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Abstract
Objectives Emdogain, containing an extract of fetal porcine
enamel matrix proteins, is a potent stimulator of in vitro
osteoclastogenesis. The underlying molecular mechanisms
are, however, unclear.
Material and methods Here, we have addressed the role of
transforming growth factor-beta receptor type 1 (TGF-βRI)
kinase activity on osteoclastogenesis in murine bone marrow
cultures.
Results Inhibition of TGF-βRI kinase activity with SB431542
abolished the effect of Emdogain on osteoclastogenesis in-
duced by receptor activator of nuclear factor kappa-B ligand
or tumor necrosis factor-alpha. SB431542 also suppressed the
Emdogain-mediated increase of OSCAR, a co-stimulatory
protein, and dendritic cell-specific transmembrane protein and
Atp6v0d2, the latter two being involved in cell fusion. Similar
to transforming growth factor-beta1 (TGF-β), Emdogain
could not compensate for the inhibition of IL-4 and IFNγ on
osteoclast formation. When using the murine macrophage cell
line RAW246.7, SB431542 and the smad-3 inhibitor SIS3
blocked Emdogain-stimulated expression of the transcription
factor NFATc1.

Conclusions Taken together, the data suggest that TGF-βRI
kinase activity is necessary to mediate in vitro effects of
Emdogain on osteoclastogenesis.
Clinical relevance Based on these in vitro data, we can spec-
ulate that at least part of the clinical effects of Emdogain on
osteoclastogenesis is mediated via TGF-β signaling.
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Introduction

Osteoclasts, the exclusive bone resorbing cells, originate from
hematopoietic progenitors [1, 2]. Under physiologic condi-
tions, osteoclasts contribute to calcium-phosphate homeosta-
sis and bone remodeling [1, 2]. Bone regeneration also in-
volves osteoclastogenesis [3]. Under chronic inflammatory
conditions, osteoclasts cause bone destruction, for example
in periodontal disease, rheumatoid arthritis, and colitis [4]. It is
thus of clinical relevance to understand the process of osteo-
clastogenesis and how it is modulated by local and systemic
factors, including pharmacological therapies. In vitro models
have traditionally provided insights into the process of osteo-
clastogenesis [5].

Osteoclastogenesis is controlled by the key factor, receptor
activator of nuclear factor kappa-B ligand (RANKL), also
known as tumor necrosis factor ligand superfamily member 11
[5]. Osteoclasts generated from bone marrow are characterized
by histochemical staining of tartrate-resistant acid phosphatase
(TRAP) and their multinucleated morphology [1, 2]. Moreover,
these cells express other functional genes such as cathepsin K
(CathK) and the calcitonin receptor (CTR). Osteoclasts express
co-stimulatory molecules activating the immunoreceptor
tyrosine-based activation motif (ITAM)-dependent pathway
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[6]. Osteoclast-associated receptor (OSCAR) and triggering
receptor expressed in myeloid cells (TREM2) are receptors
that are associated with the respective adaptor molecules Fc
receptor common gamma chain (FcRγ) and DNAX-
activating protein 12 kDa (DAP12). Downstream signaling
pathways culminate in the expression and activation of the
master regulator nuclear factor of activated T cells c1
(NFATc1), and genes regulating cell fusion such as dendrocyte
expressed seven transmembrane protein (DC-STAMP) [7]
and ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit
d2 (Atp6v0d2) [8]. The expression levels of the respective
genes, consequently, provide insights into osteoclastogenesis
in vitro.

Emdogain is the trade name for the combination of enamel
matrix derivative (EMD) isolated from the tooth germs of
piglets and propylene glycol alginate (Institut Straumann,
Basel, Switzerland, formerly Biora, Malmö, Sweden) [9,
10]. Emdogain can support periodontal tissue regeneration
[11], however, also root resorption following surgical debride-
ment was reported [12]. Emdogain can prevent root resorption
after tooth replantation in rats [13, 14], with certain clinical
translation [15–18]. In vitro, Emdogain clearly stimulates the
differentiation of the mouse monocytic cell line RAW 264.7
and primary bone marrow cells into osteoclast-like cells
[19, 20]. Chromatography further revealed fractions of enamel
matrix derivatives responsible for the pro-osteoclastogenic
activity of Emdogain, however, the molecular details have
not been discovered so far [20]. Therefore, it is relevant to
better understand the details on how Emdogain supports os-
teoclastogenesis in vitro.

Transforming growth factor-beta1 (TGF-β) signaling is
among the main mechanisms that mediate at least part of the
cellular response to EMD and Emdogain [21–26]. In vitro,
TGF-β can increase osteoclastogenesis in the presence of
RANKL or tumor necrosis factor-alpha (TNFα) [27]. TGF-β
binds to the type II receptor, which in turn activates the type I
receptor (TGF-βRI). TGF-β signaling supports osteoclasto-
genesis for example, by increasing the master regulator
NFATc1 [28]. However, Emdogain contains not only TGF-β
and TGF-β-like substances [10]. It is therefore not clear if
TGF-β signaling mediates the effect of Emdogain on osteo-
clastogenesis [19, 20]. The mechanism through which
Emdogain acts to stimulate osteoclastogenesis remains to be
determined.

We therefore tested the hypothesis that osteoclastogenesis
in the presence of Emdogain involves TGF-β signaling. To
support this assumption, we blocked the TGF-βRI kinase with
the pharmacologic compound SB431542 and studied osteo-
clastogenesis in murine bone marrow cultures. RAW 264.7
murine monocytic cells served as a model to study impact of
SB431542 and SIS3, the latter being a smad-3 signaling
inhibitor, on the regulation of NFATc1. Based on this

in vitro setting, we report that TGF-βRI kinase signaling
mediates the pro-osteoclastogenic effects of Emdogain at the
level of cell morphology, expression of differentiation and
fusion markers, and the master regulator NFATc1.

Material and methods

In vitro osteoclastogenesis in bone marrow cultures

Bone marrow cells were prepared by flushing the femur and
tibiae of 4- to 6-week-old female mice (strain Balb/c,) and
seeded at one million bone marrow cells per square centimeter
in Eagle's Minimum Essential Medium—Alpha Modification
(aMEM) supplemented with 10 % fetal calf serum (FCS),
antibiotics. For osteoclastogenesis, medium was supplement-
ed with macrophage colony-stimulating factor (M-CSF) at
30 ng/ml and soluble RANKL at 30 ng/ml. Cells were addi-
tionally exposed to Emdogain (Institut Straumann AG, Basel,
Switzerland; 100 μg EMD/ml), human transforming growth
factor-beta1 (TGF-β1) or human TNFα, both at 5 ng/ml. For
indicated experiments, Emdogain from four different batches
and reconstituted (0.1 % acetic acid) lyophilized EMD was
used. In addition, Emdogain (10 mg/ml) was heat treated at
96 °C for 3 min as TGF-β resists high temperatures [29]. Also
experiments with murine IL-4 and murine IFNγ were per-
formed. Recombinant proteins were purchased from Prospec
(Ness-Ziona, Israel). SB431542 was used at 10 μM (Santa
Cruz Biotechnology, Santa Cruz, CA). After 5 days, histo-
chemical staining for TRAP (Sigma Aldrich, St. Louis, MO)
was performed.

Expression of marker genes in bone marrow cultures

Total RNA was isolated using the High Pure RNA Isolation
Kit (Roche Applied Science, Rotkreuz, Switzerland). Reverse
transcription (RT) was performed with Transcriptor Universal
cDNA Master and PCR was done with TaqMan universal
PCR Master Mix (Applied Biosystems, Carlsbad, CA) or the
FastStart Universal Probe Master Rox on a 7500 Real-Time
PCR System (Roche). Probes for CTR, TRAP, CathK,
OSCAR, TREM2, FcRγ, DAP12, and beta actin were obtain-
ed from the TaqMan Gene Expression Assays service
(Applied Biosystems). The FastStart Universal SYBR Green
Master Rox (Roche) was used for DC-STAMP (forward:
aagctccttgagaaacgatca; reverse: cag gac tgg aaa cca gaa atg)
and Atp6v0d2 (forward: aag cct ttg ttt gac gct gt; reverse: gcc
agc aca ttc atc tgt acc). Primers were designed with the online
Universal ProbeLibrary System. The mRNA levels were cal-
culated by normalizing to the housekeeping gene beta actin
using the ΔCt method.
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Expression of NFATc1 in RAW 264.7

RAW 264.7, macrophage-like cells, were kindly provided by
Jürg Gertsch (Institute of Biochemistry and Molecular
Medicine, University of Bern). Cells were exposed to growth
medium containing RANKL at 10 ng/ml with various combi-
nations of Emdogain, TGF-β and SB431542 for 24 h.
One experiment was performed with a TGF-β pan specific
polyclonal Ab (AB-100-NA; R&D Systems, McKinley Place
NE, MN) as reported recently [26]. Also the Smad3 inhibitor
SIS3 at 10 μM (Calbiochem) was used in this setting. Total
RNA was isolated and RT-PCR was performed for NFATc1
(forward: tccaaagtcattttcgtgga; reverese: ctttgcttccatctcccaga)
according to the SYBR Green protocol.

Statistical analysis

Experiments were repeated in triplicates at least twice. Data
are reported as mean and standard deviation of all data points.
Statistical analysis was performed with ANOVA and post-hoc
testing. p values less than 5 % were considered significant.

Results

Emdogain stimulates RANKL-induced osteoclastogenesis

To investigate the impact of Emdogain on osteoclastogenesis,
we determined the formation of multinucleated cells staining
positive for TRAP. RANKL and M-CSF induced the forma-
tion of osteoclasts. As expected [19, 20], Emdogain and
TGF-β increased the number and size of osteoclast-like cells
in vitro (Fig. 1a). Similar to recombinant TGF-β [29], heat-
treatment of Emdogain [30] maintained its activity on osteo-
clastogenesis (data not shown). Emdogain considerably
(greater than twofold) increased the mRNA level of TRAP,
CathK and CTR, being in line with the morphological changes
(Fig. 1b). Emdogain also increased OSCAR, while the other
co-stimulatory molecules TREM2, FcRγ, and DAP12,
remained unchanged (Fig. 1c). Together, the findings show
that similar to TGF-β, Emdogain is a potent enhancer of
RANKL-induced osteoclastogenesis.

Emdogain stimulates TNF-induced osteoclastogenesis

Besides RANKL, TNFα can also induce osteoclastogenesis in
the presence of TGF-β [31]. Thus, we determined if
Emdogain serves as cofactors for TNFα. Multinucleated cells
staining positive for TRAP were found in cultures containing
TNFα and TGF-β (Fig. 2a). When TGF-β was replaced by
Emdogain, osteoclasts developed even though they were less

in number and had fewer nuclei. These findings demonstrate
that Emdogain can serve as a cofactor for TNFα-induced
osteoclastogenesis, again, analogous to TGF-β.

Emdogain cannot overcome the inhibition of IL-4 and IFNγ
on osteoclastogenesis

To further learn how Emdogain exerts its effect on osteoclas-
togenesis, we performed the bone marrow cultures in the
presence of the potent inhibitors IL-4 and IFNγ (Fig. 3). As
expected, IL-4 and IFNγ substantially diminished the forma-
tion of osteoclasts in vitro. Neither TGF-β nor Emdogain
could compensate for the suppression of osteoclastogenesis,
further suggesting a functional similarity of the two pro-
osteoclastogenic factors.

SB431542 abolished osteoclastogenesis in the presence
of Emdogain

Having shown that the effects of TGF-β and Emdogain on
osteoclastogenesis are comparable, we went on to investigate if
the cellular response to Emdogain involves TGF-β signaling.
To do this, we performed the experiments in the pres-
ence of SB431542, an inhibitor of TGF-βRI kinase activity.
Osteoclastogenesis was markedly decreased in the presence of
SB431542 (Fig. 4a). These morphologic changes were accom-
panied by a reduction in the expression of the osteoclastogenic
marker genes TRAP, CathK, and CTR (Fig. 4b). SB431542
also blocked the effects of TGF-β and Emdogain on the
expression of DC-STAMP and Atp6v0d2 (Fig. 4c). However,
SB431542 also blocks osteoclastogenesis in basic cultures
containing RANKL and M-CSF, supporting the role of endog-
enous TGF-β in osteoclastogenesis (data not shown). Together,
the data suggest Emdogain cannot overcome the essential role
of the TGF-βRI kinase in osteoclastogenesis.

SB431542 and SIS3 suppressed the effects of Emdogain
on NFATc1 expression

In the bone marrow culture, SIS3 also blocked osteoclasto-
genesis in the presence of TGF-β and Emdogain (Fig. 5a). We
next took advantage of a murine macrophage cell line
RAW246.7 and NFATc1, the latter being the master regulator
of osteoclastogenesis, which is strongly increased by TGF-β
[28]. RAW246.7 cells responded with increased mRNA levels
of NFATc1 when activated with Emdogain (Fig. 5b).
Importantly, SB431542 and SIS3 both blocked the effects of
Emdogain on the expression of NFATc1. Together, these data
further support the assumption that Emdogain mediates its
activity via TGF-βRI kinase and smad3 signaling, targeting
the key transcription factor of osteoclastogenesis, NFATc1.
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Discussion

The present study was based on two previous observations:
First, similar to TGF-β [27], enamel matrix derivative can
support in vitro osteoclastogenesis [19, 20]. Second, TGF-β
can mediate at least part of the cellular responses to Emdogain

in vitro [21–24]. Together, these data have raised the possibil-
ity that the stimulatory effects of Emdogain on osteoclasto-
genesis also involve TGF-β. The present in vitro study
supports this hypothesis as blocking TGF-βRI kinase coun-
teracts all supportive effects of Emdogain on in vitro
osteoclastogenesis.

Fig. 1 Emdogain stimulates
RANKL-induced
osteoclastogenesis.
Multinucleated cells staining
positive for TRAP were
considered osteoclast-like cells. a
Emdogain and TGF-β
substantially increased the
number and size of osteoclasts. b
Emdogain and TGF-β similarly
increased the mRNA level of
TRAP, CathK, and CTR. c
Likewise, Emdogain and TGF-β
increased OSCAR, while the
other co-stimulatory molecules
remained unchanged. Data
represent the triplicate values of
one out of two independent
experiments. **p<0.01
compared to cultures with
RANKL and M-CSF

Fig. 2 Emdogain stimulates TNFα -induced osteoclastogenesis. Multi-
nucleated cells which are TRAP positive (violet) were observed in bone
marrow cultures containing TNFα and TGF-β. When TGF-β was

replaced by Emdogain, osteoclasts developed, even though they were
less in number and had fewer nuclei. Experiments were performed twice
with similar results
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Our findings extend previous observations that Emdogain
has effects similar to TGF-β on osteoclastogenesis induced
with RANKL and TNFα [27] and the regulation of NFATc1
[28]. Furthermore, the strong upregulation of genes involved
in cell fusion, DC-STAMP and ADP6, is in line with the

existing knowledge on TGF-β [32]. Together, our study adds
to the current understanding that Emdogain causes a cellular
response, similar to TGF-β1.

The question arises, if Emdogain mediates its activity on
osteoclastogenesis exclusively via TGF-β signaling? This

Fig. 3 Emdogain cannot overcome the inhibition of IL-4 and IFNγ on
osteoclastogenesis. Osteoclastogenesis was performed in the presence of
IL-4 and IFNγ. a Both factors diminished osteoclastogenesis in vitro.
Emdogain and TGF-β could NOT compensate for the suppression of

osteoclastogenesis. b Gene expression was reduced by IL-4 and IFNγ to
less than 10 % of the respective controls. The data represent the triplicate
data of one out of two experiments. **p <0.01 compared to cultures with
RANKL, M-CSF, and Emdogain

Fig. 4 SB431542 abolished osteoclastogenesis in the presence of
Emdogain. Osteoclastogenesis was suppressed in the presence of SB-
431542, an inhibitor of TGF-βRI kinase activity (a). These microscopic
changes were accompanied by a reduction in the expression of the
osteoclastogenic marker genes TRAP, CathK, and CTR (b). Moreover,
also the genes that regulate cell fusion dendrocyte expressed seven
transmembrane protein (DC-STAMP ) and ATPase, H+ transporting,

lysosomal 38 kDa, V0 subunit d2 (Atp6) included in the analysis (c).
SB431542 also suppresses osteoclastogenesis in the presence of various
batches of Emdogain and EMD (d). The findings shown were conformed
by another independent experiment. Expression data represent the mean
of triplicate values. **p <0.01 compared to cultures with RANKL, M-
CSF, and TGF-β1/Emdogain, respectively
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question is hard to answer because TGF-βRI kinase is oblig-
atory for osteoclastogenesis, also when no extra TGF-β1 is
added to the in vitro system. For example, in the presence of
SB431542, RANKL-induced osteoclastogenesis is almost
completely suppressed [33]. Nevertheless, we provide evi-
dence that Emdogain mediates its activity via TGF-βRI ki-
nase, e.g., SB431542 abolished the stimulatory effect of
Emdogain on DC-STAMP, ADP6, and NFATc1 expression.
We also show that blocking smad-3 signaling with SIS3
blunted NFATc1 expression and osteoclastogenesis. In sup-
port of these findings, smad3 is crucial for TGF-β1-induced
osteoclast differentiation in giant cell tumor of bone [34].
Moreover, smad3 overexpression can reverse the inhibitory
effect of SB431542 on in vitro osteoclastogenesis [33].
Emdogain also caused smad-3 phosphorylation in epithelial
cell and mesenchymal cells, respectively [25, 35]. Together,
these data support a direct involvement of TGF-βRI kinase
signaling in the Emdogain-mediated cellular actions presented
here.

Further support for the hypothesis comes from findings that
Emdogain, similar to TGF-β, maintains its activity when
heated to 96 °C [29, 30]. It remains however open if TGF-β
or other factors that require the TGF-βRI kinase cause the
effects of Emdogain on osteoclastogenesis. Emdogain pre-
sumably contains TGF-β1 or analogous molecules as sug-
gested by studies with neutralizing antibodies raised against
TGF-β1 [21–24] and the respective immunoassays [25, 26].
We also have data that a TGF-β1 neutralizing antibody re-
duced the potential of Emdogain to enhance NFATc1 expres-
sion in RAW246.7 cells (data not shown). Yet, others failed to
show positive binding of a TGF-β1 antibody to Emdogain
[36]. It thus remains a controversial subject if Emdogain
contains TGF-β1. Also, other explanations for an involve-
ment of TGF-β1 are possible. Emdogain can increase the
expression of TGF-β1 in various cell types, pointing towards
an autocrine mechanism [9, 10]. Overall, our data together

with those of others support the assumption that Emdogain
contains TGF-β1 and/or analogous molecules that requires
the TGF-βRI kinase to support osteoclastogenesis in the
murine bone marrow culture.

There remains the discrepancy with the in vivo data show-
ing that Emdogain can prevent root resorption after tooth
replantation [13, 14]. However, also in vitro, TGF-β1 inhibits
osteoclastogenesis in the presence of stromal cells, which are
forced to produce the key inhibitor of osteoclastogenesis,
osteoprotegerin [37, 38]. On the other hand, in vivo inhibition
of TGF-β1 by neutralizing antibody [39] and TGF-βRI kinase
inhibitors [40] can reduce osteoclast differentiation. In vitro,
Emdogain and TGF-β1 can also indirectly modulate osteo-
clastogenesis by stimulating cells to produce osteolytic factors
such as IL-11 [41, 42]. Our ongoing studies indicate that
Emdogain-induced IL-11 expression in oral fibroblasts also
requires TGF-β signaling (Stähli et al.; manuscript in prepa-
ration). Thus, the in vitro data cannot be easily translated into
the clinical scenario. Future in vitro studies should consider
the possibility that Emdogain can decrease osteoclastogenesis
in a co-culture model of hematopoietic progenitors and mes-
enchymal cells. The hypothesis is supported by data showing
that Emdogain decreases the RANKL/OPG ratio in mesen-
chymal cells [43]. It will thus be worth investigating if the
changes in the RANKL/OPG ratio caused by Emdogain also
involve the TGF-βRI and the downstream smad-3 kinase.

Emdogain is a mixture of proteins with different peptides
being responsible for its different biologic properties. The main
component amelogenin has a role in osteoclastogenesis.
Recombinant amelogenin inhibits in vitro osteoclastogenesis
and root resorption [13], and in line with this finding,
amelogenin-null mice experience elevated osteoclastogenesis
[44]. Nevertheless, Emdogain supports in vitro osteoclastogen-
esis as indicated by the present study and recent observations
[19, 20]. The data thus suggest that, at least in vitro, amelogenin
cannot overcome the pro-osteoclastogenic activity of

Fig. 5 SB431542 and SIS3 suppressed the effects of Emdogain on
NFATc1 expression. SIS3, the inhibitor of smad3 signaling, abolished
osteoclastogenesis in the presence of TGF-β1 and Emdogain in the bone
marrow culture (a). NFATc1 is increasingly expressed when the murine

macrophage cell line RAW246.7 is exposed to Emdogain. SB431542
and SIS3 both blocked the effects of Emdogain on the expression
of NFATc1 (b). This experiment was performed two times with similar
results. **p <0.01 compared to cells with RANKL and Emdogain
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Emdogain. The next steps would be to further characterize
the possible pro-osteoclastogenic molecules previously ba-
sically purified by chromatography [19, 20]. Once the pro-
osteoclastogenic activity is identified, Emdogain can be selec-
tively modulated to control the respective in vitro properties.
However, it should not be overlooked that the early transient
osteoclastogenesis is part of the physiologic regeneration se-
quence. For example, TGF-β can enhance the osteoinductive
activity of BMP-2 in vivo [45] and fracture healing is associ-
ated with strong expression of pro-osteoclastogenic genes [3].
The present study puts another piece into the mosaic to better
understand the cellular response to Emdogain.
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