1 = �max, and denote by Y(i)

the ordered sample Y0, . . . ,Ym+1. The following lemma is an immediate consequence
of Lemma 2.

Lemma 3 For any α ∈ (0, 1) and m ∈ N

Pr

(
max

i=1,...,m+1
|Y(i) − Y(i−1)| > log((m + 1)/α)

mρmin

)
≤ α.

Proof The result follows by observing that

Y(i+1) − Y(i) ≤ 1

ρmin
�i , ∀ i = 0, . . . ,m.

��
3.2 Relation Between ‖ · ‖L2

ρ
and ‖ · ‖Y on Pw

We are interested in finding an inequality between the continuous norm ‖ · ‖L2
ρ

and
the discrete norm ‖ · ‖Y, i.e., in finding a suitable random variable B such that

‖v‖2
L2
ρ

≤ B‖v‖2
Y, ∀ v ∈ Pw.

This will be the random variable appearing in Proposition 1.
Now we introduce the notion of covering of the interval �, i.e., to each ordered

random point Y(i) we associate an interval Ii satisfying the requirement that

m⋃
i=1

Ii = �. (25)

In other words, the family of intervals {Ii }i is a (finite) covering of the domain�. Since
the points {Yi }i are random variables, the intervals {Ii }i generate a random covering of
�. In one dimension, it is easy to build a finite covering of mutually disjoint intervals

I1 =
[
Y(1)−�0,Y(1)+�1

]
, Ii =

(
Y(i)−�i−1,Y(i)+�i

]
, i = 2, . . . ,m, (26)

satisfying (25) by taking

�i =

⎧⎪⎪⎨
⎪⎪⎩

|Y(0) − Y(1)|, i = 0,
|Y(i+1) − Y(i)|

2
, i = 1, . . . ,m − 1,

|Y(m+1) − Y(m)|, i = m.

(27)
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In general, the sets Ii are not centered in the corresponding random point Y(i). It is
useful to split each interval Ii into its left and right parts, I −

i = Ii ∩{y ∈ � : y ≤ Y(i)},
I +
i = Ii ∩ {y ∈ � : y > Y(i)}, with measures |I −

i | = �i−1 and |I +
i | = �i ,

respectively. We also define the random variable �Y as

�Y = max
i=1,...,m

|Ii |. (28)

The following result is a consequence of Lemma 3.

Corollary 1 For any α ∈ (0, 1) and m ∈ N, m ≥ 2 it holds that

Pr

(
�Y >

3 log((m + 1)/α)

2mρmin

)
≤ α.

Proof It is enough to notice that

|I1| = (Y(1) − Y(0))+ Y(2) − Y(1)
2

≤ 3

2
max

i=1,...,m+1

(
Y(i) − Y(i−1)

)
,

|Ii | = Y(i) − Y(i−1)

2
+ Y(i+1) − Y(i)

2
≤ max

j=1,...,m+1

(
Y( j) − Y( j−1)

)
, ∀ i = 2, . . . ,m − 1,

|Im | = Y(m) − Y(m−1)

2
+ (Y(m+1) − Y(m)) ≤ 3

2
max

i=1,...,m+1

(
Y(i) − Y(i−1)

)
,

so that

Pr (�Y > ζ) ≤ Pr

(
3

2
max

i=1,...,m−1

(
Y(i) − Y(i−1)

)
> ζ

)
, ∀ ζ > 0.

��
In what follows we will need a Markov inequality for the polynomial space P̂w,

(e.g., [12]),

∥∥∥∥∂v∂y

∥∥∥∥
L2(�)

≤ cI w2‖v‖L2(�), ∀ v ∈ Pw, (29)

where the constant cI = 2
√

3/|�| depends on the length |�| of the interval.
We now define two events:

�̂w =
{
�Y ≤ 1

4cI w2

}
and �m =

{
�Y ≤ 3 log((m + 1)/α)

2mρmin

}
. (30)

Observe that, taking m large enough, the probability of �̂w can be made arbitrarily
close to 1. The following lemma makes the point more precisely.
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Lemma 4 For any α ∈ (0, 1), under the condition

2mρmin

3 log
(
(m + 1)/α

) ≥ 4 cI w2, (31)

the following inclusion holds:

�m ⊂ �̂w

and

Pr(�̂w) ≥ Pr(�m) ≥ 1 − α.

Proof Clearly, under (31),

�Y ≤ 3 log((m + 1)/α)

2mρmin
�⇒ �Y ≤ 1

4cI w2 ,

and the inclusion �m ⊂ �̂w is proven. The bound from below on the corresponding
probabilities is an immediate consequence of Lemma 1. ��

Now we are ready to formulate the main result of this subsection.

Theorem 4 Define on �̂w the random variable

B = m�Yρmax

1 − 2�Y cI w2 . (32)

Then, in �̂w it holds that

‖v‖2
L2
ρ

≤ B‖v‖2
Y, ∀ v ∈ Pw. (33)

Moreover, under condition (31), in �m ⊂ �̂w it holds that

B ≤ 3ρmax

ρmin
log ((m + 1)/α) .

Proof For convenience the proof uses the standard L2(�) norm instead of the weighted
norm L2

ρ . Remember that in this case, ‖ ·‖2
L2
ρ

≤ ρmax‖ ·‖2
L2(�)

. To lighten the notation,

we also introduce on each interval I ±
i the short notation ‖ · ‖I −

i
:= ‖ · ‖L2(I −

i )
and

‖ · ‖I +
i

:= ‖ · ‖L2(I +
i )

.
Take v ∈ Pw arbitrarily. The following standard inequalities are used in the sequel:

∣∣∣v(y)2 − v(Y(i))
2
∣∣∣

=

∣∣∣∣∣∣∣

y∫

Y(i)

(v2)′(ξ)dξ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

y∫

Y(i)

2v(ξ)v(ξ)′dξ

∣∣∣∣∣∣∣
≤

{
2‖v‖I +

i
‖v′‖I +

i
, ∀ y ∈ I +

i ,

2‖v‖I −
i
‖v′‖I −

i
, ∀ y ∈ I −

i .
(34)
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Integrating (34) over I −
j yields

∫

I −
i

v(y)2dy − v(Y(i))
2|I −

i | =
∫

I −
i

(
v(y)2 − v(Y(i))

2
)

dy

≤
∫

I −
i

∣∣∣v(y)2−v(Y(i))2
∣∣∣dy ≤ 2 |I −

i | ‖v‖I −
i
‖v′‖I −

i
, (35)

and analogously over I +
j

∫

I +
i

v(y)2dy − v(Y(i))
2|I +

i | ≤ 2 |I +
i | ‖v‖I +

i
‖v′‖I +

i
. (36)

Summing (35) and (36) we obtain

∫

Ii

v(y)2dy − |Ii |v(Y(i))2 ≤ 2
(
|I −

i | ‖v‖I −
i
‖v′‖I −

i
+ |I +

i | ‖v‖I +
i
‖v′‖I +

i

)

≤ 2 |Ii | ‖v‖Ii ‖v′‖Ii ,

which implies

∫

Ii

v(y)2dy ≤ |Ii |
(
v(Y(i))

2 + 2 ‖v‖Ii ‖v′‖Ii

)
. (37)

Summing (37) over all the intervals and using the definitions of�Y and ‖·‖Y, followed
by the Cauchy–Schwarz inequality and (29) we have

‖v‖2
L2(�)

=
m∑

i=1

∫

Ii

v(y)2dy

≤
m∑

i=1

|Ii |v(Y(i))2 + 2
m∑

i=1

|Ii | ‖v‖Ii ‖v′‖Ii

≤ �Y
m∑

i=1

v(Y(i))
2 + 2�Y

m∑
i=1

‖v‖Ii ‖v′‖Ii

= m�Y‖v‖2
Y + 2�Y

m∑
i=1

‖v‖Ii ‖v′‖Ii

≤ m�Y‖v‖2
Y + 2�Y ‖v‖L2(�)‖v′‖L2(�)

≤ m�Y‖v‖2
Y + 2�Y cI w2 ‖v‖2

L2(�)
. (38)
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Rearranging the terms in (38) we obtain

(1 − 2�Y cI w2)‖v‖2
L2(�)

≤ m�Y‖v‖2
Y. (39)

The coefficient on the left-hand side is nonzero on �̂w, so we have proven (32)–(33).
If we now restrict (39) to �m under condition (31), then from Lemma 4 we have

�Y ≤ 1

4cI w2 and �Y ≤ 3 log((m + 1)/α)

2mρmin
,

so that

B = ρmaxm�Y

1 − 2�Y cI w2 ≤ 3ρmax

ρmin
log((m + 1)/α),

and this concludes the proof. ��
Remark 2 Theorem 4 states that on�m , which is an event of probability at least 1−α,
the discrete and continuous norms are equivalent up to a logarithmic factor if condition
(31) is fulfilled, which, roughly speaking, corresponds to m ∝ w2.

Remark 3 In the arguments used in Lemmas 1 and 4 and Theorem 3, the covering
(26) can be slightly improved by taking an m-dependent partition

�+
i = (m − i) |Y(i+1) − Y(i)|

m
, �−

i = i |Y(i+1) − Y(i)|
m

, i = 0, . . . ,m,

and building the covering as

I1 =
[
Y(1) −�+

0 ,Y(1) +�−
1

]
, Ii =

(
Y(i) −�+

i−1,Y(i) +�−
i

]
, i = 2, . . . ,m.

(40)

Using this covering in the proof of Lemma 1, it holds that

|Ii | ≤ m + 1

m
max

j=1,...,m+1

(
Y( j) − Y( j−1)

)
, ∀ i = 1, . . . ,m.

This relation is sharper since (m + 1)/m ≤ 3/2 when m ≥ 2. The use of the sharper
covering (40) allows us to obtain a sharper condition

m2ρmin

(m + 1) log
(
(m + 1)/α

) ≥ 4 cI w2, m ≥ 2,

which slightly improves condition (22), and a sharper bound

B ≤ 2(m + 1)ρmax

mρmin
log((m + 1)/α), m ≥ 2,

but with more complicated expressions.
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Remark 4 The proof of Theorem 4 relies on the uniform covering properties of the
sampling points {Y1, . . . ,Ym}. The result then applies to any sequence, not necessarily
random, of points that provides a covering with maximal spacing �Y ∝ m−1. In
particular, an analogous result to Theorem 3 holds for a deterministic sequence of
equally spaced points, provided that a relation m ∝ w2 is fulfilled to retain the stability
of the projection and avoid the blow-up of the random variable B. The use of random
uniform points instead of deterministic equally spaced points is clearly of interest in
higher dimensions since in this case the approach based on a uniform deterministic
sampling is of limited interest because the number of points required to preserve
uniformity must scale exponentially with respect to the dimension.

3.3 Proof of Theorem 3

The proof of this theorem is merely a collection of results from Proposition 1,
Theorem 4, and Lemma 1.

Proof of Theorem 3 We consider the event �m defined in (30). From Lemma 1 we
know that under condition (22) the probability of this event is at least 1 − α. From
Theorem 4 it holds that

‖v‖2
L2
ρ

≤ 3ρmax

2ρmin
log

(
m + 1

α

)
‖v‖2

Y, in �m,

uniformly with respect to v ∈ Pw. We then apply Proposition 1 to any outcome in �m

to conclude that

‖φ −�Y
wφ‖L2

ρ
≤

(
1 +

√
3ρmax

2ρmin
log

(
m + 1

α

))
inf
v∈Pw

‖φ − v‖L∞ , ∀ φ ∈ L∞(�).

This concludes the proof. ��

4 Algebraic Formulation

The value of n depends on the particular polynomial space (TP, TD, HC, …), the
maximal polynomial degree used, w, and the dimension of the physical space, d. The
number of points m must satisfy the constraint

m ≥ n

to have an overdetermined problem (more data than unknowns). We showed in Sect. 3
that for univariate functions, m should scale as m ∝ w2 to have a stable discrete
projection. As a general rule, to choose m for multivariate functions and arbitrary
polynomial spaces, we consider the formula

m = c nγ , (41)
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where c is a positive constant and γ ≥ 1 a real number. We restrict our numerical tests
in Sect. 5 to the cases γ = 1 and γ = 2.

Given the polynomial space, we denote by D ∈ R
m×n the design matrix. Its element

[D]i j contains the j th L2
ρ-orthonormal basis function ψ j evaluated in the i th random

point Yi :

[D]i j = ψ j (Yi ).

The discrete random projection �Y
�φ can be expressed in terms of the orthonormal

basis {ψ j } j as

�Y
�φ(y) =

n∑
j=1

x jψ j (y), y ∈ �. (42)

Then the algebraic problem to determine the unknown vector of coefficients x can be
formulated as

x = argmin
z∈Rn

‖Dz − b‖2, (43)

where b ∈ R
m×1 contains the evaluations of the target function [b]i = φ(Yi ). Although

we omit the subscript Y to simplify the notation, D is a random matrix and x, b are
random vectors since they depend on the random sample Y. The normal equations
allow us to rewrite the rectangular system embedded in (43) as a square system:

DT Dx = DT b. (44)

In practice we solve problem (43) by a QR factorization of the matrix D. Still, the
formulation (44) will be useful to measure the ill-conditioning of the problem through
the condition number of the matrix DT D.

To evaluate the approximation error, we have considered a cross-validation
approach: a random set ycv

1 , . . . , ycv
100 of 100 cross-validating points is chosen ini-

tially, and the corresponding design matrix Dcv is computed. The evaluations of φ in
these points are stored in bcv . Then the cross-validated error in ∞-norm is defined as

‖φ −�Y
�φ‖cv := ‖Dcvx − bcv‖∞. (45)

Note that ‖ · ‖cv is not a norm on the function space of φ; we abuse the norm notation
in the figures with cross-validation errors below to emphasize the dependence on φ.
To estimate the variability of (45) due to the random sampling of the m collocation
points, we have repeated the calculation of the coefficient vector x over r independent
sets of outcomes {y p

i , i = 1, . . . ,m}, with p = 1, . . . , r . Accordingly, we denote by
x(p) the outcome of x obtained with the pth set. Subsequently we compute the sample
average error by

Ecv =
∑r

p=1 ‖Dcvx(p) − bcv‖∞
r

(46)
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and the sample standard deviation by

sE =
√√√√ 1

r − 1

r∑
p=1

(
‖Dcvx(p) − bcv‖∞ − Ecv

)2
. (47)

We also aim to analyze the condition number of the random matrix DT D,

K
(

DT D
)

:=
σmax

(
DT D

)

σmin

(
DT D

) , (48)

where σmax(·) and σmin(·) are the maximum and minimum singular values, respec-
tively. Again, denoting by D(p) the design matrix built with the pth set {y p

i , i =
1, . . . ,m} of outcomes, we estimate the mean condition number K over the r repeti-
tions by

K =
∑r

p=1 K
(

DT
(p)D(p)

)

r
(49)

and the standard deviation by

sK =
√√√√ 1

r − 1

r∑
p=1

(
K

(
DT
(p)D(p)

)
− K

)2
. (50)

4.1 Condition Number of DT D

In the rest of this section we show how the condition number of problem (44) relates
to some quantities previously introduced. All the contents of this section hold for a
generic polynomial space, in any dimension. Accordingly, we refer to the polynomial
space as P�.

Proposition 4 The spectral condition number (2-norm) of the matrix DT D, as defined
in (48), is equal to

K
(

DT D
)

= Q(m,�) S(m,�), (51)

where Q(m,�) and S(m,�) are defined in (9).

Proof The symmetric random matrix DT D is a.s. positive definite under Assumption 1
on ρ. Let v(y) = ∑n

j=1 x jψ j (y) be an arbitrary polynomial in P�. Then the i th
element of the vector Dx is

[Dx]i =
n∑

j=1

x jψ j (Yi ) = v(Yi ). (52)
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By definition (4) of the random discrete inner product

‖v‖2
Y = 1

m

m∑
i=1

(
v(Yi )

)2
(53)

and by (42) and the L2
ρ-ortonormality of the basis {ψ j } j , we have

‖v‖2
L2
ρ

=
⎛
⎝ n∑

j=1

x jψ j ,

n∑
j=1

x jψ j

⎞
⎠

L2
ρ

=
n∑

j=1

(x j )
2 = xT x . (54)

Using in sequence (54), (52), and (53) yields

xT DT Dx

xT x
=

∑m
i=1 (v(Yi ))

2

‖v‖2
L2
ρ

= m‖v‖2
Y

‖v‖2
L2
ρ

. (55)

Therefore, the largest and smallest eigenvalues of DT D correspond to m Q(m,�)
and mS(m,�)−1, respectively. The conclusion follows from definition (48) of the
condition number. ��
Remark 5 In the one-dimensional case we can easily establish an equivalence of norms
between ‖ · ‖Y and ‖ · ‖L2

ρ
, collecting the results of Theorem 4 and Remark 1. That is,

under condition (22), in the event �m , which occurs with probability at least 1 − α,
we have

√|�|ρmin

1 + w
‖v‖2

Y ≤ ‖v‖2
L2
ρ

≤ 3ρmax

ρmin
log

(
m + 1

α

)
‖v‖2

Y, v ∈ Pw,

from which we obtain the bound on the condition number

K
(

DT D
)

≤ 3ρmax√|�|(ρmin)3/2
(w + 1) log((m + 1)/α), in �m . (56)

However, we have observed numerically that the bound (56) is very pessimistic because
under condition (22) the condition number seems to be uniformly bounded with respect
to m and w.

A direct consequence of Theorem 1 is that

K
(

DT D
)

−→
m→+∞ 1, a.s.

This is confirmed numerically. Figure 2 shows the numerical results obtained for a one-
dimensional problem with an overkilling rule m = 100 n4 to simulate the asymptotic
case m → +∞.
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Fig. 2 Condition number (48), d = 1, m = 100 n4. Continuous marked line: mean condition number (49)
over r = 200 repetitions; dashed line: mean (49) plus one standard deviation (50). The scale on the y-axis
ranges from 100 = 1 to 100.04 = 1.0965

5 Numerical Results

We present an illustrative selection of results from an extensive set of numerical tests.
The aim is to seek the correct relation between the number of sampling points, m, and
the dimension of the polynomial space to obtain a stable and accurate approximation.
The following issues are addressed:

• How the condition number (48) depends on w, d, c, γ and the choice of the poly-
nomial space;

• Analogously, how the cross-validation error (45) behaves.

In the convergence plots presented in the remainder of this section, we show the
average error (46) and condition number (49), as well as their average plus one standard
deviation.

5.1 One-Dimensional Case

We first investigate the dependence of the condition number (48) on the rule (41) used
to select the number m(w) of sampling points. Observe that in the one-dimensional
case, n = w + 1.

As seen in Fig. 3, the condition number behaves differently depending on the rule
chosen. In Fig. 3 (left), we report the results obtained with the linear rule m = c n,
corresponding to γ = 1 in (41). We tested several values for c ranging from 2 to 20.
All cases show an exponential growth of the condition number with respect to w, with
rates decreasing with increasing c, as one would expect. Using r = 10,000 repetitions
the observed average condition number still shows a large variability. This is due to
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Fig. 3 Condition number (48), d = 1. Continuous marked lines: mean condition number (49) over r =
10,000 repetitions; dashed lines: mean (49) plus one standard deviation (50). Top: m = c n; bottom:
m = c n2

the large standard deviations of the condition number, as indicated in the figure by the
dashed line.

Note that the range of w goes up to 25, so in this range the choice of the largest
c yields a linear rule that uses more sample points than some of the quadratic rules
(shown on the right-hand side of Fig. 3).

In contrast to the exponential growth observed when using the linear rule, the results
using the quadratic rule exhibit a condition number that is approximately constant for
w ranging from 1 to 40. Fluctuations become smaller when c increases. This behavior
is consistent with the theoretical results in Sect. 3.

We now proceed to illustrate the convergence of the error for a few functions of
varying regularity in Figs. 4–7. We focus on three target functions: an exponential
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Fig. 4 Error (45) for function (57). Continuous marked lines: mean error (46) over r = 10,000 repetitions;
dashed lines: mean (46) plus one standard deviation (47). Top: m = c n; bottom: m = c n2

entire function,
φ(Y ) = exp(Y ), Y ∼ U([−1, 1]); (57)

a meromorphic function,

φ(Y ) = 1

1 + βY
, Y ∼ U([−1, 1]), (58)

that is, a function that is analytic in [−1, 1] provided that β ∈ (−1, 1); and a function
with lower regularity,

φ(Y ) = |Y |3, Y ∼ U([−1, 1]). (59)
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Fig. 5 Error (45) for function (58) withβ = 0.5. Continuous marked lines: mean error (46) over r = 10,000
repetitions; dashed lines: mean (46) plus one standard deviation (47). Top: m = c n; bottom: m = c n2

Figure 4 shows the error computed as in (45), in approximating the exponential
function (57) with different choices of c and γ in rule (41). The quadratic rule (on
the right) displays the same superexponential, optimal, convergence with respect to w
independently of the constant c. The convergence is up to machine precision.

In contrast, the linear rule (left) displays a deterioration of the convergence using
small values of c. The deterioration is due to the ill-conditioning of the matrix DT D
when w increases. As noted earlier, the largest value of c yields at least as many sample
points as the quadratic rule with the smallest value of c in the shown range, and the
errors behave accordingly. Again, the fluctuations in the average error decrease with
increasing c.
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Fig. 6 Error (45) for function (58) withβ = 0.9. Continuous marked lines: mean error (46) over r = 10,000
repetitions; dashed lines: mean (46) plus one standard deviation (47). Top: m = c n; bottom: m = c n2

The use of the meromorphic function (58) with β = 0.5 (Fig. 5) and β = 0.9
(Fig. 6) yields analogous error graphs, but with a slower convergence rate.

Unlike function (58), which is analytic in [−1, 1], function (59) is only C2([−1, 1]),
but not C3([−1, 1]). This decreased regularity manifests in the slower decay of the
approximation error in Fig. 7. Note that the dependence of the error on the polyno-
mial degree w is displayed in log–log scale, so that the error no longer decreases
exponentially with respect to w.

When taking the number of sample points according to the quadratic rule (Fig. 7,
right), the error decreases as w−3, and in this range of w the error shows no tendency
to blow up for any of the studied values of c.
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Fig. 7 Error (45) for function (59). Continuous marked lines: mean error (46) over r = 10,000 repetitions;
dashed lines: mean (46) plus one standard deviation (47). Top: m = c n; bottom: m = c n2

On the other hand, using the linear rule (Fig. 7, left) yields a deterioration: the
critical w, above which the error starts to grow, increases with increasing c.

Note, in particular, that sooner or later the error starts to blow up for all shown
constants. This is a clear indication that the linear rule does not lead to a stable and
convergent approximation.

From a practical point of view, we are mainly interested in the error as a function
of the computational work, not the polynomial degree itself. Figure 8 shows how the
error depends on the total number of sampling points when we consider function (58)
with β = 0.5. Note that Fig. 8 shows the same errors as Fig. 5 but with m instead of
w on the abscissas.
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Fig. 8 Dependence of error (45) on number of sample points m. The function is (58) with β = 0.5.
Continuous marked lines: mean error (46) over r = 10,000 repetitions; dashed lines: mean (46) plus one
standard deviation (47). Top: m = c n; bottom: m = c n2

In Fig. 8, left we show the linear case: the error decays exponentially with increas-
ing m in an initial phase until the error starts to deteriorate. The convergence is faster
for small values of c, but the deterioration also happens earlier, which prevents higher
accuracies.

In Fig. 8, right we show the quadratic case. In contrast to the linear case, the
convergence becomes subexponential with respect to m. On the other hand, all choices
of c ≥ 1 avoid the deterioration of the errors that we see using the linear rule, and the
approximation remains stable and convergent. Figure 9 compares the convergence of
the error obtained with the linear and quadratic rules, with respect to m. We remark
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Fig. 9 Dependence of error (45) on number of sample points m. Selected data from Fig. 8 corresponding
to rules m = 2 n, m = 20 n, m = 1 n2, and m = 3 n2

that, even though the error deteriorates for high w when using the linear rule with a
small c, we can still obtain an accuracy that suffices in many applications.

5.2 Multidimensional case

We now proceed to the multidimensional case, where we have greater freedom to
choose the space P�. We will restrict our examples to isotropic versions of the TP,
TD, and HC spaces mentioned earlier. In this section we choose r = 100 repetitions
to estimate the variability of the error and condition number. In the linear case, the
values assumed by c are 1.1, 1.25, 2, 5, 20. In the multidimensional case, a constant c
slightly larger than 1 is enough to have a good approximation. This is in contrast to the
one-dimensional case, where the linear rule with a constant c = 2 features fast growth
of the condition number and a large variability of the polynomial approximation.

5.2.1 Condition Number

In Fig. 10, the condition number is compared among the TP, TD, and HC spaces
in the case where d = 2. We see again an exponential growth of the condition
number when m is linearly proportional to n, and the larger the dimension of the
space (6)–(8) with respect to w, the more ill-conditioned the problem. As in the
one-dimensional case, choosing the number of sample points m like m ∝ n2 yields
condition numbers that are approximately constant in the studied range of w. Com-
pared to the one-dimensional results of Fig. 3, the two-dimensional results exhibit
smaller values and a lower variability. Therefore, the choice of the space does not
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Fig. 10 Condition number (48), TP versus TD versus HC spaces, d = 2. Continuous, marked lines: mean
condition number (49) over r = 100 repetitions; dashed lines: mean (49) plus one standard deviation (50).
Top: m = c n; bottom: m = c n2

seem to play a major role in the behavior of the condition number (48) under the
condition m ∝ n2.

The situation is similar in higher dimensions; we report, for example, in Fig. 11
the one-dimensional case d = 1 compared with the TD space in dimensions d = 2
and d = 4. We observe in Fig. 11, left, that m ∝ n features a lower variability
of the condition number with the linear rule, which, however, is still exponentially
growing. On the other hand, Fig. 11, right, confirms that the condition m ∝ n2 ensures
a condition number bounded independently of w, and the higher the dimension d, the
more stable the problem.
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Fig. 11 Condition number (48), d = 1 versus d = 2 TD space versus d = 4 TD space. Continuous marked
lines: mean condition number (49) over r = 100 repetitions; dashed lines: mean (49) plus one standard
deviation (50). Top: m = c n; bottom: m = c n2

5.2.2 Approximation Error

Let us consider the error in approximating the target function

φ(Y ) = 1

1 + β

d

∑d
q=1 Y q

, Y ∼ U([−1, 1]d), (60)
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Fig. 12 Error (45) with function (60), d = 2, TP versus TD versus HC, m = c n2. Continuous marked
lines: mean error (46) over r = 100 repetitions; dashed lines: mean (46) plus one standard deviation (47).
Top: error versus w; bottom: error versus n

which is a multidimensional generalization of (58) and inherits its regularity. This
function is paradigmatic since it resembles the solution of an elliptic differential
equation with the diffusion coefficient parametrized by a Karhunen–Loeve expan-
sion of random variables. We take β = 0.5 and start by considering the quadratic rule.
Figure 12 shows the optimal convergence rates obtained with TP, TD, and HC when
approximating function (60) with d = 2, m = c n2. The same convergence error
plots are reported versus w in Fig. 12, left, and versus n in Fig. 12, right. This shows
that the TP and TD spaces with the same dimension introduce similar errors when
approximating function (60), while the convergence of the HC space is slower also
when looking at the effective dimension of the space n.
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Fig. 13 Error (45) with function (60), m = c n. Continuous marked lines: mean error (46) over r = 100
repetitions; dashed lines: mean (46) plus one standard deviation (47). Top left d = 2, TP space; top right
d = 2, TD space; bottom left d = 4, TP space; bottom right d = 4, TD space

Figure 13 shows the error in approximating function (60) in TP or TD spaces
for d = 2 or d = 4 with m = cn. Compared to the one-dimensional case d = 1
in Fig. 5, we observe a lower variability in the error due to the reduced variability
in the corresponding condition number. Despite the reduced variability, in the two-
dimensional case d = 2, we observe also in this case that the linear rule eventually
leads to divergence when w increases if c is chosen too small.

Now we give an example of a function that is hard to approximate in the TD spaces.
When d = 2, we consider the target function

φ(Y ) =
∣∣∣∣∣∣

2∑
q=1

Y 2
q − 0.5

∣∣∣∣∣∣
3

, Y ∼ U([−1, 1]d), (61)

which features a discontinuity in its derivatives over a circle with radius equal to
√

0.5
and centered in the origin. Note that (61) is a class C2 continuous function.

Choosing the quadratic proportionality m = n2 leads to the expected theoretical
convergence rates for both TP and TD spaces (Fig. 14).
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Fig. 14 Error (45) with function (61), d = 2, m = c n2 with TD space versus m = c n2 with TP space
versus m = 5n with TD space versus m = 5n with TP space. Continuous marked lines: mean error (46)
over r = 100 repetitions; dashed lines: mean (46) plus one standard deviation (47)

When choosing the linear proportionality m = 5n (Fig. 14), the convergence rate
is slower than the theoretically predicted one, but again the TP space outperforms the
TD space.

6 Conclusions

In this work we have analyzed the problem of approximating a multivariate function
by discrete L2 projection on a polynomial space starting from random, noise-free
observations.

In the one-dimensional case with sampling points drawn from a bounded domain
and a probability density function bounded away from zero and bounded from above,
we showed that the discrete L2 projection leads to optimal convergence rates, equiv-
alent to the best approximation error in L∞, up to a logarithmic factor, provided the
sample size m scales quadratically with the dimension of the polynomial space n. We
also showed how this result reflects on the condition number of the design matrix.

The numerical tests we performed confirm the theoretical results. In our one-
dimensional tests, we clearly see that the condition m ∝ n2 ensures a condition
number of the design matrix bounded independently of the polynomial degree and an
optimal convergence rate. On the other hand, the relation m ∝ n leads to a condition
number growing exponentially fast with the polynomial degree and a convergece plot
that features initially a suboptimal rate up to a critical polynomial degree beyond which
divergence is observed. In addition, the sensitivity to the proportionality constant was
examined.

123



Found Comput Math (2014) 14:419–456 455

In high dimensions, we observed numerically that in many cases a choice m ∝
n does lead to an optimal convergence rate within all reasonable tolerances (up to
machine precision). Whether this is an indication that in high dimensions the relation
m ∝ n is enough to have a stable and optimal approximation or just that the blow-up of
the error occurs at tolerances smaller than machine precision is still an open question
and a topic of current research.

In one dimension, similar results could be obtained using a deterministic sample
of equispaced points, still ensuring the condition m ∝ n2 to guarantee the stability
of the projection. In this respect, random sampling is much more attractive in high-
dimensional problems.

In this work we considered only functions with values in R. In the field of UQ,
one is often interested in functions with values in some Banach space, representing
the solution of a (possibly nonlinear) differential or intergral problem. Future research
directions will include the extension of these results to Banach-valued functions.
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