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Abstract The complement 4 binding protein (C4bp)

plays a crucial role in the inhibition of the complement

cascade. It has an extraordinary seven-arm octopus-like

structure with 7 tentacle-like identical chains, held together

at their C-terminal end. The C-terminal domain does oli-

gomerize in isolation, and is necessary and sufficient to

oligomerize full-length C4bp. It is predicted to form a

seven-helix coiled coil, and its multimerization properties

make it a promising vaccine adjuvant, probably by

enhancing the structural stability and binding affinity of the

presented antigen. Here, we present the solid-state NMR

resonance assignment of the human C4bp C-terminal

oligomerization Domain, hC4pbOD, and the corresponding

secondary chemical shifts.

Keywords C4-binding protein � Oligomerization domain �
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Biological context

C4bp is part of the complement system, which is a key

component of the innate immune system (Blom et al. 2004).

Three major pathways can activate the complement cas-

cade: the so-called classical, alternative, and lectin path-

ways. Activation of immune reactions has to be tightly

controlled, as they can also be destructive to the organism.

C4bp is a plasma-circulating complement inhibitor of the

classical and lectin pathways of the complement cascade,

and it suppresses the activity of the C3-convertases. Those

are crucial enzymatic complexes in all three pathways of

complement, whose functions are to activate the major

complement protein C3, resulting in the assembly of the

membrane attack complex. C4bp is a high-molecular-

weight glycosylated protein (MW around 570 kDa) com-

posed of identical subunits (MW = 70 kDa) linked by

disulfide bonds (Dahlback et al. 1983). It exists in several

isoforms having 6–8 a- and a single b-chains, the most

common with seven identical a-chains (Hillarp and Dahl-

back 1990). The overall structure of C4bp in solution was

suggested to be a bundle of seven extended arms (the a-

chains) held together at their C-termini (Perkins et al. 1986).

The b-chain is not required for oligomerization. The

C-terminal oligomerization domain (hC4bpOD) consists of

57 amino acids, the corresponding domain in mice, 54

amino-acid residues. It has been shown that this domain is

necessary (Kask et al. 2002) and sufficient for the
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oligomerization of C4bp. It contains 2 cysteines, which

stabilize the interaction between the chains by intermolec-

ular disulfide bonds; however, these SS-bonds are not

required for the oligomerization of the protein (Kask et al.

2002). The C-terminal domain of C4bp was also shown to

be able to oligomerize even in the presence of other proteins

fused to it, with the potential to increase the half-lives or

activity of the fusion protein (Libyh et al. 1997; Shinya et al.

1999; Oudin et al. 2000; Dervillez et al. 2006). Furthermore

it has been observed that the murine and avian C-terminal

domains of C4bp can act as an adjuvant for vaccines against

malaria and tuberculosis when fused to the antigen (Draper

et al. 2008; Ogun et al. 2008; Spencer et al. 2012).

The seven C-terminal helices in the C4bp oligomer are

predicted to form a coiled-coil structure. Interestingly, the

only other protein that has been shown to form a coiled-coil

heptameric arrangement experimentally is a mutant form of

the GCN4 leucine zipper, and its structure has been

determined recently (Liu et al. 2006).

In the following we present the solid-state NMR reso-

nance assignments and secondary structure analysis of the

crystalline form of a heptameric protein corresponding to

the oligomerization domain of human C4bp, here desig-

nated as hC4bpOD, in its crystalline form. We compare the

obtained information with structure predictions for coiled–

coiled states of the protein, and show that these predictions

do not correspond to the actual helical core observed by

NMR.

Methods and experiments

Protein expression and purification; sample preparation

The protein was transformed with a plasmid consisting of a

pRSET backbone under the control of the T7 promoter as

described previously (Ogun et al. 2008). A tag (MAS-

MNHKGS) was added at the N-terminal of the protein.

Expression was carried out in C41(DE3) cells in M9-

complete medium /Amp after the induction with 0.5 M

IPTG at 37 �C for 4 h. Cells were harvested at 6,000 g and

lysed by sonication in 50 mM Tris–HCl, pH 8.0, 5 mM

MgCl2, 10 % glycerol, 1 mM PMSF, 5 mg lysozyme,

1000U Benzonase-Nuclease� (Sigma Aldrich). After cen-

trifugation at 6,000 g for 15 min, the lysate supernatant

was fractionated by ion-exchange chromatography on

DEAE (DEAE F.F 16/10, GE Healthcare) eluting with a 0

to 50 % gradient of 1 M NaCl (in 10 mM Tris, pH 7.0).

The fractions containing hC4bpOD were pooled and con-

taminating bacterial proteins were precipitated by 50 mM

NaAc pH 4.5 overnight. The supernatant was further

purified by cation exchange chromatography (HiTrap

S.P.F.F., GE Healthcare) by eluting with a gradient from 0

to 70 % 1 M NaCl (20 mM NaAc pH 4.5). Incubation

overnight in 50 mM Tris–HCl at pH 8.6 allowed disulfide-

bond formation. The protein was loaded on a Superdex S75

26/60 column (GE Healthcare) and separated from residual

contaminating proteins (50 mM Tris, pH 7.2, 2.4 ml/min,

elution at 54 min). hC4bpOD crystallization occurs after

several days in sitting drops prepared by adding equal

amounts (150 ll) of crystallization buffer (30 % 2-methyl-

2,4 pentanediol (MPD) /20 % EtOH/ 50 % H2O) and

protein solution (15 mg/ml in 50 mM Tris, pH 7.2) at 4 �C.

Crystals are temperature sensitive and dissolve when

transferred to room temperature, and were thus directly

centrifuged at 4 �C into the NMR rotor (Böckmann et al.

2009). The rotor was stored at -20� C and quickly trans-

ferred into the precooled NMR probe.

NMR spectroscopy

We used a suite of 2D and 3D experiments, namely 2D

DARR and DREAM, and 3D NCACB, NCACX, NCOCA,

CANCO and CCC experiments to perform the assignment

as described in detail in references (Habenstein et al. 2011;

Schuetz et al. 2010). Each spectrum took 2–4 days to be

recorded. Full experimental details are given in Table S1.

The sequential walk was achieved by connecting reso-

nances from NCACB/NCACX, CANCO and NCOCA

spectra. Side-chain assignments were done using NCACB,

NCACX and CCC spectra. Spectra were recorded on either

of two different preparations which, as judged from 2D

spectra recorded under identical conditions, yielded iden-

tical spectra.

All spectra were recorded on a Bruker Avance II

600 MHz spectrometer operating at a static field of 14.1 T.

A 3.2 mm Bruker triple-resonance MAS probe was used.

The spectra were recorded at a sample temperature of

-12 ± 2 �C. The pulse sequences were implemented as

recently reported (Schuetz et al. 2010). All spectra were

processed using TopSpin 2.1 (Bruker Biospin) with zero

filling to the next power of 2 of acquired points, but a

minimum of once. The time domain signals were apodized

with a squared cosine function, shifted by values between

0.2 and 0.3. Spectra were analyzed and annotated using the

CcpNmr Analysis package (Fogh et al. 2002; Vranken

et al. 2005).

Assignment and data deposition

Mass spectroscopy and SDS-PAGE analyses of purified

cC4bpOD under reducing and non-reducing conditions

confirmed its heptameric association and formation of

intermolecular disulphide bonds (Ogun et al. 2008). The

crystals of hC4bpOD give rise to well-resolved 2D DARR
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spectra, which display only little spectral overlap in both

the aliphatic and carbonyl regions. The 10 ms 2D DARR

spectrum with the resonance assignments of hC4bpOD is

shown in Fig. 1. The vast majority of the cross peaks are

explained by our assignments. Two additional spin systems

could be identified, probably as E or Q. They show weaker

resonances in the DARR spectrum, and could not be

assigned sequentially as they lack resonances in some of

the 3D assignment spectra. They might belong to the

stretch between 39E and 47S, which is unassigned and

contains two Q and one E residues. Some rather broad

peaks could not be assigned as well.

To illustrate sequential assignments, a representative

plane of the 3D NCACB, NCACO, CANCO and NCOCA

experiments is shown in Fig. 2. The observed line width in

the spectra is between 0.5 and 1 ppm, which allows for

an assignment using the afore-mentioned 3D methods.

The chemical shifts have been deposited in the BMRB

under the accession number 18731.

Excluding the N-terminal 6 amino acids added to improve

protein expression, 71 % of all amino acids could be

assigned sequentially. More specifically, the assignment

comprises: 74.5 % of the nitrogen backbone, 72.7 % of the

carbonyl, 76.4 % of the Ca and 75.5 % of the Cb resonances.

However, all strong signals in the dipolar-transfer based

spectra could be assigned. The assigned residues are located

in three amino-acid stretches, comprising V9-K13, M16-E39

and S47-L57. The corresponding signals were present in all

NCACO/CX, CANCO and NCOCA/CX spectra used for

sequential assignment, and overlap did not impede the

sequential walk. P3 could be assigned due to the fact that it

was the only residue left of its type, and no polymorphism

was observed in the sample. Three regions, spanning resi-

dues E1 to Q8, R14-L15 and Q40-D46, are not or only
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Fig. 1 2D DARR spectrum of hC4bpOD with the sequentially

assigned residues labeled. The spectrum was acquired using a Bruker

600 MHz WB spectrometer at 12.5 kHz MAS frequency. Spectral

analysis has been performed using the CcpNmr software (Fogh et al.

2002; Vranken et al. 2005)
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weakly visible in our spectra, indicating that they show

dynamic behavior. Indeed, resonances belonging to Ala,

Asp, Glu, Leu, Lys, Met, Ser and Thr residues can be

observed in the INEPT spectrum shown in Fig. 3. Additional

signals from the crystallization buffer are observed.

According to the amino-acid distribution in the primary

sequence, and taking into account the sequentially assigned

residues of the rigid part of the molecule, the resonances

likely arise from the N-terminal tag, as well as from unas-

signed stretches E1–Q8 and Q40–D46. Notably, the tag

alone could not explain the observed signals, supporting that

the unassigned stretches are, at least partly, dynamic.

Figure 4 displays the secondary chemical shifts of the

assigned residues (Luca et al. 2001). More than three

positive values in a row indicate a-helical conformation,

three or more negative ones a b-strand (Wishart and Sykes

1994). Most of the assigned residues are found in a-helical

conformation (compare to blue residues below the plot). In

the first stretch, V9 to K13 show a a-helical structure

element, followed by what might be a flexible turn, as

indicated by the absence of assignments for residues R14

and L15. Amino acids E23–E39 clearly show a continuous

a-helical conformation. The first part of the last stretch

comprising S47–L55 might form a short a-helix, followed

by a turn and some residues in b-strand conformation.

Green letters in the second amino-acids sequence under-

neath the plot highlight a possible consensus coiled-coil

region in hC4bpOD predicted by different programs

including PCOILS (Lupas et al. 1991), MARCOIL

(Delorenzi and Speed 2002) and Multicoil (Wolf et al.

1997); see Figure S1 for details. The programs predict the

stretch from roughly A28 to L53 to be a-helical (marked

with green letters in Fig. 4), in disagreement with our

experimental data that find a long helix from E23-E39.
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Fig. 2 Representative plane of the 3D NCC assignment spectra with

the corresponding assignments. The spectra were acquired with a

Bruker 600 MHz WB spectrometer at 12.5 kHz MAS frequency.

Spectral analysis has been performed using the CcpNmr software

(Fogh et al. 2002; Vranken et al. 2005). NCACB spectra are

represented in purple (negative signals) and pink (positive signals),

NCACO spectra in red, CANCO spectra in blue and NCOCA spectra

in green. Grey assignments have a slightly different 15N chemical

shift as the represented plane

4 N. Luckgei et al.

123



Conclusion

The vast majority of all hC4bpOD resonances visible in

dipolar-based spectra could be assigned sequentially by

using 3D assignment strategies (Habenstein et al. 2011;

Schuetz et al. 2010). Most of the assigned residues show

chemical shifts corresponding to a-helical conformations; a

long and continuous stretch reaches from E23 to E39.

Coiled-coil bioinformatics predictions proposed a possible

coiled coil region for a different region, including residues

A28 to T52. This stretch includes residues which are not

observed in the cross-polarization NMR spectra of

hC4bpOD, indicating that they are flexible. This is sup-

ported by the observation of the corresponding residue

types in INEPT spectra. According to our sequential

assignments, the coiled-coil region is probably restricted to

the stretch between amino acid residues 23–39. The present

sequential assignment is the first step towards the structure

determination of hC4bpOD, which is mandatory to the

biophysical characterization of this efficient vaccine adju-

vant (Draper et al. 2008; Ogun et al. 2008; Spencer et al.

2012).
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Fig. 3 INEPT spectrum. Solvent signals are labeled accordingly

EtOH or MPD. Signals which likely stem from the N-terminal tag are

labeled in red, those attributed to unassigned residues are labeled in

green. The sequence is shown with the corresponding color codes,

and assigned residues in blue

Fig. 4 Secondary chemical shifts for hC4bpOD. Three or more

negative values in a row suggest b-strand conformation, 3 positive

values helical conformation. Isolated positive or negative residues

suggest turn- or random coil-conformation. Of glycines, only the

DdCa are plotted. Below the plot, the amino-acid sequence (without

tag) of hC4bpOD is shown. Assigned residues are marked in blue.

The green residues in the sequence below belong to a possible

consensus coiled-coil region predicted by different programs (sum-

mary of the results from PCOILS, MARCOIL, Multicoil; see Figure

S1). The secondary structure elements found in this study are

indicated in the lowest row (zick-zack for a-helical and arrow for b-

sheet)
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