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Abstract The commitment to report greenhouse gas

emissions requires an estimation of biomass stocks and

their changes in forests. When this was first done, repre-

sentative biomass functions for most common tree species

were very often not available. In Germany, an estimation

method based on solid volume was developed (expansion

procedure). It is easy to apply because the required infor-

mation is available for nearly all relevant tree species.

However, the distributions of neither parameters nor pre-

diction intervals are available. In this study, two different

methods to estimate above-ground biomass for Norway

spruce (Picea abies), European beech (Fagus sylvatica),

and Scots pine (Pinus sylvestris) are compared. First, an

approach based on information from the literature was used

to predict above-ground biomass. It is basically the same

method used in greenhouse gas reporting in Germany and

was applied with prior and posterior parameters. Second,

equations for direct estimation of biomass with standard

regression techniques were developed. A sample of above-

ground biomass of trees was measured in campaigns con-

ducted previously to the third National Forest Inventory in

Germany (2012). The data permitted the application of

Bayesian calibration (BC) to estimate posterior distribution

of the parameters for the expansion procedure. Moreover,

BC enables the calculation of prediction intervals which

are necessary for error estimations required for reporting.

The two methods are compared with regard to predictive

accuracy via cross-validation, under varying sample sizes.

Our findings show that BC of the expansion procedure

performs better, especially when sample size is small. We

therefore encourage the use of existing knowledge together

with small samples of observed biomass (e.g., for rare tree

species) to gain predictive accuracy in biomass estimation.

Keywords MCMC � Bayesian calibration � Error

estimation � GHG-reporting � Biomass estimation �
Cross-validation

Introduction

Biomass estimation in forests is a topic of great interest,

driven by at least two developments: (1) changes of bio-

mass in forests correspond directly to changes in carbon

absorbed or released to the atmosphere and are therefore

the focus of global politically relevant mechanisms (Kyoto

Protocol and resulting reporting commitments) and (2) it is

important to calculate biomass because forests face an

increased demand for wood energy. For both cases, the

estimation of biomass should be accurate, efficient and

provide an error estimate.

Estimation of biomass (B) in forests is usually based on

biomass functions using standard measurements such as the

diameter at breast height (d1.3). Among a variety of bio-

mass functions (Wirth et al. 2004; Zianis et al. 2005;

Muukkonen 2007; Wutzler et al. 2008), one standard

functional form is the use of the allometric relationship

(Pretzsch 2001) with d1.3 and/or height of trees (h) as

explanatory variables. This functional form has shown to

produce good estimates of biomass (e.g.: B ¼ b0d
b1

1:3hb2 ).

The other approach to estimate biomass of trees is based

on appropriate use of existing knowledge. This procedure
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was used in official greenhouse-gas reports (‘‘National

Inventory Report’’) for the Kyoto Protocol in Germany

(Umweltbundesamt 2009, p. 455, eq. 11). The estimation

starts with the well-known solid volume (Vs), measured in

m3 with trees of at least 7 cm in diameter, and depends on

diameter, length and stem-form. In recent years, it has been

the focus of forest researchers to estimate solid volume

precisely. The functions of Kublin (2003) are able to pre-

dict solid volume (Vs) of a tree using the variables d1.3,

h and a further diameter at a second stem height (usually at

7 m, d7), which defines a certain stem-form for a given

diameter–height relationship.

Furthermore, based on the volume tables of Grundner

and Schwappach (1952), it is possible to estimate total

above-ground volume (Vt), given the solid volume. The

tables rely on a broad data base and contain tabulated

values on solid and total above-ground volume for com-

mon tree species, diameters and heights (see Table 1 and

second row in Fig. 2). Based on the tables, it is possible to

fit functions for the expansion from solid volume Vs to total

above-ground volume Vt. Finally, multiplying mean basic

densities by total above-ground volume yields an estimate

of total above-ground biomass. Hereafter, this approach

will be called the ‘‘Expansion Procedure’’ (EP).

Zapata-Cuartas et al. (2012) introduced Bayesian stan-

dard techniques to estimate tree biomass with high preci-

sion and small sample sizes. They used the linearized form

of the simplified biomass function and collected published

parameter estimates in order to obtain prior information.

Our approach is considerably different with regards to a

variety of assumptions. One difference is the error term—

we use an additive error with variance function—hence, we

did not transform the data to a logarithmic scale. Further,

our models are based on more than one predictor variable.

The most important difference lies in the usage of prior

information. We use old but also very large and common

datasets. This requires a totally different formulation

(namely, the EP), which can be seen as an indirect way of

estimating biomass.

The aim of this article is twofold. Firstly, the currently

used EP in official statistics for greenhouse gas reporting in

Germany (Umweltbundesamt 2009) uses the EP with some

parameter point estimates without knowledge of their dis-

tribution. The Bayesian calibration (BC) enables the con-

struction of a sample of these distributions. They can be

used to test for significance and to construct confidence

intervals (in Bayesian notation, credibility intervals). Sec-

ondly, it seems clear that BC will be superior to any other

estimate without prior knowledge if only small sample

sizes are available. It remains unclear, however, how large

the samples should be. Therefore, the effect of sample size

was specifically analyzed, given the tree specific prior

information. Therefore, the BC within the EP will be

compared with an allometric regression approach for the

tree species Norway spruce, European beech and Scots

pine.

Materials and methods

Data

The above-ground biomass data were collected in several

campaigns throughout Germany and in the State of Baden-

Wurttemberg in preparation for the 3rd National Forest

Inventory in 2013. Generally, since destructive measure-

ment of trees is a demanding task and must be organized in

collaboration with the forest service, a strictly randomized

selection of samples is not feasible. We aimed at selecting

sample trees covering the whole range of dimensions, and

especially in the Germany-wide campaign, we collected

the samples over a species-specific range after an analysis

of species distribution based on National Forest Inventory

data. It was assumed that stem-form is relevant in biomass

estimation. Consequently, the data cover information on

stem-forms such as diameter at breast height (d1.3), total

tree height and diameter at 7 m (d7) or in the relative height

of 30 % of total height. Sample size was 390, 218, and 127

for N. spruce, E. beech, and S. pine, respectively.

We applied two different procedures to estimate total

above-ground biomass of the sample trees. With hard-

woods, we applied randomized branch sampling (RBS)

which is an efficient sampling technique, especially with

large trees (Saborowski and Gaffrey 1999). Biomass of

conifer species was assessed by measuring bole dimensions

in 2-m sections to obtain volume and taking stem disks to

estimate basic density (=oven dry mass/green volume) in

order to convert volume to biomass. For the estimation of

branch biomass, we used the following procedure. First, at

each whorl, branches were counted. For a sample of

Table 1 Ranges of tabulated

values and number of

observations used to construct

the tables of Grundner and

Schwappach (1952)

d1.3 (cm) h (m) Vs (m3) Vt (m3) n

Min Max Min Max Min Max Min Max

Norway spruce 8 85 6 47 0.010 9.95 0.027 11.92 22,757

European beech 6 72 9 38 0.002 8.28 0.017 9.27 12,180

Scots pine 7 70 6 40 0.006 6.50 0.021 6.69 17,059
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branches, base diameters were measured and dry matter

was determined for a subsample. The biomass data were

then pooled for all sampled trees of a particular species and

an allometric model with branch biomass as response and

base diameter as predictor was fitted. This was in turn used

to estimate total branch biomass of a tree based on the base

diameters of all branches. For branches without diameter

measurements, diameters were imputed via a random draw

from the diameter distribution of the distribution obtained

for the individual tree.

In Fig. 1, all reasonable potential explanatory variables

are shown as pairwise scatter plots. Although d1.3 and d7

are highly correlated, both variables remain in the regres-

sion model for N. spruce and E. beech.

Estimating parameters by regression

To estimate the allometric relationship with above-ground

biomass, nonlinear regression analysis was used [function

gnls in package nlme, Pinheiro and Bates (2000) in R, R
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Fig. 1 Sampled biomass data and explaining variables of the three tree species. Sample size was 390, 218 and 127 for Norway spruce, European

beech and Scots pine. a: age in years
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Development Core Team (2009)]. Above-ground biomass

has a higher variability with increasing size. For model fit-

ting, the data are often log transformed to linearize the

equation and homogenize the variance. However, back-

transformation introduces a bias in the expectation. While

there are simple correction factors (Sprugel 1983), they also

need assumptions. Therefore, we used the original scale of

the data. Within the original scale, errors are additive. The

increasing variance was modeled to depend directly on the

estimated biomass (B̂i); hence, we assume the errors to be

independent, but not identically distributed. Estimation

started with a maximal model (Eq. 1), and nonsignificant

terms were dropped until a final model was found. Only the

allometric formulation was used in the analysis.

Bi ¼ b0d1:3i

b1 hi
b2 d7i

b3 ai
b4 þ �i ð1Þ

Where a is the age of the trees, b0–b4 are parameters to be

estimated, and �i�Nð0; r2B̂2d
i Þ has a non-constant vari-

ance. For �i different variance functions were tested:

1. Constant variance: Varð�Þ ¼ r2

2. Exponential increasing variance: Varð�Þ ¼ r2e2dB̂

3. Variance increases with the power of estimated

biomass: Varð�Þ ¼ r2B̂2d

Although type (2) and (3) require a further parameter

d, likelihood ratio test showed significant better results for

type (3).

Bayesian inference

Bayes rule

An introduction to the use of Bayes rule in the context of

parameter estimation is given in Gelman et al. (2004).

Denoting the parameters h and the data D, gives the fol-

lowing formulation:

pðh j DÞ ¼ pðD j hÞpðhÞ
R

pðhÞpðD j hÞdh
ð2Þ

In this formula p(h) is called prior information. It com-

prises all is known about the parameter, before the data are

measured. pðD j hÞ is the likelihood of the data, given

model output. pðh j DÞ is called posterior probability

p
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Fig. 2 Example on the extraction of prior information for the expansion procedure. Second row c and d shows ratio of total to solid volume over

d1.3 and h. Values are the tables of Grundner and Schwappach (1952), the example is from Norway spruce
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distribution and it contains all that is known about the

parameters, after the data have been measured, inclusively

the prior information. The denominator contains a multi-

dimensional integral, which can be solved analytically by

using appropriate conjugated prior distributions or it can be

approximated by simulation (Gilks et al. 1995).

Expansion procedure and prior information

The expansion procedure contains several steps. First, the

solid volume is estimated. This is an important step since

this volume and the biomass are closely related. Then, an

expansion to total above-ground volume takes place, which

is of less importance, because it is in the range of a factor

*1.2. The multiplication by the basic densities is then

again an important step, containing valuable new infor-

mation. Solid volume Vs = f(d1.3, h, d7) is expressed as a

function of measured variables. It is predicted by the stem-

form function from Kublin (2003), containing several cubic

regression splines. The stem-form functions are based on

section-wise (2 m) measurements of logs and are based on

a nationwide data base. They are used by default in official

statistics and reports, like the National Forest Inventory

(BMELV 2009).

Total above-ground volume is then derived based on the

tables from Grundner and Schwappach (1952). These

tables were digitized, and the values are used as pseudo-

observations. In Fig. 2c and d, the ratio of total to solid

volume is plotted over d1.3 and h for N. spruce. This shows

that the ratio is decreasing over diameter and height. Since

total volume is always larger than solid volume, the logistic

function was used such that any prediction will stay in a

range of [0,1] for the expansion from solid to total volume.

This function was fitted, and the estimated parameters h are

further used in EP.

Vt ¼ Vs þ Vs

1

1þ expð�ðXhÞÞ ð3Þ

Where X is a design matrix containing the predictor vari-

ables d1.3 and h. Since the regression is based on tabulated

mean values, they have an unknown error. The tabulated

values do not reflect the original uncertainty of measure-

ments, nevertheless they still contain the relationship

between solid and total volume in its dependency on

diameter and height. Since there is no useful estimation of

the standard errors of these parameters, a wide conservative

standard error was assumed so that ± 2r just overlaps

zero. This corresponds to a weakly significant parameter,

although the amount of underlying data (which are not

available) would certainly result in smaller standard errors.

Multiplying total volume by basic density gives an

estimate of above-ground biomass. Given that mass density

has been the focus of forest research over the past century,

not only the mean and standard deviation are known. Based

on standard literature on forest technology (Kollmann

1982), the distribution of mass density for large samples is

also known for common tree species in middle Europe

(7,112 for N. spruce, 1,778 for E. beech and 2,418 for S.

pine, see figure 2(a)).

Basic density in the EP is considered to be a parameter;

hence, its prior distribution is of relevance. It was derived

from an illustration in Kollmann (1982) and is presented in

2(a), since the original values are not available. The picture

was overlaid with a digital polygon. Then subsamples of

mass density were drawn proportional to the relative fre-

quency. Based on the subsamples, a Weibull distribution

was fitted, with an offset in the x-axis. The resulting prior

distribution for basic density is given in Fig. 2(b). The

offsets were estimated to be 265, 390 and 269 kg/m3. Lower

values are excluded from the posterior, since these offsets

can be seen as reasonable lower physiological boundaries

for basic densities (Hakkila 1972; Kollmann 1982).

The likelihood and Metropolis Hastings algorithm

Likelihood (see Eqs. 2 and 44) is the probability of

observing the data given by the model output. It is calcu-

lated as the product of densities of normally distributed

measurement errors, in this case the difference between

observed and expected biomass (B� B̂). As already dis-

cussed above in ‘‘Estimating parameters by regression’’

section, in the regression models in Eq. 1, variance in the

biomass is not constant. Therefore, r2 was replaced by

r2B̂2d
i resulting in the logarithmized likelihood (log(L)),

with N being the total number of observations:

logðLÞ ¼ � 1

2

XN

i¼1

log 2pr2B̂2d
i

� �
�
XN

i¼1

Bi � B̂i

� �2

2r2B̂2d
i

ð4Þ

Since this likelihood is not a standard formulation of a nor-

mal model, we programmed a sampler based on Metropolis

Hastings algorithm. This was originally described by

Metropolis et al. (1953) and can be seen as a walk through

the parameter space such that the visited points in the chain

are a sample of the posterior distribution. In each step, a

candidate parameter vector is generated randomly. For the

generation of new proposal values, a covariance matrix is

needed. In our application, the covariance matrix was

adjusted manually, by testing short chains. Programming

was done with R (R Development Core Team 2009), using

library MASS (Venables and Ripley 2002) with function

mvrnorm to produce proposals.

The expansion procedure and data were used to cal-

culate the expected biomass (B̂ ¼ f ðD; hÞ). By using the

Metropolis Hastings algorithm, a sample of the posterior

distribution of the parameters was generated. The sampled
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chain length was set to 400,000 and a thinning of 200 was

applied to receive efficient estimates of the posterior

probability distribution. Burn-in was discarded and set to

10 % of the chain length. Initially, different starting val-

ues were also tested to see whether the chain converges to

the same level.

A new parameter vector can be accepted or rejected.

Acceptance depends on the Metropolis ratio, which is the

ratio of likelihood multiplied by the prior value for the

candidate to the likelihood multiplied by the prior for the

current parameter. If this ratio is above 1, the candidate

will be accepted; if it is below one, it is accepted with

probability equal to the Metropolis ratio. Proposal vari-

ances were changed to reach acceptance rates to lie

between 20 and 30 % (Gelman et al. 2004, p. 307). The

sampling was stopped, if the chains converged and the

whole parameter space was visited. This was evaluated

graphically by plotting the trace of the chains.

Final expansion procedure models

With the complete dataset, final models of both methods

were also estimated. In the case of the regression models,

nonsignificant parameters were dropped stepwise. The BC

models needed re-parameterization because the high cor-

relation of parameters resulted in unstable chains in the

posterior. Re-parameterization was either done by trans-

formation of variables or by dropping variables from the

model. This resulted in BC models that contained only few

parameters in the following forms:

– N. spruce

B ¼ q0 � h2 log 5
d1:3

a

� �� �

Vs þ Vs

1

1þ expð�ðh0hþ h1d1:3hÞÞ

� �

– European beech

B ¼ q Vs þ Vs

1

1þ expð�ðh0 logðaÞ þ h1d1:3hÞÞ

� �

– Scots pine

B ¼ q Vs þ Vs

1

1þ expð�ðh0 logðhÞÞ

� �

With q0 the basic density at (a theoretical) zero tree-ring

width, otherwise q is mean basic density of the above-

ground tree.

For N. spruce four parameters were in the final BC

model, two for the expansion, and two for basic density.

For S. pine only two parameters were in the final model.

Mass density shows for N. spruce a log-linear relationship

to mean tree-ring width (10d1.3/(2a) in mm/y)1, whereas

diffuse-porous trees (like E. beech) show a weak linear

relationship (Kollmann 1982). For N. spruce, this relation

was also used in the BC of EP, whereas for E. beech and S.

pine, the parameter for this relationship was extremely

weak and was therefore omitted from the model.

Model comparison

Cross-validation was used to measure the predictive

accuracy of the models. Consequently, random subsamples

with fixed sizes were repeatedly chosen to partition a

training and validation dataset. The fixed sizes of the

training dataset were increased starting at 10 stepwise until

300 for N. spruce, 150 for E. beech and 100 for S. pine,

based on the total sample size. With each training dataset

size, 50 datasets were randomly partitioned. For each, a

regression model (see Eq. 1) was fitted and the BC of the

EP was also implemented.

To measure the predictive performance, a relative value

was used, given that variance increases with size. Root Mean

Square Percentage Error (RMSPE) was therefore used:

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

Bi � B̂i

Bi

� �2

vu
u
t 100 % ð5Þ

In addition, a one-sided sign test was applied to verify

whether the null hypothesis ‘‘BC based on EP is not better

than the predictions from allometric regression models’’

could be rejected. As a result, the absolute differences

between observed and predicted values under both model

types were thereby compared. If model one (regression)

was closer to the data, the test statistic is negative, whereas

if the converse is true (BC is closer), then positive:

di ¼ jBi � B̂M1ij � jBi � B̂M2ij

The number of positive di is binomially distributed and a one-

sided binomial test was conducted on a 95 % confidence

level (sign test). As mentioned above, this test was also

repeated 50 times, i.e., under different data constellations. As

a result, the proportion of rejected null hypotheses can be

displayed over the size of training datasets.

Results

Expansion procedure

After biomass data were sampled, it was possible to com-

pare them with predictions based on prior knowledge of the

1 10 because of a unit change from cm to mm and 1/2 because of the

change from diameter to radius
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EP. The comparison is shown as Tukey-Anscombe plots in

Fig. 3 d–f and reveals clear and systematic underestima-

tions for N. spruce and overestimation for S. pine. In

contrast, E. beech prediction is in good accordance with the

observed data and is visually indistinguishable from pre-

dictions based on the posterior distribution (after the data

were observed). While further large residuals, especially in

E. beech, are more common in the regression models, they

are less common in the EP.

Figure 4 shows the 2.5 and 97.5 % quantiles and dis-

tribution of prior and posterior parameters. For N. spruce,

the 95 % interval (based on the quantiles) drops from

337–528 in the prior, to 402–457 kg/m3 in the posterior

(see Fig. 4 d). In E. beech, the gain in precision of the

parameters is less obvious (see Fig. 4 e–g). For S. pine, a

clear gain in precision of basic density and an abrupt drop

at 450 kg/m3 (Fig. 4 i can be observed.

Allometric regression models

The resulting final regression models and parameters are

given in Table 2. For N. spruce and E. beech, the complete

set of predictors are highly significant (p\0.001, see

Table 2), only in E. beech age has a p value of 0.0215. In

the allometric biomass function for S. pine ,the variables

a and d7 are not significant and are therefore excluded from

the final model. The Tukey-Anscombe plots in Fig. 3 a–c

confirm the independence of the (raw) residuals and show
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Fig. 3 Raw residuals �̂ ¼ B� B̂ for the tree species under different models. First row a–c residuals of the regression model. Second row d–

f expansion procedure with prior information. Third row g–i expansion procedure with (mean) posterior of the parameters
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Fig. 4 Prior and posterior distribution of parameters of the BC

models. q0: basic density at zero tree-ring width, q: basic density,

h0 - h1: expansion parameters, h2: logarithmic decrease in basic

density (kg/m3) with mean tree-ring width (mm/year). 2.5 and

97.5 %-quantiles are presented as horizontal lines

Table 2 Parameter estimates

for Norway spruce, European

beech and Scots pine for the

allometric biomass functions.

B ¼ b0d
b1

1:3hb2 d
b3

7 ab4 , Scots pine

without d7 and a

Species Param. Value se t value p value r̂ d̂

N. spruce b̂0
0.074 0.0077 9.591 \0.001 0.544 0.748

b̂1
0.993 0.0945 10.5089 \0.001

b̂2
0.355 0.0534 6.6460 \0.001

b̂3
1.055 0.1006 10.4887 \0.001

b̂4
0.157 0.0215 7.3119 \0.001

E. beech b̂0
0.0752 0.0134 5.6013 \0.001 0.038 1.157

b̂1
0.8312 0.1461 5.6908 \0.001

b̂2
0.6778 0.0736 9.2090 \0.001

b̂3
1.3356 0.1503 8.8874 \0.001

b̂4
-0.0702 0.0303 -2.3164 0.0215

S. pine b̂0
0.0235 0.0047 5.0073 \0.001 0.1588 0.934

b̂1
2.2392 0.1005 22.2919 \0.001

b̂2
0.6399 0.1170 5.4677 \0.001
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that they are centered around zero. Further, for practical

usage in standard inventories, a simplified version with

predictors based only on d1.3 and d1.3 together with h are

presented in the ‘‘Appendix’’ in Table 3.

Prediction accuracy

Based on the 50 randomly chosen training datasets, the

Root Mean Squared Percentage Error (RMSPE, Eq. 5)

shows better prediction accuracy compared with the

regression models (Fig. 5). The range of RMSPE values

increases in BC with increasing sample size.

The sign test in Fig. 6 shows that BC is significantly

better in prediction than regression models for sample sizes

of \50. This predominance can be observed for nearly all

data constellations and all tree species. The advantage of

BC slightly falls with increasing sample size, but is still

superior even when nearly all observations are used to

build the models.

Discussion

Expansion procedure and allometric regression models

Zapata-Cuartas et al. (2012) used prior information for two

parameters of a simplified allometric biomass function

(log(B) = log(b0) ? b1 log(d1.3)). They were able to

shown that sample sizes can be greatly reduced without

loss of precision in RMSE. This is possible because Bayes

theorem enables the use of prior knowledge in the process

of parameter estimation, compared with classical fitting by

least squares that can only make use of observed data. We

found the same effects, although our analysis is different

with respect to:

• Tree species our models are species-specific, since the

amount of information depends heavily on the tree

species. Further, we assume that allometry is species-

dependent (see, e.g., Table 2). Since the EP uses wood

density, it is by definition species-specific. However, in

Table 3 Parameter estimates of

simplified models for Norway

spruce, European beech and

Scots pine. Two model types,

B ¼ b0d
b1

1:3, and B ¼ b0d
b1

1:3hb2 ,

are used. The model including

h for Scots pine is already

presented in Table 2

Species Model Param. Value se t value p value r̂ d̂

N. spruce B ¼ b0d
b1

1:3 b̂0
0.1010 0.0077 13.0724 \0.001 0.185 0.968

b̂1
2.4134 0.0216 111.7073 \0.001

E. beech B ¼ b0d
b1

1:3 b̂0
0.1527 0.0149 10.2836 \0.001 0.099 1.073

b̂1
2.4511 0.0275 89.1028 \0.001

S. pine B ¼ b0d
b1

1:3 b̂0
0.0398 0.0093 4.2956 \0.001 0.238 0.909

b̂1
2.6966 0.0754 35.7461 \0.001

N. spruce B ¼ b0d
b1

1:3hb2 b̂0
0.0493 0.0044 11.1155 \0.001 0.181 0.947

b̂1
2.0319 0.0369 55.0796 \0.001

b̂2
0.6307 0.0529 11.9261 \0.001

E. beech B ¼ b0d
b1

1:3hb2 b̂0
0.0253 0.0038 6.6726 \0.001 0.044 1.156

b̂1
2.0559 0.0372 55.1969 \0.001

b̂2
0.9670 0.0735 13.1631 \0.001
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Fig. 5 Root Mean Squared Percentage Error (RMSPE) for each 50 models based on different sizes of training datasets

Eur J Forest Res (2014) 133:649–660 657

123



the context of tropical forests (Zapata-Cuartas et al.

2012), with a diversity of tree species and little

knowledge regarding a specific species, the use of

general scaling rules is appropriate, and hence, the

usage of general priors for any tree species is sensible.

• Linearization Zapata-Cuartas et al. (2012) used a line-

arized form in the allometry, enabling the usage of

standard regression techniques and also implemented

Bayesian techniques in statistical packages (e.g.,

MCMCglmm in R). Linearization has a large advantage,

since heteroscedasticity disappears. However, it comes

with the cost of a bias in back-transformation to the

original scale (Jensens Inequality), although a correction

can be estimated (Sprugel 1983). We did not linearize,

since there are no good grounds for the use of a

multiplicative error term in the original scale and the

heteroscedasticity can be well handled by the variance

function, as presented in ‘‘Estimating parameters by

regression’’ section. By comparing the quantile–quantile

plots of the residuals in both cases (transformed normally

distributed and untransformed with variance function),

the latter appears to be slightly better. The disadvantage

of this uncommon variance function is its slightly more

complicated likelihood function (see Eq. 4), which

contains a non-constant first summand (B̂i). This is not

directly tractable by the standard MCMC-sampler.

Therefore, a sampler based on the Metropolis-Hastings

algorithm was written and implemented in R.

• Allometry versus EP Zapata-Cuartas et al. (2012) priors

are used directly for the two parameters in the

allometric relationship. We used a more complicated

formulation of the biomass, namely the EP. This was

for two reasons. First, more information is available for

the construction of EP, since it relies on standard

measures, sampled and described in various books and

articles (e.g., estimation of total volume by taper

functions or distributions of basic densities). In total,

Zapata-Cuartas et al. (2012) found 134 biomass func-

tions, whereas ,e.g., only independent samples of basic

densities for single trees number more than 10,000 (see

Expansion procedure and prior information section).

The second reason is that the EP was used to estimate

biomass for official statistics; hence, it is a common

way to estimate biomass. Our analysis shows the

underlying distribution of the parameters in use and

enables the construction of prediction intervals. Both of

these possibilities are new and became possible through

the use of Bayesian calibration.

Large residuals of E. beech (also in N. spruce) are vis-

ible in the regression models, compared with the EP.

Regression models are only based on observations, viz.,

there is no prior information. Since the EP already contains

the solid volume, it stabilizes the predictions because it

contains most of the total above-ground volume and hence

biomass, resulting in less extreme residuals.

The abrupt change in basic density in S. pine may be an

effect of altered silvicultural systems. S. pine—like N.

spruce—has a decreasing basic density over mean tree-ring

width (Kollmann 1982). It may be that the older S. pine

trees used in Kollmann (1982) had smaller tree-ring widths,

which was an effect of a different silvicultural treatment.

Unfortunately, it was not possible to include this effect in

the S. pine BC model because the parameters had exces-

sively high correlations and the parameters where not

significant (based on the 2.5 and 97.5 %-quantiles).

The effect of increasing RMSPE measurement for BC

models can be explained directly by the method: the EP

can produce estimates even without any directly observed

biomass. Having a few observations, the prior information

dominates the prediction. In the case of E. beech, where the

prior information is already close to observed biomass data,

the RMSPE measurement (Fig. 5 b is also lower in BC

compared with the other tree species. The RMSPE is

therefore smaller when prior information dominates the

prediction. With increasing sample sizes, RMSPE shows

similar ranges to those from the regression models.

Conclusion and outlook

Biomass estimation in forests has gained importance in

the recent years. Especially, the reporting commitment
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Fig. 6 Proportion of rejected

sign tests for 50 randomly

partitioned datasets over

increasing training dataset size
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within the scope of the Kyoto Protocol requires estimates

of biomass in forests together with an error estimate. Due

to the lack of representative biomass functions for com-

mon tree species (except those from Wirth et al. (2004)

and Wutzler et al. (2008)), Germany has decided so far to

use existing knowledge (basically the solid volume of

trees) to predict biomass in forests (Umweltbundesamt

2009). Essentially, the old procedure is the same as the

EP presented here. It is reasonable to use this source of

information to get a best possible estimate of biomass,

although the accuracy and bias in the prediction are

unknown.

We found that prior information in the EP can result in

excellent biomass predictions, as the example in Fig. 3

shows for E. beech. However, this could be a coincidence,

because N. spruce and S. pine estimates show biases in

large trees. A bias in large trees may have strong impli-

cations for the estimation of sink and sources in the carbon

budget of forests. If, hypothetically, the underlying distri-

bution of trees in forests changes to larger trees, then a

negative bias in the applied functions can give a result of a

decrease in carbon stock even though the opposite is in fact

true (and vice versa).

Sampling biomass for large trees is expensive and

destructive. Here we present a method, whereby small

samples sizes can be efficiently used to construct biomass

functions. This method predictive accuracy is highly

competitive compared with conventional biomass func-

tions. We therefore encourage the use of small biomass

investigations of rare tree species and to join these data

with prior information. For instance, stem-form functions

are available for 36 different species. The tables of

Grundner and Schwappach (1952) contain the nine most

import species in Germany, and Kollmann (1982) has

collected basic densities for nearly all species in Germany,

at least with an estimate of means and ranges. Even pre-

diction intervals can be generated based on the posterior

distribution of parameters. The applicability of the pro-

posed method may easily be expanded by simpler

assumptions such as:

• stem volume functions based solely on diameter and/or

height

• expansion from solid to total volume, e.g., based only

on diameter

• basic density could easily be assumed to be normal;

mean and standard error are given in many textbooks

A drawback of BC is the use of subjective prior infor-

mation. Although we refer to previously published values

as much as possible, we are aware that it may be seen as an

influential way to predict biomass. However, the obvious

advantages of the method far outweigh this limitation.

Acknowledgments The authors thank Anna Drewek, for reading

and discussing the article in the context of WBL-statistics course at

ETHZ and Brigitte Rohner, working at WSL in Birmensdorf, for

valuable comments on the text, structure and content. We also want to

thank the two anonymous referees for their helpful and constructive

comments. Further we want to thank Curtis Gautschi for the language

corrections.

Appendix

For practical usage in standard inventories, simplified

models are presented in Table 3. An additive error term

with a variance function as presented in ‘‘Estimating

parameters by regression’’ section was used.
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