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Abstract This paper deals with “The Enchanted Journey,”
which is a daily event tour booked by Bollywood-film fans.
During the tour, the participants visit original sites of famous
Bollywood films at various locations in Switzerland; more-
over, the tour includes stops for lunch and shopping. Each
day, up to five buses operate the tour. For operational reasons,
however, two or more buses cannot stay at the same loca-
tion simultaneously. Further operative constraints include
time windows for all activities and precedence constraints
between some activities. The planning problem is how to
compute a feasible schedule for each bus. We implement a
two-step hierarchical approach. In the first step, we minimize
the total waiting time; in the second step, we minimize the
total travel time of all buses. We present a basic formula-
tion of this problem as a mixed-integer linear program. We
enhance this basic formulation by symmetry-breaking con-
straints, which reduces the search space without loss of gen-
erality. We report on computational results obtained with the
Gurobi Solver. Our numerical results show that all relevant
problem instances can be solved using the basic formulation
within reasonable CPU time, and that the symmetry-breaking
constraints reduce that CPU time considerably.
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1 Introduction

The tourism sector plays a major role in the economies of
many countries, for example, in Switzerland, where in 2005
this sector added a gross value of 12.6 billion Swiss francs
(Baumann and Schiess 2008). Offers and demand in this sec-
tor are strongly influenced by the ongoing change from a
leisure-based society to an experience-based society. Today,
there is an increasing demand for holiday packages with
event-type elements (Müller 2001). To satisfy this demand,
various travel agencies are developing services which contain
such elements. An example for such services are event tours,
which allow the participants to transform a passive visit into
an experienced reality.

With the growing expectations of customers for quality
and for convenience, and the rising amount of competi-
tion, a detailed planning of the operations is vital in such a
tour. Here, we consider the event tour “The Enchanted Jour-
ney.” This tour leads the participants through famous sites of
Bollywood movies, which were filmed in the mountainous
region of Switzerland. The transportation of the participants
between the sites is done by bus. Depending on the demand,
up to five buses operate on the same day; however, there must
not be two or more buses at the same location simultaneously.
The problem discussed in this paper is how to compute a
schedule for each bus operating on a given day such that
the total waiting time (primary objective) and the total travel
time (secondary objective) are minimized. The tour operator
contacted us in the design phase of the tour; optimal or at
least good feasible solutions to this problem were required
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as a proof-of-concept for the negotiations with the respective
marketing organizations.

This problem is related to the well-known multiple travel-
ing salesman problem (mTSP) (see, e.g., Bektas 2006; Kara
and Bektas 2006) and the open-shop scheduling problem
(OSP) (see, e.g., Graves 1981; Yu et al. 2011). The major
difference to the mTSP is that in the problem at hand, each
site is to be visited by each bus, whereas in the mTSP, each
site is to be visited by exactly one salesperson. Further differ-
ences are the application-specific objective function and sev-
eral application-specific constraints, e.g., time windows (see,
e.g., Solomon 1987) or prescribed precedence constraints and
maximum time lags between the visits of some sites. With
respect to the OSP, the sites of the tour may be interpreted
as the processors and the buses as the jobs of an OSP. The
main differences to the OSP, however, are the application-
specific objective function and several application-specific
constraints, e.g., the transportation times between the sites,
prescribed precedence constraints and maximum time lags
between the visit of certain sites, and time windows for the
visits of certain sites. Because of these differences, a straight-
forward adaption of known solution approaches is not pos-
sible.

We formulate the scheduling problem at hand as a mixed-
integer linear program (MILP). This approach offers a sub-
stantial flexibility with respect to changes of the problem
specification, i.e., the design of the tour, which was required
by the tour operator. Moreover, we enhance the MILP with
symmetry-breaking constraints, i.e., we exclude solutions
which differ only by the numbering of the buses. Our compu-
tational results show that all relevant problem instances can
be solved with the MILP without symmetry-breaking con-
straints in a reasonable amount of CPU time. By introducing
the symmetry-breaking constraints, we strongly reduce the
required CPU time for all relevant instances.

The purpose of this paper is threefold. First, we present
a real-world bus-scheduling problem which is interesting
from an optimization point of view. Second, we show
how to apply mixed-integer linear programming to this
problem, and we discuss the results achieved. Third, we
contribute to the growing field of efficient formulations
of real-world scheduling problems as MILPs (cf., e.g.,
Brandimarte 2013; Goel 2012; Goel and Rousseau 2012;
Simpson and Abakarov 2013), in particular by enhanc-
ing our basic model formulation by symmetry-breaking
constraints.

The remainder of this paper is structured as follows. In
Sect. 2, we present the event tour “The Enchanted Journey”
in more detail, and we state the arising scheduling prob-
lem. In Sect. 3, we develop the MILP formulation and the
symmetry-breaking constraints. In Sect. 4, we report on our
numerical results. Concluding remarks and suggestions for
further research follow in Sect. 5.

2 Real-world application and scheduling problem

In Sect. 2.1, we present the real-world application that we
address in this paper. In Sect. 2.2, we state the scheduling
problem arising from this application.

2.1 Real-world application

The problem refers to a bus tour that is offered daily in
Switzerland and is booked by Bollywood-film fans. During
the tour, the participants visit seven original sites of various
Bollywood films. These sites are located in the city of Bern
and in the surrounding mountains. At each site, the partici-
pants are photographed while imitating famous scenes from
these films. Moreover, each tour comprises a lunch break and
a guided shopping tour in Bern. In total, the tour consists of
ten real activities, whose prescribed durations vary between
15 and 30 min (cf. Table 1).

The town Engelberg in central Switzerland is the starting
point as well as the ending point of the tour; therefore, we
consider it as two fictitious activities. The sequence of the
remaining activities of the tour is not pre-determined. How-
ever, Bern must always be either the first or the last location.
Moreover, for the entire tour and for each activity, a time
window is prescribed that arises from, for example, the ser-
vice hours for lunch or the shop-opening hours; in Table 1,
the beginning and the completion of this time window is
denoted by E Sk and L Sk , respectively. In addition, the two
respective activities in Bern, Saanen, and Rougemont must
be performed in a row.

Each day, up to five buses operate this tour. There are two
alternative locations (L1 and L2) for lunch, and every bus
must stop at exactly one of them. All other locations must be
part of every tour, and each can have not more than one bus at
a time; otherwise, the participants could not be photographed
individually. For each location, a 5-min buffer time between
succeeding buses is prescribed.

Due to the geographical location of the sites, the transfer
between the locations is carried out by buses. The corre-
sponding travel times are given in Table 2. Because of laws
and regulations in Switzerland, the total travel time of any
bus may not exceed 540 min. A shortest route of a bus cor-
responds to a total travel time of 413 min. The total duration
of the tour may not exceed 810 min.

As the primary objective, the tour operator wishes to per-
form the tours of each day such that the total waiting time
of all buses is minimized. As the secondary objective, the
tour operator aims at minimizing the total travel time of the
buses. This sequence of objectives is chosen, since a small
waiting time can be regarded as a key performance indicator
of customer satisfaction, whereas a longer travel time will
cause less dissatisfaction of the participants.
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Table 1 Locations, types,
durations, and time windows of
the tour activities

Activity Location Abbreviation Type Duration E Sk L Sk
k (min) (min) (min)

1 Engelberg ENG Start 0 390 600

2 Bern BRN Photo 30 540 1’110

3 Bern BRN Shopping 30 540 1’110

4 Zweisimmen ZWS Break 20 540 1’140

5 Montbovon MBV Photo 30 600 1’140

6 Rossinière ROS Photo 30 600 1’140

7 Saanen SAA Photo 30 600 1’140

8 Saanen SAA Photo 30 600 1’140

9 Gstaad GST Photo 15 600 1’140

10 Rougemont ROU Photo 30 690 840

11/12 Rougemont ROU Lunch L1/L2 30 720 810

13 Engelberg ENG End 0 1’080 1’290

Table 2 Travel times between
the locations (min) From/to ENG BRN ZWS MBV ROS SAA GST ROU

ENG – 125 161 196 196 178 183 184

BRN 125 – 81 71 82 98 103 94

ZWS 161 81 – 46 35 17 22 23

MBV 196 71 46 – 11 29 34 23

ROS 196 82 35 11 – 18 23 12

SAA 178 98 17 29 18 – 05 06

GST 183 103 22 34 23 05 – 11

ROU 184 94 23 23 12 06 11 –

2.2 Scheduling problem

Given the number of buses to be planned, the scheduling
problem discussed in this paper is as follows. An individ-
ual schedule for each bus is sought such that all organiza-
tional and logistic constraints mentioned in Sect. 2.1 are
fulfilled, and the total waiting time of all buses (primary
objective) and the total travel time (secondary objective) are
minimized.

3 The MILP formulation

In this section, we formulate the scheduling problem intro-
duced in Sect. 2.2 as a MILP. First, we present a basic
model formulation. Then, we propose a symmetry-breaking
approach in order to reduce the search space w.l.o.g.

In Sect. 3.1, we introduce the decision variables used in our
basic model formulation. In Sects. 3.2 and 3.3, we formulate
the objective functions and the constraints, respectively. In
Sect. 3.4, we deal with the symmetry-breaking constraints.

3.1 Decision variables

Similar to the machine-scheduling models presented by Chen
(2002) and Wagner (1959), we use the following decision
variables. Let sik ≥ 0 denote the start time of activity k for
bus i . The sequence of activities of bus i is controlled by the
binary variable xi jk with xi jk = 1 if activity k is scheduled
at position j for bus i , and xi jk = 0 otherwise. The bus
sequence of activity k is modeled by the binary variable zii ′k
with zii ′k = 1 if bus i visits activity k later than bus i ′ �= i ,
and zii ′k = 0 otherwise. Moreover, let Wi j ≥ 0 and Ti j ≥ 0
denote the waiting time and the travel time, respectively, of
bus i before the activity at position j .

3.2 Objective functions

For modeling reasons, we introduce two fictitious activities
k = 1 and k = 13 representing the start and the end, respec-
tively, of the tour. Recall that every bus stops at only one of
the two places where lunch is served; we represent this by
two respective activities (k = 11 and k = 12). Thus, in total
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there are m = 13 activities, and the tour of each bus tour
consists of N = 12 activities. By n, we denote the number of
buses. Furthermore, let dk be the duration of activity k, and
let tkk′ be the travel time from activity k to activity k′.

For the waiting time Wi j of bus i before the activity at
position j constraint (1) must hold.

Wi j ≥ sik′ − (sik + dk + tkk′)

− (L Sk′ − dk − tkk′)(2 − xi jk′ − xi, j−1,k)

(i = 1, . . . , n; j = 2, . . . , N ; k, k′ = 1, . . . , m; k �= k′).
(1)

L Sk denotes the prescribed latest possible starting time for
activity k.

For the travel time Ti j , constraint (2) must be fulfilled.

Ti j ≥ (xi jk′ + xi, j−1,k − 1)tkk′

(i = 1, . . . , n; j = 2, . . . , N ; k, k′ = 1, . . . , m; k �= k′).
(2)

To account for the two-level planning objective, we apply a
two-step hierarchical approach as follows. First, we minimize
the total waiting time:

Min.
n∑

i=1

N∑

j=2

Wi j .

Let W ∗ denote the resulting total waiting time from the first
step. Then, in a second step, we minimize the total travel
time:

Min.
n∑

i=1

N∑

j=2

Ti j

subject to the additional constraint

n∑

i=1

N∑

j=2

Wi j ≤ W ∗.

3.3 Constraints

We link the variables sik and xi jk by

sik ≤ L Sk

N∑

j=1

xi jk (i = 1, . . . , n; k = 1, . . . , m). (3)

The tour of each bus consists of the prescribed set of activ-
ities:

N∑

j=1

xi jk = 1

(i = 1, . . . , n; k = 1, . . . , m; k �= 11, 12), (4)

m∑

k=1

xi jk = 1 (i = 1, . . . , n; j = 1, . . . , N ). (5)

Note that constraint (4) does not need to be fulfilled for activ-
ities k = 11 and k = 12, which represent the lunch activi-
ties; lunch takes place either at activity k = 11 or at activity
k = 12:

N∑

j=1

(xi j,11 + xi j,12) = 1 (i = 1, . . . , n). (6)

The time lag between the start of activity k and the start
of the subsequent activity k′ must not be smaller than the
duration dk of activity k plus the travel time tkk′ , i.e.,

sik + dk + tkk′≤sik′ + (L Sk + dk + tkk′)(2 − xi jk − xi, j+1,k′)

(i = 1, . . . , n; j = 1, . . . , N − 1; k, k′ = 1, . . . , m; k �= k′).
(7)

For each activity k, the sequence of the buses must be
determined:

zii ′k + zi ′ik = 1

(i, i ′ = 1, . . . , n; i �= i ′; k = 1, . . . , m). (8)

The time lag between the start of activity k in the tour of
bus i ′ and the tour of a subsequent bus i must not be smaller
than the duration of activity k plus the buffer time b, i.e.,

sik − si ′k ≥ dk + b − (L Sk + dk + b)(2 − xi jk − xi ′ j ′k)

− (L Sk + dk + b)(1 − zii ′k)

(i, i ′=1, . . . , n; i �= i ′; j, j ′=1, . . . , N ; k=1, . . . , m).

(9)

We formulate the further organizational and logistic con-
straints mentioned in Sect. 2.1 as follows. Each bus tour starts
and ends in Engelberg, i.e.,

xi,1,1 = 1 (i = 1, . . . , n) (10)

xi,N ,13 = 1 (i = 1, . . . , n). (11)

Each activity k must be started within its time window
[E Sk, L Sk]:

E Sk

N∑

j=1

xi jk ≤ sik (i = 1, . . . , n; k = 1, . . . , m). (12)

The latest possible starting time L Sk is captured in constraint
(3).

Constraints (13)–(15) ensure that the two activities k = 2
and k = 3 in Bern are the first or the last activities in a tour
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and are visited directly after each other

3∑

j=2

(xi j2+xi j3)+
11∑

j=10

(xi j2+xi j3) = 2(i = 1, . . . , n) (13)

xi j2 ≤ xi, j−1,3+xi, j+1,3(i = 1, . . . , n; j = 2, . . . , N−1)

(14)

xi j3 ≤ xi, j−1,2+xi, j+1,2(i = 1, . . . , n; j = 2, . . . , N−1).

(15)

Both activities in Saanen as well as both activities in
Rougemont have to be visited directly after each other, i.e.,

xi j7 ≤ xi, j−1,8 + xi, j+1,8

(i = 1, . . . , n; j = 2, . . . , N − 1) (16)

xi j8 ≤ xi, j−1,7 + xi, j+1,7

(i = 1, . . . , n; j = 2, . . . , N − 1) (17)

xi, j,10 ≤ xi, j−1,11 + xi, j+1,11 + xi, j−1,12 + xi, j+1,12

(i = 1, . . . , n; j = 2, . . . , N − 1) (18)

xi, j,11 + xi, j,12 ≤ xi, j−1,10 + xi, j+1,10

(i = 1, . . . , n; j = 2, . . . , N − 1). (19)

The total travel time of bus i cannot be smaller than the
total travel time in a shortest route, i.e., smaller than 413 min,
and may not exceed 540 min:

413 ≤
N∑

j=2

Ti j ≤ 540 (i = 1, . . . , n), (20)

and the total duration of any tour may not exceed 810 min

si,13 − si,1 ≤ 810 (i = 1, . . . , n). (21)

Recall that in the second step of the optimization approach,
we minimize the total travel time

∑n
i=1

∑N
j=2 Ti j . Con-

straint (20) imposes a lower and an upper bound on this
objective function. In contrast, in the first step of the opti-
mization approach, we minimize the total waiting time∑n

i=1
∑N

j=2 Wi j . For the latter objective function, the model
does not impose a lower or an upper bound.

3.4 Symmetry-breaking constraints

Symmetries in an optimization problem can be used in order
to reduce the search space of the solution algorithm. In the
problem at hand, all buses are identical except their index
(cf. Sect. 2). Thus, there are schedules which are identical,
except the index of the buses. This is illustrated in Fig. 1 for
activity Rougement-Photo, where the indexes of buses 1 and
2 are interchanged.

In order to reduce the search space, we exclude such iden-
tical schedules without loss of generality by adding some
symmetry-breaking constants to the model. Basically, these

constraints may be imposed for any arbitrary chosen activ-
ity k∗. We formulate the symmetry-breaking constraints as
follows.

E Sk∗ + (i − 1)(dk∗ + b) ≤ sik∗ (i = 1, . . . , n) (22)

L Sk∗ − (n − i)(dk∗ + b) ≥ sik∗ (i = 1, . . . , n). (23)

These pairs of constraints reduce the width of the time
windows for each bus at the selected activity k∗. Here we
assume the sequence 1, . . . , n for the buses. Consider the
following example with five buses and the activity k∗ = 10.
Since bus 1 is the first bus in the sequence, its earliest starting
time for activity 10 is at 690 min after the start of the tours.
The earliest starting time of Bus 2 for this activity is then
690+d10+b = 725. The same holds for the remaining buses.
Since bus 5 is the last bus in the sequence, its latest starting
time is at 840 min after the start of the tours. If bus 5 starts
as late as possible, then bus 4 will not be able to start after
840 − d10 − b = 805 min. The analogous constraint hold for
the remaining buses. By introducing the symmetry-breaking
constraints for an activity with a tight time window, we are
able to exclude symmetric schedules by predetermining the
sequence of the buses. Note that these symmetry-breaking
constraints do not change the lower bounds on the objective
function value mentioned in Sect. 3.3.

4 Computational results

In this section, we report our computational results for the
basic model formulation and for the symmetry-breaking con-
straints. In Sect. 4.1, we deal with the problem instance
which corresponds to the real-world data provided by the
tour operator. Using this instance, we illustrate the impact of
the symmetry-breaking constraints introduced in Sect. 3.4.
In Sect. 4.2, we analyze the model performance for various
modifications of the problem data.

We have implemented the optimization models in AMPL,
and we have applied version 5.0.1 of the Gurobi Solver on a
standard workstation with 2 Intel Xeon CPU with 2.66GHz
clock speed and 24GB RAM. For each MBLP model to be
solved, we have prescribed a CPU time limit of 10’800 s.
In the tables of this section, the entry NA indicates that no
feasible solution has been found within the prescribed time
limit.

4.1 Real-world problem instance

Table 3 shows the impact of the symmetry-breaking con-
straints introduced in Sect. 3.4 on the CPU times and the
objective function values if introduced for the individual
activities k. For each activity, the table indicates the CPU
time used, the relative integrality gap for the minimization
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Fig. 1 Symmetric schedules

of the total waiting time (tCPU
W ) and the total travel time

(tCPU
T ), respectively, and the values of the objective func-

tion (OFV). The last column indicates the CPU time needed
in total (tCPU). The results without symmetry-breaking con-
straints are listed in the first row.

The results displayed in Table 3 indicate that the addi-
tional constraints are most effective where the time window
is relatively tight, i.e., at the activity Rougemont Photo. With
the symmetry-breaking constraints for this activity, the CPU
time required for devising an optimal solution reduces by
68 %, respectively.

Figure 2 shows an optimal solution for the instance with
five buses. In this solution, the total waiting time is zero,
and the total travel time of each bus coincides with the total
travel time on a shortest route; in other words, in this optimal
solution the lower bounds of 0 for the total waiting time and of
2’065 for the total travel time of the five buses, respectively,
are met.

4.2 Parameter variation

In this section, we consider the following modifications of
the real-world data.

1. We vary the number of buses between 4 and 6.
2. We reduce (Act−) the number of activities to 10 by

excluding one of the activities in Saanen and Berne.

Fig. 2 Optimal schedule for 5 buses

3. We decrease (Trav−) or we increase (Trav+) the travel
times between activities by 10 %.

4. We decrease (Dur−) or we increase (Dur+) the durations
of the activities by 10 %.

5. We decrease (TW−) or we increase (TW+) the width of
the time windows by 10 %.

Except the number of buses, we analyze these modifica-
tions separately. Each instance is solved with (SYM) and
without (WO) the symmetry-breaking constraints for the

Table 3 Real-world data:
impact of the
symmetry-breaking constraints

tCPU
W (s) MIP gap (%) OFV tCPU

T (s) MIP gap (%) OFV tCPU (s)

WO 172 0 0 10’800 5.23 2’179 10’972

Sym ROU_Ph 1’692 0 0 1’827 0 2’065 3’519

Sym ENG_St 911 0 0 5’628 0 2’065 6’539

Sym BRN_Ph 594 0 0 7’446 0 2’065 8’040

Sym BRN_Sh 1’194 0 0 10’800 3.91 2’149 11’994

Sym GST_Ph 774 0 0 10’800 3.82 2’147 11’574

Sym ROS_Ph 987 0 0 10’800 3.82 2’147 11’787

Sym MBV_Ph 1’684 0 0 10’800 1.62 2’099 12’484

Sym SAA_Ph1 1’129 0 0 10’800 7.15 2’224 11’929

Sym SAA_Ph2 1’726 0 0 10’800 1.15 2’089 12’526

Sym ZWS_Br 1’637 0 0 10’800 1.15 2’089 12’437

Sym ENG_End 1’029 0 0 10’800 3.19 2’133 11’829
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Table 4 Results for 4 buses and
variations tCPU

W (s) MIP gap (%) OFV tCPU
T (s) MIP gap (%) OFV tCPU (s)

WO 11 0 0 110 0 1’652 121

Sym 191 0 0 3’879 0 1’652 4’070

WO Act− 11 0 0 240 0 1’652 251

Sym Act− 6 0 0 117 0 1’652 123

WO Trav− 14 0 0 683 0 1’487 697

Sym Trav− 10 0 0 179 0 1’487 189

WO Trav+ 147 0 0 4 0 2’116 151

Sym Trav+ 85 0 0 3 0 2’116 88

WO Dur− 16 0 0 248 0 1’652 264

Sym Dur− 105 0 0 328 0 1’652 433

WO Dur+ 9 0 0 2 0 1’652 11

Sym Dur+ 294 0 0 269 0 1’652 563

WO TW− 182 0 0 10’800 0.72 1’664 10’982

Sym TW− 315 0 0 10’800 0.72 1’664 11’115

WO TW+ 2 0 0 6 0 1’652 8

Sym TW+ 13 0 0 165 0 1’652 178

Table 5 Results for 5 buses and
variations tCPU

W (s) MIP gap (%) OFV tCPU
T (s) MIP gap (%) OFV tCPU (s)

WO 388 0 0 8’099 0 2’065 8’487

Sym 517 0 0 5’802 0 2’065 6’319

WO Act− 134 0 0 10’800 1.71 2’101 10’934

Sym Act− 83 0 0 10’800 1.14 2’101 10’883

WO Trav− 388 0 0 10’800 1.62 1’889 11’188

Sym Trav− 336 0 0 10’800 2.82 1’913 11’136

WO Trav+ 1’480 0 0 34 0 2’646 1’514

Sym Trav+ 3’009 0 0 101 0 2’646 3’110

WO Dur− 30 0 0 10’800 0.59 2’077 10’830

Sym Dur− 2’145 0 0 8’946 0 2’065 11’091

WO Dur+ 1’991 0 0 10’800 2.18 2’111 12’791

Sym Dur+ 3’136 0 0 10’800 7.69 2’237 13’936

WO TW− 10’800 100.00 10 10’800 10.70 2’312 21’600

Sym TW− 10’800 100.00 55 10’800 1.71 2’101 21’600

WO TW+ 38 0 0 2’550 0 2’065 2’588

Sym TW+ 113 0 0 2’425 0 2’065 2’538

activity Rougemont Photo (cf. Sects. 3.4, 4.1). This results in
48 combinations for the variations described above. In order
to obtain feasible solutions when considering each modi-
fication on its own we need to adapt the real-world data:
we increase the time window at the activity Rougemont
Photo, which is the tightest time window, and we increase
the allowed total duration of a tour for one bus from 810 to
900 min. The lower bounds for the lengths of a tour are also
adapted accordingly when the travel times are modified.

Tables 4, 5, and 6 list the results for these variations.
The results indicate that the CPU times vary depending on

the modification considered. For a considerable number of
instances, the CPU times or the integrality gap for the min-
imization of the travel times can be reduced by including
the symmetry-breaking constraints. For most instances, less
CPU time is needed to minimize the total waiting time than
to minimize the total travel time. The influence of the sym-
metry-breaking constraints on the CPU times is more favor-
able for the instances with more buses. Often, the model with
symmetry-breaking constraints requires more CPU time for
minimizing the total waiting time than the model without.
The reason for that might be that the minimization of the total
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Table 6 Results for 6 buses and
variations tCPU

W (s) MIP gap (%) OFV tCPU
T (s) MIP gap (%) OFV tCPU (s)

WO 10’800 100.00 48 10’800 12.50 2’833 21’600

Sym 10’800 100.00 45 10’800 13.40 2’863 21’600

WO Act− 10’800 100.00 25 10’800 14.40 2’894 21’600

Sym Act− 10’800 100.00 26 10’800 13.10 2’850 21’600

WO Trav− 10’800 100.00 35.5 10’800 18.80 2’748 21’600

Sym Trav− 10’800 100.00 25 10’800 15.00 2’624 21’600

WO Trav+ 10’800 NA NA NA NA NA NA

Sym Trav+ 10’800 NA NA NA NA NA NA

WO Dur− 10’800 100.00 16 10’800 12.30 2’826 21’600

Sym Dur− 10’800 100.00 19.5 10’800 13.80 2’875 21’600

WO Dur+ 10’800 NA NA NA NA NA NA

Sym Dur+ 10’800 NA NA NA NA NA NA

WO TW− 10’800 NA NA NA NA NA NA

Sym TW− 10’800 NA NA NA NA NA NA

WO TW+ 10’800 100.00 7 10’800 9.50 2’738 21’600

Sym TW+ 10’800 100.00 13.5 10’800 11.60 2’802 21’600

waiting time poses a rather easy problem, but the additional
constraints increase the CPU time required. Nevertheless, we
include the symmetry-breaking constraints in the first step,
since we use this solution as initial solution for the second
step. The results also indicate that the symmetry-breaking
constraints have a larger effect when the number of buses is
higher.

From the results indicated in Tables 4, 5, and 6, we
can draw the following conclusions. For the instances with
4 buses, optimal or near-optimal solutions can be devised
within short CPU time with both model formulations; only
for the case of tighter time windows, the CPU time require-
ment grows significantly. For the instances with 5 buses, near-
optimal solutions are obtained within reasonable CPU time.
For the instances with 6 buses, the minimization of the total
waiting time gets already a difficult task; however, all feasi-
ble solutions obtained for the minimization of the total travel
time have a reasonable MIP gap.

For the instance with less activities (Act−) and 5 buses,
different MIP gaps result although the same objective func-
tion value is obtained by the basic model formulation and by
the model with symmetry-breaking constraints. The reason
for this difference is that for the case with symmetry-breaking
constraints, all nodes that were unexploited when the CPU
time limit was reached have a higher lower bound value than
the root node.

5 Summary and outlook

In this paper we have been concerned with a real-world sche-
duling application in the event-tourism sector. We have for-

mulated the scheduling problem as a MILP. Furthermore,
we have enhanced this formulations with symmetry-breaking
constraints. We have analyzed the performance of the model
and the impact of the symmetry-breaking constraints for
various complexity scenarios. The results, which we have
obtained using AMPL and the Gurobi Solver 5.0.1, dem-
onstrate that the CPU times are reduced considerably with
the introduction of the symmetry-breaking constraints. The
approach presented in this paper has been applied in practice
for the planning of “The Enchanted Journey.” In particular,
the computed schedules were successfully used as a proof-
of-concept in the negotiations with the respective marketing
organizations.

The MILP formulation presented in this paper contribute
to the development of efficient formulations of practical
routing and scheduling problems as MILPs, and provide
insight into the performance of recent MIP solvers for prac-
tical scheduling problems. The model will help to formulate
exact models for related applications such as those discussed,
e.g., in Yu et al. (2010). Moreover, it should be investigated
whether providing a feasible solution obtained by an appro-
priate heuristic would speed up the solution process.
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