Multimed Tools Appl (2014) 69:513-537
DOI10.1007/s11042-012-1283-x

Distributed media indexing based on MPI
and MapReduce

Hisham Mohamed - Stéphane Marchand-Maillet

Published online: 15 November 2012
© Springer Science+Business Media New York 2012

Abstract Web-scale digital assets comprise millions or billions of documents. Due
to such increase, sequential algorithms cannot cope with this data, and parallel and
distributed computing become the solution of choice. MapReduce is a programming
model proposed by Google for scalable data processing. MapReduce is mainly
applicable for data intensive algorithms. In contrast, the message passing interface
(MPI) is suitable for high performance algorithms. This paper proposes an adapted
structure of the MapReduce programming model using MPI for multimedia index-
ing. Experimental results are done on various multimedia applications to validate our
model. The experiments indicate that our proposed model achieves good speedup
compared to the original sequential versions, Hadoop and the earlier versions of
MapReduce using MPI.

Keywords Distributed multimedia indexing - MPI - MapReduce -
Distributed inverted indexing - Permutation-based indexes -
Distributed approximate similarity search

H. Mohamed (X)) - S. Marchand-Maillet

Viper Group, Computer Vision and Multimedia Laboratory, University of Geneva,
7 Route de Drize, Geneva, Switzerland

e-mail: hisham.mohamed@unige.ch

S. Marchand-Maillet
e-mail: stephane.marchand-maillet@unige.ch

@ Springer

514 Multimed Tools Appl (2014) 69:513-537

1 Introduction

Web-scale digital assets comprise millions or billions of documents. This huge
amount of data needs to be indexed, stored, analyzed and visualized to allow easy
access and extraction of information to benefit to a large public. Current sequential
algorithms cannot handle such volume. Hence, the role of parallel and distributed
computing become more important to help in assisting the management of large
volumes of data.

Google is the leading search engine and uses a cluster of thousands of machines
to handle their data in parallel. In 2004, Google proposed the MapReduce [5]
programming model for large data processing in parallel. MapReduce is composed of
only two functions, the first one is the map function which processes (key,value) pairs
to generate intermediate (key,value) pairs. These intermediate pairs are grouped
together with respect to their key to produce (key,list(values)) tuples. Then, each
tuple is passed to a reduce function, which does some analysis. There are many
applications with a similar workflow including, inverted indexing [17], k-means [9],
sorting and PageRanking [5].

Hence, MapReduce is suitable for data intensive applications; data is divided into
groups and each machine processes independently its part. In contrast, MPI is a
message passing library designed to function on parallel machines. MPI launches
independent processes of an algorithm on each machine, in which the processes are
connected using MPI by moving data from the address space of a certain process to
another efficiently. MPI supports collective operations, remote memory access and
parallel I/O. MPI is the abbreviation of Message Passing Interface and it is useful for
high performance applications. It has many implementations like MPICH2 [19] and
OpenMPI [8], but all of them follow MPI standards [18].

Most of the current applications depend on two types of parallelization: data
parallelization and algorithmic parallelization [15, 23]. From there, it seems sensible
to build a library supporting the two types. In the same library, we can combine the
advantages of the MapReduce programming model with the efficient communication
capabilities of MPI. We propose the MRO-MPI model (MapReduce overlapping
using MPI) an idea to speed up the MapReduce model by avoiding its bottlenecks
using MPL

In the original implementation [5], the reduce function has to wait for the map
function to finish before it can start processing. If the map function is slow for
any reason, this will affect the whole running time as the reducers will wait. Our
model is based on running the map and reduce functions concurrently in parallel
by exchanging partial intermediate data between them in a pipeline fashion. Hence,
the map and reduce functions works in parallel to achieve a good speedup. We
have implemented our idea and applied it on three different applications. The first
application is the WordCount example [5] to measure its effectiveness relative to
the recent MapReduce implementations. The second application operates on a large
number of text (XML) excerpts related to images from the ImageNet corpus. The
third application for indexing high dimensional large scale multimedia data based on
permutation indexes.

The rest of the paper is organized as follows. In the next section, we discuss the
related work. A brief background about MPI and MapReduce is given in Section
3. In Section 4, we detail the main idea about our methodology. In Section 5, our

@ Springer

Multimed Tools Appl (2014) 69:513-537 515

results are presented for our three applications (Sections 5.1-5.3). Then, we conclude
in Section 6.

2 Related work
2.1 MapReduce and MPI

The original MapReduce framework is detailed in [5]. Hadoop [26] is the most
successful implementation of MapReduce. It is used in many companies like Ama-
zon, Yahoo! and IBM. Hadoop is written in Java and supports parallel applications
written in Java, Python and C. It also provides a distributed file system called
(HDEFS).

Hoefler et al. [12] made the first attempt to write MapReduce using MPI. They
provided strategies for implementing MapReduce using blocking, non blocking and
collective operations based on the original MapReduce model. They also built on
MPI-2.2 and MPI-3 features to improve MapReduce. Plimpton and Devine [21]
released the first public library for MapReduce using MPI. Their architecture exactly
follows the original MapReduce model. Ahmad et al. [1] provide MaRCO, which
is a plugin of Hadoop to provide communication overlap between the map, the
shuffle, and the reduce phases to improve the performance. They were able to
achieve good speed up comparing to Hadoop. Lu et al. [16] gave a good analysis on
the Hadoop communication and implemented the original MapReduce model using
MPI. The results showed that they obtained a good speed improvement comparing
to Hadoop based on MPI communications. Jaliya et al. [7] proposed Twister, which
is an iterative implementation of MapReduce. It is based on publish/subscribe
messaging infrastructure for communication and data transfer. They achieved good
performance comparing to Hadoop and other MapReduce implementations.

The main difference between our proposition and earlier work lies in the fact that
we have modified the MapReduce model to achieve speed up using MPIL.

By our idea, the map and reduce function works concurrently. The work done
in [1, 7, 16] are similar to our model. However compared to [1], we emancipate
from Hadoop as it has problems in connecting with C and C++ code. Authors in
[16] provided an overlapping between the mapping and the communication phases,
but without any details about the rate of sending the data, the ratio of mappers
to reducers in case they are working together and the way of handling different
applications. Concerning [7], we combined the main model with MPI, which is widely
used in most of parallel algorithms now, and gives the programmer the ability to
build an application that depends on data and algorithmic parallelization. In our
model, we propose the idea of overlapping the map, the communication and the
reduce phases with a more detailed policy for the communication and data exchange.
We also compare our model to Hadoop and earlier implementations of MapReduce
using MPI “MPI-MapReduce” [21], based on different applications.

2.2 Multimedia indexing

For experiments part, we use our model on different multimedia applications.

@ Springer

516 Multimed Tools Appl (2014) 69:513-537

2.2.1 Inverted files

The inverted file is an indexing data structure for text collections [27]. It is composed
of two elements: the dictionary and the inverted list. The dictionary is a lexico-
graphically sorted list containing a list of unique terms appearing in the corpus.
Every term is then associated with a list (posting list) containing the references to
the documents where this term appears. Further, for each document, a weight is
given that reflects the importance of the term into the document, in the context of
the complete collection. The TF-IDF weighting scheme [27] is used in information
retrieval and text-mining. This weight is a statistical measure used to evaluate
how important a word is to a document in a corpus. Inverted files are also at
the basis of a number of multimedia indexing strategies, aligned with the bag-of-
keypoints representation model [4]. We are developing a large-scale interactive
multimedia retrieval system based on learning user preferences [3, 28]. We wish to
integrate an efficient distributed indexing strategy based on inverted files within our
framework.

McCreadie et al. [17] show a good analysis and different ways of building inverted
index using MapReduce and Hadoop. We will use one of their methodologies, but
based on our proposed MRO-MPI model against Hadoop.

2.2.2 Approximate similarity search

The way of answering users’ queries depends on the search scenario. The “exact
match” scenario is commonly used, where the system retrieves all matches to a given
query from the database. Nowadays, this way of answering the query is not the most
useful for some applications such as text plagiarism to track the similarity between
an article against a database of texts, multiple genome comparison to find all the
similarities between one or more genes, and multimedia retrieval to find the most
similar picture or video to a given example. The similarity search paradigm [14] is
more applicable on these models. For a query ¢ and a data collection D, similarity
search sorts all the data items by similarity to the given query according to a given
distance function d : D x D — 9. The most relevant objects to the query are the
k-top ranked objects (k-NN query) or the objects located within a distance range p
from the query (range query). Several techniques have been developed for improving
the performance of the similarity search problem [29]. One of the research topics still
attracting interest is the scalability of similarity search for high-dimensional data.
Different approaches have been proposed to attack the curse of dimensionality [24].
One of the most promising routes is the approximate similarity search [13, 20]. It
proposes solutions to improve the performance when handling high dimensional data
at the price of effectiveness.

Permutation-based indexes are the most recent technique for approximate sim-
ilarity search [2, 10]. Here, We propose three distributed implementations for
indexing permutation-based indexes using inverted files. We describe our ideas
and have tested them on high dimensional datasets, which consist of millions of
objects based on our proposed MRO-MPI model against normal parallelization
using MPL

@ Springer

Multimed Tools Appl (2014) 69:513-537 517

3 MapReduce and MPI
3.1 MapReduce

The execution of the MapReduce model is done through four stages, as follows (see
also Fig. 1):

1. Mapping: A user-defined map function M starts simultaneously in parallel on
different machines. Each Map function is responsible for a chunk of input
data. The map functions process these input data and emits intermediate (key,
value) pairs : M : (K, x V,) — (K, x V). These intermediate pairs are saved
locally. A master machine monitors all the mapping functions. When it receives
a termination signal from all the mappers, it starts to assign reducers tasks by
defining a key, or range of keys for each reducer to work on them.

Shuffling: Reducers communicate with the mappers through remote procedure
calls to gather all the intermediate (K,,, V,,) pairs based on the key, or within the
range of keys assigned to them. This process requires all-to-all communication as
the intermediate keys are distributed on different machines.

Merging: Each reducer then starts to merge the pairs, based on identical inter-
mediate keys to produce (K,,, list(V,,)) tuples.

Reducing: The tuples are passed to a user-defined reducing function R one by
one to emit the output O, which is distributed on different machines: R : (K, x
list(V,,)) — O.

N

w

&

Thus, MapReduce brings a simple and powerful interface for data parallelization,
by keeping the user away from the communications and exchange of data, as this is
directly handled by the framework. The user only needs to write the map and reduce
functions.

Time: |
1- Mapping 2-Shuffling map;(Ky, V) : (K, Vin) 3-Merging 4- Reducing

Chunk; % K, v, reduce (K list(Va))

Chunk; mapz() = =

outputy

reduce,(Ka,list(Vom))

outputs

mapN(Kra Vr) . (Km.vm)

&fﬁkw\ mapx(51 LK Y]
(<] v)

Fig. 1 MapReduce consists of four phases: / mapping, 2 shuffling, 3 merging, and 4 reducing

reduce (Kn, list(Vim))

output,

@ Springer

518 Multimed Tools Appl (2014) 69:513-537

Table 1 Example O,f most MPI Method Description

common MPI functions - -
MPI_Send() Send data directly to a certain process
MPI_Recv() Receive data from a certain process
MPI_Gather() Gather data from different precesses
MPI_Scatter() Scatter data on the processes
MPI_Bcast() Broadcast data on all processes

3.2 MPI

MPI is a message passing standard for parallel programming [11]. A program written
with MPI runs on all machines concurrently as a separate processes, where each
process has a unique rank. Within the program, the programmer has to define the
work done by each process and how the processes communicate with each other. MPI
supports point-to-point, one-to-all, all-to-one and all-to-all communications. Table 1
shows examples of commonly used functions.

In general, MPI is suitable for solving dependent algorithms where machines need
to exchange data during the execution. Full understanding of parallel programming
and the library is required in order to use MPI. In contrast, MapReduce is suitable
for independent algorithms where there is no need to exchange data between the
machines during the execution. MapReduce is based on a number of sequential
steps, but each step run over a number of machines in parallel to get maximum
performance.

4 Map-Reduce overlapping using MPI (MRO-MPI)
4.1 MapReduce and MPI bottlenecks

The original model for MapReduce [5] has at least three bottlenecks:

Dependence: the reducers cannot start before the mappers are done, which affects
the total performance of the system. In case one of the mapping functions is slower
than the others, all the reducers have to wait.

Disk access: writing the intermediate (K,,, V,,) pairs during mapping, and reading
these pairs again during reducing influences the performance especially if the
emitting is done at a high rate.

All-to-All communication: excessive communication between all the machines needs
to be done during the shuffling phase to create the (K,,, list(V,,)) tuples. The
running time of this phase depends on the number of intermediate pairs.

At the same time, MPI is missing the simplicity; it is not easy to handle. The
parallelization of a sequential application using MPI requires reconstruction of the
algorithm. This means that the programmer has to specify the work done by each
process and how these processes communicate among each other. That requires
rearranging the functions and the values in order to get the best performance.
Also, sending many small chunks affects the performance, which sometimes become
slower than the sequential algorithm, because of the communication latency and the
bandwidth limitations.

In our MRO-MPI model, we override the main bottlenecks from the original
MapReduce model to get better performance, and at the same time we maintain

@ Springer

Multimed Tools Appl (2014) 69:513-537 519

the usability and the simplicity of MapReduce and keep the user away from MPI
complex functions.

4.2 MRO-MPI model

The main idea behind our model is to overlap the mapping and the reducing phases
by sending partial intermediate data in a pipeline fashion. Simply, when available,
each mapper sends partial intermediate (K,,, Plist(V,,)) pairs to the responsible
reducers. The reducer then works on this partial data and waits for more data, until
all the mappers are done. With this model, we rule out the multiple read/write.
As the mapper continuously sends the partial data directly to the reducers, there
is no need to save intermediate data locally. Hence, the shuffling phase is merged
with the mapping phase instead of doing it on separate step. The main gain is the
simultaneous execution of the map and reduce functions. As opposed to the original
model, the reducers do not wait until the mappers finish their work, which diminishes
the running time and gives a good speed up as demonstrated in Section 5.1. Figure 2
illustrates our idea of overlapping.

4.3 Technical implementation

In MPI, the sender has to define the rank of the process that receives the data; which
is a unique integer number assigned to each MPI running process for identification.
In addition to that, the type of the sent data should be defined. At the same time, the
receiver has to be ready and informed about the received data. Thus, this decreases
the usability of MapReduce using MPI if we left it to the user. In our prototype, we
keep the user away from the MPI complexities. Figure 3 shows the architecture of our
prototype. The Map and Reduce sides are divided into two parts; user and system.
The user side is the part where the programmer writes the mapping function. The
system side is the part which is responsible to handle the communication and data
merging. Our model based on three steps as follows:

Mapping and Shuffling: The mapping is exactly like the original one. The map func-
tion emits (K,,, V,,) pairs. The K, of each pair is passed to a partitioning function:

Fig. 2 MRO-MPI: the) Magge rs Reducers
mappers and reducers work in
parallel and partial data is sent (! ! ! ______ l!l
in a pipeline fashion
Yy ¥ ¥ ¥

N
—
wi |-

]
0
1
++++Sendvv++
(Km,P“Stg(Vm) to Reducers >
L L B B
1 0
0 1
YYYY
v

@ Springer

520 Multimed Tools Appl (2014) 69:513-537

kv —>C Map()1n -~
e,

hkey=Partitioni$g Function(Kr)

~

Fig. 3 MRO-MPI: technical
details

User

MapHashTable<hkey,,Plist(<Km, Vim>)>

[s
é

<
(MPI_Send(Plist(<Kin,Vm>),hkey)]

System

<

es

Sending data from mapper to the Reducer with rank hkey

s N\

MPI_Recv(Plist(<Kyn,Vm>), MPI_ANY_SOURCE))
ReduceHashTable<Kn,Plist(V m)>

o
JAY
: :
% - concatenate()
& save processed Reduce
pairs Plist(v) 4 No
ay i J

_No
Al
Recv moie Plist(v) Yes . _—
h— e
I —
Reduce (K, Plist(Vim))1-L mapping finished —> Qutputy

User

\

Partitioning : (K,,) — (hkey;). The partitioning function is used to distribute the
keys on the reducers. The output range of the function is based on the number
of the reducers; for L reducers the range is: 0 — L. The default function is a
“Hash” function, which is similar to hashPartitioner in Hadoop, but also it can
be replaced by user-defined hash function. For the main “Hash” function, hash
collisions occurs as the number of keys is more than the number of the reducers,
but it happens with equal distribution to roughly make equal load balancing of
the keys on the reducers. The (hkey;, (K,,, Vi) pairs are saved in a local hash
table for each mapper. Each hkey; is associated with a list of various (K, V},)
pairs:

MapHashtable : (hkey)) — (K;, V1), (Ki, Vo), (Kig1, V1), ... (K, Vin)).

There are / counters Cy_;, each counter is assigned to a hash key hkey;. The
counters are used to count the size of pairs associated to each hkey;. Every time
a new pair is emitted, counter Cjy,y, is incremented by the size of the emitted
(key,value) pairs and then the counter is checked if it is greater than a threshold
value T, which is user-defined depends on the network connection. If so, the
partial data is concatenated as one chunk and sent directly to the responsible
reducer which has a rank /key;. Sending Data in MPI is based on the MPI Data
types like MPI_INT, MPI_CHAR,..., etc. [11]. Additionally, MPI gives the user
the ability to construct his own data types based on the original ones, which is
called “derived data types” [11]. In our prototype, we have tested concatenating
the pairs into one CHAR array against defining our MPI derived data type of a

@ Springer

Multimed Tools Appl (2014) 69:513-537 521

simple structure consists of a CHAR array as a word and an INT as a value. We
found that good performance is achieved when the data is sent as a CHAR array
(see Section 5.1). Hence, we combine all the data as one CHAR array and send it
to the responsible reducer.

Receiving and Merging: All Reducers are actors, which means that they are ready to
receive pairs from any mapper. The received data contains multiple intermediate
various (K,,, V,,) pairs. These pairs are then organized with respect to their key
using a hash table. The key of this hash table is the intermediate key and the
value is a list of intermediate values received in this partial list and related to
this key:

ReduceHashTable : K,,, — Plist(V,,).

Reducing: In reducing, we have two scenarios we enumerate them as partial and full

reducing. In partial reducing, the reduce function can process partial intermediate
data (K,,, Plist(V,,))(e.g. sum function). For full reducing, the reduce function
needs the full intermediate data (K,,, list(V,,)) (e.g. max or average functions).
Hence, we set another parameter to the user to define how the reduce function
processes the intermediate pairs (e.g. full or partial).
For the two scenarios, after saving the data or the partial results, the system calls
the receiving function again and this process continues until all the data is received
from the mappers. When mapping is done and last partial data are reduced, output
data are saved on the local hard disk of each reduce process.

Hence in our model, the three phases run in parallel on different machines and
continue until the mapping is done. The user has to define the number of mappers,
the number of reducers, the reducing type and the threshold value T. The ratio
between the mappers and the reducers affects the performance of the model. A good
ratio between the mappers and the reducers with analysis and the effect of changing
the T value are given in the next section based on different applications.

5 Experimental results

We have conducted large-scale experiments to test the validity of our model. Our
results section is divided into three subsections. In Section 5.1, We have implemented
the WordCount example with our MRO-MPI model and compared it to Hadoop and
MR-MPI [21], which is the only public implementation of MapReduce using MPI.

In Section 5.2, we used our MRO-MPI model to index 9,319,561 text (XML)
excerpts related to 9,319,561 images from 12-million ImageNet corpus [6] and
compared the running time with Hadoop. The XML files size is 36 GB.

In Section 5.3, we used our model to index 4,594,734 (84-dimensional) color
features related to 4,594,734 images from the 12-million ImageNet corpus [6].

MPICH?2 is installed on a Linux cluster of 20 DualCore computers (40 cores in
total) holding each 8 GB of memory and 512 GB of local disk storage, led by a master
8-core computer holding 32 GB of memory and a TeraByte storage capacity. Hadoop
is also installed on the same machines with HDFS block size of 128 MB.

@ Springer

522 Multimed Tools Appl (2014) 69:513-537

5.1 Word count

WordCount simply counts the occurrence of words in different documents. The
map function emits (word, 1) pairs, where word is the key and 1 represent the
value. The input data size varies from 0.2 to 53 GB from project Gutenberg [22].
For this example, we use 48 cores, 24 as mappers and 24 as reducers for our
model. The threshold value T is empirically set to 10,000. For Plimpton and Devine
implementation [21], the 48 cores are used as mappers then as reducers, as there is
no overlapping like ours. A copy of the input data is located on all the nodes of the
cluster. In our cluster, each node has two cores. Hence, each two cores have an access
to the same copy. So, there is no network communication required to move the data
from a certian node to another. The page size was the default value which is 64 MB.
For Hadoop, we set the number of reducers to 48 and the number of mappers varies
from 200 to 650 according to the number of partial input files. The data replication
factor was 10.

Figures 4 and 5 show the log;, of the running time and the speedup for the three
implementations respectively. Speed up is defined as:

Speedup = T , (1)
Tviro

where Ty is the Hadoop or MR-MPI execution time and T\ro is our MRO-MPI
execution time. As we can see from the figures, our MRO-MPI model and MR-MPI
model [21] achieve high speedup compared to Hadoop when the data size is less than
5 GB. The reason for that is the time consumed by Hadoop to start and terminate the
tasks. Also, Hadoop is mainly designed for large datasets. For data with size more
than 5 GB, Hadoop becomes faster than MR-MPI, but not faster than our model.
The reason is that both of Hadoop and MR-MPI follow the same model, but Hadoop
has its own file system, which is based on moving the computation power instead of
moving the data in contrast to MR-MPI. For Hadoop, this means that, during the
computation, if the data is located in machine X and a reduce or a map function is
running on machine Y, Hadoop terminates the task on Y and starts it on X instead
of moving the data from X to Y. This is done based on some calculations defining
the cost of moving the data. For our model, we achieve high speed up comparing
to Hadoop and MR-MPI, because of the overlapping with the same number of
machines but with less number of mappers and reducers. For example, for 27 GB
our model is 1.7 times faster than Hadoop and 4.2 faster than MR-MPI.

Fig. 4 WordCount example:
the x-axis shows the data size 1000 \

in gigabytes. The y-axis shows —
the log of the running time. L
The value in the table under = 100 | IMb_1Mb 2Mb 3Mb 4Mb S5Mb 8&NMb | ;’}
the figure shows the running) b . %
time in seconds. The values r E U
above the columns shows the F 10 7 ' g
size of each partial file in the v o
data set. As we can see, 7] T
MRO-MPI outperforms 1 L R 4
MR-MPI [21] and Hadoop Datasize(Gb) | 2 | 27
< MRO-MP! \ 37 | 90 | 189
“‘Hadoop | 54 | 70 | 85 | 94 110 | 210 | 339
MRMPL | 38 | 6 | 11 | 25 9% | 306 | 805 | 1980

@ Springer

Multimed Tools Appl (2014) 69:513-537 523

16 Speedup
MRO-MPI vs Hadoop = VIRO-MPI vs MR-MPI w=fe=MR-MPI| vs Hadoop
14
12
a 10
3
o 8
o
> 6
2 —
4 —
2
0 -+ — -’
0 10 20 30 40 50

Data size(GB)

Fig. 5 Figure shows the speedup based on different data sizes. The x-axis shows the data size in GB.
The y-axis shows the speedup

Another reason for this speed up is the partial reduction process. The size of the
reduced data is smaller than the original data size. In our model, we save the reduced
data and avoid the intermediate pairs. This means that we save memory and it is hard
to have I/O access. Hadoop and MR-MPI save the pairs in the memory. The size of
the pairs is larger than the original data size because each element is identified by a
pair. This means that they need to access the hard-disk at some point.

For example, assume that the word “play” appeared three time in the corpus.
For our MRO-MPI, the mappers produce three pairs <“play”, 1> the key is the
word and the value is 1. Assume also the size of each pair is about 8 bytes. During
examining the rest of the corpus, these pairs are sent to the reducers and the reducer
save them as one pair with value equals to 3 <“play”, 3> so the new size after the
partial reduction still the same 8 bytes. For Hadoop and MR-MPI, the three pairs
are saved in the memory of the mappers until all the mapping is done. This means
that they need extra memory at some point to save the pairs, and they have to access
the hard-disk. For the previous example, the mappers need 24 bytes in the memory.
Hence, with partial reduction we avoid the hard-disk access as much as possible.

Figure 6 shows the effect of changing the threshold value 7. The T value is the
message chunk size in bytes. Normally in MPI, sending small chunks of data between
processes increase the running time, because of the communication latency. The
same effect happens when we send large chunks through the network, because of
the bandwidth. So, for different data sizes we have tested the effect of changing
the T value. We found that the best time was achieved when the chunk type is
CHAR array, with size in the range of 9.7 KB to 4 MB. Figure 7 shows the effect of
choosing MPI_CHAR against a simple structure that consists of a key of type CHAR
array of size 100 and a value of type INT. As we can see, the structure degrade the
performance of the model for the same data sets with the same configurations.

5.2 Distributed inverted indexing

Our second application is the construction of distributed inverted files. The definition
of an inverted file was presented in Section 2.2.1.

@ Springer

524 Multimed Tools Appl (2014) 69:513-537

o =&=500VB =@=3GB =#=12Gb =l=27Gb
35 P
- 3 ——
g 2
= 15 .\A X :/‘
. ¢ ¢
0'(5) — — — — — -y
0.0005 0.0095 0.086 4.7 85
chunk size (Mb)

Fig. 6 Figure shows the effect of changing 7. The x-axis shows the chunk size in megabytes. The
y-axis shows the running time in minutes

5.2.1 MapReduce for distributed inverted files

In order to preserve acceptable indexing time, the process should be done in parallel.
McCreadie et al. [17] presented a good analysis about building an inverted index
using MapReduce. The general idea is to build the inverted files on the fly in parallel
without the need to access the hard-disk during processing. In our implementation,
we apply one of their methods but based on our MRO-MPI model. The mappers are
responsible to read and tokenize terms from every document. Mapper nodes emit
(key, value) pairs. The key is the term extracted from the file and the value is the
document name and the corresponding TF value for the term:

(K, Vi) = (term, (document name, tf)).

The (key, value) pairs are further sent to the reducing nodes. The partitioning
function distributes the data based on their lexicographic order, each reducer being
responsible for a certain range of terms. For example, if we have 26 reducers, reducer
1 is be responsible for all the terms start with character “a”, reducer 2 for terms starts
with “b”, and so on. Each reducing node only receives the terms located within its
lexicographic range. As the same terms from all documents are saved into the same

Fig. 7 Figure shows the effect .
—

of changing of choosing

MPI_CHAR against MPI 12 |
derived data types. The x-axis

shows the running time in 5 s
minutes and the y-axis shows % 3 — B MPI-Datatype M MPI-CHAR
the data size in gigabytes N
2 F
T=10000 byte
1 -
0 5 10 15 20

Time (min)

@ Springer

Multimed Tools Appl (2014) 69:513-537 525

database, reducer nodes can calculate the correct value of the IDF and then assign a
weight to every term according to the TF-IDF scheme. In this example, the reducers
do not work on the partial data as before. Instead, they concatenate this partial data
until the mapper is done and then calculate the TF-IDF, which is not time consuming
as the data is grouped and sorted.

5.2.2 Experiments

Figure 8 illustrates an example of the XML data used. Table 2 gives the running
time in minutes. The first row shows the number of the reducers; 4, 13 and 26. The
first column shows the number of mappers; 4, 10, 13, 20, 22, and 44. The value 0 for
mappers and reducers corresponds to, the sequential time. The running time using
Hadoop was 40 minutes using 93961 mappers, 26 reducers and replication factor 20
on the same cluster. Compared to our results which were obtained using 22 mappers
and 26 reducers, our implementation was faster due to the partial copy, which is done
during the mapping process.

MapReduce ratio From the reducer side, for 13 and 26 reducers and 4, 10, 13, 20
and 22 mappers, the running time decreases when the number of mappers increases.
This is expected as the mappers do most of the work, and more mappers means that
the workload is divided, which helps to improve the performance. But, when the
number of mappers is high comparing to the number of reducers, the running time
increases. The reason is that the reducers are not able to handle all the received data
in an efficient way. For example, that happens for 4 reducers with respect to 13, 20,
22, and 44 mappers. The rate of emitting the (key, value) pairs is much higher than
the rate of receiving, due to lower number of reducing nodes. From the mapper side,
for 10, 13, 20 and 22 mappers with respect to 4, 13 and 26 reducers, the running time
decreases when the number of reducers increases. More reducers help to decrease
the communication load, which helps to improve the performance. This is not the
case for 4 mappers, the running time increases when the number of reducers is larger
than the double of mappers. The reason is the large number of reducers relative
to the mappers. Mappers need to communicate with a high range of reducers with
high load of data, which increases the communication time and affects the total
performance.

For 44 mappers and 13 and 26 reducers, there is not such speedup, although the
number of mappers and reducers are high. The reason is cluster overloading. Our
cluster is composed of 48 cores and the number of processes are 57 and 70, which

<?xml version="1.0" encoding="utf-8"?>
name="n00015388_30042.JPEG" synsetid="n00015388" synsetnum="100015388">
http://farm4.static.flickr.com/3176/2433586904_180fae9f14.jpg
animal % animate being % beast % brute % creature % fauna @ a living organism
characterized by voluntary movement
animal % animate being % beast % brute % creature % fauna
a living organism characterized by voluntary movement
animal % animate being % beast % brute % creature % fauna @ a living organism
characterized by voluntary movement
animal % animate being % beast % brute % creature % fauna
a living organism characterized by voluntary movement

Fig. 8 Example of XML data used in indexing

@ Springer

526 Multimed Tools Appl (2014) 69:513-537

Table 2 The table shows the running time for indexing in minutes with respect to different number
of mappers and reducers

Map/Reduce 0 4 13 26
0 81.6 — — —
4 — 39.2 46.6 51.7
10 — 41.5 39.8 39.2
13 - 66 28.8 24
20 — 111.9 19.6 18.5
22 - 113.9 16.45 14.2
44 - 118.5 125.2 45.8

For example, the value 14.2 is the running time for 22 mappers and 26 reducers. Sequential time is
represented for 0 mappers and reducers

means that the numbers of processes running is much higher than the number of
actual cores, this affects the performance of the system.

Based on our experiments, we found that when the number of mappers and
reducers increase, the running time systematically decreases, with a non-linear decay,
but we should care about the ratio between them and we should not overload the
cores with more than one process. The best ratio between the mappers and reducers
is found to be:

2M > R> M.

Where M is the number of mappers and R is the number of reducers. Figures 9 and 10
show the effect of changing the number of mappers for the reducers and vice versa.
Sequential time (one node for all the processing) was obtained on the master node
of our cluster, which holds 32 GB memory and 8 processors.

5.3 Distributed approximate similarity search

The third application is the permutation-based distributed indexing using MapRe-
duce for parallel similarity search.

Reducers time for different mappers

140.0
11 26 Reducers - 13 Reducer = 4 Reducers
120.0 4 i
ST (SN PR
RRR) W T
100.0 -+ SRS SRS e —
RRR) W T
= RRS) W T
= 80.0- SRR SR I —
E RRRRY PRCEN T
s R W T,
£ ROGAY o, :—:-\\\\
= RGO W —
= BRRKN OGN e
R s ST
SEN RERS T
RS W ST
\\\'\ \\\\ ST
--\\\\—
- \\\.\ - \\\\ e
AR | | | | TR T,
TTh RSty T
22

Number of Mappers

Fig. 9 Figure shows the running time of 4, 13 and 26 reducer for different number of mappers. As
we can see, the best timing is achieved when 2M > R > M with no machine overloading

@ Springer

Multimed Tools Appl (2014) 69:513-537 527

Mapping time for different reducers

140.0
114 Mappers **10 Mappers = 13 Mappers 1'20 Mgpg\er - 22 Mappers ™ 44 Mappers
RN
120.0 i
R
100.0 e
_ R
E S
E 80.0 \.,\.:\‘\
E’ R
S
E 600 s
NS l
40.0 o
NN
h R 4
20.0 : - 3 - p—CCN—
. < o= = -
1 _—_—‘-\."-\'\\.\

0.0

Number of Reducers

Fig. 10 Figure shows the running time of 4, 10, 13, 20, 22 and 44 mappers for different number of
reducers. As we can see, the best timing is achieved when 2M > R > M with no machine overloading

5.3.1 Permutation-based indexes

The intuition behind the permutation-based indexes is based on “predicting closeness
between elements according to how they order their distances towards a distin-
guished set of anchor objects” [2, 10]. Given a collection of N objects o; in a domain
D = {o;...0on}, and a distance function d: D x D — N between the objects. We
assume that the distance function d(.,.) follows the metric space postulates [29]
VOZ‘, 0j, 0k € D:

- 0;=0; = d(o;,0)) =0 identity,

- d(0;,0)) = 0 non-negativity,

- d(0;,0)) =d(o}, 0;) symmetry and

- d(0;, 0r) < d(o;,0)) + d(oj, o) triangle inequality.

A set of n reference objects R = {r, r, ...r,} C D is randomly selected from D.
Each object 0; € D is represented by an ordered list L,,. The ordered list for each
object contains the reference points set sorted by their distance d to the object o;.
More formally, L,, is the permutation of (1, ..., j, ..., n) according to the distance
function d. P(L,,, r;) returns the position of the reference object r; within the ordered
list L,, of object 0;. For example, P(L,,r;) =5 means that r; is the 5th nearest
reference point to the object o;. Figures 11a and b show a group of objects and their
ordered list respectively.

The permutation lists for all object are saved in the main memory. For a given
query g, an ordered list L, is computed as for the database objects with respect to
the same reference points. The similarity between the query and the database objects
is measured by comparing the permutation lists using Sperman Footrule Distance
(SFD) [29].

SFD(0i,q) =) |P(Lg, 1) = P(Lg, 1) (2)
reR

@ Springer

528 Multimed Tools Appl (2014) 69:513-537

Omgoz Oos Lor=(4.3.21) Lo2=(423.1) 1->((01,4),(02:4),(05,4),(04,2),(05,1),(06,4),(07,1),(0s,2))

O @°3 Los=(4,3.2,1) Losa=(2,1,3,4) 12>((01,3),(02,2),(05,3),(04,1),(05,2),(06,3),(07,3),(0s,1))

o 2@ %@q Los=(1.2.3,4) Los=(3,4.2,1) r3>((0+,2),(02,3),(03,2),(04,3),(05,3),(06,1),(07,2),(08,3))
Oos PY Q 7 Lor=(1.324) Loa=(2,1,34) r4>((01,1),(02,1),(03,1),(04,4),(05,4),(06,2),(07,4),(0s,4))
O* Lg=(3,1,2,4)
(a) (b) (c)

Fig. 11 Example of Metric inverted files. a Black circles are reference objects; white circles are data
objects; the gray circle is query object. b Ordered lists for all data objects o;. ¢ Inverted index; the
vocabulary are the reference points and the posting lists are pairs of data objects and their positions

5.3.2 Metric inverted files

Amato and Savino [2] presented the metric inverted files (MIF) for indexing
permutation-based indexes. Using the definition of the inverted files in Section 2.2.1,
the dictionary in MIF is the set of reference points and the posting list for a reference
point 7; contains a list of pairs (o;, P(L,,, j))Yo; € D. Figure 11c shows an example
of MIF. For Searching [2] a given query g, an accumulator is assigned to each object
o; € D and initialized to zero. The posting list for each reference point is accessed
and the accumulator is updated by adding the difference between the position of
the current reference object in the ordered list of the query and the position of
current object, using (2). After checking the posting lists of all the reference points,
the objects are sorted based on their accumulator value.

In [2], authors have improved the performance of the algorithm by indexing the
objects with respect to some nearest reference objects only and perform the search
using these nearest reference objects. They experimentally proved that the nearest
reference objects are the most relevant ones. The complexity of this basic algorithm
is O(nN), where n is the number of reference objects and N is the number of objects.
Algorithm 1 [2] explains the main idea for searching for a given query g.

Algorithm 1 Basic MIF searching algorithm

IN: Query: ¢,

Reference Object list on n elements: R,

Posting lists assigned to each reference object for m objects;
OUT: Sorted Objects list: out

1. Create alist of accumulators A[0...n]

2. Set accumulators values to 0

3. Foreachre R

4. Let A be the posting list for the reference object r
5. Seti <— 0

6. For each pair (o, P(L,,r)) € A

7. Set Ali] = A[i]l + |P(L,,r) — P(Ly,7)|

8. i<—i+1

9. Sort(A)

10. out < A

@ Springer

Multimed Tools Appl (2014) 69:513-537 529

5.3.3 Distributed metric inverted files indexing

In this work, we are more focusing on the indexing part. The direct way of building
distributed inverted files is the posting list decomposition (PLD). The PLD was
proposed in [25] for text indexing. We use the same technique, but for approximate
similarity metric searching through three ways of distributed indexing based on MPI
and MRO-MPI. The main idea of PLD is to divide the posting lists on number of
processes and for searching each process accesses its own partial posting lists only.
Then combine the results and send it back to the user. Figure 12 shows the posting
list decomposition structure. For example, the posting list for reference point 1 in
Fig. 11c is divided into four lists. Each list is processed by a different process. Using
MapReduce, we can build these distributed inverted files in parallel. We propose
two algorithms for indexing based on MapReduce, pre-posting list and pre-ordered
list. An alternative is to implement directly using MPI our Local indexing algorithm.
For the three algorithms, we assume that the reference points are available to all
processes.

Pre-posting list The vector file is divided into small chunks. These vectors represent
the objects. Each map function handles a chunk. The map functions read the vectors
and emit a sequence of (key, value) pairs. The key is the reference-id I,,. The value is
composed of the object-id I, and the position of the reference point in the ordered
list of this object P(L,,, ;):

(K, Vin) = Uy, Ly, P(Ly,, 17))).

Hence, all the work is done by the mappers and the reducers only receive the
pairs to organize and save them. The partitioning function distribute the pair based
on the object-id [,,. For example, if we have 1,000 objects and 5 reducers, then each
reducer handles 200 objects. Reducer 0 handles objects with id from 0 to 199, reducer
1 handles objects with id from 199 to 399 and so on. Algorithms 2 and 3 show the
pseudo-code of the mapping and reducing functions respectively.

Pre-ordered list In pre-posting list algorithm, all the work is done by the mappers
and the reducers just organize the data. Hence, if we divided the work between the
mappers and reducers we can achieve high performance. Similar to pre-posting list,
the vectors file is divided into small chunks. Each map function handles a chunk. The
map functions read the vectors and emit a sequence of (key,value) pairs. The key of

Posting lists decomposition

@k o -
o > 11((01.4),(024)) Y 11((0:4).(04.2))
O"@+ O g 12((01.9)(022) 8 12>((0ad).(0s1)
O @° S 135((01.2),(023)) 8 133((05,2),(04,3)
T 4> ((o1,1),(021)) T 14>((05,1).(04.4)
2
® O N 1 ((05,1),(064)) © 11((07,1),(08.2)
ok Ok @ 12>((05,2),(06,3)) 3 12>((07.3).(08.1))
o @' S 135((05,3),(06,1)) S 13((07,2),(08,3))
O & r4>((054).(062) & r4>((07.4).(0e4)

Fig. 12 Posting lists decomposition algorithm. The posting lists are divided on four processes

@ Springer

530 Multimed Tools Appl (2014) 69:513-537

Algorithm 2 Pre-posting list mapping

IN: Key: chunk name
Value: vectors
OUT: Key: Object ID I,
Value: Ordered list (Z,,, P(L,,, 1i))
1. Read the objects in Ob jarr and the reference points in Refarr
2. Foreacho € Objarr
3 Generate ordered list L,;
4. Sort the ordered list L,;
5 For each r € Refarr
6 Get the position of 7 in L,,; P(L,,, i)
5 emit(/,,,(1,,, P(Lo,, 1))

the map function is the object-id I,; and the value is the ordered list L,, related to
this object:

(Km, Vm) = (Ioi, Lo,-)~

Algorithm 4 shows the pseudo-code of the mapping function. The partitioning
function is similar to the one used in the pre-posting list algorithm. When the reducers
receive the data, they build their own posting lists by calculating the P(L,,, ;) for
each reference in the ordered list of the received objects. Algorithm 5 shows the
pseudo-code of the reducing function.

Local indexing Here, we use the basic MPI functions to index the objects without
MapReduce. We divide the data domain D of N objects randomly into p sub-
domains of equal sizes Dy ... D,, where p is the number of parallel processes. Each
process then starts to build its own inverted file data structure based on the global
reference points and the partial data it has access to. Accordingly, each process
is responsible for all the references with partial posting list. Hence, there is no
need to transfer data between the processes. Each process has its part and builds
it independently.

Searching For the three algorithms, the inverted file is partitioned and distributed.
Therefore, to answer a query g, all partial inverted files need to be scanned. A broker

Algorithm 3 Pre-posting list reducing

IN: Key: Refrence Object id I,
Value: List of < I,,,, P(L,,, 1;)) >
OUT: Key: Object ID I,
Value: Position in the ordered list P(L,,)
1. Foreach p e< I,,, P(L,,, 1)) >
2. Save it in the posting list of reference object I,,
3. emit(posting list)

@ Springer

Multimed Tools Appl (2014) 69:513-537 531

Algorithm 4 Pre-ordered lists mapping

IN: Key: chunk name
Value: vectors
OUT: Key: objectid I,,
Value: ordered list L,,
1. Read the objects in Ob jarr and the reference points in Refarr
2. Foreacho € Objarr
3. Generate ordered list L,;
4 Sort the ordered list L,;
5 emit(Z,,,L,,)

process accepts query requests. These queries are then broadcasted to all other
processes. After receiving, each process starts to index the query and to apply the
search on its local inverted file. Once done, every process sends its local accumulators
to the broker process. The broker concatenates the accumulators and sorts the
objects based on their accumulator values. More formally, in Algorithm 1, the for
loop in lines 6-8 can run in parallel over the different partial domains Dy, Dy, ... D,.
Thus, theoretically the memory usage is reduced from O(nN) to O(n%) and the

n
complexity leads to O(n%) + t,, where n =)_ n; and #; is the time needed to receive
i=0
the partial ranked objects. In this algorithm, all the reference points need to be
checked and all the processes which have a partial posting lists have to participate

to answer a query.

5.3.4 Experiments

We have compared the performance of the three algorithms, which we have already
discussed. Our dataset consists of 4,594,734 (84-dimensions) objects. For the pre-
posting list and the pre-ordering list, we performed two experiments. The first one
uses 10 cores as mappers and 10 cores as reducers. The second experiment uses 20
cores as mappers and 20 cores as reducers. The threshold value T is set to 1.8 MB.
For local indexing, we have indexed the data using 10 cores and then using 20 cores.

Algorithm 5 Pre-ordered lists reducing

IN: Key: objectid I,
Value: List of ordered lists L,,

OUT: Key: Object ID I,

Value: Position of reference r; in the ordered list P(L,,)
Foreachr e L,

Calculate P(L,,, r;)

Add (1,,, P(L,,, r;)) to the posting list of r
emit(posting list)

L=

@ Springer

532 Multimed Tools Appl (2014) 69:513-537

We have compared the performance of the three algorithms for different number of
cores.

Indexing time Due to memory limitations, the sequential algorithm can not handle
this data. We have 4,594,734 objects and each pair in the posting list needs about 8
bytes. For 1,000 reference objects we need about 34 GB of memory, which cannot be
supported by any of our machines.

Figure 13 shows the indexing time for pre-posting list, pre-ordering list and local
indexing. For the three algorithms, when the number of cores increases, the indexing
time decreases. Also, when the number of reference objects increases the running
time increases. As we can see from the figure the pre-ordered list algorithm is faster
than pre-posting list algorithm. There are two reasons for that. The first reason is the
rate of emitting the data. In pre-posting list, at each emitting the map function emits
the reference-id, the object-id and the position of the reference point in the ordered
list of the object. So, if we have 1,000 object and 10 reference points the mapping
function emits 10,000 pairs. On the other hand, for the pre-ordered list algorithm the
mapping function emits the object-id and the ordered list. So , if we have 1,000 object
and 10 reference points the mapping function emits 1,000 pairs only. Figure 14 shows
the average output of each mapping function in gigabytes for the two algorithms. As
we can see, the average output of each mapping function for pre-ordering list is less
than the average output of the pre-posting list algorithm. Also, for the two algorithms,
when the number of nodes increase the average output decreases.

The second reason is the way of organizing the work between mappers and
reducers. In pre-posting list, all the work is done by the mappers and the reducers
only save the received pairs. On the other hand for the pre-ordered list algorithm the
work is divided between them and that decreases the running time. Hence, the way
of choosing the (key, value) pairs beside the way of dividing the work between the
mappers and reducers are affecting the performance.

Distributed Indexing

7000
= Local Indexing 10 cores — Local Indexing 20 cores -
6000 :
= pre-ordered list 10 cores Il pre-ordered list 20 cores
= 5000
r ~ pre-posting list 10 cores .. pre-posting list 20 cores .
£ 4000
]
oo
<
< 3000
(V]
T
£
2000
1000 o
e
0 ISR | | e

100 500
Number of reference Points

Fig. 13 Figure shows the indexing time for the three algorithms with respect to different number of
cores. The x-axis shows the number of reference points used for indexing and the y-axis shows the
running time in seconds

@ Springer

Multimed Tools Appl (2014) 69:513-537 533
Mapping output
20
18 —
[-] 16 —
(L)
Ts’ 14 —
[N 12 —
-
3 10 -
o 8 W
E 6 R
Q o fure’
> 4 R o
< | [nt - S
2 At - o AR
0 LLL — | RS - RSN T feee SN
Reference points 100 500 1000 2000 3000
- Pre-Ordered list 10 cores 0.086 0.4 0.8 1.5 2.81
2 Pre-Ordered list 20 cores 0.043 0.2 0.4 0.73 15
|1 Pre-Posting list 10 cores 0.52 2.5 5 10 20
« Pre-Posting list 20 cores 0.25 13 2.5 5 10

Fig. 14 Average output of each mapping function. The x-axis shows the number of reference points
and the y-axis shows the data size in gigabytes

The local indexing algorithm is much faster than the two algorithms. The reason is
that there is no data exchange between the cores, which improves the performance.
At the same time, MPI misses the simplicity. More time and experience are required
for coding the algorithm using MPI than using MRO-MPI. So, MapReduce is useful
and makes the parallel programming an easy process, but is not suitable for all
applications, as we can get better performance using normal MPI.

Searching time Figure 15 shows the average searching time for algorithms PLD
based on 10 different queries from the datasets. The x-axis shows the number of

Posting lists decomposition

45
B—__ —100R
40

500R =#=1000R =#®=2000R =m=3000R

35 FE—

30
z;‘v

\-

20

15

Average time(s)

107+

5

0

—

10 11

12 13

14 15
Number of cores

16 17 18 19

20

Fig. 15 Figure shows the average search time for posting list decomposition relative to 100, 500,

1,000, 2,000 and 3,000 reference points (R)

@ Springer

534 Multimed Tools Appl (2014) 69:513-537

Fig. 16 Recall: The x-axis Recall
shows the number of reference 1 4+ *
points and the y-axis shows the 0.9 /‘v/_:;_ PR T P ———
average recall relative to K = 0.8 - - - -
1, 10, 30, 50 points = 07 /
g o6
g o5
©
5 04
>
< 03
0.2
0.1

0
100 500 900 1300 1700 2100 2500 2900
Number of reference points

cores and the y-axis shows the running time in seconds. Similar to indexing when the
number of cores increases the average response time decreases.

Recall and position error Here, we measure both the recall and the position error
[29] for each algorithm. Given a query ¢ the recall is defined as:

Recall = wrﬂ% 3)

and the position error is defined as:

Y IP(X,0) = P(S4,0)|

.. OESA
Position Error =

SALID] @

where S and S,4 are the ordering of K top ranked objects to g for exact similarity
search and approximate similarity search respectively. X is the ordering of dataset D
with respect to their distance from g and P is defined in Section 5.3.1.

Position error

~0-K=1 ~l=K=10 <-A=K=30 ==K=50

Average position error
o
B
w

0.1
0.05
0+ * * . \'
0 500 1000 1500 2000 2500 3000

Number of reference points

Fig. 17 Position error: The x-axis shows the number of reference points and the y-axis shows the
average position error. Recall and position error measured relative to K = 1, 10, 30, 50 points

@ Springer

Multimed Tools Appl (2014) 69:513-537 535

Figures 16 and 17 show the average recall and the average position error relative
to 1, 10, 30, 50 K-top points based on 10 different queries from the datasets. The
average recall and the average position error is similar to those obtained using the
sequential implementation [2] with better computing performance as it is the same
structure but it is accessed in parallel.

6 Conclusion and future work

This paper proposes a new way of handling the MapReduce programming model
using MPI for fast large scale data processing. We have proposed the idea of the
overlap between the map and reduce functions using MPI “MRO-MPI”, which
speeds up the process. The main advantages of our model are:

—_

Maintain the simplicity of MapReduce.

2. Speed up: with the same number of nodes and less number of mappers and
reducers we achieved high speedup comparing to other implementation of
MapReduce.

3. No dependency: we removed the dependency between the two functions. The

reducers do not have to wait until the mappers are done.

To evaluate our model, we have tested it on three different applications. The
first one is the WordCount example. Using our model we achived a high speedup
comparing to Hadoop and the earlier implementation of MapReduce-MPI. For
example, for 53 GB our model is 2.8 times faster than Hadoop and 5.3 faster than
MR-MPI. Also, we have discussed the threshold value T and the derivative data
types against normal MPI data types and how these can affect the running time of
our model.

In the second application, we have indexed text data using our model against
Hadoop. From the results, our model is faster than Hadoop. Also, we have discussed
the ratio of mappers to reducers and how this can affect the running time.

In the third application, we have indexed high dimensional multimedia data using
our model against normal MPI. Results show that the way of arranging the mappers
and reducers work and the rate of emitting can affect the running time. Also, we
have shown that we can get better performance using MPI without MapReduce, but
in trade of simplicity and coding time.

For future work, we will release a library for MapReduce overlapping based on
MPI. We also are planning to make a deeper analysis on the communication time
and use contiguous and noncontiguous MPI data types to see how this can affect the
system performance.

Acknowledgements This work is jointly supported by the Swiss National Science Foundation
(SNSF) via the Swiss National Center of Competence in Research (NCCR) on Interactive Mul-
timodal Information Management (IM2) and the European COST Action on Multilingual and
Multifaceted Interactive Information Access (MUMIA) via the Swiss State Secretariat for Education
and Research (SER).

@ Springer

536 Multimed Tools Appl (2014) 69:513-537

References

1. Ahmad F, Lee S, Thottethodi M, Vijaykumar TN (2007) Mapreduce with communication over-
lap. Technical report
2. Amato G, Savino P (2008) Approximate similarity search in metric spaces using inverted files. In:
Proceedings of the 3rd international conference on scalable information systems, InfoScale *08,
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing). ICST, Brussels, Belgium, pp 28:1-28:10. http://dl.acm.org/citation.cfm?id=1459693.1459731
3. Bruno E, Marchand-Maillet S (2009) Multimodal preference aggregation for multimedia infor-
mation retrieval. J] Multimedia 4(5):321-329
4. Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of
keypoints. In: Workshop on statistical learning in computer vision, ECCV, pp 1-22
5. Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Pro-
ceedings of the 6th conference on symposium on opearting systems design & implementation,
vol 6. USENIX Association, Berkeley, p 10
6. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical
image database. In: CVPR *09
7. Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu J, Fox G (2011) Twister: a runtime
for iterative mapreduce. In: Proceedings of the 19th ACM international symposium on high
performance distributed computing, HPDC *10. ACM, pp 810-818. d0i:10.1145/1851476.1851593
8. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur
P, Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL, Woodall TS (2004) Open
MPI: goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th
European PVM/MPI users’ group meeting, pp 97-104
9. Gillick D, Faria A, Denero J (2006) Mapreduce: distributed computing for machine learning
10. Gonzalez E, Figueroa K, Navarro G (2008) Effective proximity retrieval by ordering permuta-
tions. IEEE Trans Pattern Anal Mach Intell 30(9):1647-1658. doi:10.1109/TPAMI.2007.70815
11. Gropp W, Lusk E, Skjellum A (1994) Using MPI: portable parallel programming with the
message-passing interface. MIT Press, Cambridge
12. Hoefler T, Lumsdaine A, Dongarra J (2009) Towards efficient mapreduce using mpi. In: Ropo
M, Westerholm J, Dongarra J (eds) PVM/MPI, Lecture notes in computer science, vol 5759.
Springer, pp 240-249
13. Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of
dimensionality. In: Proceedings of the 30th annual ACM symposium on theory of computing,
STOC ’98. ACM, New York, pp 604-613. doi:10.1145/276698.276876
14. Jagadish HV, Mendelzon AO, Milo T (1995) Similarity-based queries. In: Proceedings of the
14th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems, PODS
’95. ACM, New York, pp 36-45. doil.:10.1145/212433.212444
15. Kumar V (2002) Introduction to parallel computing, 2nd edn. Addison-Wesley Longman, Boston
16. Lu X, Wang B, Zha L, Xu Z (2011) Can mpi benefit hadoop and mapreduce applications?
In: 40th international conference on parallel processing workshops (ICPPW), pp 371-379.
doi:10.1109/ICPPW.2011.56
17. McCreadie R, Macdonald C, Ounis I (2011) Mapreduce indexing strategies: studying scalability
and efficiency. Inf Process Manag. doi:10.1016/j.ipm.2010.12.003
18. Message passing interface. http://www.mpi-forum.org/
19. Mpich2. http://www.mcs.anl.gov/mpi/mpich2
20. Patella M, Ciaccia P (2009) Approximate similarity search: a multi-faceted problem. J Discrete
Algorithms 7(1):36—48. doi:10.1016/j.jda.2008.09.014
21. Plimpton SJ, Devine KD (2011) Mapreduce in mpi for large-scale graph algorithms. Parallel
Comput 37(9):610-632
22. Project gutenberg. http://www.gutenberg.org/
23. Rajasekaran R, Reif J (2007) Handbook of parallel computing: models, algorithms and applica-
tions. CRC Press
24. Samet H (2006) Foundations of multidimensional and metric data structures. In: The Morgan
Kaufmann series in computer graphics and geometric modeling. Elsevier/Morgan Kaufmann.
http://books.google.ch/books?id=vO-NRRKHGS84C
25. Stanfill C (1990) Partitioned posting files: a parallel inverted file structure for information
retrieval. In: Proceedings of the 13th annual international ACM SIGIR conference on re-
search and development in information retrieval, SIGIR ’90. ACM, New York, pp 413-428.
doi:10.1145/96749.98247

@ Springer

http://dl.acm.org/citation.cfm?id=1459693.1459731
http://doi.acm.org/10.1145/1851476.1851593
http://doi.acm.org/10.1109/TPAMI.2007.70815
http://doi.acm.org/10.1145/276698.276876
http://doi.acm.org/10.1145/212433.212444
http://doi.acm.org/10.1109/ICPPW.2011.56
http://doi.acm.org/10.1016/j.ipm.2010.12.003
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi/mpich2
http://dx.doi.org/10.1016/j.jda.2008.09.014
http://www.gutenberg.org/
http://books.google.ch/books?id=vO-NRRKHG84C
http://doi.acm.org/10.1145/96749.98247

Multimed Tools Appl (2014) 69:513-537 537

26. White T (2009) Hadoop: the definitive guide, 1st edn. O’Reilly

27. Witten IH, Moffat A, Bell TC (1999) Managing gigabytes: compressing and indexing documents
and images, 2nd edn. Morgan Kaufmann, San Francisco

28. von Wyl M, Mohamed H, Bruno E, Marchand-Maillet S (2011) A parallel cross-modal search en-
gine over large-scale multimedia collections with interactive relevance feedback. In: Proceedings
of the 1st ACM international conference on multimedia retrieval, pp 73:1-73:2

29. Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric space approach,
advances in database systems, vol 32. Springer

Hisham Mohamed received his B.S. in systems and biomedical engineering from Cairo University,
Egypt in 2008 and his M.S. degree in software engineering from Nile University, Egypt in 2010.
Since 2010, he is a PhD student and working at the Computer Vision and Multimedia Laboratory,
University of Geneva, Switzerland, as a research assistant. His research interests focus on large scale
multimedia information retrieval.

Stéphane Marchand-Maillet is associate professor in the Department of Computer Science at
University of Geneva. He holds a PhD in applied mathematics from Imperial College UK (°97). He is
the founding leader of the Viper Research Group on Information Retrieval and Machine Learning.
He has authored a number of journal and conference contributions on Information Retrieval,
Machine Learning, Data Mining and Multimedia processing. He was general chair of the ACM
SIGIR 2010 in Geneva, CH and ACM CIVR 2009 in Santorini, GR. He is involved in a number
national and international projects, in relation to Information Access. He participates in scientific
committees, including as chair of the Technical Committee 12 of the International Association for
Pattern Recognition (“Multimedia and Visual Information Systems”).

@ Springer

	Distributed media indexing based on MPI and MapReduce
	Abstract
	Introduction
	Related work
	MapReduce and MPI
	Multimedia indexing
	Inverted files
	Approximate similarity search

	MapReduce and MPI
	MapReduce
	MPI

	Map-Reduce overlapping using MPI (MRO-MPI)
	MapReduce and MPI bottlenecks
	MRO-MPI model
	Technical implementation

	Experimental results
	Word count
	Distributed inverted indexing
	MapReduce for distributed inverted files
	Experiments

	Distributed approximate similarity search
	Permutation-based indexes
	Metric inverted files
	Distributed metric inverted files indexing
	Experiments

	Conclusion and future work
	References

